Computers and Geotechnics 171 (2024) 106374

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research paper ' ;.)

Check for

Inverse analysis of granular flows using differentiable graph neural network &=t
simulator

Yongjin Choi *, Krishna Kumar

Maseeh Department of Civil Architectural and Environmental Engineering Austin, The University of Texas at Austin, Austin, 78712, TX, USA

ARTICLE INFO ABSTRACT

Keywords:

Inverse analysis

Granular flows
Differentiable simulator
Graph neural networks
Gradient-based optimization
Automatic differentiation

Inverse problems in granular flows, such as landslides and debris flows, involve estimating material parameters
or boundary conditions based on a target runout profile. Traditional high-fidelity simulators for these inverse
problems are computationally expensive, restricting the number of possible simulations. These simulators
are also non-differentiable, making efficient gradient-based optimization methods for high-dimensional spaces
inapplicable. Machine learning-based surrogate models offer computational efficiency and differentiability.
However, they often struggle to generalize beyond their training data due to relying on low-dimensional input—
output mappings that fail to capture the complete physics of granular flows. We propose a novel differentiable
graph neural network simulator (GNS) that combines reverse mode automatic differentiation of graph neural
networks with gradient-based optimization for solving inverse problems. GNS learns the dynamics of granular
flow by representing the system as a graph and predicts the evolution of the graph at the next timestep, given
the current state. The differentiable GNS demonstrates optimization capabilities beyond the training data.
We demonstrate the effectiveness of our method for inverse estimation across single and multi-parameter
optimization problems, including evaluating material properties and boundary conditions for a target runout
distance and designing baffle locations to limit a landslide runout. Our proposed differentiable GNS framework
solves inverse problems with orders of magnitude faster convergence than the conventional gradient-based
optimization approach using finite difference.

1. Introduction et al.,, 2017b), are computationally intensive. This limits their practi-

cality for repeated evaluations and constrains the range of parameters

In geotechnical engineering, addressing optimization problems,
such as the inverse modeling of landslides to infer material proper-
ties from target runout distances and design protective structures, is
essential. Traditionally, this inverse optimization process has been ap-
proached by iteratively adjusting material properties to closely match
observed results, often resulting in oversimplified, integer-valued mate-
rial parameters. Design problems focus on optimizing geometries, such
as the location and geometry of protective structures, to effectively
mitigate and control granular flows (Liu et al., 2023; Babu and Basha,
2008). Addressing inverse and design optimization challenges is critical
to developing robust models for managing landslide risks (Calvello
et al., 2017; Cuomo et al., 2015; Abraham et al., 2021).

Inverse analysis often requires multiple forward simulations to
adjust parameters until they match the desired outcome. Conventional
high-fidelity forward simulators, such as discrete element method
(DEM) (Staron and Hinch, 2005; Kermani et al., 2015; Kumar et al.,
2017a) and Material Point Method (MPM) (Mast et al., 2014; Kumar

* Corresponding author.
E-mail address: yj.choi@utexas.edu (Y. Choi).

https://doi.org/10.1016/j.compgeo.2024.106374

that can be effectively analyzed. The lack of comprehensive parametric
sweeps results in unrealistic parameters that fit the target runout or
sub-optimal designs. Although simplified depth-averaged models are
computationally efficient (Hungr and McDougall, 2009; Christen et al.,
2010; Mergili et al., 2017), they often fail to capture the full complexity
of granular flow dynamics and are still limited to a finite set of
parametric simulations. This issue is compounded as the parameter
space becomes more complex and multi-dimensional.

Sampling-based methods like grid search (Ensor and Glynn, 1997),
cross-entropy (Ho and Yang, 2010), and Bayesian optimization (Fra-
zier, 2018) often require a significant number of forward simulations,
especially as the number of parameters increases. In contrast, gradient-
based optimization utilizes derivatives of the objective function to
navigate the parameter space efficiently. This approach often leads to
faster convergence with fewer simulations but requires the gradient of
the objective function. However, traditional simulators are not differen-
tiable. While finite difference methods can approximate the derivatives,

Received 17 January 2024; Received in revised form 19 April 2024; Accepted 20 April 2024

Available online 3 May 2024
0266-352X/© 2024 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/compgeo
https://www.elsevier.com/locate/compgeo
mailto:yj.choi@utexas.edu
https://doi.org/10.1016/j.compgeo.2024.106374

Y. Choi and K. Kumar

Computers and Geotechnics 171 (2024) 106374

High fldelity Granular Surrogate Graficet-toseid

simulator: fl immlator: optimization with

CB-Geo MPM, How. stmulator: AD and
Taichi MPM trajectories GNS differentiable GN'S
e . Parameters
l @ ,] A ¢! 0
S O e‘:I \ .
e Q" -
® 0

Make
training data

Train

forward evaluation

Solve inverse
problems

Accelerated

Fig. 1. Overview of the proposed workflow for inverse analysis of granular flows with differentiable graph network simulator.

they require a smaller increment size and are susceptible to numerical
errors.

A popular gradient-based optimization approach is the adjoint
method (Pires and Miranda, 2001; Cheylan et al., 2019). The adjoint
method computes the gradients by introducing an auxiliary adjoint
variable A that satisfies an adjoint equation involving the derivatives
of the forward problem. By solving this single adjoint equation, we
can efficiently compute the gradients of the objective function f for
all variables simultaneously without having to compute the deriva-
tives of f numerically. However, the complexity and mathematical
challenges inherent in solving adjoint equations, particularly for non-
linear equations or problems involving discontinuities like friction,
often necessitate alternative approaches.

In this context, Machine Learning (ML)-based surrogate models
emerge as a compelling alternative for their efficiency and differentia-
bility. These models create a non-linear functional mapping between
influence factors — such as geometry, boundary conditions, and material
properties — and the outcomes of granular flows, like runouts (Zeng
et al., 2021; Ju et al., 2022). Despite their efficiency, the key limitation
of ML-based models lies in their low-dimensionality mapping between
a finite set of input parameters and output response, which does not
fully encapsulate the underlying physics that governs flow behavior.
For example, regression-based ML models could learn the relation
between the material property and runout of granular columns but fail
to generalize to other geometries or material properties. Consequently,
these models often face challenges in generalizing beyond their initial
training datasets, indicating a need for surrogate models that capture
the complex granular flow behavior.

Recent advancements in learned physics simulators offer a promis-
ing solution to these limitations (Battaglia et al., 2016, 2018; Sanchez-
Gonzalez et al., 2020). Graph neural network (GNN)-based simulators
(GNSs) are one such learned physics simulator that represents the
domain as a graph with vertices and edges and learns the local in-
teractions between the vertices, which are critical in governing the
dynamics of physical systems. By learning the interaction law, GNS
demonstrates high predictive accuracy and generalization ability in
modeling granular flows beyond the training data (Choi and Kumar,
2023a). Since GNS is based on neural network foundations, it is inher-
ently differentiable through automatic differentiation (AD), making it
suitable for gradient-based optimization (Allen et al., 2022; Zhao et al.,
2022).

Automatic Differentiation (AD) (Baydin et al., 2018) uniquely brid-
ges the gap between the computational rigor required for differentiat-
ing complex functions and the practical necessity of efficiency in neural
network-based systems like GNS. In contrast to traditional differentia-
tion methods such as manual, numerical, or symbolic differentiation,
AD systematically breaks down functions into simple differentiable
operations. This process enables precise derivative calculations with-
out the approximation errors inherent in numerical methods or the

complexity escalation typical of symbolic differentiation. AD-based
simulators are increasingly popular in solving inverse problems in
fluid dynamics (Wang and Kumar, 2023) and optimizing control for
robotics (Hu et al., 2019).

In the context of GNS, we leverage reverse-mode AD to compute
the gradients required for solving the inverse problem. Reverse-mode
AD, commonly known as backpropagation (Hecht-Nielsen, 1992; LeCun
et al., 1988) in neural networks, calculates gradients by first performing
a forward pass through the network, storing intermediate values. It
then executes a backward pass, efficiently propagating gradients from
the output back to the inputs. This approach is particularly suited for
GNS, where the number of parameters (inputs) significantly exceeds
the number of outputs (e.g., a loss function). Using the AD gradient,
we optimize the input parameters through gradient-based methods. By
leveraging the computational efficiency and differentiability of GNS
through AD, our method offers an efficient framework for solving
inverse and design problems in granular flows.

A key challenge in applying AD to GNS, especially in simulations
with extended temporal scales, is the extensive GPU memory require-
ment (Zhao et al.,, 2022). AD necessitates tracking all intermediate
computations of GNS over the entire simulation for gradient evaluation.
To mitigate this issue, we employ gradient checkpointing proposed
by Chen et al. (2016). This approach significantly reduces the memory
demand by strategically storing only key intermediate computational
steps during gradient evaluation. While this technique conserves mem-
ory, it requires re-evaluating certain forward computations during the
backward pass for gradient evaluation. This hybrid approach allows
for monitoring gradients across thousands of particle trajectories over
prolonged simulation durations without overwhelming GPU memory,
albeit with an increased computational burden.

We introduce a novel framework for inverse analysis in granular
flows, leveraging the automatic differentiation capabilities of GNS with
gradient-based optimization. We demonstrate our gradient-based op-
timization framework on inverse problems and design applications in
granular flows. The overview of the research is shown in Fig. 1. We
first create granular flow trajectories using the material point method
(MPM) (Soga et al., 2016; Kumar et al., 2019; Hu et al., 2018). The
trajectories are stored as NPZ files (compressed NumPy file format) and
are used to train GNS. We then use GNS as a surrogate to accelerate
the forward evaluation of granular flow runouts. To solve the inverse
problem, we leverage the reverse-mode Automatic Differentiation of
GNS (AD-GNS) nature of GNS to calculate the derivatives of the target
with respect to the input parameters. Finally, we use the gradients
to optimize the parameters of interest based on a target iteratively.
In the following sections, we describe the details of the proposed
differentiable AD-GNS and gradient-based optimization approaches for
solving inverse problems.

Y. Choi and K. Kumar

Computers and Geotechnics 171 (2024) 106374

05 -~ 05
- S~ 1
18 //Runout%ata S U3

Runout

Optimize material property

Final deposit

Optimize boundary condition

Friction angle (¢) Layer n — >
/ Layer n-1 —>Vnp-1
e ——
Layer 2 —1
Layer 1 —t>V

(a) (b)

Fig. 2. Illustrative representation of inverse problems in granular media: (a) single parameter inverse of determining material property based on the final runout, (b) evaluating
the initial boundary conditions (initial velocity) based on the final runout profile, and (c) optimizing the location of barriers based on the target runout distribution.

