Machine Learning with Applications 16 (2024) 100550

Contents lists available at ScienceDirect

Machine
Learning
wi

Applications

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

Check for

Spam detection for Youtube video comments using machine learning | e
approaches

Andrew S. Xiao?, Qilian Liang >*

@ Purdue University, Department of Computer Science, West Lafayette, 47907, IN, USA
b University of Texas at Arlington, Department of Electrical Engineering, Arlington, 76019, TX, USA

ARTICLE INFO ABSTRACT

MSC: Machine Learning models have the ability to streamline the process by which Youtube video comments are
03C45 filtered between legitimate comments (ham) and spam. In order to integrate machine learning models into
68T05 regular usage on media-sharing platforms, recent approaches have aimed to develop models trained on Youtube
68T50 comments, which have emerged as valuable tools for the classification and have enabled the identification of
Keywords: spam content and enhancing user experience. In this paper, eight machine learning approaches are applied
Machine learning to spam detection for YouTube comments. The eight machine learning models include Gaussian Naive Bayes,

Spam detection
Random forest
Naive Bayes
Logistic regression

logistic regression, K-nearest neighbors (KNN) classifier, multi-layer perceptron (MLP), support vector machine
(SVM) classifier, random forest classifier, decision tree classifier, and voting classifier. All eight models perform
very well, specifically random forest approach can achieve almost perfect performance with average precision

Multi-layer perceptron of 100% and AUC-ROC of 0.9841. The computational complexity of the eight machine learning approaches
Voting classifier are compared.
1. Introduction only tarnishes the platforms’ reputation but also hinders the effective
exchange of ideas and engagement with authentic content. Therefore,
YouTube, the world’s largest video-sharing platform, has revolution- the development of robust spam detection and classification systems
ized the way we consume and engage with online content. With billions has become a critical necessity.
of users and countless videos uploaded daily, the platform fosters a To address these concerns, the utilization of deep learning models
dynamic ecosystem of user-generated content and corresponding inter- for YouTube comment classification offers promising avenues for filter-
active communities. A fundamental aspect of this environment is the ing out spam and enhancing the overall user experience. By automating
comments section, where viewers can express their thoughts, engage the identification of spam comments, content moderators and platform
in discussions, and provide feedback. administrators can more efficiently and effectively maintain the quality
However, alongside these personalized contributions, YouTube com- and safety of the comments section. In this context, leveraging machine
ments are also plagued with an influx of spam content. Spam com- learning models for YouTube comment classification offers promising

avenues to filter out spam and enhance the user experience. By au-
tomating the identification of spam comments, content moderators and
platform administrators can efficiently and effectively maintain the
quality, safety, and integrity of the comments section.

In the recent development of Artificial Intelligence (AI) and deep
learning, generative Al has been a hot topic since the birth of Chat-
GPT (Fui-Hoon Nah, Zheng, Cai, Siau, & Chen, 2023). ChatGPT is based
on large-scale language models, reinforcement learning from human
feedback and in-context learning (Wu et al., 2023). Generative Al is
an unsupervised machine learning approach which has very promising
applications. It can generate multimodal information such as video,

ments, characterized by repetitive irrelevant, promotional, or malicious
content, pose a significant challenge for both YouTube and its users.
They not only clutter the comments section but also undermine user
experience, impede meaningful conversations, and degrade the quality
of interactions. Adversarial and malicious accounts exploit platforms
like Youtube to spread misinformation, promote inappropriate content,
and exploit vulnerabilities that can lead to malware infections and
other cybersecurity threats.

Companies hosting online platforms like YouTube have a vested
interest in combating spam and ensuring a safe and engaging en-
vironment for their users. The proliferation of spam comments not

* Corresponding author.
E-mail addresses: xiao318@purdue.edu (A.S. Xiao), liang@uta.edu (Q. Liang).

https://doi.org/10.1016/j.mlwa.2024.100550

Received 26 December 2023; Received in revised form 10 February 2024; Accepted 9 April 2024

Available online 16 April 2024

2666-8270/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
mailto:xiao318@purdue.edu
mailto:liang@uta.edu
https://doi.org/10.1016/j.mlwa.2024.100550
https://doi.org/10.1016/j.mlwa.2024.100550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2024.100550&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A.S. Xiao and Q. Liang

audio, text, image. Transformer is another hot topic which is based on
attention mechanism (Vaswani et al., 2017). In Lin, Wang, Liu, and Qiu
(2022), transformer and its variants X-transformers were overviewed.
Transformer networks were introduced in Khan et al. (2022). The scal-
ing of Transformers is a breakthrough technique for language models
and the largest large language models (LLMs) has 100B parameters.
Recently, scaling vision transformers to 22 billion parameters were
reported (Dehghani et al., 2023). These large scale language processing
models take several days for training and processing.

In this paper, we focus on the development and evaluation of ma-
chine learning models for classifying YouTube comments as legitimate
(ham) or spam. The project aims to provide valuable insights into the
effectiveness of various classifiers and contribute to the advancement
of comment classification systems. By doing so, it seeks to not only
improve user engagement and foster meaningful conversations but also
prevent threats of malware infections and other vulnerabilities that
can arise from spam comments. This research ultimately contributes
to creating a safer and more secure environment for YouTube users,
protecting their online experiences from potential risks and enhancing
their overall satisfaction with the platform.

