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Abstract

With the rapid development of the communication industry in the fifth generation and the
advance towards the intelligent society of the sixth generation wireless networks, traditional
methods are unable to meet the ever-growing demands for higher data rates and improved
quality of service. Deep learning (DL) has achieved unprecedented success in various fields
such as computer vision, large language model processing, and speech recognition due to
its powerful representation capabilities and computational convenience. It has also made
significant progress in the communication field in meeting stringent demands and over-
coming deficiencies in existing technologies. The main purpose of this article is to uncover
the latest advancements in the field of DL-based algorithm methods in the physical layer
of wireless communication, introduce their potential applications in the next generation of
communication mechanisms, and finally summarize the open research questions.

1 INTRODUCTION

The fifth generation (5G) technology marks the beginning of
a new era in wireless communication, providing unprecedented
transmission speeds, reducing latency, and supporting concur-
rent connections from a multitude of devices [1]. Its emergence
has created possibilities for the development of emerging fields
such as the Internet of Things (IoT) [2], remote healthcare, and
vehicle-to-everything (V2X) [3]. More importantly, 5G is the key
to driving innovation and productivity in other sectors, injecting
new vitality into broader economic growth.
Despite 5G introducing more flexibility and efficiency to

wireless networks through the use of new technologies such
as massive multiple-input and multiple-output (MIMO) and
millimeter waves, numerous severe challenges still remain [4].
Even though cellular communication systems have advanced
to a new level with the development of 5G, they still cannot
meet all future requirements by 2030, and hence, researchers
have now started to focus on the sixth generation (6G) wireless
communication networks [5].
Deep learning (DL) has demonstrated its remarkable power

across various domains. For instance, in the field of com-
puter vision, deep learning models facilitate deep analysis of
images, making tasks like facial recognition, object detection,
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and semantic segmentation possible [6]. In the realm of speech
recognition, deep learning has taken the lead, enabling applica-
tions such as speech-to-text and voice assistants, playing a vital
role in our daily lives [7]. Large language models (LLM), like
Generative Pre-training Transformer (GPT), leverage the capa-
bilities of deep learning to deeply understand natural language
[8], providing powerful tools for tasks like chatbots, machine
translation, and automated text generation. Deep learning data
analysis is a powerful technique that can be applied to various
domains, including signal propagation in complex networks [9].
It helps extract valuable insights and patterns from large data
sets, enabling a better understanding of how signals propagate
and interact within these networks. Building on these successes,
the applications of deep learning are continuously expanding
into more specialized fields. For example, it has been used in
the analysis of criminal networks [10], helping in understanding
their structure and operations. It also plays a crucial role in EEG
signal analysis [11], helping to decode complex brain signals for
healthcare and research purposes
DL is also gradually entering the sophisticated physical layer

(PHY) of wireless communication, to handle the optimization
of multiple performance objectives while adhering to a range
of intricate restrictions [12]. Traditionally, signals flow from
optimally designed transmitters with modulation, coding, and
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signalling schemes, through a series of mathematically defined
channel models, to be reliably detected in the receivers, with
each block being separately optimized. Existing results in the
PHY suggest that DL can aid in understanding wireless con-
tent, identifying undiscovered patterns, reducing complexity,
and generating results equivalent to conventional methods, even
surpassing them in some cases [13].
The objective of this paper is to present a thorough sum-

mary of current research on PHY, with an emphasis on the
potential benefits and challenges of DL-based wireless com-
munication systems. This paper provides a blueprint for future
inquiries by elaborating on the driving forces, proposed tactics,
achieved results, and limitations of these studies. Figure 1 illus-
trates the structure of this article. The review makes important
contributions in these key aspects:

1. This article initially highlights DL methodologies that tackle
the obstacles in MIMO detection, channel estimation, chan-
nel coding/decoding, and resource allocation aiming to
counter the limitations of conventional techniques. As
shown in Figure 1, the application of DL is discussed within
the context of two types of receiver frameworks, namely,
joint symbol detection and channel estimation, and joint
equalizing and decoding.

2. Besides the above existing block in wireless communication,
we also focus on two recently developed wireless com-
munication technologies: reconfigurable intelligent surfaces
(RISs) andMIMO-based index modulation (MIMO-IM). We
believe that applying DL techniques to these areas could lead
to significant future advancements in the field.

3. Contemporary research has zeroed in on transceiver designs,
optimizing the entire transmitter and receiver pipeline by
leveraging the end-to-end (E2E) approach, which is being
championed as a promising trajectory. We focus on the appli-
cation of an E2E approach based on DL to overcome the
weaknesses of orthogonal frequency-division multiplexing
(OFDM), as well as its role in semantic communications.

The rest of this paper is organized as follows: Section 2
provides an overview and analysis of prior studies conducted
by researchers in the field. In Section 3, there is a brief dis-
cussion on the structure of DL, along with an introduction
to basic DL techniques. Section 4 presents several examples
of using DL as alternatives for wireless communication sys-
tems. In Section 5, two applications of DL in emerging wireless
communication technologies are present. Section 6 summarizes
DL-based E2E communications. Section 7 introduces DL solu-
tions for wireless platforms. Section 8 focuses on potential
areas for future research. Section 9 provides a conclusion to the
paper.

2 RELATEDWORK

Here, the researchers have conducted a comprehensive review
of survey articles that discuss the application of DL in PHY of
wireless communication.

FIGURE 1 Organization of the article.

