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Abstract 15 

Landscape genomics can harness environmental and genetic data to inform conservation 16 

decisions by providing essential insights into how landscapes shape biodiversity. The massive 17 

increase in genetic data afforded by the genomic era provides exceptional resolution for 18 

answering critical conservation genetics questions. The accessibility of genomic data for non-19 

model systems has also enabled a shift away from population-based sampling to individual-based 20 

sampling, which now provides accurate and robust estimates of genetic variation that can be used 21 

to examine the spatial structure of genomic diversity, population connectivity, and the nature of 22 

environmental adaptation. Nevertheless, the adoption of individual-based sampling in 23 

conservation genetics has been slowed due, in large part, to concerns over how to apply methods 24 

developed for population-based sampling to individual-based sampling schemes. Here, we 25 

discuss the benefits of individual-based sampling for conservation and describe how landscape 26 

genomic methods, paired with individual-based sampling, can answer fundamental conservation 27 

questions. We have curated key landscape genomic methods into a user-friendly, open-source 28 

workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R 29 

(ALGATR). The ALGATR package includes added functionality for all of the included methods and 30 

extensive vignettes designed with the primary goal of making landscape genomic approaches 31 

more accessible and explicitly applicable to conservation biology. 32 
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1     |     INTRODUCTION 36 

The Anthropocene is an era of unprecedented global change, making the question of how 37 

best to conserve biodiversity more important than ever. Although broad conservation policies are 38 

typically enacted at the species level, conservation actions and management decisions regularly 39 

take place at the landscape level (Fiedler et al., 2022). Protecting species diversity and the 40 

processes that maintain it ultimately requires conserving the geographic regions that support the 41 

ecological and evolutionary processes intrinsic to population viability (Malcom & Carter, 2021). 42 

Particularly with accelerating environmental change, land-use conversion, and habitat loss and 43 

degradation, biological conservation has increasingly become an inherently spatial problem 44 

(Shaffer et al. 2022). Uniting landscape ecology and population genetics in a single framework, 45 

landscape genetics provides a suite of spatially-explicit approaches for addressing this challenge 46 

(Balkenhol et al., 2015; Keller et al., 2015; Manel et al., 2003, 2010; Segelbacher et al., 2010; 47 

Shaffer et al., 2022; Storfer et al., 2007; van Strien et al., 2014). Spatial approaches in landscape 48 

genetics involve the integration of geographic, environmental, and genetic data to understand 49 

how spatial patterns of genetic variation are influenced by landscape features, environmental 50 

factors, and dispersal barriers. Broadly, these include methods to delimit population boundaries, 51 

quantify the drivers of genetic differentiation, estimate landscape resistance to gene flow, 52 

characterize patterns of genetic diversity, and identify genes involved in adaptation to local 53 

environmental variation (Balkenhol et al., 2015; Storfer et al., 2018; Wagner & Fortin, 2013). 54 

Genomic data provide valuable information for identifying population boundaries, 55 

demographics, and connectivity, all of which are important for conservation (Funk et al., 2012; 56 

Hohenlohe et al., 2021; Keller et al., 2015; Manel & Holderegger, 2013; Segelbacher et al., 57 

2010). Genetic diversity itself is increasingly a target of conservation action especially because 58 

https://paperpile.com/c/ZMudhx/JBgaJ
https://paperpile.com/c/ZMudhx/D3OGw
https://paperpile.com/c/ZMudhx/X8fa+6epd+0wGa+A92w+j7VO+ZNtO+Fx5F+MsYW
https://paperpile.com/c/ZMudhx/X8fa+6epd+0wGa+A92w+j7VO+ZNtO+Fx5F+MsYW
https://paperpile.com/c/ZMudhx/MsYW+uyj4c+HDty
https://paperpile.com/c/ZMudhx/6epd+U3RjL+A92w+zI09t+bzT9
https://paperpile.com/c/ZMudhx/6epd+U3RjL+A92w+zI09t+bzT9
https://paperpile.com/c/ZMudhx/6epd+U3RjL+A92w+zI09t+bzT9
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of the role it can play in mitigating the impacts of ongoing climate change (Hoban et al., 2020; 59 

Schmidt et al., 2023). Prior to the availability and accessibility of genomic data for non-model 60 

systems, landscape genetics studies relied on population-based sampling, in which many 61 

individuals from each location were genotyped for a handful of genetic markers. Now that we 62 

can sequence many thousands of loci from across the genome – allowing us to capture more of 63 

the complexity that exists in natural systems (Forester & Lama, 2022; Holliday et al., 2017; 64 

Shafer et al., 2015; Supple & Shapiro, 2018) – landscape genetics has increasingly shifted 65 

towards individual-based sampling. With genomic data, just a single individual per location can 66 

provide robust inferences about intraspecific genetic variation (Hohenlohe et al., 2021; Selmoni 67 

et al., 2020). This is advantageous for conservation efforts as well, as individual-based sampling 68 

allows for broader geographic and environmental coverage, provides greater spatial resolution, 69 

and minimizes the overall impact of sampling on each population (Shaffer et al., 2022; Wang & 70 