Various machine learning models are applied to YouTube comments
spam detection in this paper, including Gaussian Naive Bayes, Logistic
Regression, KNN Classifier, SVM Classifier, MLP Classifier, Decision
Tree Classifier, Random Forest Classifier, and a Voting Classifier. Sub-
sequently, the classifiers were trained on preprocessed data, and their
performance was evaluated on a separate test dataset. The models
were evaluated based on precision, accuracy, and AUC-ROC scores to
assess their efficacy in discriminating ham from spam comments The
study highlights variations in the classifiers’ performance, providing
insights into their individual strengths and weaknesses. The outcomes
contribute to the development of effective comment classification sys-
tems, empowering content moderation and enhancing user experiences
on online platforms.

The rest of this paper is organized as follows. In Section 2, related
works on spam detection using machine learning are reviewed. In
Section 3, we propose to apply seven machine learning approaches
on spam detection for YouTube comments. Experimental results and
performance analysis are presented in Section 4. We conclude this
paper and discuss some future work in Section 5.

2. Related works

In the realm of spam detection, various studies have leveraged
machine learning techniques to enhance the identification and mitiga-
tion of unwanted content. In Ahmed et al. (2022), a comprehensive
overview of spam detection in both email and Internet of Things
(IoT) platforms was presented. The study employed machine learning
algorithms such as random forest, decision tree, Naive Bayes, and
neural networks. For Twitter spam detection, Sun et al. Sun, Lin, Qiu,
and Rimba (2022) used a combination of account-based and content-
based feature extraction methods for data processing. In Danilchenko,
Segal, and Vilenchik (2022), a message-passing algorithm based on
users’ graph structure was introduced for the identification of fake re-
views (Danilchenko et al., 2022). In the survey conducted by Crawford,
Khoshgoftaar, Prusa, Richter, and Al Najada (2015), the prevalence of
supervised learning methods as the mainstream in spam detection using
machine learning approaches was highlighted. In the context of IoT
device security, five machine learning models were evaluated for spam
decision making based on spam scores (Makkar et al., 2020). Manasa
et al. (2022) adopted a swarm optimization approach for tweet-by-
tweet spam detection. In Guo, Mustafaoglu, and Koundal (2023), bidi-
rectional transformers and a machine learning classifier were applied
to spam detection. Mashaleh, Ibrahim, Al-Betar, Mustafa, and Yaseen
(2022) utilized the Harris Hawks Optimizer algorithm to optimize
machine learning for spam email detection. In Bacanin et al. (2022),
natural language processing and swarm intelligence were employed for

Machine Learning with Applications 16 (2024) 100550

spam email filtering. Shaaban, Hassan, and Guirguis (2022) proposed
a deep convolutional forest for spam detection in text. In Grewal, Ni-
jhawan, and Mittal (2022), feature optimization and machine learning
were applied to email spam detection. Social media network spam
detection was studied using machine learning in Niranjani, Agalya,
Charunandhini, Gayathri, and Gayathri (2022). In summary, these stud-
ies showcase the diverse applications of machine learning techniques
across different platforms and domains for effective spam detection. In
this paper, we focus on spam detection on YouTube video comments.

3. Machine learning on spam detection for YouTube comments

We applied eight machine learning approaches to spam detection
on the Youtube video comments, which include Gaussian Naive Bayes,
logistic regression, K-nearest neighbors (KNN) classifier, multi-layer
perceptron (MLP), support vector machine (SVM) classifier, random
forest classifier, decision tree classifier, and voting classifier.

3.1. Gaussia Naive Bayes

The Gaussian Naive Bayes classifier is a probabilistic algorithm used
for text classification tasks, including the classification of YouTube
comments into “ham” or “spam” categories. It assumes that the features
(TF-IDF values) within each class (ham and spam) follow a Gaussian
(normal) distribution, where the probability density function is given
by:

22
exp(— L &)

1
N

To classify a new YouTube comment, the GNB model leverages
Bayes’ theorem and calculates the class conditional probability (P(x|y))
for each feature value. The model uses the class-specific feature statis-
tics (mean and variance) learned during training to estimate these
probabilities.

During training, the GNB model analyzes the training dataset to
compute the mean and variance of each feature within both classes.
These class-specific statistics capture the distribution of feature val-
ues within each class and form the basis for making probabilistic
predictions during the classification process.

By combining the probabilities of individual feature values using
Bayes’ theorem, the GNB model calculates the posterior probabilities
for each class. The class with the highest posterior probability is
assigned to the comment, effectively determining its classification as
either “ham” or “spam”. The GNB classifier’s strength lies in its simplic-
ity, efficiency, and effectiveness in handling high-dimensional datasets
like TF-IDF representations of text data. By making the assumption of
feature independence, the model significantly reduces computational
complexity, making it suitable for real-world applications with large
datasets.

We implemented the Gaussian Naive Bayes classifier using Scikit-
learn’s GaussianNB class. By utilizing the class conditional probabilities
based on the Gaussian distribution assumption, the model efficiently
processes YouTube comments and assigns them to the appropriate class.
The KNN Classifier is a non-parametric algorithm that classifies data
points based on their proximity to neighboring points in the feature
space. By calculating the distance between a query point (a YouTube
comment’s feature vector) and its k number of nearest neighbors, the
model assigns the query point to the majority class among its neigh-
bors. KNN leverages the inherent spatial characteristics of the data to
make predictions, allowing it to capture local patterns and non-linear
decision boundaries. However, this approach might be sensitive to the
choice of k, and the performance can degrade in high-dimensional
feature spaces.

p(x;ily) =

A.S. Xiao and Q. Liang

3.2. Logistic regression

Logistic Regression (James et al.,, 2013) is a widely-used linear
classification algorithm that models the relationship between the input
features (in this case, TF-IDF values of YouTube comments) and the bi-
nary output classes (ham or spam) through the logistic function. Unlike
linear regression, logistic regression is designed to predict probabilities
and make binary decisions.