Wang et al.[14] have presented an overview of develop-
ment and investigation in DL-based PHY processing. This
includes re-engineering conventional systemmodules (e.g. mod-
ulation recognition, channel decoding, and detection) using DL,
and going as far as supplanting the traditional communication
system with a revolutionary autoencoder-based architecture.
However, this paper was published in 2017 and cannot address
rapid changes since then.
Similarly, Qin et al.[12] classified the applications of DL in

PHY communications into two categories: systems with block
structures and systems without block structures. Nevertheless, it
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is worth noting that this paper was published in 2019. Addition-
ally, concerning systems with block structures, they only selected
a few blocks and did not provide a comprehensive overview.
Mao et al.[15] provided a thorough examination of the appli-

cations of DL algorithms across various network layers. It
covered PHY modulation/coding, data link layer access con-
trol/resource allocation, routing layer path search, and traffic
balancing. However, this paper only discussed a few application
scenarios for PHY, including interference alignment, jamming
resistance, modulation classification, and physical coding. It did
not delve into in-depth discussions on 5G.
In this insightful review [16], it is noted that the recent

surge of research in AI-driven communication technologies
holds great potential for enhancing data rates and elevat-
ing QoS while keeping the implementation costs manageable.
This paper astutely encapsulates the cutting-edge advance-
ments in AI-integrated 5G and beyond 5G (B5G) tech-
niques, examining them at the algorithmic, implementation,
and optimization stages. But this article restricted the topic
to the existing 5G framework and did not discuss possible
6G technologies.
Ozpoyraz et al.[17] shined a spotlight on the latest devel-

opments in the realm of DL-based PHY methods, aiming to
catalyze the extraordinary potentials of 6G applications. Specif-
ically, four avant-garde PHY concepts, poised to revolutionize
next-generation communications, are expertly dissected: mas-
sive MIMO systems, intricate multi-carrier waveform designs,
RIS-empowered communications, and PHY security. Through
this exploration, Ozpoyraz et al. navigated the reader towards
understanding the future trajectory of this rapidly evolving
field. However, that article fell short in effectively summariz-
ing and consolidating existing papers. It could be seen more
as an aggregation of information rather than a comprehensive
analysis.
In essence, the prior literature reviews are lacking in three

significant areas:

1. Many have overlooked the inclusion of newly published
research.

2. A substantial number of reviews have neglected the consid-
eration of advancements in 5G or 6G technologies.

3. There is a noticeable deficiency in the way some articles
summarize the information accurately and comprehensively.

The driving force behind this research hinges on these observed
gaps. It seeks to address these insufficiencies to provide a more
thorough and up-to-date examination of the subject matter.

3 FUNDAMENTAL CONCEPTS OF
DEEP LEARNING

Here, we arere going to provide a brief overview the general
structure of three foundational deep learning models: deep neu-
ral network (DNN), convolutional neural network (CNN), and
recurrent neural network (RNN). Following this, we will explore
autoencoders and generative adversarial networks (GANs).

FIGURE 2 Three common deep learning architectures.

3.1 Infrastructure for deep learning

DNNs are sophisticated machine learning structures composed
of interconnected layers. Every individual neuron, or computa-
tional unit, within a particular layer is intricately interlinked with
all the neurons of its adjacent layers, be it the preceding one or
the subsequent one (Figure 2a). This comprehensive intercon-
nectivity establishes an extensive and fully integrated structure,
a distinctive characteristic of DNNs that sets them apart from
simpler models.
Each layer plays a unique role within the overall network: the

input layer, intermediary hidden layers, and the output layer.
The input layer corresponds directly to the raw input data,
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TABLE 1 List of activation functions.

Name [𝝈(u)]i Range

Linear ui (−∞,∞)

ReLU max(0, ui ) [0,∞)

Tanh tanh(ui ) (−1, 1)

Sigmoid
1

1+e−ui
(0,1)

Softmax
eui∑
j
e
u j

(0,1)

with the number of neurons being equivalent to the number of
features presented in the data set. Similarly, the output layer’s
size matches the number of categories, classes, or other targets
depending on the specific task the DNN is designed to perform.
Thus, the structure of a DNN is inherently adaptive and can
flexibly accommodate various application needs.
One of the crucial components that enable DNNs to learn

and adapt is the presence of real-valued weights. Each con-
nection, or link, between two neurons within the network is
represented by such a weight. These weights encapsulate the
accumulated knowledge of the network, adjusting as the model
learns from the data it is exposed to. Therefore, the learning
mechanism of DNNs is fundamentally rooted in the continual
adaptation and refinement of these connection weights.
Activation functions are crucial to DNNs. They trans-

form the weighted input into the neuron’s output, adding
non-linearity to the network which helps it learn complex pat-
terns. Common activation functions include rectified linear unit
(ReLU), tanh, sigmoid, and softmax. Each has specific benefits
and is suitable for different scenarios. Choosing the right func-
tion depends on the problem and data characteristics. Table 1
summarizes the commonly used activation functions.
CNNs are a special type of DNN designed to counter-

act the explosion of parameters that can occur in traditional
fully connected networks, particularly when applied to complex
tasks like image recognition. CNNs are customized architec-
tures designed to suit the specific needs of different scenarios.
The underlying principle of a CNN involves introducing con-
volutional and pooling layers before the data reaches a fully
connected network (Figure 2b). In a convolutional layer, the
neural connections are localized, which means that each neuron
is connected only to a subset of neurons from the preceding
layer. Neurons are arranged in a grid-like formation, creating
feature maps, each identifying different features within the data
by applying a shared set of weights across the entire input. Pool-
ing layers follow the convolutional layers in a CNN. The role
of these layers is to reduce the dimensionality of each feature
map while preserving the most important information. This is
achieved by grouping neurons in each feature map and then
calculating either the average value (average pooling) or the
maximum value (max pooling) of each group. This action dras-
tically reduces the number of parameters, making the neural
network more manageable.
RNNs have been designed to imbue neural networks with the