2. Problem statement

Inverse problems involve determining the underlying parameters
from observed outcomes. We investigate three inverse problems in
granular flows using the differentiable GNS framework, as shown
in Fig. 2. We evaluate (a) single parameter inverse of determining ma-
terial property based on the final runout, (b) multi-parameter inverse
of evaluating the initial boundary conditions, i.e., identify the initial
velocities of the n-layered granular mass given the final runout profile,
and (c) optimizing the location of barriers based on the target runout
distribution, such as the centroid of the final deposit. In these problems,
we optimize by calculating the gradient of the input parameter(s) with
respect to the observed output target.

Fig. 3 illustrates our framework to solve inverse problems in gran-
ular flows using differentiable GNS with AD (AD-GNS). Based on an
initial set of input properties, we use the GNS to solve the forward prob-
lem of granular flow (Fig. 3a). Given a target parameter, we evaluate
a loss function (Jg), e.g., the error between the observed runout (R®)
and the target runout (RO®1arget), Using reverse-mode AD, we compute
the gradient of the loss function with respect to the optimization pa-
rameter Vg Jg. We then iteratively update the optimization parameter
(O©) using a gradient-based optimization technique with a learning rate
n (Fig. 3b). This process continues until the loss decreases below a
threshold, thus achieving the target response. We demonstrate GNS’s
ability to solve inverse problems by optimizing material properties,
initial boundary conditions, and design of barriers (Fig. 2). In the
following sections, we introduce GNS and gradient-based optimization.

3. Methods
3.1. Graph neural network-based forward simulator (GNS)

GNS is an efficient surrogate for high-fidelity simulations of granular
media. GNS discretizes the domain into a set of vertices V' on a graph
(G), with each vertex representing an individual particle or a region
and its properties, and the edges E represent the interaction between
these regions. GNS takes the current state of the domain X, at time
¢t and returns its next state X, (i.e., GNS X, - X, X,
contains information about particles’ position, velocity, distance to
boundaries, and material properties. A surrogate simulation of granular
flow involves running GNS through k timesteps predicting from the

initial state X, to X, (i.e., X, - X; - - — X) sequentially. We call
this successive forward GNS prediction the “rollout”. In the following
paragraphs, we briefly introduce the structure of GNS. For more details
about GNS, please see Sanchez-Gonzalez et al. (2020) and Choi and
Kumar (2023a).

GNS consists of two components (Fig. 4): dynamics approximator
Dy, which is a learned function approximator parameterized by 6, and
update function V. D, has an encoder-processor-decoder architecture.
The encoder converts X, to a latent graph G = (V, E) representing
the state of particle interactions. The processor propagates information
between vertices by passing messages along edges and returns an
updated graph G’ = (V', E'). In the physics simulations, this operation
corresponds to energy or momentum exchange between particles. The
decoder extracts dynamics Y, of particles from the updated graph. The
update function uses the dynamics to update the current state to the
next state of material points (X,,; = U'(X,,Y,)). The update function
U is analogous to the explicit Euler integration in numerical solvers.
Hence, in our GNS, Y, corresponds to the second derivative of the
current state, i.e., acceleration.

The encoder and decoder operations employ multi-layered percep-
trons (MLPs), while the processor comprises GNN, which contains the
learnable parameters . We train this 6 to minimize the mean squared
error between the ground truth accelerations of the particles A, and
the predicted dynamics Y, given the current state of particles X, as the
input. In our study, we use the material point method (MPM) (Soga
et al.,, 2016; Kumar et al., 2019) to generate the training dataset of
particles (material point) positions X, and acceleration A4,.

We leverage PyTorch’s Distributed Data Parallelism (DDP) frame-
work to enable multiple GPU parallelization. This approach demon-
strates almost linear scaling performance (Kumar and Vantassel, 2022;
Choi and Kumar, 2023b). By employing DDP, we can distribute the
workload associated with large graph structures across multiple GPUs
with batching, thus facilitating the operation of GNS with a distributed
computational burden without compromising the speed.

3.1.1. Training data

We prepare two types of datasets: two-dimensional granular flows
(Flow2D) and three-dimensional granular flows interacting with obsta-
cles (Obstacle3D). Table 1 shows the details of the simulation configu-
rations.

Y. Choi and K. Kumar

Computers and Geotechnics 171 (2024) 106374

(a) Forward simulation

Xo

Update © (O := ® —nVg/g)

X

e

GNS

If large |

Retarget —

| Error
‘ P R@rarget

jG(RG ’Retarget) <

If small Jg

v
®

(b) Gradient-based Optimization

Fig. 3. Schematic diagram for differentiable GNS with AD (AD-GNS) for inverse analysis. It estimates the parameters @ in granular column flow given a target runout distance

ROuarser
X Xt+1
Update (U)
|Dynamics Approximator (Dg)|
o vj vt (6]
(0) ©) t ® ¢!
@ ® e ® G E—— O & ——>
o o Encode P Op! Process o) va Decode °
o 0
Q\ o % : e (GNN) ; 5 ga\ o ©
t
XieX, G = (V,E) G = (V,E) yi €Y,

Fig. 4. Components of graph neural network (GNN)-based learned simulator (GNS).

We train the GNS model for the two-dimensional domain (Fig. 2a
and b) on the Flow2D dataset. It includes 385 square-shaped gran-
ular mass flow trajectories in a two-dimensional box boundary. The
appendix section provides a visual example in Fig. B.1. We use five
different friction angles (¢ = 15°,22.5°,30°,37.5°,45°), where each
friction angle has 77 simulation datasets. Each simulation has different
initial configurations regarding the size of the square granular mass,
position, and velocity. We use the explicit time integration method
using CB-Geo MPM code (Kumar et al., 2019) to generate the training
data.

We train the 3D GNS (see Fig. 2c) on the Obstacle3D dataset. It
includes 1000 trajectories of granular mass interacting with barriers
in a three-dimensional box boundary. The appendix section provides a
visual example in Fig. B.2. The initial geometry of the cuboid-shaped
granular mass varies from 0.25 to 0.80 m and is excited with different
initial velocities. For each simulation, the granular mass interacts with
one to three cuboid-shaped barriers whose width and length vary from
0.10 to 0.13 m with a height of 0.3 m in the 1.0 x 1.0 x 1.0 m
domain. We use the explicit time integration method using Moving
Least Squares (MLS)-MPM code (Taichi MPM) (Hu et al., 2018) to
generate the training data. See Appendix A for the forward simulation
performance of GNS.

We use two different MPM software, CB-Geo MPM (2D simulations)
and Taichi MPM (3D simulations), to get the best of both worlds.
While CB-Geo MPM can reasonably simulate 2D granular flow, a 3D
MPM code with rigid body dynamics was needed to model the barrier
problems—hence, we use Taichi MPM code.

3.2. Differentiable GNS

GNS built using neural networks is fully differentiable (Allen et al.,
2022) using reverse-mode AD. Reverse-mode AD computes the gradient
of the output of GNS with respect to its inputs by constructing a
computational graph of the simulation and propagating a gradient
through the graph. Using the gradient, we can solve inverse prob-
lems using gradient-based optimization (Fig. 3b). This gradient-based
optimization allows very efficient parameter updates, particularly in
high-dimensional space, as it uses the gradient information to move
the optimization parameters @ towards the optimum solution (Allen
et al., 2022; Dhara and Sen, 2023). Here, we describe the details of
reverse-mode AD, followed by the gradient-based optimization in the
later section (Section 3.3).

Reverse-mode AD (Baydin et al., 2018) offers a highly efficient
method for calculating the accurate gradients of functions. Unlike
numerical differentiation, which is approximate and computationally
expensive, or symbolic differentiation, which can be unwieldy for
complex functions, reverse-mode AD efficiently computes analytical
gradients.

Reverse-mode AD leverages computational graphs (Fig. 5) to rep-
resent complex functions and efficiently and accurately compute their
derivatives. A computational graph is directed where each node rep-
resents an elementary operation or variable, and edges indicate the
computation flow. The combination of the nodes and edges makes
computational graphs represent complex functions.

Y. Choi and K. Kumar

Table 1

Computers and Geotechnics 171 (2024) 106374

Details of the Material Point Method (MPM) simulation geometries and properties used for generating the training datasets.

Source: Reproduced after Choi and Kumar (2023a).

Property Datasets
Flow2D Obstacle3D
Simulation boundary 1.0 x 1.0m 1.0 x 1.0 x 1.0m

MPM element length
Material point configuration
Granular mass geometry

Max. number of particles 6.4K
Barrier geometry None
Simulation duration (# of timesteps) 1.0 s (400)

0.01 x 0.0l m
40,000 points/m>
0.2 x 0.2t00.4 x 04m

0.03125 x 0.03125 x 0.03125 m

262,144 points/m’

0.25 to 0.80 m for each dimension

17K

0.10 x 0.3 x 0.10 to 0.13 x 0.3 x 0.13 m
0.875 s (350)

Model Mohr—Coulomb Mohr—Coulomb
Density 1800 kg/m’ 1800 kg/m’
Young’s modulus 2 MPa 2 MPa
Material property Poisson ratio 0.3 0.3
Friction angle 15, 22.5, 30, 37.5, 45 ° 35°
Cohesion 0.1 kPa None
Tension cutoff 0.05 kPa None
YV =Wy
— — a2 ’
Y =W =X+ X -
< v dy _
' oV -
T) v W
0w,
- — =1 . L W=wi3tw,
Wy = W3 + %) ow- e 3
.2 voodwy
) W3 = Wy = =1
W3 = Wy [R—— Y 0w,
- ows i \
. 2wy Y
dwy v Y
Wy =X Wz = X3
Wy = Xq) Wy = X3 . .
- - a_y _ 0y _ Oy 0w, 0wy H_y __ Oy _ 0y 0w,
dx; Ow; Owy dws dw; dx; 0wy Ows 0w,
=1%1%2x = 2x; =1*x1=1

(a) Forward pass

(b) Backward pass

Fig. 5. Schematics of a Directed Acyclic Graph (DAG) of reverse-mode automatic differentiation (AD) of an example function.

To compute the gradient, reverse-mode AD conducts two steps:
forward and backward pass. In the forward pass (Fig. 5a), reverse-
mode AD evaluates the function’s output given the inputs. Starting from
the input nodes, which represent the input variables (x; and x,), the
graph is traversed to compute the output of the function. This step
lays the groundwork for the differentiation process by establishing the
relationships between all the operations involved in computing the
function.