The algorithm estimates the probability of a comment belonging to
a particular class (ham or spam) using the logistic function, also known
as the sigmoid function:

S = ——e (2)

During training, the logistic regression model uses optimization
techniques like the maximum likelihood estimation or gradient descent
to find the optimal coefficients that minimize the error between the
predicted probabilities and the actual class labels in the training data.

To classify a new YouTube comment, the model uses the estimated
coefficients to compute the linear combination of features and then
passes the result through the sigmoid function to obtain the probability
of the comment belonging to the “spam” class. If the probability
exceeds a threshold (typically 0.5), the comment is classified as “spam”;
otherwise, it is classified as “ham”.

The provided code implements logistic regression using Scikit-
learn’s LogisticRegression class. It uses cross-validation to find the
optimal regularization parameter (lambda or C) that helps prevent
overfitting. By fitting the model on the training data and evaluating
its performance on the test data, the classifier can accurately classify
YouTube comments into “ham” or “spam” categories.

Overall, logistic regression is a simple yet effective classification
algorithm for YouTube comment classification tasks. Its ability to model
non-linear relationships and handle high-dimensional data makes it a
valuable choice for various text classification applications, including
spam detection and sentiment analysis.

3.3. K-nearest neighbor classifier

The k-Nearest Neighbors (k-NN) algorithm is a simple and intuitive
classification algorithm used for classification problems. It is a type of
instance-based learning algorithm, meaning it does not explicitly build
a model during the training phase. Instead, it memorizes the training
dataset and makes predictions based on the similarity between new
data points and the existing training data. The choice of the parameter
k is crucial in the k-NN algorithm. If k is too small, the algorithm can
be sensitive to noise and outliers in the data. If k is too large, the
decision boundary becomes too smooth, and the algorithm may fail
to capture local patterns. The optimal k value depends on the specific
dataset and problem. The KNN algorithm has no training phase and the
model adapts to new data in real-time. However, its computationally
expensive, especially for large datasets. It is very sensitive to irrelevant
or redundant features.

3.4. Support vector machine classifier

The SVM Classifier excels at separating data points into differ-
ent classes by finding an ideal hyperplane that maximizes the mar-
gin between classes. SVM successfully distinguishes between ham and
spam comments by transforming the input characteristics into a high-
dimensional space and establishing a decision boundary that reduces
classification errors. To provide resilience to outliers and enhance
generalization, SVM makes use of support vectors, which are data
points closest to the decision border. Additionally, SVM can handle
non-linearly separable data and capture intricate correlations between
features and labels by using kernel functions.

Machine Learning with Applications 16 (2024) 100550

The objective function of the SVM is to find the optimal hyper-
plane that separates the data points with the maximum margin. The
hyperplane can be represented as

w'x+b=0 3

where w is the normal vector to the hyperplane, x is the input feature
vector, and b is the bias term or intercept.

Given a dataset with m samples and n features, each sample x is
associated with a label y) where y € {—1,1}.

The optimization problem can be formulated as follows (James
et al., 2013)

1y s

mip 3ol @
subject to the constraints

W@IxD +b)> 1, fori=1,2,....,m 5)

The Lagrangian for the SVM optimization problem is (James et al.,
2013)

m
L(w, b,a) = %||w||2 - Z aD @ xD + b) - 1] 6
i=1
where o) are the Lagrange multipliers, one for each data point.
The decision function for predicting the class of a new data point
x(w) is given by James et al. (2013)

f(x(new)) - sign <Z a,(i)y(i)K(x(i)’ x(new)) + b) (7)

i=1

where K(x®, x"e®)) is the kernel function, typically the radial basis
function (RBF) kernel K(x, y) = exp(—y|lx — y||%).

3.5. MultiLayer perceptron

The MLP Classifier is a neural network architecture with multi-
ple hidden layers. Each layer consists of interconnected nodes (neu-
rons) that apply weighted transformations to the input data (Windeatt,
2006). Through forward propagation, the network learns to approx-
imate complex non-linear relationships between features and labels.
The hidden layers allow the model to capture intricate patterns and
hierarchical representations, making it a powerful tool for text classifi-
cation tasks like identifying spam comments. However, training an MLP
requires careful consideration of hyperparameters, such as the number
of hidden layers and neurons, to prevent overfitting.

3.6. Random forest classifier

The Random Forest Classifier leverages the strength of decision
trees and ensemble learning. By constructing multiple decision trees,
each trained on different subsets of the data, and aggregating their
predictions through voting and averaging, Random Forest mitigates the
over-fitting of individual trees. The ensemble approach increases the
model’s accuracy, robustness, and resilience to noise. Random Forest
also provides a measure of feature importance, allowing us to identify
the most relevant features for classifying comments as ham or spam.
Random forest has been widely used for classification, for example, it
was applied to remote sensing classification (Pal, 2005).