capability of memory. This property is key for handling sequen-
tial data such as in natural language processing (NLP) where the

context plays a significant role. In more traditional, memoryless
neural networks, the neurons in each layer are connected only
to those in the preceding and subsequent layers, with no intra-
layer connections. However, this architecture does not provide
the network with the ability to maintain and utilize any contex-
tual or sequential information from prior states, which could
limit its performance on tasks that inherently require knowledge
about prior inputs. RNNs address this limitation by incorpo-
rating feedback connections in the hidden layers (Figure 2c).
This means that the neurons in a given layer receive not just
inputs from the preceding layer, but also the outputs of their
own layer from previous steps. In essence, a recurrent neu-
ron maintains a kind of memory by using its output from the
previous step as part of its input for the current step. This
allows the network to ’remember’ and use information from
the past, effectively enabling it to handle data where tempo-
ral dynamics and dependencies matter. Various types of RNNs
have been proposed to address different challenges and use-
cases. Bidirectional RNNs process data from both ends to the
middle, providing more context by considering both past and
future data, which can enhance performance in tasks like NLP.
Long short-term memory (LSTM) networks incorporate ’gates’
in their structure, effectively controlling the flow of information
and making them proficient in learning long-range dependen-
cies in sequential data. Gated recurrent units (GRUs) simplify
the LSTM structure, maintaining its ability to mitigate the van-
ishing gradient problem but with fewer parameters, improving
computational efficiency.

3.2 Autoencoders and generative adversarial
networks

An autoencoder (AE) is an unsupervised learning algorithm
[18]. It is a neural network that learns to generate its output
which is almost close to its input.
As shown in Figure 3, an AE consists of two parts, the

encoder, which computes a latent representation of the input,
and the decoder, which reproduces the original input from the
latent representation. Define the encoder parameters as 𝜙 and
the decoder parameters as 𝜓 [19], that is,

𝜙 ∶  →  (1)

𝜓 ∶  →  (2)

𝜙, 𝜓 = argmin
𝜙,𝜓

‖X − (𝜓◦𝜙)X ‖2 (3)

where  is the data space,  is the latent space and X ∈  .
Without loss of generality, we assume that the data and the

latent spaces are real valued with dimension d and p, respec-
tively. The encoder takes the input x ∈ ℝd =  and maps it to
h ∈ ℝp =  :

h = 𝜎(Wx + b) (4)
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FIGURE 3 An autoencoder is a neural network architecture that learns to
encode and decode data.

where 𝜎 is an activation function,W is a weight matrix, and b is
a bias vector. The decoder maps h to the reconstruction x′:

x′ = 𝜎′(W′h + b′ ) (5)

where 𝜎′ is an activation function,W′ is a weight matrix, and b′

is a bias vector.
When x ≈ x′, it is considered that the trained AE recon-

structs the input. The cost function could be defined as follows:

(x, x′ ) = ‖x − x′‖2 +∑
i, j ,k

(
𝜔
(i )
jk

)2
(6)

where 𝜔
(i )
jk

is the connection weights between the j th neu-
rons of layer i and the kth neurons of layer i + 1. The first
term (mean squared errors) is the reconstruction error, and the
second term (weight decay) is a regularizing penalty which is
typically included to prevent overfitting.
A (GAN can be compared to an inverted autoencoder in

terms of its structure [20]. However, in contrast to autoencoders
which shrink input data, GANs transform low-dimensional
input into complex, high-dimensional data using its internal
network. GANs, utilizing two rival neural networks (hence the
term adversarial), are engineered systems capable of generating
novel, synthetic data that can often be mistaken for authentic
data. As depicted in Figure 4, a GAN comprises of two compo-
nents. The discriminator, denoted asD, functions as a classifier,
distinguishing between genuine data and synthetic data created
by the generator, denoted as G . If D identifies any unreal
outcomes, G receives a penalty. This signal is then channeled
back through the generator, modifying its weights such that G

FIGURE 4 A generative adversarial network consists of two neural
networks, a generator and a discriminator, competing with each other to
produce and evaluate realistic synthetic data.

gradually learns to create increasingly realistic samples. If the
training is successful, G eventually manages to deceive D.

4 DEEP LEARNING IN
CONVENTIONAL COMMUNICATIONS

As shown in Figure 5, a conventional wireless communication
system typically features various blocks such as source encod-
ing and decoding, channel encoding and decoding, modulation
and demodulation, channel estimation, equalization and detec-
tion, along with RF transceiving. Each of these signal processing
blocks is fine-tuned individually to ensure secure and reliable
communication from the originating source to the intended
target destination.

4.1 AI-based MIMO detection

In large-scale MIMO, employing the maximum a posteriori
(MAP) detector, which offers the best detection performance,
is infeasible due to its exponential computational complexity.
Therefore, linear detectors such as the matched filter (MF), zero
forcing (ZF), and linear minimum mean square error (LMMSE)
have been developed. These have lower complexity but dis-
play inferior performance when compared to the MAP detector.
Additionally, there are iterative detection algorithms like approx-
imate message passing (AMP), sphere decoding (SD), and soft
interference cancellation (SIC), which can achieve good perfor-
mance under certain conditions and have moderate complexity.
All these detectors require a full understanding of the channel
state information (CSI). If the system model does not match
the actual transmission model or imperfect CSI is present, the
performance will significantly degrade [21].
Data-driven DL detectors using DNN architectures can

recover transmitted symbols in various scenarios with high pre-
cision [22, 23], albeit at the cost of a large amount of trainable
parameters and training samples. Reference [21] proves that
the data-driven DL detector with a ReLU DNN can effectively
approximate the MAP detector. The rate of convergence of the
DL detector to the MAP detector scales at least polynomially
fast with the size of the training samples. Furthermore, these
detectors are robust to CSI uncertainty.
Model-driven DL detectors, which have evolved from

traditional iterative detection algorithms such as DetNet
[24] and OAMPNet [25], often yield detectors with superior
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FIGURE 5 A conventional wireless communications system diagram consists of multiple blocks. Each of these signal processing blocks is individually
optimized to ensure dependable communication between the source and the intended destination.

performance and faster convergence. Each layer of their net-
works represents an iteration and incorporates some trainable
variables. However, current model-driven DL detectors are
premised on the availability of linear channel models and CSI,
which limits their application in complex environments.