Bradburd, 2014). 71 

Despite the benefits of individual-based sampling, a broader shift to these sampling 72 

schemes has been slowed, in large part, by methodological concerns. Landscape genetics is 73 

replete with analytical approaches, but the very breadth of those choices, and the many decisions 74 

to be made in implementing each method present a certain challenge, particularly for those 75 

seeking entry into landscape genetics but even for experienced practitioners as well. Moreover, 76 

because many landscape and population genetic methods were originally designed for 77 

population-based sampling, their validity for individual-based sampling has sometimes come 78 

into question, further complicating the question of how best to implement a landscape genomic 79 

framework for conservation. Here, we present a pipeline for performing cutting-edge landscape 80 

genomic analyses with individual-based sampling, discuss the key conservation-oriented 81 

https://paperpile.com/c/ZMudhx/rGGuX+hOxha
https://paperpile.com/c/ZMudhx/rGGuX+hOxha
https://paperpile.com/c/ZMudhx/xwnzP+O9rjC+BZX0k+ZNFSL
https://paperpile.com/c/ZMudhx/xwnzP+O9rjC+BZX0k+ZNFSL
https://paperpile.com/c/ZMudhx/zI09t+GQEsJ
https://paperpile.com/c/ZMudhx/zI09t+GQEsJ
https://paperpile.com/c/ZMudhx/gciZb+j7VO
https://paperpile.com/c/ZMudhx/gciZb+j7VO
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questions it can answer, and detail the considerations for each method it includes (Table 1). Our 82 

pipeline is implemented as an R package, A Landscape Genomics Analysis Toolkit in R 83 

(ALGATR), that is publicly available on GitHub (https://github.com/TheWangLab/algatr). ALGATR 84 

includes detailed walkthroughs and documentation to make it easily accessible to anyone eager 85 

to use landscape genomics to achieve actionable conservation impacts. 86 

 87 

2     |     INDIVIDUAL-BASED LANDSCAPE GENOMICS FOR 88 

CONSERVATION 89 

Having many independent loci is advantageous because each serves as an independent 90 

instantiation of the coalescent process (Leitwein et al., 2020), so sequencing large numbers of 91 

loci can provide robust estimates of genetic differentiation between localities, even when the 92 

sample size at each locus is small. For this reason, the number of loci that can be captured by 93 

next-generation sequencing makes individual-based sampling tenable for landscape genetics. 94 

Large genomic datasets provide strong statistical power for inferring spatial patterns of genetic 95 

variation, including the detection of genotype-environment associations (GEA), geographic 96 

barriers and corridors, and populations or genetic clusters without a priori assignments (Manel et 97 

al., 2003; Patterson et al., 2006). Individual-based, genomic-scale datasets also contribute 98 

distinct advantages for practical conservation biology – in particular, distributing sampling 99 

across more sites provides greater geographic and environmental coverage, better spatial 100 

resolution, and lower impact on natural populations. 101 

2.1     |     Greater geographic and environmental coverage 102 

For the same total sample size, individual-based sampling schemes are able to include 103 

more localities than population-based schemes, providing greater geographic coverage and 104 

https://github.com/TheWangLab/algatr
https://paperpile.com/c/ZMudhx/pz02H
https://paperpile.com/c/ZMudhx/X8fa+RxEno
https://paperpile.com/c/ZMudhx/X8fa+RxEno
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environmental breadth. Broadening the spatial extent of a project captures greater landscape 105 

heterogeneity and more of the genetic variation across a species’ range. It also allows projects to 106 

cover more areas that may be of interest for conservation and land management efforts, which is 107 

valuable for evaluating currently designated protected areas, for preserving genetic diversity and 108 

population connectivity, and for assessing the potential contributions of new management areas. 109 

Expanding coverage over environmental space provides increased power to estimate 110 

response curves that capture the relationships between a species and its environment (Shaffer et 111 

al., 2022; Wang & Bradburd, 2014), including the detection of ecologically important patterns of 112 

genetic variation and the environmental drivers of that variation (Manel et al., 2012; Selmoni et 113 

al., 2020). This increases the likelihood of capturing alleles involved in local adaptation, 114 

particularly if sampling includes environments near the edge of species’ tolerance limits 115 

(Lotterhos & Whitlock, 2014; Rellstab et al., 2015; Storfer et al., 2018; Stucki et al., 2017). 116 