The next step is backward pass (Fig. 5b), known as reverse mode or
backpropagation, which is the core process of reverse-mode AD to com-
pute the gradient with respect to the inputs of the function (x; and x,).
This phase starts from the output of the computational graph (y) and
works backward. As the process moves backward through the graph,
reverse-mode AD computes what is known as a local derivative—
the derivative of that node’s operation with respect to its immediate
input. In Fig. 5b, this corresponds to dy/ow,, ow,/dws;, dws/dw,, and
ow,/dw,, denoted beside the gray dashed edges. By representing the
simulation as a computational graph, we can pre-compute the deriva-
tives, thus improving computational efficiency in gradient evaluation.
We employ the chain rule, which combines every local derivative at
each node from the output to the input node, returning the gradient of
output with respect to the graph’s input (dy/dx,, dy/dx,). In Fig. 5b,
this process is described below the nodes x; and x,.

The forward pass of the GNS is described as:

X, =GNS(X,) forte(0,1,....,k—1} @

where X, is the current state of the system at time 7, and GNS is the
learned function approximator that predicts the next state X, given
the current state X,. The forward pass involves predicting the trajectory
for k timesteps to simulate the evolution of the system from the initial
state X, to X.

For the inverse analysis, we define an objective function (loss) Jg
that needs to be minimized with respect to the parameters ©. The
objective function depends on the output of GNS after rolling out for k
timesteps, starting from the initial state X,.

J@ =J(Xk) (2)

where X, is obtained by recursively applying GN .S() for k timesteps:
X, =GNSX(;0)
X, =GNS(X;0)

X, =GNS(X,_:0)
We can compactly represent this recursive forward pass as:

X, =GNS*(X;0) 3

where GN S* denotes applying GN S() recursively for k timesteps.

To compute the gradient of Jg with respect to © using reverse mode
AD, we construct the computational graph for the entire forward pass
GNS* and then apply the chain rule:

aJ 09Xy

Voo = = —* 4
070 = HX, 00 “)

Y. Choi and K. Kumar

where % is computed by recursively applying the chain rule through
the entire trajectory:
0X, 0X, 0X,dX,

9xk _ 9%k 0% 5
00 ~ 0X,, 0X, 00)

This reverse mode AD computes the exact gradients Vg Jg by prop-
agating the gradients from the final state X, back to the initial state
X, and then to the parameters @, while leveraging the intermediate
states X, X,, ..., X,_; computed during the forward pass.

Note that storing all these intermediate states for long trajectories
(large k) can be memory-intensive, which is where gradient check-
pointing (Section 3.3.1) is employed to reduce the memory footprint
by selectively storing and recomputing intermediate states.

Unlike the finite difference method, which needs multiple function
evaluations to estimate the derivative of each parameter, reverse-
mode AD computes precise analytic gradients in a single forward pass.
This makes reverse-mode AD particularly advantageous in gradient-
based optimization, especially in large parameter space scenarios. The
parameters can be efficiently updated towards the optimum based
on the gradient information obtained from reverse-mode AD. In the
following section, we elaborate on the gradient-based optimization
with reverse-mode AD.

3.3. Gradient-based optimization

Eq. (6) shows the general concept of a simple gradient descent
optimization scheme. Gradient descent minimizes the discrepancy be-
tween the simulator output and the target data, defined as an objective
function Jg, by iteratively updating the model’s parameter set ®. The
gradient of the objective function provides the information about the
most effective update direction with respect to the parameters, Vg Jg.
Here, 5 is the learning rate.

0:=0-1-Volg (6)

The learning rate or step size in an optimization algorithm de-
termines the increment at each iteration while traversing towards a
minimum of a loss function; this learning rate or step size 5, multiplied
by the gradient Vo Jg, controls the aggressiveness of parameter updates
in a gradient descent optimization of multi-variable function Jg (see
Eq. (6)). A high learning rate can lead to instability in the optimization
process, with large steps causing overshooting of the minimum or
even divergence. Conversely, a small learning rate will result in slow
convergence, as the model takes minuscule steps and requires excessive
iterations to reach a solution. Finding the optimal learning rate is
largely experimental. We start with a small learning rate (e.g., 0.001),
observe the parameter updates in the initial iterations, and manually
vary the learning rate to achieve convergence in a reasonable time. We
can also employ adaptive learning rates or learning rate schedulers that
decrease the rate over time for stability. Alternatively, adaptive opti-
mizers like adaptive movement estimation algorithm (ADAM) (Kingma
and Ba, 2014) or root mean squared propagation (RMSprop) automate
some of the learning rate adjustment process.

The differentiable simulator computes the gradient VgJg using
reverse-mode AD to update the parameter set @ at each optimization
step. Since GNS is a differentiable simulator, we can seamlessly utilize
the AD tools provided by frameworks such as PyTorch to calculate the
gradient efficiently.

This approach offers several advantages. First, it provides a system-
atic way of handling complex, nonlinear inverse problems where ana-
lytical solutions are not feasible. Second, the efficiency of reverse-mode
AD in differentiable simulators enables handling high-dimensional pa-
rameter spaces and complex relationships between parameters and
outputs. Finally, gradient-based optimization often leads to faster con-
vergence to a solution compared to other sampling-based optimization
methods, especially in large-scale problems (Allen et al., 2022).

Computers and Geotechnics 171 (2024) 106374

We use the adaptive movement estimation algorithm (ADAM)
(Kingma and Ba, 2014) for high-dimensional parameter optimization.
ADAM incorporates a dynamic adaptive learning rate for each pa-
rameter using the moments of the gradients. ADAM accelerates the
parameter updates in the right direction, thus avoiding local minima
and adapting the learning rate for each parameter, making it less
sensitive to the scale of the gradients.

Specifically, the parameters are updated as:

n X
—
Voi+e
where O is the parameter set with the optimization step i, and ¢ is a

small scalar for numerical stability. The first and second moments (m;
and v;) of the gradients are updated as:

0,-0, - @

m; = fym;_; + (1= f))g; (€)]
v; = Povpy + (1= pr)g? ©)
where g; represents the gradient at step i, #; and f, are decay rates
that control the exponential decay of these moving averages. Early in

the training process, the variables m; and v; are initially biased towards
zero because they start from zero. To address this bias, a correction is

applied as:
. m; (10)
m, = ——
1 1 —ﬂi
v;
0= —— 1
l—ﬂé

This adaptive learning rate is particularly effective optimization in
high-dimensional parameter spaces, which entails sparse and varied
gradient scales. ADAM adapts the learning rate for each parameter
based on its historical gradients, which helps in scenarios where dif-
ferent parameters have different scales or degrees of sparsity. This
adaptive learning makes ADAM converge quicker and improves perfor-
mance in solving multi-parameter inverse problems. We refer readers
to Kingma and Ba (2014) for more technical details.

3.3.1. Gradient checkpointing

Reverse-mode AD requires significant memory for large-scale neural
networks (Zhao et al., 2022). AD necessitates storing intermediate
variables in the computational graph during the forward pass. These
intermediate variables should be retained during the backward pass
to apply the chain rule in computing gradients. The computational
graph grows for large-scale neural networks by adding more layers
and parameters. Therefore, the backpropagation requires substantial
memory to retain all the intermediate variables in the increasingly large
computational graph.

Since GNS contains multiple MLP and GNN layers containing mil-
lions of parameters, and the entire simulation even entails the accu-
mulation of GNS (X, — X,,,) for k steps, computing VgJg using
reverse-mode AD requires extensive memory capacity. We found that
conducting reverse-mode AD for entire simulation timesteps, which
includes more than hundreds of steps, is not feasible in the currently
available GPU memory capacity (40 GB). The forward pass fails in 3
to 4 timesteps due to the lack of memory when simulating granular
flows with about 3K particles. To overcome this limitation, we employ
gradient checkpointing.

Gradient checkpointing (Chen et al., 2016) is a technique to mitigate
the prohibitive memory demands of storing all intermediate states
within a computational graph during reverse-mode AD. In the specific
setting of optimizing parameters with GNS, we face the challenge
of an extensive computational graph that spans both GNN message-
passing layers and simulation timesteps. Checkpointing addresses this
by strategically saving a subset of the intermediate states (checkpoints)
and discarding the rest. During the backward pass, any required states
that are not checkpoints are recomputed on the fly from the most

Y. Choi and K. Kumar

recent checkpoint. This selective storage significantly reduces the peak
memory requirement at the expense of some recomputation.
Let us consider the forward pass of GNS over k timesteps:

X=X, - X, > X (12)

During the forward pass, instead of storing all the intermediate states
Xo.X1,X,,...,X,_, gradient checkpointing selectively stores only a
subset of these states, called checkpoints, at specific timesteps C &€

{0,¢ci,¢p,...,¢p, k} as:

store —« X; VieC
X, =GNS(X,;_); . ! 13
! i) {dlscard «X; VigcC (13)
During the backward pass, those intermediate states between X;_; and
X, Vi ¢ C are recomputed to evaluate the local derivatives. The reverse

mode AD with gradient checkpoints is computed as follows:

1. Initial gradient computation at final state: Start by computing
the gradient of the loss function J with respect to the final state
Xt a X This gradient is derived from the final output of the GNS

model, based on how the loss J is affected by the last computed
state X .

2. Backpropagate through GNS from X to last checkpoint X, :
Use the gradient from the final state to backpropagate through
the operations performed from the last checkpoint to the final
state:

o (o \ [9X;
oX, ~ \0X; oxX,,

0X
Here, X

respect to the state at the last checkpoint c,,, encompassing all
intermediate transformations.

3. Backpropagate successively through each checkpoint:
For each checkpoint c,, starting from the last stored check-
point ¢, and moving backward through earlier checkpoints

Cppe1s Cn» - -+, COMPULE:

o7 _< oJ >< X, >
ox,, . \ax,) \ox,

0X
Each term “m
X,

state with respect to its preceding checkpoint, reflecting the
operations of GNS executed between these points.

4. Recompute non-stored states as needed:
Assuming a non-checkpointed intermediate state i between
checkpoints c,_;, and c¢(,_,), where ¢,_» < i < ¢;,_, and X;
is not stored during the forward pass. We handle the backward
pass as:

captures the gradient of the checkpointed

(a) Recompute intermediate states: If X, is an intermediate
state that was not stored, recomputation from the last

stored state X, , is necessary:

X; = GNS' -2 Xe,)

This step involves executing the forward function GNS
iteratively from ¢ ,,_,) to i, reconstructing each X; sequen-
tially up to X oty
Backpropagate gradient through X;: With X; recom-
puted, the gradient from X is propagated back:

()

-

C(m-1)

ol _ (a1 \ (X
ox, ~ \ X, X,
(m—1)

We compute the gradients for each X ; (for j = k to ¢(,_1))
during this backpropagation process.