4.2 Channel estimation

Accurate channel estimation is essential for optimizing the qual-
ity and reliability of a wireless communication link. Typically the
receiver uses the known pilots to estimate the channel. Con-
ventional pilot-based channel estimation methods include least
squares (LS) and LMMSE techniques. LS is simple and effi-
cient but sensitive to noise, while LMMSE provides improved
performance by considering statistical properties at the cost of
increased computational complexity.
In reference [26], channel matrix is treated as a 2D image.

The authors utilize a denoising CNN (DnCNN) as the denoiser
within the learned denoising-based approximated message pass-
ing (LDAMP) network. With a single pilot, the LDAMP
network learns the channel’s structure. The LDAMP network
surpasses its conventional cousins. Similar approaches have also
been employed in reference [27].
A deep learning-based joint pilot design and channel esti-

mation scheme is presented in reference [28]. The proposed
channel estimator is structured into two stages. In the first
stage, two DNNs collaborate to handle pilot design and pilot-
aided channel estimation. The second stage employs another
DNN to iteratively improve the channel estimation and symbol
detection, referred to as data-aided channel estimation, thereby
enhancing the overall estimation performance.

4.3 Channel coding/decoding

In the standard of 5G, both low-density parity-check (LDPC)
codes and polar codes play significant roles. The LDPC codes
are decoded by the belief-propagation (BP) algorithm, a robust
message passing method that offers near-optimal error-rate per-
formance through iterative decoding [29]. On the other hand,
polar codes have the unique ability to asymptotically achieve
the Shannon capacity, utilizing the successive cancellation (SC)

decoding algorithm, especially as the code length approaches
infinity [30]. Current research in both SC and BP decoding
is focused on striking a balance between error-rate perfor-
mance and complexity, thereby advancing the efficiency and
effectiveness of these communication systems.
Exploring the enhancement of BP/SC decoders through

the application of neural networks is one direction. In refer-
ence [31], the authors improved the BP decoding algorithm for
LDPC codes through deep learning. They used a Tanner graph
and trained these weights using stochastic gradient descent,
leading to a significant reduction in the bit error rate (BER).
In reference [32], a DNN is utilized to estimate the least num-
ber of iterations necessary. The study’s simulations suggest that,
especially in high SNR scenarios, the DNN can precisely predict
the required iteration count. In reference [33], the introduction
of an iterative BP-CNN decoder for tackling correlated noise is
suggested. This involves the integration of the BP decoder’s out-
put into a feed-forward CNN to ascertain the correlated noise
across different channels.
Another exploration involves utilizing neural networks as

a direct substitution for the decoder. One such study [34],
employs a neural network decoder (NND) to decode both
unstructured (LDPC and HDPC) and structured codes (polar
codes). Simulations revealed that the NND is capable of achiev-
ing MAP performance for short block lengths, whether for
structured or unstructured codes. Building upon the findings
of reference[34], another study, referenced as [35], took the
research a step further. In this study, the researchers developed a
method to break down a long block length polar code into man-
ageable sub-blocks. Each of these smaller pieces is then decoded
using a compact NND, making the training process more fea-
sible. The results obtained from the NND are subsequently
propagated through a traditional BP structure.
In addition to enhancing BP/SC decoders through neural

networks and substituting decoders directly with neural net-
works, another direction to consider is the realm of code
construction. Grounded in genetic algorithm, studies [36] and
[37] have optimized the design of LDPC and polar codes,
respectively. They considered factors such as channel con-
ditions, code length, and the number of iterations in their
optimization process. Amore detailed discussion on the integra-
tion of AI-aided encoding and decoding is set to be presented
in the subsequent E2E section.
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4.4 Resource allocation

In 5G and future wireless communications, a key task affecting
network performance is how to improve spectral efficiency and
system energy efficiency through optimized resource allocation
strategies, while ensuring quality of service (QoS) [38]. Although
the resource allocation problem can obtain closed-form expres-
sions in some cases [39], in most situations, the optimization
problem is non-convex. Therefore, deep learning has become a
promising approach.
In reference [40], a proposal is presented that focuses on

the core idea of viewing the input and output of a resource
allocation algorithm as an unknown non-linear mapping. This
method employs a DNN as a means for its approximation. In
reference [41], the deep power control (DPC) is introduced
as the first-ever transmit power control framework based on
a CNN. Within this framework, the CNN is trained to learn
a transmit power control strategy aiming to maximize either
spectral efficiency (SE) or energy efficiency (EE).
With its ability to control non-orthogonality, non-orthogonal

multiple access (NOMA) has been shown to employ resources
more efficiently than traditional methods [42]. Furthermore,
there is an emerging trend of deep learning-enhanced NOMA
systems with resource allocation. In reference [43], deep belief
network (DBN) is used in simultaneous wireless informa-
tion and power transfer (SWIPT) and multi-carrier NOMA
(MC-NOMA). The objective is to minimize total transmit
power while meeting each user’s QoS requirements. In ref-
erence [44], constrained deep reinforcement learning (CDRL)
is utilized to investigate the complex issue of simultaneous
multi-UAV altitude control and random channel access manage-
ment within a multi-cell UAV-based wireless network employing
NOMA.