These alleles may play important roles in resilience to future climate change, making them 117 

important targets for conservation action. Even analyses that identify environmental drivers of 118 

neutral genetic variation can contribute important information on which environmental axes are 119 

important for maintaining adaptive potential and how environmental variation influences genetic 120 

structure and population connectivity. 121 

2.2     |     Greater spatial resolution 122 

Individual-based sampling schemes also allow for greater sampling density, relative to 123 

population-based schemes, providing finer spatial resolution for inferences of population 124 

structure, gene flow, and the distribution of genetic diversity (Balkenhol & Fortin, 2015; Manel 125 

et al., 2003; Shaffer et al., 2022). By reducing the gaps between sampling localities, individual-126 

based sampling designs allow for more accurate identification of where population genetic 127 

https://paperpile.com/c/ZMudhx/gciZb+j7VO
https://paperpile.com/c/ZMudhx/gciZb+j7VO
https://paperpile.com/c/ZMudhx/GQEsJ+Hwg2j
https://paperpile.com/c/ZMudhx/GQEsJ+Hwg2j
https://paperpile.com/c/ZMudhx/NxMSj+lllfD+MJ6Nf+uyj4c
https://paperpile.com/c/ZMudhx/X8fa+j7VO+Xdr8Z
https://paperpile.com/c/ZMudhx/X8fa+j7VO+Xdr8Z
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elements, like genetic breaks or corridors of connectivity, occur on the landscape. By doing so, 128 

we can also understand how population genetic elements intersect with landscape features, like 129 

habitat transitions and potential physical barriers to gene flow. Homing in on where population 130 

boundaries, corridors of connectivity, and regions supporting greater genetic diversity are found 131 

can assist conservation practitioners and land managers in determining which areas are most 132 

valuable for designating critical habitat and which contribute most to enabling population 133 

connectivity and persistence. This is especially important because many land management 134 

decisions take place over relatively small areas and prioritizing conservation efforts requires 135 

understanding the precise relationships between landscape elements and biodiversity. 136 

2.3     |     Lower impact on populations 137 

Many species are of conservation concern because they have small or heavily fragmented 138 

populations, which puts them at greater risk from population fluctuations or disturbances. In 139 

trying to understand which species or populations to prioritize for conservation management, 140 

researchers must strike a balance between collecting adequate sample sizes to obtain crucial 141 

information while limiting the overall impacts of sampling on population health. In the most 142 

extreme cases, population-based sampling may not even be feasible for rare or highly imperiled 143 

species because finding sufficient numbers of individuals may prove prohibitively difficult 144 

(Supple & Shapiro, 2018). By sampling only one, or a few, individuals from each locality, 145 

individual-based sampling minimizes the impact of sampling efforts on natural populations, 146 

conveying clear benefits for population health and sustainability and even enabling studies of 147 

some highly imperiled species that would otherwise be impossible. Sampling single individuals 148 

can also reduce the effect of repeated sampling when species management plans call for repeated 149 

genetic monitoring over time. 150 

https://paperpile.com/c/ZMudhx/BZX0k
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2.4     |     Potential downsides of individual-based sampling 151 

Because many population genetic analysis methods were developed for a traditional 152 

population-based framework, their application to individual-based sampling can present certain 153 

challenges. At a minimum, knowing which population genetic methods can be applied to 154 

individual-based sampling requires understanding the assumptions inherent to each method, such 155 

as whether they assume normal distributions of allele frequencies per locality or whether they 156 

use population designation as an informative prior. Some methods can also be sensitive to the 157 

metrics used as inputs, and several common metrics of genetic distance and diversity cannot be 158 

calculated on an individual basis (e.g., F-statistics). However, there are reliable metrics that can 159 

be calculated from individual-based sampling that should not bias results (e.g., Shirk et al., 160 

2017), several of which can be calculated in our pipeline (ALGATR). 161 

Sampling fewer individuals per location also increases the binomial sampling noise 162 

around estimates of local allele frequencies (Wang & Bradburd, 2014). This is consequential for 163 

some methods that require precise allele frequency estimates. For example, genotype-164 

environment association (GEA) methods were developed for population-based sampling and 165 

may not perform as well with allele frequency estimates based on only a single individual per a 166 

locality (Rellstab et al., 2015). Although not exclusive to individual-based sampling, researchers 167 

should also be cognizant of how the spatial distribution of their sampling may affect spatial 168 

autocorrelation in their sampling design. Reflecting a common concern in spatial ecological 169 

studies, when data points have a high degree of non-independence, analyses that do not include 170 

an autoregressive component may produce inaccurate results (Dale & Fortin, 2014; Hurlbert, 171 

1984). 172 

https://paperpile.com/c/ZMudhx/SwS8r
https://paperpile.com/c/ZMudhx/SwS8r
https://paperpile.com/c/ZMudhx/gciZb
https://paperpile.com/c/ZMudhx/lllfD
https://paperpile.com/c/ZMudhx/hBtv
https://paperpile.com/c/ZMudhx/hBtv
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Finally, individual-based sampling inherently limits the information acquired about the 173 

variation present within a population. This represents a reasonable tradeoff for landscape 174 

genetics, which is primarily concerned with between-population variation, and even for 175 

conservation efforts that are concerned with landscape-level processes, but it does present a 176 

limitation for some objectives, such as those concerned with demographic processes. For 177 

example, individual-based sampling can only provide coarse data on population sizes and would 178 

likely not be an optimal choice for genetic monitoring of within-population changes through 179 

time. Despite these limitations, the set of methods that have assumptions compatible with 180 

individual-based sampling leaves researchers with many strong analytical options. 181 

