HySST: An Asymptotically Near-Optimal Motion Planning Algorithm
for Hybrid Systems*

Nan Wang and Ricardo G. Sanfelice

Abstract—This paper proposes a stable sparse rapidly-
exploring random trees (SST) algorithm to solve the optimal
motion planning problem for hybrid systems. At each iteration,
the proposed algorithm, called HySST, selects a vertex with
minimal cost among all the vertices within the neighborhood
of a random sample, subsequently extending the search tree
through flow or jump, which is also chosen randomly when
both regimes are possible. In addition, HySST maintains a static
set of witness points where all vertices within each witness’s
neighborhood are pruned, except for the ones with lowest cost.
We show that HySST is asymptotically near-optimal, namely,
the probability of failing to find a motion plan with cost close
to the optimal approaches zero as the number of iterations of
the algorithm increases to infinity. The proposed algorithm is
applied to a collision-resilient tensegrity multicopter system so
as to highlight its generality and computational features.

I. INTRODUCTION

Motion planning consists of finding a state trajectory and
associated inputs that connect the initial and final state sets
while satisfying the dynamics of the systems and given
safety requirements. Motion planning for purely continuous-
time systems and purely discrete-time systems has been well
studied in the literature. In recent years, several feasible
motion planning algorithms have been developed, includ-
ing graph search algorithms [1], artificial potential [2] and
fluid [3] field methods, and sampling-based algorithms. The
sampling-based algorithms have drawn much attention in
recent years because of their fast exploration speed for high
dimensional problems and theoretical guarantees; specially,
probabilistic completeness. Two popular sampling-based al-
gorithms are the probabilistic roadmap (PRM) algorithm [4]
and the rapidly-exploring random tree (RRT) algorithm [5].

A feasible solution is not sufficient in most applications as
the quality of the solution returned by the motion planning
algorithms is critical. It has been shown in [6] that the so-
lution returned by RRT converges to a sub-optimal solution.
Therefore, variants of PRM and RRT, such as PRM* and
RRT* [7], have been developed to solve optimal motion
planning problems with guaranteed asymptotic optimality.
However, both PRM* and RRT* require a steering function
returning the solution of a two-point boundary value problem
(TPBVP). Unfortunately, solutions to TPBVPs are difficult to
generate for most dynamical systems, which prevents them
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from being widely applied. On the other hand, the stable
sparse RRT (SST) algorithm [8] does not require a steering
function and is guaranteed to be asymptotically near optimal,
which means that the probability of finding a solution that
has a cost close to the minimal cost converges to one as the
number of iterations approaches infinity.

The aforementioned motion planning algorithms have
been widely applied to purely continuous-time and purely
discrete-time systems. However, much fewer efforts have
been devoted to motion planning for systems with combined
continuous and discrete behaviors, which we refer to as
hybrid systems, such as walking robots [9], quadrupeds [10],
unmanned aerial underwater vehicles [11], and collision
resilient aerial vehicles [12]. In our previous work [13], a
feasible motion planning problem is formulated for hybrid
system given in terms of hybrid equations as in [14], which
is a general framework that captures a broad class of hybrid
systems. In [13], a probabilistically complete RRT algorithm
for hybrid systems is designed to solve the feasible motion
planning problems for such systems.

In this paper, we formulate the optimal motion planning
problem for hybrid systems and design an SST-type algo-
rithm with the goal of assuring asymptotic optimality of the
solution. The proposed algorithm, called HySST, incremen-
tally constructs a search tree rooted in the initial state set
toward the random samples. At first, HySST draws samples
from the state space. Then, it selects a vertex such that the
state associated with this vertex is within a ball centered
at the random sample and has minimal cost. Next, HySST
propagates the state trajectory from the selected vertex, and
adds a new vertex and edge from the propagated trajectory.
In addition, HySST maintains a static set of state points,
called witnesses, to represent the explored regions, and
prunes all the vertices within each witness’s neighborhood
except for those with lowest cost. We show that, under mild
assumptions, HySST is asymptotically near-optimal. To the
authors’ best knowledge, HySST is the first optimal RRT-
type algorithm for hybrid systems. The proposed algorithm
is illustrated in a collision-resilient tensegrity multicopter
system.