4.5 Joint symbol detection and channel
estimation

Sections 4.1 and 4.2 discuss symbol detection and channel
estimation, respectively. Some attempts have already begun
to explore the joint channel estimation and signal detection
(JCESD).
The authors of reference [45] introduce the DeepSM net-

work, comprising two synchronized DNNs, and compare it
with traditional receivers in diverse channel contexts. Using
the LS method, DeepSM updates the CSI and detects trans-
mitted symbols. Initially, a conventional DNN is used for
channel estimation and signal detection in time-invariant spa-
tial modulation (SM) systems. This evolves into the DeepSM
structure for systems in time-varying fading channels. Both
model-based and DNN-based receivers apply LS channel esti-
mation, but use different methods for detecting transmitted
symbols.
In reference [46], two novel DL-based receiver structures,

FullCon and MdNet, are introduced for uplink multi-user
MIMO systems. FullCon, a data-driven algorithm employing
a DNN, detects information bits directly from the received

signal, bypassing explicit channel estimation. It acts as a
comprehensive MIMO receiver, amalgamating a channel esti-
mator, signal detector, and demodulator in a fully connected
deep learning network. Contrastingly, MdNet employs a model-
driven approach, fusing traditional communication knowledge
with DL to perform channel estimation and symbol detection
in distinct phases.
Reference [47] introduces a novel approach to modelling

environmental noise using the Student’s t-distribution rather
than a Gaussian distribution, enhancing robustness against
outliers. This complex model is made tractable through a
generalized EM (GEM) algorithm which jointly and robustly
estimates the channel matrix and transmitted signals, showing
superior performance compared to conventional independent
methods. In order to decrease the computational load of the
GEM algorithm, it is unfolded into a DNN for fluctuating chan-
nels, utilizing a modified trainable projected gradient (TPG)
detector in the M-step. The TPG detector, initially crafted for
Quadrastic Phase Shift Keying (QPSK) modulation, is further
adapted for high-order modulations. The unfolded GEM net-
work, requiring fewer iterations, surpasses the original GEM
algorithm’s performance.

4.6 Joint equalizing and decoding

Channel equalization is used to address the problem of potential
performance degradation in wireless communication systems
due to factors such as wireless channel impairments. These
impairments include inter-symbol interference (ISI), Doppler
frequency shift, and fading effects. A variety of neural network
variants are utilized to enhance the performance of equalization,
including the multi-layer perceptrons (MLP) [48], function-link
artificial neural networks (FLANN) [49], radial-based function
(RBF) neural networks [50], and (RNNs [51].
Considering both equalization and decoding jointly has

emerged in addressing a notable issue. This issue pertains to
the fact that after applying neural network-based equalization,
the noise present in the system tends to deviate from Gaus-
sian characteristics. Consequently, this non-Gaussian noise can
lead to a decline in the performance of the channel decoder.
Reference[52] employs a DNN for joint channel equaliza-
tion and decoding by the received symbols as input and the
estimated codeword as output. This method outperforms tra-
ditional methods for polar code (16,8). To address the issues
of flexibility and complexity codes by DNN, several other neu-
ral networks have also been introduced. A joint training of
CNN equalizer and DNN decoder is discussed in reference
[53], while reference [54] utilizes RNN-based joint equalization
and decoding.

5 DL IN EMERGING TECHNOLOGIES

Recently, several new wireless communication technologies
have appeared. This section focuses on two notable ones,
RISs and MIMO-IM, exploring how DL can be applied
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FIGURE 6 Illustrations of an reconfigurable intelligent surface
(RIS)-aided downlink transmission. RIS enhance wireless communication by
manipulating electromagnetic waves through programmable surfaces.

within these technologies, potentially opening avenues for
future advancements.

5.1 Reconfigurable intelligent surfaces

Driven by limited communication spectrum, a shift towards
higher frequency bands occurs. This, however, raises issues with
electromagnetic wave obstructions, particularly in urban areas.
Adding more relays and base stations increases energy use, mak-
ing traditional cellular methods challenging. To mitigate this,
RISs have emerged as a key solution, improving both spectrum
and energy efficiency in wireless networks [55]. An RIS-aided
downlink transmission is illustrated with no direct connectivity
as depicted in Figure 6.
Primarily built using metamaterials, which consist of periodi-

cally aligned subwavelength elements, RIS models provide full
control over the electromagnetic actions of the metasurface,
and they interact intelligently with incoming signals to enhance
energy efficiency and coverage in radio communication systems.
Applications of DL in RIS almost cover all modules of wireless
communication. Here are some examples on the beamforming
design and resource allocation.
In reference [56], the authors propose a dual-phase neu-

ral network featuring an unsupervised learning approach
aimed at addressing the joint passive and active beamform-
ing design in RIS-aided multi-user MISO downlink platforms.
The objective is to effectively resolve the complex problem of
joint optimization.
Reference[57] introduces a DL-assisted RIS scheme utilizing

the deep deterministic policy gradient (DDPG) method, which
is a fusion of the deep-Q network and policy gradient (PG). The
scheme leverages a continuous action space, which hastens the
training phase. This model, thanks to the DDPG algorithm’s
continuous action space, exhibits a remarkable ability to swiftly

adapt to fluctuations in channel data and environmental con-
ditions. In reference [58], a joint optimization problem in a
NOMA downlink network using RIS is addressed. The devel-
opment of RIS phase shifts is guided by the application of a
DDPG algorithm. This model uses a reward function based
on the sum rate of mobile clients, aiding the agent to identify
the optimal path. The system’s performance can be enhanced
by adjusting the number and complexity of the RIS’s reflect-
ing elements. In reference [59], the authors addressed the joint
vehicle scheduling and passive beamforming in RIS-empowered
vehicular communication by employing a DRL framework
with a multi-binary action space, a strategy proposed to maxi-
mize the minimum average bit rate for vehicles using wireless
scheduling.