 182 

3     |    A LANDSCAPE GENOMICS PIPELINE FOR CONSERVATION 183 

Researchers must choose from a wealth of methodological options when designing a 184 

landscape genomic study. The best path will depend on a complex set of factors, ranging from 185 

the goals and questions of the study to the assumptions and requirements for each potential 186 

method to be employed to computational costs and limitations that balance available resources 187 

and methods with dataset size. Important methodological considerations in landscape genomics 188 

begin with the broad consideration of which type of analysis to include, followed by deciding 189 

which method to perform, and then making decisions on parameter settings and options for that 190 

specific method. In addition to methodological considerations, input data must often be 191 

processed (e.g., calculating genetic or environmental distances). Understanding and prioritizing 192 

tradeoffs can be challenging even for experienced landscape geneticists and especially for 193 

conservation practitioners or other biologists who may be approaching landscape genetics for the 194 
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first time. We aim to address these issues by providing a user-friendly, accessible workflow 195 

which is implemented in the ALGATR pipeline. 196 

The ALGATR pipeline includes a curated set of methods that can be applied to individual-197 

based sampling, providing robust results under most realistic scenarios, and covering the core 198 

areas of landscape genomics that are of particular interest for conservation. To make landscape 199 

genomics methodology more approachable, we have included transparent documentation in 200 

ALGATR for each method, including vignettes that provide step-by-step guidance for processing 201 

input data, running analyses, producing relevant summary statistics, interpreting results, and 202 

generating figures. Although ALGATR makes use of (for the most part) existing packages, we 203 

have added new functionality to each of these methods and adapted, when necessary, methods to 204 

accommodate individual-based sampling (Table S1). 205 

Two of the main barriers to performing any analysis are ensuring input files are in the 206 

correct format and determining the proper parameter settings for respective landscape genomic 207 

methods; ALGATR provides functions for formatting input files and testing parameters for each 208 

method included in the pipeline. Performing any of the methods in ALGATR requires only a file 209 

with variant calls (i.e., a VCF file) and sampling coordinates. ALGATR also includes a set of 210 

utility functions that provide users with options for customization if they so desire, including 211 

functions for downloading bioclimatic data, pruning SNPs based on linkage disequilibrium, 212 

imputing missing genotypes, and calculating a variety of genetic and geographic distance metrics 213 

(Table S1). We provide guidance on the application of these utility functions so that users can 214 

visualize and evaluate the effects of different ways of processing their data. 215 

Below, we outline four key questions for conservation that landscape genomic 216 

approaches can answer and describe methods for doing so that are included in the ALGATR 217 
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pipeline (Table 1). For each method, we describe its key components, practical considerations, 218 

and relevance to conservation questions. 219 

3.1     |     How do we delineate population units for management? 220 

Species management plans frequently call for the designation of evolutionarily significant 221 

units, populations, or genetic groups that contain some particular value to the species as a whole 222 

(Allendorf et al., 2022; Turbek et al., 2023). For example, some conservation plans target the 223 

protection of populations that harbor unique genetic variants, subspecies that exhibit geographic 224 

variation (e.g., Teixeira & Huber, 2021), or groups that maximize adaptive potential (Funk et al., 225 

2019). A critical first step in delimiting conservation units is inferring genetic clusters based on 226 

population structure or genetic similarity. 227 

Identifying genetic clusters is straightforward when individuals are structured into 228 

discrete, isolated populations, but many species instead exhibit continuous distributions of 229 

individuals (Bradburd & Ralph, 2019; Hohenlohe et al., 2021; Manel et al., 2003). Methods to 230 

infer genetic clusters, including approaches like ADMIXTURE (Alexander et al., 2009), 231 

STRUCTURE (Pritchard et al., 2000) sNMF (Frichot et al., 2014), TESS (Caye et al., 2016), and 232 

conStruct (Bradburd et al., 2018), use clustering techniques (e.g., K-means clustering) to assign 233 

individuals to genetic clusters based on how neutral genetic variation is distributed. The 234 

approaches that are most apt for landscape genetics are those that are spatially explicit, often 235 

using sample location as prior information. The ALGATR pipeline implements one such method, 236 

TESS (Caye et al., 2016), which infers the optimal numbers of clusters and then calculates an 237 

assignment probability or ancestry coefficient of each individual to each cluster. We have added 238 

functions to ALGATR to generate interpolated maps of ancestry coefficients using the autoKrige 239 

function from the AUTOMAP package (Hiemstra et al., 2009), which differs from the interpolation 240 

https://paperpile.com/c/ZMudhx/i6RM4+4rJiE
https://paperpile.com/c/ZMudhx/JE7GK
https://paperpile.com/c/ZMudhx/M9ycV
https://paperpile.com/c/ZMudhx/M9ycV
https://paperpile.com/c/ZMudhx/X8fa+0FtHh+zI09t
https://paperpile.com/c/ZMudhx/eQu7y
https://paperpile.com/c/ZMudhx/iuypt
https://paperpile.com/c/ZMudhx/6fi5v
https://paperpile.com/c/ZMudhx/UBv41
https://paperpile.com/c/ZMudhx/D1BEw
https://paperpile.com/c/ZMudhx/UBv41
https://paperpile.com/c/ZMudhx/wbUmd
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done by default in TESS in that it produces raster maps that can then be used in downstream 241 