The remainder of the paper is organized as follows.
Section II presents notation and preliminaries. Section III
presents the problem statement and introduces an example.
Section IV presents the HySST algorithm. Section V presents
the asymptotically near optimal result for HySST. Section
VI illustrates HySST in the said example. Due to space
constraints, proofs of the results will be published elsewhere.



II. NOTATION AND PRELIMINARIES
A. Notation

The real numbers are denoted as R and its nonnegative
subset is denoted as R, . The set of nonnegative integers is
denoted as N. The notation int S denotes the interior of the
set S. The notation S denotes the closure of the set S. The
notation dS denotes the boundary of the set S. The notation
B denotes the closed unit ball in the Euclidean norm. Given

vectors u and v, [u',vT]" is equivalent to (u,v).

B. Preliminaries

A hybrid system H with inputs is modeled as [14]

oa=flzu) (a2
”'{x+g<x,u> (@,

where z € R” is the state, u € R™ is the input, C' C
R™ x R™ represents the flow set, f : R® x R™ — R"
represents the flow map, D C R™ x R™ represents the jump
set, and g : R™ x R™ — R"™ represents the jump map,
respectively. The continuous evolution of z is captured by
the flow map f. The discrete evolution of z is captured by
the jump map g. The flow set C' collects the points where
the state may evolve continuously. The jump set D collects
the points where jumps may occur. Given a flow set C, the
set Uc := {u € R™ : 3z € R” s.t. (z,u) € C} includes
all possible input values that can be applied during flows.
Similarly, given a jump set D, the set Up := {u € R™ :
Jz € R s.t. (x,u) € D} includes all possible input values
that can be applied at jumps. These sets satisfy C' C R" xUg
and D C R™ x Up. Given a set K C R" x U,, where
* is either C' or D, we define II,(K) := {z : Ju €
U, s.t. (z,u) € K} as the projection of K onto R™, and
define C’ :=1I(C) and D' :=1Ip(D).

In addition to ordinary time ¢ € R>(, we employ j €
N to denote the number of jumps of the evolution of z
and u for H in (1), leading to hybrid time (¢,j) for the
parameterization of its solutions and inputs. The domain
of a solution to H is given by a hybrid time domain. A
hybrid time domain is defined as a subset ' of R>o x N
that, for each (T,J) € E, En ([0,T] x {0,1,...,J}) can
be written as U.;]:O([tj, tj+1],j) for some finite sequence of
times 0 = tg < t; <9 < ... < tyy1 = T. A hybrid arc
¢ : dom ¢ — R” is a function on a hybrid time domain that,
for each j € N, t — ¢(t,7) is locally absolutely continuous
on each interval I/ := {t : (t,j) € dom ¢} with nonempty
interior. A solution pair to a hybrid system is defined as
follows.

u) € C

u) €D )

Definition 2.1 (Solution pair to a hybrid system [14]):
Given a pair of functions ¢ dom¢ — R™ and
u : domu — R™, (¢,u) is a solution pair to (1) if
dom(¢,u) := dom¢ = domw is a hybrid time domain,
(¢(0,0),u(0,0)) € CU D, and the following hold:

1) For each j € N such that I7 has nonempty interior,

a) t+— ¢(t, j) is locally absolutely continuous,
b) (¢(t,j),u(t,5)) € C for all t € int I,

¢) the function ¢ — u(t, j) is Lebesgue measurable and
locally bounded,
d) for almost all ¢t € I/, w = f(o(t,5),u(t,7)).
2) For each (t,j) € dom(¢,u) such that (t,j + 1) €
dom(¢,u), (#(t,5),ult,j)) € D, ot,j+1) =
9(o(t, ), u(t, 7))-

III. PROBLEM STATEMENT

The formulation of the feasible motion planning problem
for hybrid systems can be found in [13, Problem 1] and
is denoted as P = (Xo, Xy, Xy, (C, f,D,g)), where the
initial state set is denoted as Xy C R"”, the final state set
is denoted as Xy C R", and the unsafe set is denoted as
X, C R" xR™. Let Sy denote the set of all solution pairs
to ‘H. Let 8¢ denote the set of state trajectories of all the
solution pairs in SH The optimal motion planning problem
for hybrid systems consists of finding a feasible motion plan
with minimum cost [7, Problem 3].