3.7. Decision tree classifier

The Decision Tree Classifier adopts a hierarchical tree structure to
make decisions based on feature values. It recursively splits the data at
different nodes based on the most discriminative features, seeking to
minimize impurity (e.g., Gini impurity or entropy). Decision trees are
interpretable and easy to visualize, making them insightful tools for
understanding the classification process. They handle both numerical
and categorical features, enabling effective feature selection. However,

A.S. Xiao and Q. Liang

decision trees can suffer from overfitting if they become excessively
deep, leading to poor generalization.
We use Gini index to decide the split. The Gini index is defined

as (James et al., 2013)

K
G=) Pui(l—Pp) ¥

i=1
where p,,; represents the probability that the training data in the
mth region that are from the ith class. The classification error rate is
represented as (James et al., 2013)

Pe = 1 — max(py,) ©)]
3.8. Voting classifier

The Voting Classifier is an ensemble model that combines the
predictions of multiple classifiers in use, including KNN, SVM, MLP,
Decision Tree, and Random Forest. It uses majority voting or weighted
averaging to make the final decision. By leveraging the diverse per-
spectives of individual classifiers, the Voting Classifier capitalizes on
their complementary strengths, often yielding improved overall perfor-
mance compared to any single classifier. reducing the risk of overfitting
and improving generalization, but it comes at the cost of increased
computational resources.

Voting classifier is based on the majority logic. In our design, we
use seven classifiers, namely Gaussian Naive Bayes, logistic regression,
K-nearest neighbors (KNN) classifier, multi-layer perceptron (MLP),
support vector machine (SVM) classifier, random forest classifier, de-
cision tree classifier, to make a decision, a spam or ham. Assume
all the seven classifiers are independent and each classifier has equal
probability of decision error e, then we can make analysis of the
probability of decision error for voting classifier.

;
pe = ; (Z)e“(l ey a0
=35¢*(1— e +21’(1 —e)* + 781 —e) + €7 11)

Given that ¢ < 1 and in most cases ¢ — 0, so p — 0. This demonstrates
that theoretically the voting classifier can achieves decision error ap-
proaching to 0. For example, if ¢ = 0.1, then p, = 0.0027 and the
accuracy is 99.73%.

4. Experimental results
4.1. Performance and comparison

The Youtube comments dataset underwent preprocessing using
TF-IDF (Term Frequency-Inverse Document Frequency)vectorization,
which encoded the comments into numerical feature vectors. The term
frequency (TF) component measures how frequently a word appears in
a comment, providing local importance information. Conversely, the
inverse document frequency (IDF) component evaluates the rarity of
a word across the entire dataset, providing global importance infor-
mation. The TF-IDF score, a combination of TF and IDF, signifies the
relative significance of a word in a comment relative to the entire
dataset, with higher TF-IDF scores indicating more crucial words for
classification.

By transforming the textual comments into numerical representa-
tions, we enable machine learning models to effectively process and
classify the data. Hyperparameter tuning was conducted to optimize
the classifiers’ performance, focusing on parameters such as C and y
for the SVM Classifier, n,yjmarors and maxg,,, for the Random Forest
Classifier, and hiddenlayersizes for the MLP Classifier. Additionally,
feature engineering techniques were explored to enhance performance,
including customized text preprocessing aimed at improving the quality
of input features.

Machine Learning with Applications 16 (2024) 100550

Similarly, hyperparameter tuning addressed the max,,,, parame-
ter, which governs the maximum depth of each decision tree in the
Random Forest. A deeper tree can capture more intricate relationships
within the data, potentially improving accuracy on the training set.
However, excessive depth can lead to overfitting, limiting the model’s
ability to generalize to new, unseen data. Through hyperparameter
tuning, we searched for the optimal max,,,, that strikes a balance
between capturing essential patterns and maintaining generalization
capabilities.

To accomplish hyperparameter tuning for the Random Forest, we
employed GridSearchCV to perform an exhaustive search over a prede-
fined hyperparameter grid. This method systematically explored vari-
ous combinations of #,yars and maxy,,, values, enabling a compre-
hensive assessment of the model’s performance across a wide range of
settings.

During each iteration of the hyperparameter tuning process, the
Random Forest was trained on the training dataset, and performance
was evaluated using cross-dp2validation on the validation set. By utiliz-
ing metrics such as precision, accuracy, and AUC-ROC, we objectively
evaluated the model’s performance under different hyperparameter
settings.

For the Random Forest Classifier, hyperparameter tuning focused
on two key parameters: fogiqrors a0 MaX g0y ,- T Rygyimar0n, PaTAMeEtET
represents the number of decision trees to be generated within the
ensemble. Each decision tree captures different aspects of the data, and
the aggregation of their predictions leads to the final classification. By
tuning n,y;marorss We explored the trade-off between model complexity
and performance. A larger value of n may lead to a more diverse
and robust ensemble,

estimators

Several assessment point metrics, including accuracy, precision, re-
call, area under the receiver operating characteristic curve (AUC), and
area under the precision-recall curve (AUPRC), were used to evaluate
the performance of the model. Accuracy, precision, and recall were
used to evaluate model performance at a fixed threshold of 0.5 while
AUC and AUPRC were used to evaluate model performance over all
potential thresholds. Precision and recall were also utilized to more
comprehensively assess the performance of the model since accuracy
overemphasizes performance on the majority class in an unbalanced
dataset. The percentage of accurate positive predictions is measured
by precision.

In Figs. 1 to 5, we plot the ROC curves of spam detection for five
YouTube video using eight machine learning approaches. The ROC
curve shows the trade-off between sensitivity (true positive rate) and
specificity (true negative rate) at various thresholds. As we move along
the curve, we can choose a threshold that balances these two metrics
based on the specific requirements of the problem. We can make the
following observations based on these figures:

1. The AUC is a quantitative measure of the model’s overall per-
formance. All eight machine learning models have training and
test curves hugging the upper left corner which indicate that the
seven machine learning models (except KNN) perform very well.