analyses (Figure 1). 242 

3.2     |     How is genetic variation distributed? 243 

Genetic diversity provides the raw material on which selection can act, allowing 244 

populations or species to respond to new threats or perturbations, ranging from novel pests and 245 

pathogens to ongoing climate change (Hoffmann et al., 2017). Loss of genetic diversity can lead 246 

to inbreeding depression, diminished adaptive potential, and increased extinction risk, making it 247 

a key target for conservation action (Kardos et al., 2021; O’Grady et al., 2004). Understanding 248 

how genetic diversity is distributed across the landscape is, therefore, critical for examining the 249 

drivers of genetic variation, identifying areas that harbor greater genetic diversity, and 250 

quantifying regional vulnerability to environmental change (Segelbacher et al., 2010; Sommer et 251 

al., 2013). 252 

One challenge for individual-based landscape genomics has been how to calculate 253 

metrics of genetic diversity, which are traditionally calculated at the population level, when 254 

samples are distributed across the landscape without discretely-bounded clusters. ALGATR uses a 255 

recently developed method for mapping local estimates of genetic diversity based on continuous 256 

individual samples implemented in the R package WINGEN (Bishop et al., 2023). WINGEN 257 

generates continuous maps of heterozygosity, allelic richness, and nucleotide diversity using 258 

moving windows and spatial interpolation (Figure 1). WINGEN also includes options to account 259 

for any unevenness in sampling design using rarefaction and allows users to customize the size 260 

of the moving window and the resolution of the output maps, which are provided as rasters that 261 

can be imported for further analysis in any commonly-used GIS software. These rasters thus 262 

https://paperpile.com/c/ZMudhx/E11rH
https://paperpile.com/c/ZMudhx/MSTLt+SrBh8
https://paperpile.com/c/ZMudhx/6epd+MIjQ1
https://paperpile.com/c/ZMudhx/6epd+MIjQ1
https://paperpile.com/c/ZMudhx/PUR6A
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provide detailed views of genomic diversity across the landscape that can inform land 263 

management strategies aimed at protecting genetic diversity. 264 

3.3     |     What are the drivers of population connectivity? 265 

One of the primary goals of systematic conservation planning is to ensure that protected 266 

areas promote population viability and persistence, and key to this is identifying how and where 267 

critical population processes occur on the landscape (Nielsen et al., 2022; Segelbacher et al., 268 

2010). Understanding the drivers of gene flow and genetic differentiation can help conservation 269 

practitioners understand the impact of habitat fragmentation, land-use conversion, and 270 

environmental change on population connectivity (Hall & Beissinger, 2014; van Strien et al., 271 

2014). The population connectivity between points on a landscape can diminish when gene flow 272 

is reduced over greater geographic distances, resulting in a pattern of isolation-by-distance (IBD; 273 

Wright, 1943), or when gene flow is restricted between regions with increasingly different  274 

environmental conditions (due to selective or non-selective mechanisms), leading to a pattern of 275 

isolation-by-environment (IBE; Wang & Bradburd, 2014). The extent to which geographic and 276 

environmental isolation shape genetic divergence provides important information for 277 

maintaining functional connectivity, which is a key component of population viability, across the 278 

landscape (Segelbacher et al., 2010). 279 

Generally, landscape genomics methods that investigate IBD and IBE rely on matrix 280 

regression, in which matrices of geographic and environmental distances serve as explanatory 281 

variables, and the response variable is a genetic distance matrix. For fitted models, the ratios 282 

between standardized regression coefficients (beta coefficients) for each explanatory variable can 283 

approximate the relative contributions of each environmental variable (or aggregated 284 

environmental distance) and geographic distance to explain variation in genetic distances. 285 

https://paperpile.com/c/ZMudhx/6epd+CjF5e
https://paperpile.com/c/ZMudhx/6epd+CjF5e
https://paperpile.com/c/ZMudhx/7sLma+0wGa
https://paperpile.com/c/ZMudhx/7sLma+0wGa
https://paperpile.com/c/ZMudhx/Ltm74
https://paperpile.com/c/ZMudhx/gciZb
https://paperpile.com/c/ZMudhx/6epd
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Variable selection can be performed using backwards elimination in which explanatory variables 286 

are incrementally removed and the model refitted until only variables with statistically 287 

significant effects remain (Ferrier et al., 2002; Wang, 2013). 288 

ALGATR implements two methods for estimating IBD and IBE: generalized dissimilarity 289 

modeling (GDM; Ferrier, 2002; Ferrier et al., 2002, 2007) and multiple matrix regression with 290 

randomization (MMRR; Wang, 2013) (Figure 1). GDM models turnover in the compositional 291 

dissimilarity between pairs of sites by transforming explanatory variables using a set of I-spline 292 

basis functions (Ferrier, 2002; Ferrier et al., 2002, 2007; Fitzpatrick & Keller, 2015). GDM’s 293 

main advantage is that it can account for nonlinear relationships between variables (Mokany et 294 

al., 2022). The shape of the resulting relationships can then be used to identify threshold values 295 

that may represent important areas of genetic turnover because the shape of the I-spline functions 296 

indicate how genetic dissimilarity changes across an environmental gradient for each explanatory 297 

variable (Storfer et al., 2018). The environmental data layers used in the analysis can also be 298 

transformed based on these fitted relationships and combined into a map of genetic 299 

compositional dissimilarity across the study region (see Figure 1). 300 

Similarly, MMRR performs linear matrix regression on genetic and environmental 301 

distances and allows for multiple independent variables (environmental and geographic 302 

distances) to be examined simultaneously. This approach provides less flexibility than GDM 303 