Problem 1: (Optimal motion planning) Given a motion
planning problem P = (X0, Xy, Xu,(C,f,D,g)) and a

cost functional c¢ : S‘f{ — R, find a feasible motion plan
(¢7,u*) to P such that (¢*,u") = argmin , s c(9).
Given sets Xy, Xy, and X,, a hybrid system H with
data (C,f,D,g), and a cost functional ¢, an optimal
motion planning problem P* is formulated as P* =
(X0, X, Xy, (C, f,D,g),c).

Problem 1 is illustrated in the following example.

Example 3.1: (Collision-resilient tensegrity multicopter
system [15]) Consider a planar collision-resilient tensegrity
multicopter that is resilient to collisions with a wall. The
state of the multicopter involves the position vector p :=
(pz,py) € R2, the velocity vector v := (vg,v,) € R?,
and the acceleration vector a := (ay,a,) € R? where,
respectively, p, and p, denote the position, v, and v,
denote the velocity, and a, and a, denote the acceleration
along the z-axis and y-axis. The state of the system is
z := (p,v,a) € R® and its input is u = (uy,u,) € R?
which represents the effect of the torque. The environment
is assumed to be known. Define the walls as the region
W C R2, which is a closed set represented by the blue
rectangles in Figure 1. Flow is allowed when the multicopter
is in C := (R2\W) x R* x R?, which defines the flow set.
The dynamics of the multicopter when no collision occurs
is captured as & = (v, a,u) =: f(z,u) (x,u) € C.

At collisions, the position is assumed to remain constant.
To model the change of v, denote the velocity component
of v = (vg,v,) that is normal to the wall as vy and
the velocity component that is tangential to the wall as
vr. Then, the velocity component vy after the jump is
modeled as vy = —Moy =: gn(v) where A € (0,1)
is the coefficient of restitution. The velocity component
vp after the jump is modeled as v:,JC = vp + k(=A —
1) arctan yZoy =: gr(v), where k£ € R is a constant; see
[15]. Denoting the projection of the updated vector (vy,v5")
onto the z-axis as II, (v}, v}) and the projection of the
updated vector (v, v; ) onto the y-axis as IT, (v}, vF), we



have v = (Iz (g (v), §7(v)), Ty (G (v), g7 (v))) =2 G(v).
We assume that a¥ = 0, which, through a post-impact
hovering maneuver, can be mitigated in the control layer. The
discrete dynamics capturing the collision process is modeled
as 7 = (p,g(v),0) =: g(x,u) (z,u) € D. Jumps are
allowed when the multicopter is on the wall surface with
positive velocity towards the wall. Hence, the jump set is
D :={((p,v,a),u) € RS x R? : p € IW,vn < 0}.

Given the initial state set as X, = {(1,2,0,0,0,0)}, the
final state set as Xy = {(5,4)} x R*, and the unsafe set
as X, = {(z,u) € R xR? : \/(p, —5)2+ (py, — 3)?| <
0.3} which represents the green ball in Figure 1 that is
forbidden to fly into or collide with, an instance of the
optimal motion planning problem for the collision-resilient
tensegrity multicopter system is to find the motion plan
with minimal hybrid time. To capture the hybrid time do-
main information, an auxiliary state 7 € R, representing
the ordinary time and an auxiliary state & € N repre-
senting the number of jumps associated to collisions are
included. The resulting hybrid system H := (C, f,D,3)
with state T := (z,7,k) € R? x Ry, x N, input u € R,
and data C := {(Z,u) € RZ x Ryy x Nx R : (z,u) € C};
f@u) = (f(x,u),1,0) for each (z,u) € C; D :=
{@uw) eR?xR.y xNxR:(z,u) € D}; g(@,u) =
(g(x,u),T,k+1) for each (Z,u) € D with the X,, Xy, and
X, extended as X := Xox{0}x{0}, Xy := Xy xRy xN,
X, = X, x Ry x N. Then, with ¢ = (¢, 7,k) being a
state trajectory of the solution pair to 7, the cost functional
c can be defined as c(¢) = 7(T,J) + k(T,J), where
(T, J) = max dom ¢. The resulting optimal motion planning
problem is defined as P* = (X, X s, X4, (C, f, D,7),c).
In the forthcoming Example 6.1, we employ HySST to solve
this motion planning problem.