5.2 MIMO-IM

Index modulation (IM) pioneers a unique approach to
next-generation communication, diverging from standard
amplitude-phase modulation [60]. By engaging certain trans-
mit antennas or time slots to form unique activation pat-
terns, it enables a high-dimensional modulation scheme. This
approach boosts spectral efficiency under suitable config-
urations. Additionally, the index of activation patterns can
carry extra bit streams, supplementing those modulated by
constellation symbols, improving overall data transmission
efficiency.
The advancement of deep learning has opened up opportu-

nities for various applications in the field of index modulation.
Specifically, three main areas of focus have emerged: transmit
antenna selection (TAS) and power allocation [61], modulation
and coding scheme selection [62], and detection. While the lat-
ter two approaches share similarities with those discussed in
previous sections, the following section will specifically con-
centrate on the application of deep learning in TAS and power
allocation.
In reference [61], the researchers initially tackle the challenges

of TAS and power allocation (PA) in SM-MIMO by transform-
ing them into data-driven prediction problems instead of relying
on traditional optimization-driven decisions. To achieve this,
they develop supervised-learning classifiers (SLC) like the K-
nearest neighbours (KNN) and support vector machine (SVM)
algorithms, which provide statistically consistent solutions.
Additionally, they explore the integration of DNNs with these
adaptive SM-MIMO techniques and propose a novel DNN-
based multi-label classifier to evaluate TAS and PA parameters.
Moreover, they investigate the creation of feature vectors for
the SLC and DNN approaches and introduce a unique feature
vector generator specifically tailored to the transmission mode
of SM.
In reference [63], the generalized TAS pipeline is formulated

in both neural networks (NN) and gradient boosting decision
trees (GBDT). In this formulation, the importance of different
features that reflect the different elements from CSI is analysed,
taking into consideration the empirical data as well. The results
confirm that both GBDT and NN are capable of achieving
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a near-optimal BER curve, with the former demonstrating an
even better balance between efficiency and performance. A sim-
ilar TAS-GSM scheme based on DNN and decision tree could
be found in reference [64].

6 DEEP LEARNING-BASED
END-TO-END COMMUNICATIONS

In the previous section, we discussed several deep learning-
based approaches that can replace one or two processing
blocks in the conventional communication systems. Optimiz-
ing each processing block individually does not guarantee the
optimal solution for the entire communication problem. This
is because the performance of a communication system is
influenced by multiple factors, including channel characteris-
tics, noise, interference, and so on. Therefore, optimizing each
block alone does not ensure the best overall optimization for
the communication problem.
Recently, a new concept based on deep learning has been

proposed, which makes significant improvements over exist-
ing ideas. This concept redefines the communication task as an
E2E reconstruction optimization task, eliminating the modular
structure that needs to be manually constructed in traditional
communication systems. This novel concept is based on using
an autoencoder system to achieve an E2E communication sys-
tem. Initial studies have shown that this approach is comparable
to traditional systems in terms of performance and demon-
strates the enormous potential of E2E methods in becoming
a general solution for various channel models.
Here, we will explore the emerging concept of E2E com-

munications and provide an overview of some recent studies
in this field.

6.1 Autoencoder-based end-to-end
communications

Autoencoder (AE) is a neural network that learns to generate its
output which is almost close to its input. The concept of uti-
lizing AE in the field of communication systems was initially
introduced in reference [13]. In the communications systems, it
is possible to view it as an AE that aims to minimize the error
by reconstructing the transmitted message at the receiver. The
encoder and decoder of the AE can be analogously considered
as the transmitter and receiver blocks of the system, respec-
tively. Figure 7 illustrates an AE architecture that is used in E2E
learning of a communications system.
As shown in Figure 7, at the transmitter, the incoming mes-

sage s is mapped to an M × 1 one-hot vector, which is used
as an input vector of the encoder, where  is the set of all
M = 2m possible messages, each having m data bits. Then, this
M -dimensional vector is passed through a feed-forward neural
network (NN) with multiple dense layers, followed by a normal-
ization layer to satisfy the physical constraints of the transmit
vector x. The output of the transmitter is a complex vector
of dimension n. The channel is represented by a noise layer.

FIGURE 7 An autoencoder-based end-to-end communications. The
input signal s is encoded into a one-hot representation, resulting in transmitted
signal x. After introducing noise to this encoded signal, it is decoded. Finally,
the original signal ŝ is determined.