(Table S2) but may be less prone to overfitting, a tradeoff some researchers may prefer. MMRR 304 

performs significance testing through random permutations of the rows and columns of the 305 

dependent matrix, which is necessary because of the non-independence of values in pairwise 306 

distance matrices. MMRR provides individual regression coefficients and p-values for each 307 

explanatory variable and for the fitted model. 308 

https://paperpile.com/c/ZMudhx/7xlBf+7TgmC
https://paperpile.com/c/ZMudhx/7TgmC+Jta7z+7juxe
https://paperpile.com/c/ZMudhx/7xlBf
https://paperpile.com/c/ZMudhx/7TgmC+Jta7z+7juxe+bjU7U
https://paperpile.com/c/ZMudhx/h0had
https://paperpile.com/c/ZMudhx/h0had
https://paperpile.com/c/ZMudhx/uyj4c
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One remaining set of analyses in this category are those that seek to understand the extent 309 

to which landscape features act to restrict gene flow, a phenomenon that results in a pattern 310 

known as isolation-by-resistance (IBR; McRae, 2006). The workflow for investigating IBR 311 

includes first generating a resistance surface based on prior information or a hypothesis about 312 

how landscape elements contribute to differential resistance to movement for the study organism. 313 

Resistance distances can then be calculated using least-cost path analysis (Wang et al., 2009; 314 

Wang & Shaffer, 2017) or circuit theory analysis (Dickson et al., 2019; McRae & Beier, 2007). 315 

Because the parameterization of the resistance surface is highly complex, requiring decisions that 316 

often have a significant impact on the estimate of resistance distances (Koen et al., 2012; Spear 317 

et al., 2010; Spear et al., 2015), and because the optimal approach to resistance surface 318 

parameterization depends strongly on the study design and objectives (Peterman et al., 2019; 319 

Spear et al., 2010; Zeller et al., 2012), ALGATR does not include an automated approach for 320 

generating resistance surfaces. However, if a user has generated a resistance surface with their 321 

preferred method, which could include parameterization based on habitat suitability models 322 

(Wang et al., 2008), genetic algorithms (Peterman, 2018), or gradient forest analysis of allele 323 

frequencies (Vanhove & Launey, 2023), then resistance distances can be calculated using 324 

ALGATR’s geo_dist() function, specifying “resistance” with the type argument (type = 325 

“resistance”). This function uses the commuteDistance() function in the GDISTANCE package (van 326 

Etten & Hijmans, 2010). The resulting resistance distances can then be used in downstream 327 

analyses, including using them in MMRR or GDM to quantify IBR. 328 

3.4     |     How can we identify and protect adaptive genetic variation? 329 

The accessibility of genomic data for natural systems brings not only greater resolution 330 

but also opportunities to examine spatial patterns of adaptive genetic variation (Manel et al., 331 
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2010; Parisod & Holderegger, 2012; Schoville et al., 2012). Identifying ecologically-important, 332 

functional genetic variation – genes that convey fitness benefits under different conditions – and 333 

the environmental forces underlying that variation provides a new dimension of valuable 334 

information for conservation efforts. Characterizing genes involved in adaptation to local 335 

environmental conditions can help guide local reintroduction efforts, assess the feasibility of 336 

genomic rescue for genetically depauperate populations, evaluate strategies for assisted gene 337 

flow, and quantify climate resilience and vulnerability (Browne et al., 2019; Frankham et al., 338 

2014; Seaborn et al., 2021; Thurman et al., 2020). 339 

A critical step for these objectives is to identify genes associated with specific 340 

environmental variables. Genotype-environment association (GEA) analyses quantify statistical 341 

associations between allele frequencies and environmental variables to test the hypothesis that 342 

allelic variation at a locus reflects adaptation to the local environment (Capblancq et al., 2018; 343 

Lotterhos, 2023). Because spurious genotype-environment associations could result from a 344 

variety of factors other than local adaptation, including population structure and demography, the 345 

signal of environmental selection must be parsed from the background level of neutral 346 

divergence resulting from population structure (Ahrens et al., 2018; De Mita et al., 2013; 347 

Lotterhos & Whitlock, 2014, 2015; Rellstab et al., 2015; Storfer et al., 2018). Approaches for 348 

doing so include using latent factors to represent population structure (Caye et al., 2019; Rellstab 349 

et al., 2015), conditioning on neutral variation using principal components (Duforet-Frebourg et 350 

al., 2016), using Moran eigenvector maps to decompose spatial relationships (Forester et al., 351 