IV. HYSST: AN ASYMPTOTICALLY NEAR-OPTIMAL
MOTION PLANNING ALGORITHM FOR HYBRID SYSTEMS

A. Overview

HySST searches for the optimal motion plan by incre-
mentally constructing a search tree. The search tree is a
pair T = (V,E), where V is a set whose elements are
called vertices, denoted v, and E is a set of paired vertices
whose elements are called edges, denoted e. A path in T
is a sequence of vertices p = (v1,vs,...,v;) such that
(vi,vi41) € E for all ¢ € {1,2, ...,k — 1}. For details about
the search tree, see [13, Section 4.A].

Each vertex v € V in the search tree 7 = (V,E)
is associated with a state value of #, denoted T,, and
a cost value that, via addition, compounds the cost from
the root vertex up to the vertex v, denoted ¢,. Each edge
e € E in the search tree T = (V, E) is associated with a
solution pair to 7, denoted 1),. The solution pair that the
path p = (v1,v9,...,vx) represents is the concatenation of
all those solution pairs associated with the edges therein,
namely, ¥y = V(y; 0,)[V(0s,00) - [V(op_s,00) Where ¥y
denotes the solution pair associated with the path p. For
details on such concatenation, see [13, Definition 2.2].

HySST requires a library of possible inputs. The input
library (Uc,Up) includes the input signals that can be
applied during flows (collected in Uc) and the input values
that can be applied at jumps (collected in Up).

HySST selects the vertex associated with the lowest cost
within the vicinity of a randomly selected state. This vicinity
is referred to as random state neighborhood and defined by a
ball of radius dpn € Rs¢. Then, HySST employs a pruning
process to decrease the number of vertices in the search
tree. This pruning operation is implemented by maintaining a
witness state set, denoted S, such that all the vertices within
the vicinity of the witnesses are deleted except the ones with
lowest cost. This vicinity is referred to as closest witness
neighborhood and defined by a ball of radius ;s € Ry,
For every witness s kept in S, a single vertex in the tree
represents that witness. Such a vertex is stored in s.rep for
each witness s € S. Note that a vertex, say, v,, may be
associated with a higher cost than other vertices within the
same witness’s neighborhood, but has a child vertex, say, vy,
associated with the lowest cost compared with other vertices
in the same witness’s neighborhood. In this case, v, should
not be removed from the search tree because, if it is removed,
then all of its child vertices, including v, with the lowest
cost, are consequently removed. However, even v, is not
removed, it will not be selected, and, therefore, will be kept
in a separate set called inactive vertex set, denoted V;y,qctive-
On the other hand, the vertices that are not pruned are stored
in a set called the active vertex set, denoted Vi tive-

Next, we introduce the main steps executed by HySST.
Given the optimal motion planning problem P* =
(Xo,X¢, Xy, (C, f,D, g), c) and the input library (Uc,Up),
HySST performs the following steps:

Step 1: Initialize a search tree 7 = (V, E) by sampling

a finite number of points from X,. For each
sampling point xp, add a vertex vy and assign
Ty, < To. Initialize £ by E < (. Initialize the
witness state set S C R™ by S « (). For each
v € V such that [T, — T, | > d, for all v’ € V\v,
add the witness state s = T, to S and set the
representative of s as s.rep <— v. Initialize the
active vertices set Victive bY Vactive < {s.1ep €
V : s € S}. Initialize the inactive vertices set
V;nactive by ‘/inactive — (Z)

Step 2: Randomly select flow regime or jump regime for
the evolution of H.

Step 3: Randomly select a point Z,q,q from C’ (D') if
the flow (respectively, jump) regime is selected in
Step 2.