2. Points in the upper left corner of the ROC space represent high
sensitivity and high specificity. As a result, the eight machine
learning models have curves closer to the upper left corner are
desirable.

3. The steepness of the ROC curve is also indicative of the model’s
performance. A steeper curve suggests better discrimination at
different threshold levels. The eight machine learning models
have very steep ROC curves.

4. Comparing the AUC values and shapes can help identify the
model with superior discrimination ability. We can conclude
that the eight machine learning models are suitable for spam
detection.

A.S. Xiao and Q. Liang Machine Learning with Applications 16 (2024) 100550

Roc cve rocane Recver Oprating Characteristi () Curve Receiver Operatng Charactristc (ROC) Curve
2 ¥ 2 2
H H i H
£ : £ £

e o e i A0 = 57

o ol " o e st -
£ £ £ |-
H H H H
o o o o Vot e i e 98

(h)

Fig. 1. ROC curves of spam detection for Psy YouTube video using eight machine learning approaches. (a) Naive Bayes, (b) Logistic Regression, (¢) KNN, (d) MLP, (e) SVC, (f)
Random Forest, (g) Decision Tree, (h) Voting Classifier.

o
3 £os £os £os
i i H i
‘ . . .
K
R Ghr Garaciodic i i R Ghr Garaciodie i i

£ £ £ £
H H H H

e F—— EE——

o e o e

(e) (b)

Fig. 2. ROC curves of spam detection for KatyPerry YouTube video using eight machine learning approaches. (a) Naive Bayes, (b) Logistic Regression, (c¢) KNN, (d) MLP, (e) SVC,
(f) Random Forest, (g) Decision Tree, (h) Voting Classifier.

Roc cve rocame Recver Oprating Characteristi (0C)Curve Receiver Operatng Charactristc (ROC) Curve
- - -
Zae] Zae Zae
i i i i
£ 4 £ £
: : :
- - -
e
" ——— . " "
Bncisr Gparatin Gharechrsie 6 Girvs
= w ——————————— 10 10
o o o o
£ £ £ |-
H H H H
= = = =
(= v Gt g AU = 67 = S R A RO S 07
o S o Cnte et s = 33 o 5 5 oo bl el L
T T

() (h)

Fig. 3. ROC curves of spam detection for LMFAO YouTube video using eight machine learning approaches. (a) Naive Bayes, (b) Logistic Regression, (c) KNN, (d) MLP, (e) SVC,
(f) Random Forest, (g) Decision Tree, (h) Voting Classifier.

A.S. Xiao and Q. Liang

ROC curve. RoCaumve

Machine Learning with Applications 16 (2024) 100550

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

(a) (b)

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

()

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

—

Fig. 4. ROC curves of spam detection for Eminem YouTube video using eight machine learning approaches. (a) Naive Bayes, (b) Logistic Regression, (¢) KNN, (d) MLP, (e) SVC,

(f) Random Forest, (g) Decision Tree, (h) Voting Classifier.

ROC curve. Roc e

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

() (d)

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve

ing AUC = 1.00) — e
(st Auc = 0.90) a0 Ran

Fig. 5. ROC curves of spam detection for Shakira YouTube video using eight machine learning approaches. (a) Naive Bayes, (b) Logistic Regression, (c¢) KNN, (d) MLP, (e) SVC,

(H) Random Forest, (g) Decision Tree, (h) Voting Classifier.

In Tables 1 to 5, we summarize the performance metrics of accuracy,
precision, AUC, F1, and recall for five YouTube video using eight
machine learning approaches. All these performance metrics are based
on confusion matrix (James et al., 2013). The confusion matrix is a
2 x 2 matrix. The first row consists of True Positive (TP) and False
Positive (FP), and the second row consists of False Negative (FN) and
True Negative (TN). TP happens when both the actual and predicted are
positive; FP is the case when the actual is negative but the predicted
is positive; FN happens when the actual is positive but the predicted is
negative; TN happens when both the actual and predicted are negative.
The performance metrics are defined as (James et al., 2013)

TP+TN

Accuracy = o T ENTTN (12)
.. TP
p = 1
recision TDITP (13)
2TP
Fl = ———— 1
2TP+FP+FN as
Recall = _TIP _ (15)
TP+FN

AUC is used to measure Area Under the ROC Curve (AUC).
We can make the following observations based on the five Tables:

1. High accuracy means that the model is making correct predic-
tions overall. Random forest, decision tree, and voting classifier
achieved the best accuracy.

Table 1

Spam detection for Psy YouTube video comments using eight machine learning

approaches.
ML Approach Accuracy Precision = AUC F1 Recall
Naive Bayes 0.839080 0.786408 0.839080 0.852632 0.931034
Logistic Regression 0.93678 0.936782 0.93491 0.934911 0.908046
KNN 0.921428 0.953846 0.921428 0.918518 0.885714
MLP 0.928571 0.96875 0.92857 0.92537 0.885714
SvVC 0.957143 0.98485 0.957143 0.95586 0.928571
Random Forest 0.964285 1.0 0.96429 0.962962 0.928571
Decision Tree 0.92857 0.928571 0.928571 0.928571 0.9285714

Voting Classifier 0.957143 0.98485 0.957143 0.955882 0.928571

2. High precision indicates that among the instances predicted as
positive, a large proportion are actually positive. Precision is the
ratio of true positives to the total predicted positives. For all the
five set of YouTube video comments, logistic regression, SVC,
random forest, and voting classifier achieved the best precision

3. A high AUC value signifies good overall discriminatory ability
of the model. Considering all five sets of comments, logistic
regression, SVC, random forest, and voting classifier achieved
the best AUC performance.