Computers and Geotechnics 171 (2024) 106374

(c) Gradient at checkpoint c(,,_,: We continue the gradient

propagation back to X)’

oJ _<a_J> (0X;)
X) 0X; X)

This step involves recalculating each partial derivative
0X;/0X;_, during the recomputation phase.

5. Finalize gradients for initial state and parameters:
Once backpropagation reaches the first checkpoint X, com-
plete the gradient computation for the initial state and model
parameters:

o1 _ (o1) (X
X, D' X,
ol _ (o1) (e
00 X, 00

These calculations utilize the gradients at the first checkpoint

to determine how initial conditions and parameters should be
adjusted to minimize the loss J.

By selectively storing and recomputing intermediate states, gra-
dient checkpointing reduces the peak memory requirement during
backpropagation at the cost of some additional computations during
the backward pass. Choosing checkpoint locations C is crucial for
balancing memory savings and computational overhead. A common
strategy is to place checkpoints at regular intervals (e.g., every few
timesteps) or at specific points in the simulation where the compu-
tational graph is expected to be particularly large or complex. Us-
ing gradient checkpointing, we can differentiate through the entire
simulation.

4. Results of inverse analysis in granular flows

We evaluate the performance of AD-GNS in solving the three inverse
problems described in Fig. 2. Note that the GNS was not trained on any
of these problems to showcase the adaptability and robustness of our
approach.

4.1. Single parameter inverse

Estimating the material properties of granular media resulting in a
landslide or debris flow is important for planning mitigation measures.
In this problem, we aim to evaluate the friction angle ¢ of the granular
column that produces a target runout distance dd, (as outlined in
Fig. 2a), where dy is the distance between the flow toe and the leftmost
boundary. We use AD-GNS to generate a forward simulation to estimate
dy for a given initial ¢. We evaluate a loss J, as the squared error
between d(,,wgﬂ and d, (Eq. (14)), then use AD-GNS to compute the
gradient V,J,. Using GD, we update the ¢ to find the target ¢ for
a desired runout d¢mrgw until the squared error becomes lower than
0.0005, the optimization threshold.

=(dg -)? a4

Dyrger

To test our method’s versatility, we selected four granular column
collapse scenarios with varying aspect ratios and friction angles not
covered in our training data. These scenarios ranged from columns
with a small aspect ratio (short column, a = 0.5) to those with a large
aspect ratio (tall column, a = 2.0). Both cases have 3200 particles in
the simulation.

Table 2 summarizes the scenarios and results for the inversely
estimated friction angles. Fig. 6a shows the optimization history based
on reverse-mode AD, and Fig. 8 shows the visual progress of the
optimization for all the test scenarios. We set the learning rate 5 of 500
in Eq. (6), and the initial guess of the friction angle starts from 30°.

Y. Choi and K. Kumar

Table 2

Inverse analysis result for estimating friction angle ¢ in granular column collapse. dy, ., is runout distance from MPM with ¢, dg’\i :

Computers and Geotechnics 171 (2024) 106374

$ is runout distance from GNS with ¢,,,,,,.

ger

d error is percentage error between d, and a’(f” S, dg"’ S is runout distance from GNS with estimated ¢. ¢ error is percentage error between estimated ¢ and ¢,,,,,. d error is
target rarget

percentage error between d¢"* and d, .

Scenario Optimization
Column type Hy x L, (m) Drarger) d, (m) dgNS (m) d error (%) Initial ¢ (°) Estimated ¢ (°) dgNs (m) ¢ error (%) d error (%)
o arger
Short 0.2 % 0.4 21 0.6947 0.7154 2.98 30 22.88 0.6953 8.94 0.08
’ : 42 0.6000 0.6067 1.12 30 41.31 0.6209 1.65 3.49
Tall 0.4 % 0.2 21 0.8318 0.8783 5.58 30 22.87 0.8401 8.90 0.99
’ i 42 0.5665 0.5942 4.89 30 44.54 0.5705 6.06 0.72

45 4 - 7 ¢target =42°
40 A /

© X Short @target = 21°
[4
g 35 / Short drarger = 42°
® Tall ¢ 21°
—o— =
- 30 ‘(target
s —m— Tall ¢rarger = 42°
& 25 - \\
e
201 AN ¢target =21°
0 2 4 6 8 10 12

Iteration

(a) Reverse-mode AD

45 - P ¢target =42°
— 40 1
- 'lII/' - \
Y 35
o
c
©
< 30
% Short Parget = 21°
& 25 \O-e\ Short @rarget = 42°
Lo —e— Tall ¢targer =21°
207 Prarget = 21° —#— Tall Parget =42°
0 5 10 15 20 25 30 35
lteration
(b) FD

Fig. 6. Optimization history of friction angle with iterations from (a) reverse-mode AD and (b) finite differentiation (FD).

As can be seen in Fig. 6a, the optimization successfully converges to
the friction angles ¢ that are close enough to the target values ¢,
showing errors less than 8.94% (see Table 2) in a few iterations. We
also compare the predicted runout distance d9VS with the inferred ¢
and target runout distance Ay’ The predictions show accurate values
with a maximum error of 3.49% (see Table 2). Although the inverse
estimation of ¢ includes a small error (about 1° to 3°) compared to
¢'¥8¢ the runout predictions are accurate within 3.49%. The major
source of the error is the differences in runout distance computed by
GNS and MPM. ddha,ge, and dg:r' ;’ represents the runout computed by
MPM and GNS at ¢,,,,,,, respectively. Although GNS and MPM use the
same friction angle, the GNS includes a small amount of error (1.12%
to 5.58%) since GNS is a learned surrogate for MPM.

Comparing our AD-based approach to the finite difference (FD)
method reveals its stability. Fig. 6b shows the optimization history
using FD where the gradient is estimated through two forward evalu-
ations at ¢ and ¢ + A¢. We use A¢ = 0.05 and set the same learning
rate n as AD. Despite using the same learning rate as AD, the FD
method encounters challenges. The optimization is less stable, and for
the tall column with ¢,,,,,, = 42°, it fails to identify the correct friction
angle with the error of about 10%, which results in d error of 16%.
This error stems from FD’s reliance on the chosen A¢ for gradient
approximation, unlike AD’s precise gradient computations. Fig. 7 shows
the loss history of reverse-mode AD and FD. We observe the loss
trajectory of FD being trapped in the flat region between 36° to 39°.
This is attributed to the diminutive update term »-V,J,, a consequence
of underestimating gradients due to the selected 4¢ value (= 0.05),
as opposed to the accurate gradients provided by AD. The first-order
forward FD approach has an error of O(4¢) in gradient computation.

In the visual progress of the optimization (see Fig. 8), the yellow
dots represent the final deposit predicted by GNS, and the gray shade
represents the final deposit corresponding to ¢,,,,,, from MPM. For all
scenarios, our approach effectively identifies ¢ that closely matches
Brarger» S dy converges tody, . Notably, the GNS not only accurately
predicts the final runout distance but also captures the overall geometry

of the granular deposit, although we only use d,, for the optimization.
Unlike typical low-dimensional empirical correlations, GNS offers pre-
diction of full granular dynamics. By simulating the entire granular flow
process, GNS enables our optimization to reproduce the runout distance
and the detailed granular geometry of the deposit.

4.2. Multi-parameter inverse

Real-world inverse problems are complex as they include multiple
parameters for optimization. In this section, we evaluate the perfor-
mance of AD-GNS in solving the multi-parameter boundary condition
inverse problem (as outlined in Fig. 2b). The objective is to determine
the initial boundary condition, i.e., x-velocities (v), of each layer in the
multi-layered granular column that produces a target deposit S brarger”
Here, S, is the coordinate value of all material points when the flow
stabilizes. Thus, v is our parameter set @, and S, is our runout metric
to minimize with respect to S brarger with an initial v,,,,,, from MPM
simulation.

Fig. 9 shows the granular column collapse scenario for the inverse
analysis addressed in this section. The length and height of the column
is 0.35 x 0.28 m with an aspect ratio of 0.8, including 3920 particles.
It consists of 10 horizontal layers with the same thickness with linearly
decreasing initial x-velocity from 1.50 m/s at the first layer to 0.15 m/s
at the 10th layer., v, = [1.50, 1.35, ..., 0.30, 0.15] m/s. The GNS
has not encountered this discretized layered velocity condition during
training.

Fig. 10 visualizes the GNS prediction of runout during optimization
with different v. We update the parameters by updating the ADAM with
the learning rate n = 0.1. The loss J, is defined as the mean squared
error (MSE) of the coordinate values for materials points between the
predicted final deposit S, = {p'},_;.y and the target final deposit
gt = Plargeghiz:n from MPM (Eq. (15). Here, pj, and pl,
denotes the coordinates of N materials points.

N
_ 1 P i 2
Jo= 21 1P, = pj,, I as)
pe

Y. Choi and K. Kumar

Computers and Geotechnics 171 (2024) 106374

AD final solution

1072 —e————
10—3 .
1074 4 ; ;
FD final solution
o~ 10—5 4
w
g
10—6 N
10773 ——- Loss
Reverse-mode AD
10783 —— D
—— Threshold
1072 . T .
27.5 30.0 32.5 35.0

375 400 425

Friction, ¢ (°)

Fig. 7. Loss trajectory of reverse mode AD and FD.

The gray shade shows the final runout deposit produced from our
scenario (Fig. 9) simulated using MPM, which is our target, and the
yellow dots are the GNS prediction of the final deposit at the corre-
sponding optimization iterations. The initial velocity guesses for each
layer are set to zero, as shown by the cross (x) markers in Fig. 11a. As
iterations progress, the velocities for each layer gradually align with
U, argers indicated by square markers in Fig. 11a, and consequently, the
final deposit geometry closely matches the target at iteration 29 with
MSE of 3.41e—4, as shown in Fig. 11b. We also test the GNS prediction
with the target velocities (see Fig. 12). The GNS prediction with the
target velocities (blue dashed line in Fig. 12) shows a good agreement
with GNS prediction with optimized velocities at iteration 29 (yellow
dashed line in Fig. 12) and the target (gray shade in Fig. 12).

Since GNS is a surrogate model of the forward simulator, it inher-
ently incorporates errors; the inferred velocities might not reproduce
the same final deposit geometry in the ground truth simulator, MPM.
Hence, verifying if the inferred velocities are still valid in the ground
truth simulator when reproducing the target final deposit is necessary.