The receiver also consists of a feed-forward neural network
(NN) with one or multiple dense layers, followed by an out-
put layer with a softmax activation function. The output layer
yields a probability vector, denoted as p ∈ (0, 1)M , representing
the probabilities of all possible messages. The decoded infor-
mation, ŝ, corresponds to the index of the element in p with the
highest probability.
As for the training aspect, the autoencoder utilizes stochastic

gradient descent or any other suitable optimization method to
perform E2E training on the set of all possible information s ∈
𝕄. The reconstruction quality of the autoencoder is measured
using the categorical cross-entropy loss function.
Based on the foundation of reference [13], a series of

studies have emerged. For instance, in the field of constel-
lation design, reference[65] utilizes an AE for the design of
optimal constellations and receiver architectures in AWGN
channels affected by additive radar interference. Reference[66]
discusses the application of AE-based constellation design in
a multi-user interference channel to tackle issues related to
dynamic interference.
Others have delved further into the research on whether the

channel model is known, dividing into model assumed chan-
nel AE and model free channel AE. Moving into the domain
of model assumed channel AE, there appears to be a couple of
relevant studies. In reference [67], a model based on variational
autoencoder (VAE) was introduced. This model incorporated
prior knowledge about the channels into its cost function, which
effectively mitigated the impact of noisy latent codes. Further-
more, this innovative approach to noise reduction significantly
enhanced the speed of training. In reference [68], interference in
multi-path settings is investigated using random channel param-
eters. The study further determines the fewest channel samples
required for optimal performance via the confidence interval
method, paving the way for a robust encoding and decod-
ing scheme. For model free application, an attempt to resolve
this particular problem is documented in reference [69] via the
implementation of a two-phase training strategy. Initially, the
entire system undergoes training based on a preconceived chan-
nel model. Subsequently, fine-tuning of the receiver occurs over
the actual channel, which serves to correct any discrepancies
that may arise.
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In addition to the AE-based E2E learning systems, there
have been compelling advancements in the implementation
of RL and conditional GAN-based methodologies in E2E
communication systems as well. Similar to AE, the essence
of both RL and conditional GANs lies in training a model to
produce an output that aligns as closely as possible with the
desired result [12]. For example, in reference [70], the authors
suggest employing a conditional GAN as a tool to mimic
channel effects. This approach serves as a conduit linking
the transmitter DNN and the receiver DNN. The primary
advantage of this methodology lies in enabling the backprop-
agation of the transmitter DNN’s gradient from the receiver
DNN.

6.2 Aiming OFDM’s drawbacks

OFDM emerges as the most prevalent multi-carrier waveform
[71], finding widespread use in many standards like the IEEE
802.11 family and 5G. Its adoption is largely due to its straight-
forward and efficient structure, boosting the performance of
wireless communication. However, OFDM has drawbacks. It
suffers from high peak-to-average power ratio (PAPR), cyclic
prefix (CP) overhead, and pilot overhead. The following will
provide a summary of the research literature focusing on AE-
based techniques aimed at addressing the primary limitations
of OFDM.
In reference [72], a DL-oriented scheme for PAPR reduction

in an OFDM system, called PRNet, is introduced. Utilizing AE,
this proposed method demonstrates the ability to reduce PAPR,
simultaneously preserving the BER. Similar structures could be
found in references [73] and [74].
In reference [75], the authors first demonstrate a partial

reduction in the number of pilot symbols without a decrease
in error performance. Then, they utilize an AE-based Neu-
ral Network to completely eliminate pilots, while learning a
constellation or superimposed pilots simultaneously. They also
demonstrated that it is entirely possible to eliminate both CP
and pilot by leveraging E2E learning in reference [76]. In ref-
erence [77], a pilot-free E2E paradigm, developed for various
wireless channels including frequency-selective and flat-fading
MIMO channels, utilizes a model wherein the wireless chan-
nels are seen as a stochastic convolutional layer. This system
has shown effectiveness under diverse channel conditions, par-
ticularly demonstrating its capacity to conserve pilot resources
and leverage the correlation in wireless channels and source
data.

6.3 Semantic communications

Semantic communications is a concept focused on understand-
ing meaning in data transmission, rather than the literal data
itself. It applies to interactions among humans, and between
humans and computers, ensuring accurate interpretation of
the sender’s intentions despite potential inaccuracies or ambi-
guities [78]. Although semantic communication is not a new

FIGURE 8 Comparison of two communications systems.

research topic [79], with the advancements in micro-electronics
and AI technologies, coupled with the evolution of DL and
E2E approaches, it has once again become one of the emerg-
ing communication paradigms [80]. Figure 8 demonstrates the
concept of semantic communications, specifically focusing on
face recognition.
In text-based semantic communication, DL has been pro-

posed for use in joint source-channel coding (JSCC) due to
the powerful representation capabilities of DNNs. Notably,
research in reference [81] have advanced a JSCC scheme specif-
ically for text-based semantic communications. In this scheme,
the encoder and decoder are implemented by two RNNs, with
a dropout layer representing the channel. This was largely
inspired by the successful application of DNNs in NLP. In
reference [82], enabled by intelligent E2E communications,
a novel framework for semantic communication systems has
been proposed, aiming to design a JSCC scheme to maximize
system capacity. A significant feature of this system is its uti-
lization of a transformer and self-attention mechanism, which
notably simplifies the comprehension of long sentences at the
destination.
In image-based semantic communication, CNNs offer sig-

nificant advantages. The first CNN-based E2E JSCC scheme
was introduced in reference [83], demonstrating its potential
for transmitting high-resolution images over both AWGN and
Rayleigh channels. This scheme notably outperforms traditional
compression algorithms like JPEG and JPEG2000, showcasing
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superior performance without succumbing to the “cliff effect”
often seen in these conventional methods.
In other scenarios of semantic communication, such as those

based on sound and multimedia, the exploration is still in the
initial stage due to factors such as complex dimensions and
difficulty in evaluation.

7 DEEP LEARNING SOLUTIONS FOR
WIRELESS PLATFORMS

There are numerous approaches for implementing DL, and
some of these methods have been applied in PHY of wire-
less networks. In the following, we provide a summary of
DL implementations that have been employed in wireless
communication.