4. The F1 score combines precision and recall into a single metric.
It is the harmonic mean of precision and recall. A high F1 score

A.S. Xiao and Q. Liang

Table 2
Spam detection for KatyPerry YouTube comments using eight machine learning
approaches.

ML Approach Accuracy Precision AUC F1 Recall
Naive Bayes 0.8571432 0.820513 0.857143 0.864865 0.914286
Logistic Regression 0.914286 0.96774 0.914286 0.90909 0.857143

KNN 0.854054 0.857142 0.852568 0.842105 0.82758
MLP 0.929729 0.902173 0.931093 0.927374 0.954023
SvC 0.93513 0.94117 0.93426 0.930232 0.91954
Random Forest 0.945945 0.975308 0.943818 0.940476 0.908045
Decision Tree 0.928571 0.92857 0.9285714 0.928571 0.928571
Voting Classifier 0.945945 0.96385 0.944463 0.9411764 0.9195402

Table 3
Spam detection for LMFAO YouTube comments using eight machine learning
approaches.

ML Approach Accuracy Precision AUC F1 Recall
Naive Bayes 0.908046 0.975610 0.909091 0.913032 0.851064
Logistic Regression 0.919540 0.954545 0.921809 0.923077 0.893617
KNN 0.8378 0.96 0.83003 0.79999 0.685714
MLP 0.9257142 0.94505 0.9265826 0.929729 0.914893
svC 0.931428 0.9659 0.93360 0.93406 0.904255
Random Forest 0.942857 0.988372 0.94595 0.94444 0.904255
Decision Tree 0.954285 0.96739 0.954885 0.956989 0.94680
Voting Classifier 0.9485714 0.97752 0.950420 0.950819 0.925531

Table 4
Spam detection for Eminem YouTube comments using eight machine learning
approaches.

ML Approach Accuracy Precision AUC F1 Recall
Naive Bayes 0.883929 0.848921 0.875714 0.900763 0.959350
Logistic Regression 0.924107 0.934426 0.930612 0.923811 0.926829
KNN 0.892857 0.93805 0.89624 0.898305 0.861788
MLP 0.89285714 0.90243 0.89181 0.90243 0.902439
svC 0.928571 0.9495798 0.929646 0.933884 0.918699
Random Forest 0.9464285 0.982608 0.949448 0.94957 0.918699
Decision Tree 0.915178 0.90625 0.912138 0.924302 0.943089
Voting Classifier 0.946428 0.974358 0.948563 0.950000 0.92682

Table 5
Spam detection for Shakira YouTube comments using eight machine learning
approaches.

ML Approach

Accuracy Precision AUC F1 Recall

0.905405

Naive Bayes 0.833333 0.909091 0.910256 1.000000

Logistic Regression 0.959459 0.94444 0.960073 0.957746 0.971429
KNN 0.83783 0.83783 0.83003 0.799999 0.685714
MLP 0.959459 0.94444 0.960073 0.95774 0.971428
SvVC 0.972972 0.9714285 0.9728937 0.971428 0.971428
Random Forest 0.9864864 1.0 0.985714 0.985507 0.97142
Decision Tree 0.972972 0.945945 0.974358 0.97222 1.0
Voting Classifier 0.972972 0.971428 0.972893+ 0.97142 0.9714285

indicates a balance between precision and recall. It is especially
useful in situations where there is an uneven class distribution.
Based on the Tables, SVC, random forest, and voting classifier
achieved the best F1 score.

5. Recall measures Sensitivity or True Positive Rate. High recall
means that the model is able to correctly identify a large pro-
portion of the actual positive instances. Random forest, decision
tree, and voting classifier achieved the best performance in
recall.

4.2. Computational complexity analysis

The complexity of the eight machine learning models are very
different, which can be summarized as follows.

Machine Learning with Applications 16 (2024) 100550

4.2.1. Naive Bayes

Training Complexity: During training, Naive Bayes computes the
probability of each feature given each class. This involves scanning
the dataset once to calculate the frequency of each feature for each
class. Since this operation involves going through the dataset once and
updating counts for each feature, the complexity is linear with respect
to the number of instances in the dataset, which is O(n).

Prediction Complexity: For prediction, Naive Bayes computes the
posterior probability of each class given the features of a new instance.
This computation also involves linear operations, as it requires iterating
over the features once and updating the probabilities accordingly.
Therefore, both the training and prediction phases of Naive Bayes have
linear time complexity, O(n), where n is the number of features in the
dataset.

4.2.2. Logistic regression

Training Complexity: The training complexity of logistic regres-
sion depends on the optimization algorithm. Common optimization
algorithms for logistic regression include gradient descent, stochastic
gradient descent (SGD), mini-batch gradient descent, and advanced
optimization techniques like L-BFGS. We use gradient descent. The
complexity of gradient descent for logistic regression is O(k-n-d), where
k is the number of iterations, n is the number of features, and d is the
number of instances in the dataset.

Prediction Complexity: Once logistic regression is trained, predict-
ing the class of a new instance involves computing a weighted sum
of the features and applying the logistic function. The prediction com-
plexity is O(n), where n is the number of features, because it involves
multiplying the feature values by the learned coefficients and summing
them up.

4.2.3. KNN

Training Complexity: The training complexity of K-nearest neighbor
(KNN) is essentially O(1). KNN does not explicitly build a model during
the training phase; it just memorizes the training dataset. Hence, its
training complexity is constant and not dependent on the size of the
dataset.