To confirm the validity of the inferred velocities, we compare the
final deposit with the inferred velocities using MPM with the target
final deposit. Fig. 12 shows the MPM simulation results of the final
deposit from the inferred velocity at the 29th iteration and target
velocity. The gray shade represents the target deposit, and the red
dots represent the deposit from MPM using the inferred velocities. The
final deposit from the inferred velocity reasonably matches our target
with a minor difference at the left boundary with an MSE of 8.70e—4,
shown in Fig. 11b. The MSE is slightly larger than the optimization
error at the 29th iteration but still significantly smaller than that of the
initial iteration, which is about 0.01. The comparison suggests that our
method provides reasonable velocity estimations to replicate the target
behavior, even though GNS had not been exposed to the discretized
layered initial velocity condition during training.

4.3. Design of baffles to resist debris flow

We can use AD-GNS to design engineering structures, which in-
volves optimizing the design parameters of structural systems to
achieve a specific functional outcome. We demonstrate the use of AD-
GNS in the design of the debris-resisting baffles to achieve a target
runout distance.

Debris-resisting baffles (Fig. 2¢) are rigid flow-impeding earth struc-
tures strategically placed perpendicular to potential landslide paths to
interrupt the flow of landslide debris (Yang and Hambleton, 2021).

Their primary function is to reduce the risk and impact of debris
flow by decelerating it and dissipating its energy upon impact. The
configuration of these baffles is crucial as it directly influences their
effectiveness in mitigating debris flow.

Our inverse analysis aims to optimally position the baffles to halt
granular flow within a predefined area (as outlined in Fig. 2c) Specif-
ically, we optimize the z-locations of two barriers, denoted as z, to
ensure that the toe of the granular jet—defined as the centroid c, of the
furthest 10% of downstream particles—stops at a specific target point

Zrargert 1 this context, z corresponds to our parameter set @, and c,
represents our measure of runout Ry in Fig. 3.

The initial geometry of the granular mass (see Fig. 13) is cuboid-
shaped with the size of 0.3 x 0.2 x 0.7 m for x, y, and z coordinates,
and its lower edge is at (x = 0.2, y = 0.125, z = 0.25) m. The granular
mass is subjected to a uniform initial x-velocity of 2.0 m/s. The size
of the baffles is 0.15 x 0.2 x 0.15 m. The total number of particles
is 13,371. The simulation domain is 2.0 x 1.0 X 1.0 m. The GNS has
never seen this baffle size and the simulation domain during training,
which is two times larger than the training domain (see Table 1 for
comparison). These differences place our inverse solver in a more
challenging circumstance.

Fig. 14 illustrates the visual progress of the optimization. We use
ADAM for the optimization with the learning rate 5 = 0.01. The loss J,._
is defined as the MSE between the coordinates ¢, and e rger? which is
the absolute Euclidean distance:

Je, =llez~cz, P (16)

The gray broken line shows the initial geometry of the granular
mass, and the yellow dots represent the final deposit after flow ceases.
An orange outline highlights the flow toe, with a purple dot marking its
centroid c. The black dot marks the target centroid location ¢ Zrarger”
start the initial guess of the barrier center locations at (x = 0.675 m, z
= 0.225 m) for the lower baffle and at (x = 0.675 m, z = 0.925 m) for
the upper baffle, as illustrated by the gray boxes in Fig. 14. As iteration
proceeds, the centroid of the flow toe converges to the target centroid
with the baffles z-located at 0.341 m and 0.812 m. As depicted in
Fig. 15, the loss history converges to a final loss of 4.68e—6 at iteration
23.

As we discussed in Section 4.2, we need to validate if the inferred
baffle locations are still effective in the ground truth simulator in
replicating the desired outcome. Fig. 16 shows the final deposit and the
centroid based on the optimized baffle locations using MPM. Although
there is a noticeable difference between the MPM centroid and the

Y. Choi and K. Kumar Computers and Geotechnics 171 (2024) 106374

Iteration 0, $=30.00 ° Iteration 2, $=28.04 ° Iteration 11, $=22.87 °
L Initial GNS prediction 94 GNS prediction 04 GNS prediction
I Target % 0 Target 0.3 0 Target

0.3
geometry
N

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
x (m) x (m) x (m)
(a)
Iteration 0, ¢=30.00 ° Iteration 2, ¢=34.61 ° Iteration 7, $=40.73 °
o4 Initial GNS prediction 04 GNS prediction 0.4 GNS prediction
1 Target 03 [0 Target

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 “0.0 0.2 0.4 0.6 0.8
x (m) x (m) x (m)
(b)
Iteration 0, $=30.00 ° Iteration 1, $=21.01 ° Iteration 2, ¢=22.69 °

0:4 GNS prediction 04 GNS prediction 04 GNS prediction
0.3 ® 0 Target ; 0 Target 0.3 1 Target
E s Initial
>
0.1
0.0) X
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
x (m) x (m) x (m)
(c)
Iteration 0, ¢=30.00 ° Iteration 1, $=35.88 ° Iteration 3, ¢=44.24 °
0.4 GNS prediction 0.4 GNS prediction 0.4 GNS prediction
03 A [0 Target 03 [0 Target 03 [0 Target
£ Initial £ £
*E' 0.2 ‘-E' 0.2 "E‘ 0.2
5 ometry Ll aal
0.1 Errgrl' 0.1 g - 0.1 =
"0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 “0.0 02 0.4 0.6 0.8
x (m) x (m) x (m)
(d)

Fig. 8. Visualization of GNS prediction during optimization by varying ¢: (a) short column (a = 0.5) with ¢, = 21°, (b) short column (a = 0.5) with ¢,,,,, = 42°, (c) tall column
(a =2.0) with ¢, =21°, (d) tall column (a = 2.0) with ¢,,,,,, = 42°. The yellow dots represent the final deposit predicted by GNS, and the gray shade represents the final deposit
from MPM with t0 ;4.

An essential element in our inverse analysis framework is the im-
plementation of gradient checkpointing on GNS rollout. This technique
T Layer 10 ——> V0 =0.15m/s is highly advantageous, particularly when tracking gradients over long
timesteps in 3D scenarios, such as the one described in this section.
g Layer 9 — > Vg = 0.30m/s Without gradient checkpointing, we encountered significant limitations
© = 5 . in forward steps due to GPU memory constraints, reaching the 40 GB
g limit within merely three steps of the rollout for the backpropagation.
Layer 2 —1> v, =135m/s However, by employing gradient checkpointing and thus storing the
JL Layer 1 —t—> v, =1.50m/s sparse results of intermediate steps, we could track gradients effectively
for hundreds of steps. This alleviated memory issues and ensured our

0.35m approach’s feasibility for larger and more complex scenarios.

4.4. Optimization efficiency
Fig. 9. Granular column collapse scenario.
We compare the computation time between our proposed approach
and the baseline Finite Difference methods (Table 3). The results are

target centroid, with the validation loss of 1.89e-3, this deviation is reported based on the single parameter optimization scenario about the
still markedly lower than the loss at the initial iteration (2.30e—2) in tall column (a = 2.0) with ¢ = 42° shown in Fig. 8d. The baseline
Fig. 14. This outcome is promising because we extrapolate beyond the method involves executing two forward simulations (X, X,..., X),
training data. where k = 374 employing our ground-truth simulator, MPM, at ¢ and

10

Y. Choi and K. Kumar

Iteration 0, MSE=9.80e-03

Iteration 4, MSE=5.87e-03

Computers and Geotechnics 171 (2024) 106374

Iteration 29, MSE=3.41e-04

Initial mass

0.6 0.8

0.2 0.4

x (m)

1.0 00

0.2

0.4
x (m)

GNS prediction
[Target

0.6 0.8 1.0 0.0 0.2 0.4 0.6

x (m)

0.8 1.0

Fig. 10. Visualization of GNS prediction during optimization with different v. The yellow dots represent the final deposit predicted by GNS (S,) and the gray shade represents

the target final deposit from MPM with v, (S).

Vtarget

-2 —
10 e ° @ Optimization
O. % MPM wth optimized parameters
®
L]
@
- L]
I ©
-3
§ ¢ 00y
= 1073 4 5 &Y e " »
e® ®
[]
)
oo
0 5 10 15 20 25 30
Iteration

(b)

Fig. 11. Optimization history for the layer velocities of granular mass: (a) velocities for each layer, (b) loss.

10 1 tand -5~ Target zl
9 4 @GN 00888 > Initial guess 25
8 X Final 22
71 19
& 6] 16 é
> ©
8 51 5
138
41 10
37 7
2 =
4
14 X0000000000¢ . 11 1
-1.0 -0.5 0.0 0.5 1.0 1.5
Velocity x (m/s)
(a)
MSE=8.70e-04
0.3 MPM with optimized velocities
GNS with optimized velocities
—_ 1777 GNS with target velocities
E 0.2 0 Target
>
0.1
0.0 0.2 0.4 0.6 0.8 1.0
x (m)

Fig. 12. MPM simulation results of the final deposit from the optimized velocities
(red dots) and target velocities (gray shade), plotted together with the GNS prediction
with target velocities (blue dashed line). The GNS prediction of the final deposit with
optimized velocities is plotted with the yellow dashed line, which is the same as the
deposit geometry from Fig. 10 at the 29th iteration. The MSE at the top of the figure
is for the error between the MPM with optimized velocities and the target.

Fig. 13. Initial geometry of the granular mass.

11

¢ + A for estimating the gradient using FD. The computation is con-
ducted on 56 Intel Cascade Lake processor cores on the Texas Advanced
Computing Center (TACC) Frontera. The mean computation time for
the MPM forward simulation takes 8078 s with a standard deviation
of 381 s, and it requires the same amount of time to conduct another
forward simulation at ¢ + A¢ to compute the gradient. Consequently,
one optimization iteration requires approximately 8078 x 2 = 16157
s, which makes the ¢ estimation unreasonably time-consuming. Our
approach (AD-GNS) does the forward simulation only at ¢, and the
gradient is computed based on reverse-mode AD. The computation
is conducted on RTX with 16 GB memory on TACC Frontera. The
forward simulation takes 33 s with the standard deviation of 2.01 s, and
the gradient computation using backpropagation takes 74 s with the
standard deviation of 1.36 s. Consequently, one optimization iteration
requires approximately 107 s on average, outperforming our baseline
case by 151 times speedup. The optimization result infers accurate ¢
with 6.06% of error as discussed in Table 2.

We also evaluate the computation time for FD with GNS (see
Table 3). The gradient computation from FD with GNS requires less
time than AD since it only requires one more forward evaluation in this
single parameter case. However, the optimization result from FD shows
the unreasonable ¢ inference due to inaccurate gradient estimation, in
contrast to AD, which infers accurate ¢.