2018), and identifying sets of loci that are putatively neutral and incorporating them as covariates 352 

in the model (Dauphin et al., 2022; Meirmans, 2015; Storfer et al., 2018). 353 
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Two GEA methods are included in ALGATR, latent factor mixed modeling (LFMM; Caye 354 

et al., 2019) and redundancy analysis (RDA; Figure 1). LFMM is a univariate method that uses 355 

latent factors to account for unobserved variables, including population structure (Caye et al., 356 

2019). This approach is advantageous because it provides controls on factors, other than 357 

selection, that may incidentally covary with allele frequencies. The challenge is determining the 358 

appropriate number of latent factors for any given dataset (called K values). ALGATR provides 359 

four options for doing so: a Tracy-Widom test (Frichot et al., 2013), a “quick elbow” test (an 360 

approach similar to examining a scree plot), the TESS clustering algorithm (in which latent 361 

factors correspond to some measure of population structure), or K-means clustering (Jombart et 362 

al., 2010). 363 

RDA is a constrained ordination method that models linear, multivariate relationships 364 

(Rellstab et al., 2015). By simultaneously testing multiple loci against multiple environmental 365 

variables,  RDA is able to detect multilocus selection (Forester et al., 2018; Rellstab et al., 2015) 366 

while also accounting for covariation in allele frequencies between loci. Optionally, RDA can 367 

perform variable selection using forward selection until a specified threshold is met (typically 368 

using a permutation test and adjusted R2 values). The RDA method can also utilize covariates, 369 

such as population structure or geographic distance, alongside environmental predictors, an 370 

approach known as a partial RDA (pRDA). Finally, variance partitioning can be performed using 371 

RDA to quantify the independent contributions of each explanatory variable as well as variation 372 

that is explained by a combination of explanatory variables (i.e., confounded variance; 373 

Capblancq & Forester, 2021). ALGATR includes RDA and pRDA with and without variance 374 

partitioning, and it implements two approaches for determining which loci should be considered 375 
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significant outliers, one that uses Z-scores (Forester et al., 2018) and another that transforms 376 

RDA loadings into p-values (Capblancq, Morin, et al., 2020; Capblancq & Forester, 2021). 377 

3.5     |     Caveats 378 

Like any analysis, landscape genomic methods have various limitations and assumptions, 379 

and even preparing data for these methods carries some potential pitfalls. Below, we briefly 380 

discuss some potentially important concerns that may arise during landscape genomic analysis 381 

and describe how options and solutions for addressing these issues can be implemented (see also 382 

Table S2). The ALGATR documentation aims to provide all of the information necessary to run 383 

each of the analyses and guidance on the decisions that must be made for the options offered by 384 

each method. It also provides references to several extensive and recent reviews that explore the 385 

methodology, assumptions, and theory underlying many of these methods (e.g., Capblancq, 386 

Fitzpatrick, et al., 2020; Capblancq & Forester, 2021; Fenderson et al., 2020; Forester et al., 387 

2018; Lotterhos, 2023; Rellstab et al., 2015). The package itself also contains tools that help to 388 

evaluate different options for each method implemented in the pipeline. 389 

GDM and MMRR take in genetic, environmental, and geographic distance matrices as 390 

input – various distance metrics are available – and the choice of metric may influence 391 

downstream results. Different genetic distance metrics, in particular, may result in different 392 

outcomes. ALGATR provides options to calculate several metrics of genetic, geographic, and 393 

environmental distances, and users should consider and test the potential impacts of different 394 

metrics on their results (Shirk et al., 2017; Wang, 2020). 395 

Several landscape genomic methods, including RDA, do not allow for any missing 396 

genotypes, meaning that studies must either remove loci containing missing data or perform 397 

imputation to fill in missing genotypes. Because removing sites containing missing data often 398 
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results in greatly reduced dataset size, imputation is commonly performed to maximize data 399 

retention. Different types of imputation exist, including population structure-based imputation 400 

(Caye et al., 2016), maximum likelihood-based imputation (D’Angelo et al., 2010), or imputation 401 

based on the mean, median, or most common genotype at each site (e.g., Capblancq & Forester, 402 

2021), each of which introduces different assumptions (e.g., Money et al., 2015; Shi et al., 2018; 403 

Yi & Latch, 2022). To deal with missing values, ALGATR performs two types of imputation. The 404 

first is a per site median-based imputation (similar to that of Capblancq & Forester, 2021), 405 

although we do not recommend this simplified approach for general use because artificially 406 

inflated p-values can result if missing values are non-random (i.e., if there is allelic bias in 407 

missing data). We have also implemented a population structure-based imputation method that 408 

uses non-negative matrix factorization (sNMF; Frichot et al., 2014)) to assign missing values. 409 