Prediction Complexity: The prediction complexity of KNN depends
on the number of instances in the training dataset (1), the number of
features (d), and the value of k, the number of nearest neighbors to
consider. The overall prediction complexity can be O(n - d) for com-
puting distances, O(n - log(n)) or O(n) for finding the nearest neighbors
depending on the method used, and O(k) for the majority voting among
the neighbors. So the total complexity of the prediction phase in KNN
can be expressed as O(n - d + n - log(n) + k).

4.2.4. MLP

Forward Pass: During the forward pass, the input is propagated
through the network, and activations are computed at each layer.
The complexity of the forward pass is O(n), where n is the num-
ber of parameters in the network. It involves matrix multiplications
and element-wise operations at each layer, which can be computed
efficiently using optimized linear algebra libraries.

Backward Pass (Backpropagation): Backpropagation computes the
gradients of the loss function with respect to the parameters of the
network. The complexity of backpropagation depends on the number
of parameters in the network and the number of training samples.
For each training sample, backpropagation involves computing the
gradients layer by layer, which is O(n) for gradient descent.

Training Complexity: The overall complexity of training an MLP
depends on the number of iterations (epochs) and the complexity of
the forward and backward passes. The training complexity is typically
O(n-e- f), where n is the number of training samples, e is the number of
epochs, and f is the complexity of the forward and backward passes.

Prediction Complexity: Once the MLP is trained, making predictions
for new samples involves a forward pass through the network, which
has a complexity similar to the forward pass during training, typically
O(n) where n is the size of input data.

A.S. Xiao and Q. Liang

4.2.5. SVC

Training Complexity: In our design, we use Radial Basis Function
(RBF) kernel, the training complexity is O(n* - d) where n is the number
of training samples and d is the number of features.

Prediction Complexity: The prediction complexity for SVC using
the RBF kernel is O(s - d), where s is the number of support vectors
and d is the number of features. During prediction, the SVC computes
the decision function using a subset of training samples called support
vectors. The number of support vectors, s, is usually much smaller than
the total number of training samples, leading to efficient prediction.

4.2.6. Random forest

Training Complexity: For each decision tree in the Random Forest,
constructing a decision tree generally has a complexity of O(m - n -
log(n)), where: m is the number of features and n is the number of
training samples. However, Random Forest typically uses a subset of
features at each split, which can reduce the effective number of features
considered at each node.

Prediction Complexity: The prediction complexity of a Random
Forest is O(k - log(m)), where: k is the number of trees in the forest and
m is the number of features. Predicting with a Random Forest involves
traversing each tree in the forest and aggregating the predictions. The
logarithmic factor comes from the depth of the decision trees.

4.2.7. Decision tree

Training Complexity: The overall training complexity of a decision
tree is O(m - n - log(n)) in the average case, where m is the number of
features and » is the number of training samples.

Prediction Complexity: Predicting with a decision tree involves
traversing the tree from the root to a leaf node based on the feature
values of the instance to be classified. The prediction complexity is
O(log(n)), where n is the number of nodes in the decision tree. The
logarithmic time complexity arises because the decision tree has a
depth proportional to the logarithm of the number of nodes.

4.2.8. Voting Classifier

Training Complexity: The training complexity of a Voting Classifier
depends on the complexity of training each individual estimator or base
model. In our design, the Voting Classifier uses a hard voting strategy,
where the final prediction is based on a simple majority vote, the
training complexity is primarily determined by the training complexity
of each base model.

Prediction Complexity: The prediction complexity of a Voting Classi-
fier is determined by the prediction complexity of each individual base
estimator. During prediction, the Voting Classifier collects predictions
from each base estimator and combines them according to the specified
voting strategy. The prediction complexity is typically determined by
the complexity of predicting with the most complex base estimator used
within the Voting Classifier.

5. Conclusions and future work

We have applied eight machine approaches, namely Gaussian Naive
Bayes, logistic regression, K-nearest neighbors classifier, multi-layer
perceptron, support vector machine classifier, random forest classi-
fier, decision tree classifier, and voting classifier, to spam detection
for YouTube video comments. The machine learning model design
and parameters selection are presented. Simulation results show that
the eight approaches could perform successfully in spam detection.
Random forest could achieve almost perfect detection performance.

Further investigation may explore alternative feature engineering
approach, evaluate ensemble learning techniques, or address the chal-
lenges associated with class imbalance in the dataset. Such advance-
ments would foster the continual enhancement of comment classifica-
tion systems, ensuring improved user engagement and content manage-
ment across digital platforms.

Machine Learning with Applications 16 (2024) 100550
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data and Python codes links are shared in the Appendix in paper.
Acknowledgments

This work was supported by U.S. National Science Foundation (NSF)
under Grant CCF-2219753.

Appendix

We used the YouTube Video Comments online dataset in Kaggle:
https://www.kaggle.com/datasets/lakshmi25npathi/images/data

Our Python codes is available online:
https://colab.research.google.com/drive/16eG4{DIPBPlq8aLK-8D9smh-
kTVGUsbS?usp=sharing4

References

Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., & Shah, T. (2022). Machine
learning techniques for spam detection in email and IoT platforms: Analysis and
research challenges. Security and Communication Networks, 2022, 1-19.

Bacanin, N., Zivkovic, M., Stoean, C., Antonijevic, M., Janicijevic, S., Sarac, M., et al.
(2022). Application of natural language processing and machine learning boosted
with swarm intelligence for spam email filtering. Mathematics, 10(22), 4173.

Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al Najada, H. (2015).
Survey of review spam detection using machine learning techniques. Journal of Big
Data, 2(1), 1-24.

Danilchenko, K., Segal, M., & Vilenchik, D. (2022). Opinion spam detection: A new
approach using machine learning and network-based algorithms. In Proceedings of
the international AAAI conference on web and social media, vol. 16 (pp. 125-134).

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., et al. (2023).
Scaling vision transformers to 22 billion parameters. In International conference on
machine learning (pp. 7480-7512). PMLR.

Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative Al
and ChatGPT: Applications, challenges, and Al-human collaboration. Journal of
Information Technology Case and Application Research, 25(3), 277-304.

Grewal, N., Nijhawan, R., & Mittal, A. (2022). Email spam detection using machine
learning and feature optimization method. In Distributed computing and optimization
techniques: select proceedings of ICDCOT 2021 (pp. 435-447). Springer.

Guo, Y., Mustafaoglu, Z., & Koundal, D. (2023). Spam detection using bidirectional
transformers and machine learning classifier algorithms. Journal of Computational
and Cognitive Engineering, 2(1), 5-9.

James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical
learning: vol. 112, Springer.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,, & Shah, M. (2022).
Transformers in vision: A survey. ACM Computing Surveys (CSUR), 54(10s), 1-41.

Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open.

Makkar, A., Garg, S., Kumar, N., Hossain, M. S., Ghoneim, A., & Alrashoud, M. (2020).
An efficient spam detection technique for IoT devices using machine learning. IEEE
Transactions on Industrial Informatics, 17(2), 903-912.

Manasa, P., Malik, A., Algahtani, K. N., Alomar, M. A., Basingab, M. S., Soni, M., et
al. (2022). Tweet spam detection using machine learning and swarm optimization
techniques. IEEE Transactions on Computational Social Systems.

Mashaleh, A. S., Ibrahim, N. F. B., Al-Betar, M. A., Mustafa, H. M., & Yaseen, Q. M.
(2022). Detecting spam email with machine learning optimized with harris hawks
optimizer (hho) algorithm. Procedia Computer Science, 201, 659-664.

Niranjani, V., Agalya, Y., Charunandhini, K., Gayathri, K., & Gayathri, R. (2022).
Spam detection for social media networks using machine learning. In 2022 8th
international conference on advanced computing and communication systems, vol. 1
(pp. 2082-2088). IEEE.

Pal, M. (2005). Random forest classifier for remote sensing classification. International
Journal of Remote Sensing, 26(1), 217-222.

Shaaban, M. A., Hassan, Y. F., & Guirguis, S. K. (2022). Deep convolutional forest: a
dynamic deep ensemble approach for spam detection in text. Complex & Intelligent
Systems, 8(6), 4897-4909.

https://www.kaggle.com/datasets/lakshmi25npathi/images/data
https://colab.research.google.com/drive/16eG4fDIPBPlq8aLK-8D9smh-kTVGUsbS?usp=sharing4
https://colab.research.google.com/drive/16eG4fDIPBPlq8aLK-8D9smh-kTVGUsbS?usp=sharing4
https://colab.research.google.com/drive/16eG4fDIPBPlq8aLK-8D9smh-kTVGUsbS?usp=sharing4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb1
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb1
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb1
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb1
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb1
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb2
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb2
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb2
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb2
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb2
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb3
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb3
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb3
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb3
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb3
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb4
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb5
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb5
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb5
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb5
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb5
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb6
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb6
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb6
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb6
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb6
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb7
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb7
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb7
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb7
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb7
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb8
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb8
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb8
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb8
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb8
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb9
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb9
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb9
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb10
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb10
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb10
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb11
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb12
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb12
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb12
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb12
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb12
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb13
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb13
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb13
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb13
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb13
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb14
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb14
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb14
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb14
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb14
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb15
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb16
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb16
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb16
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb17
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb17
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb17
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb17
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb17

Machine Learning with Applications 16 (2024) 100550

A.S. Xiao and Q. Liang
Windeatt, T. (2006). Accuracy/diversity and ensemble MLP classifier design. IEEE

Sun, N, Lin, G., Qiu, J., & Rimba, P. (2022). Near real-time twitter spam detection with
Transactions on Neural Networks, 17(5), 1194-1211.

machine learning techniques. International Journal of Computers and Applications,
44(4), 338-348. Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., et al. (2023). A brief overview
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. of ChatGPT: The history, status quo and potential future development. IEEE/CAA
Journal of Automatica Sinica, 10(5), 1122-1136.

(2017). Attention is all you need. Advances in Neural Information Processing Systems,

30.

http://refhub.elsevier.com/S2666-8270(24)00026-4/sb18
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb18
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb18
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb18
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb18
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb19
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb19
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb19
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb19
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb19
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb20
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb20
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb20
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb21
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb21
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb21
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb21
http://refhub.elsevier.com/S2666-8270(24)00026-4/sb21

	Spam detection for Youtube video comments using machine learning approaches
	Introduction
	Related Works
	Machine Learning on Spam Detection for YouTube Comments
	Gaussia Naive Bayes
	Logistic Regression
	K-Nearest Neighbor Classifier
	Support Vector Machine Classifier
	MultiLayer Perceptron
	Random Forest Classifier
	Decision Tree Classifier
	Voting Classifier

	Experimental Results
	Performance and Comparison
	Computational Complexity Analysis
	Naive Bayes
	Logistic Regression
	KNN
	MLP
	SVC
	Random Forest
	Decision Tree
	Voting Classifier

	Conclusions and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References