For more complex inverse problems that involve high-dimensional
parameter space, such as the cases in Sections 4.2 and 4.3, FD with
MPM becomes almost infeasible due to the computation intensity.
Although FD with GNS can return the gradient values faster than MPM,
the computation time proportionally increases with the number of
parameters, and the gradient values are inaccurate. In contrast, our
approach (AD with GNS) can still accomplish efficient and accurate gra-
dient computation owing to the reverse-mode AD despite the increase
in the number of parameters, resulting in the successful parameter
inference as we showed in Section 4.2 or Section 4.3.

Y. Choi and K. Kumar Computers and Geotechnics 171 (2024) 106374

Iteration 8, MSE=1.54e-02 Iteration723, MSE=4.68e-06
1007 o 1 1 -2 GNS prediction
— 0.75 - R . R ‘ . Flow toe
E 050 o © i o0 1 e @ Target
N a9 7] i 1 i i i @ Predicted centroid
0.25 - ‘-\ Initial mass { L. | IR == Barrier
015 er 1f5 0.'5 1.I0 1.'5 015 1.'0 1?5
x (m) x (m) x (m)
Fig. 14. Optimization history for baffle locations.
ooo.......
102 5 @ ([
E [) °®
@
o
[
(] X
m 10—3_E ®
w 3
= ®
)
8
— 10_4_5 ®
10-54{ @ Optimization
1 % MPM wth optimized parameters -
0 5 10 15 20
Iteration
Fig. 15. Loss history for the centroid location.
MSE=1.89e-03
1.0 -
T
: ; MPM
084 ! 1 :
. : I ® MPM centroid
1 1
E 06 I ! [T @® Target
I .
N I i B Barrier
o+t |
1
. i
|- -
0.2 \Initial mass
T T T
0.5 1.0 1.5
x (m)

Fig. 16. MPM simulation results of final deposit from the inferred baffle locations and its flow toe centroid compared to the target.

12

Y. Choi and K. Kumar

Table 3

Computers and Geotechnics 171 (2024) 106374

Mean computation times each optimization iteration for different gradient computation methods. Values are reported based on the short column

(a =2.0) with ¢ =42° for 374 timesteps of simulation duration.

Method Forward simulation (s) Gradient computation (s) Optimization iteration (s) Estimated ¢ ¢ error (%)

Mean std Mean std
FD with MPM 8078 381 2x of forward 16157 N/A N/A
AD with GNS 33 2.01 74 1.36 107 44.54 6.06
FD with GNS 33 1.03 2x of forward 66 37.86 9.84

18000
16000 - pe

)

S 14000 -

& 12000 A

3 ® Device capacity

> 10000 o

>

S 8000

3

£ 6000 A

¥ o

o 4000 -

=

2000
?.
0 T T T
0 5000 10000 15000 20000

Number of particles

Fig. 17. Peak memory usage during backpropagation across up to 400 forward computation steps in relation to an increasing number of particles.

5. Limitations

GNS is an efficient surrogate model for forward simulation. How-
ever, generalization beyond training data may not perfectly replicate
the high fidelity ground truth behaviors, resulting in some inevitable
error, as shown in Figs. 12 and 16. To mitigate this, expanding the
training dataset to encompass a more comprehensive array of scenarios
could help reduce the prediction error.

While gradient checkpointing offers a workaround for the high
memory demands associated with reverse-mode AD in GNN, tracking
the gradient over the GNN with large graphs is still expensive. We
evaluated peak memory usage during backpropagation across up to
400 forward computation steps with increasing particles, as depicted in
Fig. 17. At around 20K particles, the backpropagation process exceeds
the memory capacity of our device (16 GB, RTX node at Frontera,
TACQ), failing. Introducing checkpoints more frequently can reduce
memory consumption; however, this strategy requires additional com-
putations for the forward pass, leading to a trade-off between memory
efficiency and computational overhead. Another strategy to allevi-
ate memory constraints involves partitioning the graph (Catalyiirek
et al.,, 2023) and employing multi-GPU processing. Our GNS imple-
mentation (Kumar and Vantassel, 2022) supports efficient multi-GPU
processing. However, effectively partitioning large graphs and facilitat-
ing communication across these partitions in a multi-GPU environment
presents challenges and is the subject of active research.

6. Conclusion

This study introduces an AD-based efficient framework for solv-
ing complex inverse problems in granular flows using graph neural
network-based simulators (GNS). By leveraging the computational effi-
ciency, differentiability, and generalization capabilities of GNS, coupled

13

with gradient-based optimization through reverse-mode AD, our ap-
proach successfully identifies optimal parameters to achieve desired
outcomes in diverse granular flow scenarios.

We demonstrate the effectiveness of our methodology in solv-
ing single-parameter and multi-parameter inverse analysis and de-
sign problems in granular flows. The single parameter optimization
achieves <8.94% error in estimating ¢ compared t0 ¢y, In the
multi-parameter case, the initial velocity is inferred within 8.70e—4
MSE. For the design problem, our method identifies a reasonable baffle
arrangement with 1.89e—3 MSE, which is about an order of magnitude
improved than the initial guess (2.30e—2). Despite the test configura-
tions being outside the training distribution, our technique generalizes
well, highlighting the flexibility of the methodology. Inverse analysis
with AD-GNS shows reasonable parameter estimations over a wide
range of inverse problems. Nevertheless, the surrogate nature of GNS
means some errors are inevitable compared to a high-fidelity simulator.
However, the result from our method provides useful information on
parameters for further analyses using high-fidelity solvers.

The proposed AD-GNS framework solves inverse problems effi-
ciently on a single GPU, achieving 151x speedups compared to for-
ward high-fidelity simulators with finite difference gradients. Further-
more, the integration of gradient checkpointing enables scaling to
complex 3D dynamics over hundreds of timesteps that would oth-
erwise be infeasible due to the excessive memory consumption for
backpropagation.

Overall, this study highlights the prospect of data-driven differen-
tiable surrogates in inverse modeling of granular flow hazards.

Data and code availability
The code for GNS (Kumar and Vantassel, 2022) and inverse prob-

lems are available under the MIT license on GitHub (https://github.
com/geoelements/gns and https://github.com/geoelements/gns-invers

https://github.com/geoelements/gns
https://github.com/geoelements/gns
https://github.com/geoelements/gns
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples

Y. Choi and K. Kumar

mpm gns
04 02 2
€ ©
= 0.2 0.1 3
0.0 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
o
. 04 02 @
3 2
=02 013
0.0 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
o
_ 0.4 0.2 g
£ —_
<02 013
0.0 . 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
0.4 - Initial mass Initial mass o
— 3 : 0.2 &
£ Failure Failure °
<02 surface surface 013
. 0.0

0.0
0.00 0.25 0.50 0.75
x (m)

1.000.00 0.25 0.50 0.75
x(m)

1.00

(a) ¢ = 21°

Computers and Geotechnics 171 (2024) 106374

mpm gns
0.2
0.4 -
E o2 0173
= E
0.0 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
0.2
0.4 o
€ 5
E 01:=
= 0.2 é
0.0 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
0.2
0.4 o
P]
£ 01°
T 0.2 g
0.0 0.0
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
mpm gns
0.4 Initial mass Initial mass o
—_ = H %3
E B Failure Failure 0138
e surface surface 3
0.

.0
0.00 025 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
x (m) x (m)

(b) ¢ = 42°

Fig. A.1. Evolution of material point flow with normalized time for GNS and MPM for the short column with a = 0.5: (a) ¢ = 21°, (b) ¢ = 42°. The color represents the magnitude
of the displacement. Each row corresponds to a column before the flow initiation, 1/7, = 1.0, t/z, = 2.5, and the final deposit at the last timestep.

e-examples). The training dataset, trained models, and the data used for
the inverse analysis are published under CC-By license on DesignSafe
Data Depot (Choi and Kumar, 2023b, 2024).

CRediT authorship contribution statement

Yongjin Choi: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Formal analysis, Data curation.
Krishna Kumar: Writing — review & editing, Supervision, Software,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This material is based upon work supported by the National Science
Foundation, United States under Grant No. #2103937 and #2229702.
Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing Frontera and
Lonestar6 HPC resources to support GNS training (https://www.tacc.
utexas.edu).

14

Appendix A. Performance of GNS

As a benchmark test for Flow2D, we show the performance of GNS
using the granular column collapse. Granular column collapse (Laje-
unesse et al., 2005; Utili et al., 2015; Lube et al., 2005; Kumar, 2015)
is an experiment to study the dynamics of granular flows in a controlled
setting. A granular column of initial height H,, and length L, is placed
on a flat surface and allowed to collapse under gravity. The dynamics
of granular column collapse is majorly governed by the initial aspect
ratio of the column (a = H/L,). The previous study (Choi and Kumar,
2023a) proves that GNS can accurately predict different flow dynamics
of granular columns with various aspect ratios beyond which the data
the model is trained. In this paper, we briefly show the prediction
performance of the GNS used in this study on a short column (a = 0.5)
with different friction angles (¢ = 21° and 42°), whose aspect ratio and
friction angles are not seen during the training.

Fig. A.1 shows the evolution of granular flow for the short column
(a = 0.5) with normalized time (¢/7.) simulated by GNS and MPM. Here,
we assume the MPM result is the ground truth. 7 is physical time, and =,
is the critical time, defined as the time required for the flow to mobilize
fully. 7, is defined as y/H,/g, where g is the gravitational acceleration.
Figs. A.1(a) and A.1(b) is the result with ¢ = 21° and ¢ = 42°. Each
row of the figure corresponds to flow (1) at the time before initiation
of collapse, (2) t/7, = 1.0, (3) 2.5, and (4) at the last timestep (k = 380)
when the flow reaches static equilibrium and forms the final deposit.

Generally, the collapse shows three stages for both friction angles.
First, the flow is mobilized by the failure of the flank and reaches full
mobilization around /7, = 1.0. Next, the majority of the runout occurs
until 7/z, = 2.5. Beyond /7, = 2.5, the spreading decelerates due to
the basal friction and finally stops. Fig. A.1 shows GNS successfully
captures this overall flow progress stages for the different friction
angles.