This utilizes functions in the LEA package (Frichot & François, 2015) and provides a more 410 

sophisticated (albeit computationally slower) imputation method compared to the median-based 411 

approach. As with many similar population structure methods, it also requires a user-selected 412 

value for K clusters. 413 

Researchers should keep in mind that determining the number of K values that best 414 

describe their data should be done with care. This is relevant to selecting the number of latent 415 

factors (for LFMM) and K clusters (for TESS). For TESS, ALGATR can perform manual and 416 

automatic K-selection. Automatic K-selection is provided mainly for simulation studies or meta-417 

analyses where K-values have to be selected for a large quantity of datasets such that manual 418 

selection is not feasible. For LFMM, ALGATR implements four methods for automatically 419 

selecting the number of latent factors (also represented using the term K): by performing a 420 
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Tracy-Widom test, a “quick elbow” test, using cross-validation scores from TESS, or K-means 421 

clustering using adegenet’s find.clusters function. 422 

Linkage disequilibrium (LD) results in collinearity among SNPs, a pattern that can 423 

misinform landscape genomic analyses. For example, estimates of population structure can be 424 

overinflated as more SNPs appear to independently support the same pattern (Rellstab et al., 425 

2015). This is, fortunately, fairly straightforward to address by pruning sites that are putatively in 426 

LD. A common approach involves calculating correlations between SNPs in sliding windows of 427 

custom sizes across the genome (Ahrens et al., 2018) which can be done before or after 428 

performing the GEA analysis (Capblancq & Forester, 2021). ALGATR performs LD-pruning using 429 

the SNPRELATE package (Zheng et al., 2012), which also avoids the need for phased input data, 430 

and provides options to specify window size, window overlap, and the LD threshold. 431 

4     |     CONCLUSIONS 432 

The implementation of genetically-informed conservation actions is critical to understand 433 

how best to conserve biodiversity. Landscape genomic approaches can provide important insight 434 

into how genetic variation is spatially distributed, allowing conservation practitioners to 435 

prioritize areas for conservation efforts. Genomic-scale data have enabled a shift towards 436 

individual- rather than population-based sampling because they provide more genetic resolution 437 

than was previously feasible. This shift towards individual-based sampling reduces the impact on 438 

populations that may already be in rapid decline, while also allowing researchers to capture 439 

greater geographic and environmental coverage for their datasets and to achieve higher 440 

resolution results. 441 

Individual-based sampling provides a number of distinct benefits for biodiversity 442 

conservation, and landscape genomic approaches are poised to seize upon these advantages to 443 
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provide actionable information for conservation and management efforts. Our R package, 444 

ALGATR, provides an easily accessible and user-friendly pipeline that uses individual-based 445 

genomic datasets to provide fine-scale genomic and spatial resolution to answer fundamental 446 

conservation questions. Landscape genomics provides an ever-increasing resolution into the 447 

processes and patterns that shape the genetic variation of Earth’s biodiversity, thereby increasing 448 

our understanding of how best to protect it. 449 
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TABLES 791 

TABLE 1 Summary of key conservation-oriented questions that our landscape genomic analysis pipeline (ALGATR) can answer, 792 
including input requirements for the ALGATR package and recent empirical examples of each method. 793 
 794 

Question Analysis category Method Input requirements Empirical examples 

How do we delineate 
population units for 
management? 

Population structure TESS (Caye et al., 2016) Genotype dosage matrix 
(preferably LD-pruned), 
sampling coordinates, 
optional: raster layer for 
mapping 

Ogbonna et al., 2021 

How is genetic 
variation distributed? 

Genetic diversity wingen (Bishop et al., 2023) VCF, sampling coordinates, 
optional: raster layer for 
mapping 

 

What are the drivers of 
population 
connectivity? 

Isolation by distance and 
isolation by environment 

MMRR (Wang, 2013) Genetic distance matrix, 
environmental distance 
matrices or environmental 
layers plus sampling 
coordinates 

Ortego et al., 2015; Sexton 
et al., 2016; Zhang et al., 
2016 

GDM (Ferrier et al., 2007; Fitzpatrick & 
Keller, 2015; Freedman et al., 2010) 

Bay et al., 2018; Medina et 
al., 2021; Shryock et al., 
2015; Wogan et al., 2020 

How can we identify 
and protect adaptive 
genetic variation? 

Genotype-environment 
association methods 

RDA (Capblancq & Forester, 2021) Genotype dosage matrix, 
environmental layers, 
sampling coordinates 

Forester et al., 2022 

LFMM (Caye et al., 2019) Carvalho et al., 2021; 

Cortellari et al., 2021 
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FIGURE LEGENDS 796 

FIGURE 1 Summary of outputs produced by the ALGATR pipeline with suggested methods to 797 
answer conservation questions. Methods included in ALGATR’s workflow are TESS (Caye et al., 798 
2016), wingen (Bishop et al., 2023), multiple matrix regression with randomization (MMRR; 799 
Wang, 2013), generalized dissimilarity modeling (GDM; Ferrier et al., 2007; Fitzpatrick & 800 
Keller, 2015; Freedman et al., 2010), redundancy analysis (RDA; Capblancq & Forester, 2021), 801 
and latent factor mixed modeling (LFMM; Caye et al., 2019). 802 
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