∙ MATLAB: The Neural Network Toolbox of MATLAB is
a versatile software package for designing, training, and
analysing neural networks. It offers a user-friendly graphical
interface, allowing interactive network design and configura-
tion. The toolbox includes a variety of training algorithms and
supports different types of neural networks for tasks such as
classification, regression, and clustering. It also provides tools
for data preprocessing, feature selection, and performance
evaluation. The integration with MATLAB enables seamless
data manipulation and statistical analysis. With its extensive
capabilities and ease of use, the MATLAB Neural Network
Toolbox is a popular choice among researchers, engineers,
and data scientists working on machine learning applications.

∙ TensorFlow [84]: It is an open-source library for numerical
computation and machine learning. Developed by Google,
it offers a flexible and scalable framework for building
and deploying machine learning models. With its high-level
application programming interface (API), Keras, users can
easily construct and train complex neural networks. Tensor-
Flow also provides a low-level API for fine-grained control
over model architecture and training. It excels in leveraging
hardware acceleration, running computations efficiently on
central processing units (CPUs), graphics processing units
(GPUs), and specialized hardware like tensor processing units
(TPUs). TensorFlow’s extensive ecosystem includes pre-built
models, tools, and integration with other popular libraries. Its
distributed computing capabilities enable training large-scale
models across multiple machines, making it a powerful and
widely used tool in the field of machine learning.

∙ PyTorch [85]: It is a popular open-source machine learning
library for Python, developed by Facebook’s AI Research
lab. Its main features include tensor computation with strong
GPU acceleration support and DNNs built on a tape-
based autograd system, which allows flexible creation and
modification of computational graphs. PyTorch’s imperative
programming model offers an intuitive and interactive expe-
rience, making it an excellent tool for both research and
application development. Furthermore, its extensive ecosys-
tem, inclusive of tools and libraries such as TorchServe and

TorchVision, facilitates model serving and computer vision
tasks, enhancing the overall ML workflow.

∙ Sionna [86]: It is a TensorFlow-based open-source Python
library for wireless communication simulations and system
design. It provides comprehensive toolsets for defining,
optimizing, and executing complex simulations such as multi-
dimensional tensor operations, forward error correction, and
E2E system models. Users can use Sionna to implement
and simulate neural network models on high-performance
GPU architectures. The system model is built using vari-
ous components that represent mathematical operations and
data tensors. The library includes a wide range of tutorials
for both beginners and experts, making it a versatile tool
for research and development in wireless communication
systems.

The current literature on the application of deep learn-
ing in the PHY of wireless communications is mostly based
on the aforementioned architecture. However, there have also
been attempts that explore architectures such as Caffe [87] and
Theano [88] in this field.

8 FUTURE RESEARCH TRENDS

As previously discussed, the global implementation of 5G
technology has achieved substantial progress, and rigorous
exploration into 6G technology has been greatly stimulated.
Undoubtedly, artificial intelligence will play a pivotal role in the
inevitable revolution spurred by 6G. Even though past research
has presented promising outcomes, extensive challenges still
merit further investigation in the future.

1. Performance metric: Currently, in DL-based wireless com-
munication systems, especially in E2E scenarios, the key
performance indicators primarily focus on block error rate
(BLER) and BER. The goal is to recover as much accu-
rate information from the transmitted signals as possible.
Additional performance metrics like latency and power may
also be considered. To effectively handle multiple metrics,
a constraint-based training strategy can be employed. This
allows for dynamic management of the trade-offs among
these metrics. In certain cases, such as semantic commu-
nications, all data transmission is not considered equally
important. The recovered data may contain transmission
errors, yet the semantic information within the data must
remain intact. This necessitates the development of a new
performance metric for evaluation.

2. Real-world data sets: Just as massive real-world data has
promoted the rapid development of (LLM, real-world data
sets are equally indispensable for further development of
DL in the field of wireless communication. At present, most
research is still only using data generated from their own sim-
ulations. Moreover, regulations concerning data protection
and privacy pose additional constraints on the open access
to real-world data.
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3. E2E concerns: The preliminary findings [69, 70] indicate
that the efficacy of DL-based E2E communications aligns
with that of traditional methods. Yet, it remains uncertain
if DL-based E2E communication systems will eventually
surpass their conventional counterparts in aspects such as
performance and complexity, or to what extent they can
offer any enhancements. Given the ability of DL method-
ologies to holistically optimize a communication system in an
E2E manner, it raises a query about the potential for next-
generation wireless communication technologies to evolve
beyond the confines of a stringent standardization process
that mandates ongoing regulations.

4. Cross layer: This article concentrates on the application of
DL in PHY, with numerous studies discussing its application
within individual layers [4]. Some researchers argue against
confining the application of artificial intelligence solely to
PHY and advocate for considering cross-layer applications.
For instance, current researchers have embarked on AI-
based network optimization. Learning that spans two or
three layers holds the promise of greater advantages.

5. Hardware learning: Due to the convenience and adapt-
ability of software, learning via software will always be the
preferred choice. However, for complex learning tasks, soft-
ware implementation can introduce high time and spatial
complexity. As such, learning through hardware is also being
considered. Even though hardware learning is a trending
direction in other DL domains, effective implementation is
equally needed for the various DL modules within wireless
communication systems, with corresponding algorithms that
should be hardware friendly.

9 CONCLUSION

This paper provides a thorough review of the methodolo-
gies for applying DL schemes to enhance the performance
of PHY in wireless networks, particularly within the context
of 5G and 6G environments. The focus of these method-
ologies spans three main aspects: (1) Replacing parts of the
conventional wireless communication system. (2) Integrating
with emerging wireless communication technologies. (3) Con-
structing E2E wireless communications. Moreover, the paper
outlines several vital research challenges in this field that need
to be addressed in the near future. Its goal is to guide readers to
understand the state-of-the-art of DL-based wireless networks,
and to identify intriguing and challenging research subjects in
this critical domain.
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