Although the overall progress of the flow is similar, the detailed
behaviors diverge depending on the friction angles. When ¢ is small
(Fig. A.1a), a larger amount of flow mass is mobilized along the flank
of the column above the failure surface until /7, = 1.0 compared to

https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://github.com/geoelements/gns-inverse-examples
https://www.tacc.utexas.edu
https://www.tacc.utexas.edu
https://www.tacc.utexas.edu

Y. Choi and K. Kumar

displacement

4 (a)t=0s

- 9.9e-01

o oo o
R o o»
displacement

2.6e-02

(c)t=0.325s

Computers and Geotechnics 171 (2024) 106374

GNS

MPM

9.9e-01

o ooo
SE8E&
displacement

2.6e-02

(b)t=0.125s

displacement

(d)t=0.875s

Fig. A.2. Evolution of flow interacting with baffles for GNS and MPM from initial condition to the final deposit. The simulation domain is 1.8 x 0.8 x 1.8 m, and the initial
geometry of the granular mass is 0.35 x 0.25 X 1.4 m. The barrier size is 0.15 X 0.30 X 0.15 m. The center location of the three baffles in the first row is at (x = 0.76, z = 0.36) m,
(x=0.76, z=1.00) m, and (x = 0.76, z = 1.64) m, and the two baffles in the second row are at (x = 1.26, z=0.68) m and (x = 1.26, z =1.32) m.

0.5
MPM Runout
1.0 1 — GNs Runout
0.4
0.8 E
- £
E = MPM Depth, 1st barrier | 0.3 &
= 0.6 v - — MPM Depth, 2nd barrier g
g - GNS Depth, 1st barrier £
g —— GNS Depth, 2nd barrier L g2 ©
& 0.44 g
wn
5
0.2 ﬁ 0.1
0.0 T T T T 0.0
0.0 0.2 0.4 0.6 0.8
Time (s)
(a)

MPM Ep/Eq L
05 4 P 0.8
N GNS EWEQ | s omsssrrorranraressesrresess
- 0.6 g_:]'
-
- W
| 2
g r 0.4 2
: [
=
_:\‘ MPM Ex/Eg w
. MPM Eq/En | 0.2
014~ * — = GNS EK/Eg
: S P GNS EdlEo
0.0 T =y T T 0.0
0.0 0.2 0.4 0.6 0.8
Time (s)
(b)

Fig. A.3. Quantitative comparison between MPM and GNS: (a) Runout and upstream depth evolution with time, (b) potential, kinetic and dissipation energy (E,, E;, and E,)

evolution with time normalized by E,, where E, is total energy at r = 0.

the column with larger ¢ (Fig. A.1b). The greater mobilization of the
flank failure in small ¢ leads to a longer runout until the end of the
flow than that of large ¢. At the end of the flow, a greater amount of
static soil mass is observed below the failure surface for larger ¢ with
a truncated conical shape. In addition, a smaller plateau is observed
at the top of the final deposit in the case of smaller ¢. The visual
comparison of the flow profile (Fig. A.1) shows that GNS well replicates
the different granular flow behaviors depending on friction angle with
the final runout error of 2.09% and 1.17% for each case.

Fig. A.2 shows an example of GNS prediction trained on Obstacle3D
datasets. The test configuration is outside the training data distribution
as summarized in 1. Specifically, the simulation domain is four times
larger, with 2.2 times more material points than the training data. The
maximum length of the initial granular mass in our test is 1.7 m, while
that of training data is 0.7 m. Additionally, we test the GNS with five
baffles, versus one to three baffles in the training data.

From the initial state to t = 0.125 s (Fig. A.2a-b), the granular
debris propagates downstream uniformly and impacts the first baffle
row. Upon hitting this row, the baffles obstruct the sides of the flow
while the material between the baffles proceeds towards the next row.
Concurrently, material deposits and builds up upstream of the baffles,

15

reaching almost the height of the baffle. From t = 0.125 s to t =
0.325 s (Fig. A.2b-c), the flow impacts the next baffle row and diverges
into four granular jets through the open area with roughly symmetric
shapes. Less material deposition forms upstream of the last baffle row
than the first. Beyond t = 0.325 s (Fig. A.2c-d), the spreading of
the grains decelerates due to basal friction and finally reaches static
equilibrium around t = 0.875 s. At this stage, the runout error between
GNS and MPM is 0.87%. The GNS rollout successfully replicates the
overall kinematics, including complex baffle interactions.

To quantitatively compare the results from the GNS and MPM, the
evolution of the runout distance is measured (Fig. A.3a). Here, runout
is defined as the flow’s maximum travel distance compared to the
initial granular mass geometry. As flow initiates, the runout rapidly in-
creases until 0.325. Subsequently, the runout gradually decelerates and
eventually stops due to the interaction with the baffles and frictional
dissipation. GNS accurately predicts the runout evolution simulated
by MPM despite the simulation including more barriers and a larger
domain than the training data.

The upstream depth evolution of the granular mass deposition
behind the baffles is also measured (Fig. A.3a). The upstream flow
depth refers to the depth measured upstream of the baffle array when

Y. Choi and K. Kumar

Computers and Geotechnics 171 (2024) 106374

2.5
Trained friction angle
X L
S 2 e
e
515 [
10)
oo
S 1
c
S < (b) >
g 05 | Extrapolation
o region
O 1 1 1
10 20 30 40 50
Friction angle
mpm gns
0.4
= 0.50 o
(%]
. 02 025 ©
2
0.0 0.00
00 02 04 06 08 1000 02 04 06 08 10
x (m) x (m)
(a) ¢ = 12° (extrapolation)
mpm gns
0.4 0.50
= =)
E 02 025 &
g =
0.0 0.00 ~3—
00 02 04 06 08 1000 02 04 06 08 10
x (m) x (m)
(b) ¢ = 33° (interpolation)
mpm gns
. 050 O
£ 5
= 025 3
0.00
00 02 04 06 08 1000 02 04 06 08 10
X (m) x(m)

(c) ¢ = 48° (extrapolation)

Fig. A.4. Normalized runout error between MPM and GNS evaluated at different friction angles ¢. The final deposit at points (a), (b), and (c) is shown below in the plot for the

normalized runout error.

the flow impacts the baffles. As the runout proceeds, the flow faces
the first and then a second row of baffles. Upon impact with the first
baffles, the upstream depth spikes close to the baffle height (0.3 m) due
to the deposition of the granular mass. It then decreases slightly over
time as the flow around the baffles reaches equilibrium. When the flow
hits the next baffle row, the upstream depth surges again and gradually
decreases. GNS accurately replicates the overall upstream depth change
trend with minor errors.

Fig. A.3b shows the energy evolution. The initial granular flow
shows high kinetic and potential energy. Subsequent granular flow and
its blockage due to the baffles cause the kinetic and potential energy
drop. GNS precisely captures these energy evolution trends. The results

16

from Fig. A.3 suggest that GNS successfully learns the granular flow
dynamics with obstacle interactions.

As explained in Table 1, the dataset for training the 2D GNS
(Flow2D) only contains the granular flow trajectories with the friction
angles ¢ = 15, 22.5, 30, 37.5, 45°. Here, we show the performance of
GNS on the friction angles not observed during training. The Fig. A.4
shows the normalized runout prediction error (%) for the granular
column with @ = 0.8. The gray dashed lines represent the training
¢. The test is conducted with ¢ = 12, 21, 33, 42, 48°. In particular,
¢ = 12° and 48° lies on the extrapolation region as highlighted in
Fig. A.4. Although the extrapolation shows a slightly higher error than
the predictions on the interpolation region (¢ = 21, 33, 42°), the GNS

Y. Choi and K. Kumar

Timestep=0

Timestep =55

Computers and Geotechnics 171 (2024) 106374

Timestep = 220 Timestep = 349

A4

Time

Fig. B.1. An example of training data for 2D GNS (Flow2D).

Timestep=0 Timestep =43

Timestep =93 Timestep = 349

Time

v

Fig. B.2. An example of training data for 3D GNS (Obstacle3D).

produces good runout predictions for the friction angles not seen during
the training.

Appendix B. Training data

See Figs. B.1 and B.2.

References

Abraham, M.T., Satyam, N., Reddy, S.K.P., Pradhan, B., 2021. Runout modeling and
calibration of friction parameters of Kurichermala debris flow, India. Landslides 18
(2), 737-754. http://dx.doi.org/10.1007/5s10346-020-01540-1.

Allen, K.R., Lopez-Guevara, T., Stachenfeld, K., Sanchez-Gonzalez, A., Battaglia, P.,
Hamrick, J., Pfaff, T., 2022. Physical design using differentiable learned simulators.
arXiv preprint arXiv:2202.00728.

Babu, G.S., Basha, B.M., 2008. Optimum design of cantilever sheet pile walls in sandy
soils using inverse reliability approach. Comput. Geotech. 35 (2), 134-143.

Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F., Ma-
linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Giil¢ehre, C.,
Song, H.F., Ballard, A.J., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K.R., Nash, C.,
Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.M.,
Vinyals, O., Li, Y., Pascanu, R., 2018. Relational inductive biases, deep learning,
and graph networks. CoRR abs/1806.01261.

Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D.J., Kavukcuoglu, K., 2016. Interaction
networks for learning about objects, relations and physics. CoRR abs/1612.00222.

Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M., 2018. Automatic dif-
ferentiation in machine learning: a survey. J. Marchine Learn. Res. 18,
1-43.

Calvello, M., Cuomo, S., Ghasemi, P., 2017. The role of observations in the inverse
analysis of landslide propagation. Comput. Geotech. 92, 11-21.

Catalyiirek, U., Devine, K., Faraj, M., Gottesbiiren, L., Heuer, T., Meyerhenke, H.,
Sanders, P., Schlag, S., Schulz, C., Seemaier, D., et al., 2023. More recent advances
in (hyper) graph partitioning. ACM Comput. Surv. 55 (12), 1-38.

Chen, T., Xu, B., Zhang, C., Guestrin, C., 2016. Training deep nets with sublinear
memory cost. CoORR abs/1604.06174 arXiv:1604.06174 URL http://arxiv.org/abs/
1604.06174.

Cheylan, I., Fritz, G., Ricot, D., Sagaut, P., 2019. Shape optimization using the adjoint
lattice Boltzmann method for aerodynamic applications. AIAA J. 57 (7), 2758-2773.

Choi, Y., Kumar, K., 2023a. Graph Neural Network-based surrogate model for granular
flows. arXiv:00.

Choi, Y., Kumar, K., 2023b. Training, validation, testing data, and trained model.
http://dx.doi.org/10.17603/DS2-4NQZ-S548, URL https://www.designsafe-
ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-
5385005666722770450-242ac117-0001-012.

17

Choi, Y., Kumar, K., 2024. Solving inverse problems using differentiable graph
neural network simulator. http://dx.doi.org/10.17603/DS2-0WJQ-0J84, URL
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/
PRJ-4534.

Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: Numerical simulation of dense
snow avalanches in three-dimensional terrain. Cold Reg. Sci. & Technol. 63
(1), 1-14. http://dx.doi.org/10.1016/j.coldregions.2010.04.005, URL https://www.
sciencedirect.com/science/article/pii/S0165232X10000844.

Cuomo, S., Calvello, M., Villari, V., 2015. Inverse analysis for rheology calibration
in SPH analysis of landslide run-out. In: Engineering Geology for Society and
Territory-Volume 2: Landslide Processes. Springer, pp. 1635-1639.

Dhara, A., Sen, M.K., 2023. Elastic full waveform inversion using a physics guided deep
convolutional encoder-decoder. IEEE Trans. Geosci. Remote Sens..

Ensor, K.B., Glynn, P.W., 1997. Stochastic optimization via grid search. Lect. Appl.
Math.-Am. Math. Soc. 33, 89-100.

Frazier, P.I., 2018. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.
02811.

Hecht-Nielsen, R., 1992. Theory of the backpropagation neural network. In: Neural
Networks for Perception. Elsevier, pp. 65-93.

Ho, S.L., Yang, S., 2010. The cross-entropy method and its application to inverse
problems. IEEE Trans. Magn. 46 (8), 3401-3404.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., Jiang, C., 2018. A moving least
squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph. 37 (4), 150.

Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J.B., Freeman, W.T., Wu, J., Rus, D.,
Matusik, W., 2019. Chainqueen: A real-time differentiable physical simulator for
soft robotics. In: 2019 International Conference on Robotics and Automation. ICRA,
IEEE, pp. 6265-6271.

Hungr, O., McDougall, S., 2009. Two numerical models for landslide dynamic analysis.
Comput. Geosci. 35 (5), 978-992.

Ju, L.-Y., Xiao, T., He, J., Wang, H.-J., Zhang, L.-M., 2022. Predicting landslide
runout paths using terrain matching-targeted machine learning. Eng. Geol. 311,
http://dx.doi.org/10.1016/j.enggeo.2022.106902.

Kermani, E., Qiu, T., Li, T., 2015. Simulation of collapse of granular columns using the
discrete element method. Int. J. Geomech. 15 (6), 04015004. http://dx.doi.org/10.
1061/(asce)gm.1943-5622.0000467.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kumar, K., 2015. Multi-Scale Multiphase Modelling of Granular Flows (Ph.D. thesis,
Ph.D. thesis). University of Cambridge, http://dx.doi.org/10.5281/zenodo.160339.

Kumar, K., Delenne, J.Y., Soga, K., 2017a. Mechanics of granular column collapse in
fluid at varying slope angles. J. Hydrodyn. 29 (4), 529-541. http://dx.doi.org/10.
1016/51001-6058(16)60766-7.

Kumar, K., Salmond, J., Kularathna, S., Wilkes, C., Tjung, E., Biscontin, G., Soga, K.,
2019. Scalable and modular material point method for large-scale simulations.
arXiv:1909.13380.

http://dx.doi.org/10.1007/s10346-020-01540-1
http://arxiv.org/abs/2202.00728
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb3
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb3
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb3
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1612.00222
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb6
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb6
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb6
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb6
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb6
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb7
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb7
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb7
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb8
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb8
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb8
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb8
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb8
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb10
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb10
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb10
http://arxiv.org/abs/00
http://dx.doi.org/10.17603/DS2-4NQZ-S548
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-5385005666722770450-242ac117-0001-012
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-5385005666722770450-242ac117-0001-012
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-5385005666722770450-242ac117-0001-012
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-5385005666722770450-242ac117-0001-012
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4275/#details-5385005666722770450-242ac117-0001-012
http://dx.doi.org/10.17603/DS2-0WJQ-0J84
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4534
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4534
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4534
http://dx.doi.org/10.1016/j.coldregions.2010.04.005
https://www.sciencedirect.com/science/article/pii/S0165232X10000844
https://www.sciencedirect.com/science/article/pii/S0165232X10000844
https://www.sciencedirect.com/science/article/pii/S0165232X10000844
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb15
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb15
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb15
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb15
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb15
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb16
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb16
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb16
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb17
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb17
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb17
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb19
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb19
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb19
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb20
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb20
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb20
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb21
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb21
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb21
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb21
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb21
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb22
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb23
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb23
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb23
http://dx.doi.org/10.1016/j.enggeo.2022.106902
http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000467
http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000467
http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000467
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.5281/zenodo.160339
http://dx.doi.org/10.1016/s1001-6058(16)60766-7
http://dx.doi.org/10.1016/s1001-6058(16)60766-7
http://dx.doi.org/10.1016/s1001-6058(16)60766-7
http://arxiv.org/abs/1909.13380

Y. Choi and K. Kumar

Kumar, K., Soga, K., Delenne, J.-Y., Radjai, F., 2017b. Modelling transient dynamics of
granular slopes: MPM and DEM. Procedia Eng. 175, 94-101. http://dx.doi.org/10.
1016/j.proeng.2017.01.032.

Kumar, K., Vantassel, J., 2022. GNS: A generalizable graph neural network-based
simulator for particulate and fluid modeling. arXiv:2211.10228.

Lajeunesse, E., Monnier, J.B., Homsy, G.M., 2005. Granular slumping on a horizontal
surface. Phys. Fluids 17 (10), 103302. http://dx.doi.org/10.1063/1.2087687.
LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T., 1988. A theoretical framework
for back-propagation. In: Proceedings of the 1988 Connectionist Models Summer

School. Vol. 1, San Mateo, CA, USA, pp. 21-28.

Liu, X., Liu, Y., Li, X., Yang, Z., Jiang, S.-H., 2023. Efficient adaptive reliability-based
design optimization for geotechnical structures with multiple design parameters.
Comput. Geotech. 162, 105675.

Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A., 2005. Collapses of two-dimensional
granular columns. Phys. Rev. E 72 (4), http://dx.doi.org/10.1103/physreve.72.
041301.

Mast, C.M., Arduino, P., Mackenzie-Helnwein, P., Miller, G.R., 2014. Simulating
granular column collapse using the Material Point Method. Acta Geotech. 10 (1),
101-116. http://dx.doi.org/10.1007/511440-014-0309-0.

Mergili, M., Fischer, J.-T., Krenn, J., Pudasaini, S.P., 2017. R.avaflow v1, an advanced
open-source computational framework for the propagation and interaction of two-
phase mass flows. Geosci. Model Dev. 10 (2), 553-569. http://dx.doi.org/10.5194/
gmd-10-553-2017, URL https://gmd.copernicus.org/articles/10/553/2017/.

Pires, C., Miranda, P.M., 2001. Tsunami waveform inversion by adjoint methods. J.
Geophys. Res.: Oceans 106 (C9), 19773-19796.

18

Computers and Geotechnics 171 (2024) 106374

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.W., 2020.
Learning to simulate complex physics with graph networks. CoRR abs/2002.09405
arXiv:2002.09405 URL https://arxiv.org/abs/2002.09405.

Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S., 2016. Trends in large-
deformation analysis of landslide mass movements with particular emphasis on
the material point method. Géotechnique 66 (3), 248-273. http://dx.doi.org/10.
1680/jgeot.15.LM.005.

Staron, L., Hinch, E.J., 2005. Study of the collapse of granular columns using two-
dimensional discrete-grain simulation. J. Fluid Mech. 545, 1-27. http://dx.doi.org/
10.1017/50022112005006415.

Utili, S., Zhao, T., Houlsby, G.T., 2015. 3D DEM investigation of granular column
collapse: Evaluation of debris motion and its destructive power. Eng. Geol. 186,
3-16. http://dx.doi.org/10.1016/j.enggeo.2014.08.018.

Wang, Q., Kumar, K., 2023. An inverse analysis of fluid flow through granular media
using differentiable lattice Boltzmann method. arXiv preprint arXiv:2310.00810.

Yang, Q., Hambleton, J.P., 2021. Data-driven modeling of granular column collapse.
In: Geo-Extreme 2021. pp. 79-88. http://dx.doi.org/10.1061/9780784483701.008.

Zeng, P., Sun, X., Xu, Q., Li, T., Zhang, T., 2021. 3D probabilistic landslide run-
out hazard evaluation for quantitative risk assessment purposes. Eng. Geol. 293,
106303. http://dx.doi.org/10.1016/j.enggeo.2021.106303.

Zhao, Q., Lindell, D.B., Wetzstein, G., 2022. Learning to solve pde-constrained inverse
problems with graph networks. arXiv preprint arXiv:2206.00711.

http://dx.doi.org/10.1016/j.proeng.2017.01.032
http://dx.doi.org/10.1016/j.proeng.2017.01.032
http://dx.doi.org/10.1016/j.proeng.2017.01.032
http://arxiv.org/abs/2211.10228
http://dx.doi.org/10.1063/1.2087687
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb33
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb33
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb33
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb33
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb33
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb34
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb34
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb34
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb34
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb34
http://dx.doi.org/10.1103/physreve.72.041301
http://dx.doi.org/10.1103/physreve.72.041301
http://dx.doi.org/10.1103/physreve.72.041301
http://dx.doi.org/10.1007/s11440-014-0309-0
http://dx.doi.org/10.5194/gmd-10-553-2017
http://dx.doi.org/10.5194/gmd-10-553-2017
http://dx.doi.org/10.5194/gmd-10-553-2017
https://gmd.copernicus.org/articles/10/553/2017/
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb38
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb38
http://refhub.elsevier.com/S0266-352X(24)00310-0/sb38
http://arxiv.org/abs/2002.09405
http://arxiv.org/abs/2002.09405
https://arxiv.org/abs/2002.09405
http://dx.doi.org/10.1680/jgeot.15.LM.005
http://dx.doi.org/10.1680/jgeot.15.LM.005
http://dx.doi.org/10.1680/jgeot.15.LM.005
http://dx.doi.org/10.1017/S0022112005006415
http://dx.doi.org/10.1017/S0022112005006415
http://dx.doi.org/10.1017/S0022112005006415
http://dx.doi.org/10.1016/j.enggeo.2014.08.018
http://arxiv.org/abs/2310.00810
http://dx.doi.org/10.1061/9780784483701.008
http://dx.doi.org/10.1016/j.enggeo.2021.106303
http://arxiv.org/abs/2206.00711

	Inverse analysis of granular flows using differentiable graph neural network simulator
	Introduction
	Problem statement
	Methods
	Graph neural network-based forward simulator (GNS)
	Training data

	Differentiable GNS
	Gradient-based optimization
	Gradient checkpointing

	Results of inverse analysis in granular flows
	Single parameter inverse
	Multi-parameter inverse
	Design of baffles to resist debris flow
	Optimization efficiency

	Limitations

	Conclusion
	Data and code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Performance of GNS
	Appendix B. Training data
	References