Step 4: Find all the vertices in V. associated with
the state values that are within gy t0 Z,qnq and
collect them in the set Vpy. Then, find vertex
in Vpy that has minimal cost, denoted vq,. If
no vertex is collected in Vg, then find vertex in
the search tree that has minimal distance to Z,q4n4
and assign it t0 Veyy.

Step 5: Randomly select an input signal (respectively,
value) from Uc (respectively, Up) if Z,,,, €



C'\D’ (respectively, T,,,. € D'\C"). Then,
compute a solution pair denoted Vpeq
(Pnews Unew) starting from T, ,  with the se-
lected input applied via flow (respectively, jump).
If Z,,,, € D'NC’, arandom process is employed
to decide whether to proceed the computation
with flow or jump. Denote the final state of ¢,,eq,
as Tpew. Compute the cost at ¢4, denoted cpeq,
by Cnew ¢ Cu,,, + (Pnew). If Pney intersects
with X, then go to Step 2.

Find the witness in S that is closest t0 Z, e,
denoted Sycqr, and proceed as follows:

Step 6:

o If 2,6y, is not in the closest witness neighbor-
hood of Speqr, namely, |Snear — Tnew| > 0s,
then add a vertex v, associated with ;¢
t0 Vactive and an edge (Veyr, Unew) associated
with ¥,e to E. Add a new witness to S and
set its representative as vUpey,. Then, go to Step
2.

o If |snear - xnew‘ < 557

—if €, 0 rep > Cnew, add a vertex vpeyw
associated with .., t0 Victive and an
edge (Veur,Unew) associated with e
to E. Then, update the representative of
Snear With Upe,, and prune the vertex, say,
Upre_near Which is previously witnessed by
Snear- If Upre_neqr 18 an active vertex, then
add vprenear 10 Vipactive. Otherwise, re-
MOVE Upre neqr and all its child vertices
from the search tree. Then, go to Step 2.

— if G, .0 rep < Cnew, g0 to Step 2 directly.

B. HySST Algorithm

Following the overview above, the proposed algorithm
is given in Algorithm 1. The inputs of Algorithm 1 are
the problem P* = (Xo, Xy, Xy, (C, f,D, g),c), the input
library (Uc,Up), a parameter p, € (0,1), which tunes
the probability of evolving with the flow regime or the
jump regime, an upper bound K € Ny for the number
of iterations to execute, and two tunable sets X, O C’
and X4 D D', which act as constraints in finding a closest
vertex to X,qnq. In addition, HySST requires parameters g x
and J; to tune the radius of random state neighborhood and
closest witness neighborhood, respectively. Each function in
Algorithm 1 is defined next.

1) T.init(Xy): The function call T.init is used to
initialize a search tree 7 = (V, E). It randomly selects a
finite number of points from Xy. For each sampling point
To, a vertex vg associated with zg is added to V. At this
step, no edge is added to E.

2) return< is_vertex_locally_the best(x,cost,
S,d5): The function call is_vertex_locally the
best describes the conditions under which the state x is
considered for addition to the search tree as is shown in
Algorithm 2. First, this function searches for the closest
Witness S, to x from the witness set S (line 1). If the
closest witness distance to x is larger than J,, a new witness

is added to S (lines 2 - 6). If ;¢ is just added as a

Algorithm 1 HySST algorithm
InplIt: X07 Xfa Xu7 C7H - (C7 f7 Dag)v (M07Z/ID)7pn S (07 ]-)’
KeN, X., X4, 6pn and §5

1: T.init(Xo);

2: Vactive < V., Vinactive < 0, S < 0;
3: for all vg € V do
4:
5

if is_.vertex_locally_the best(Zyy,0,S5,ds) then
(57 Vactive, Vinactive, E) < prune_dominated-
VerticeS(U07 S, Vactive, Vinactive, E)
end if
: end for
: for k =1to K do
randomly select a real number r from [0, 1];
if » < p,, then o
Zrand < random_state(C’);
Ueur<— best_near_selection(Zrqnd, Vactive,0BN,
Xe);
else
Trand < random_state(D’);
Vcur < bestnear_selection(®,rqnd, Vactive, 0BN,
Xa);
end if
(is_a-new.vertex_generated, Tnew, Pnew, COStnew)
+ new_state(veur, Uc,Up), H, Xu)
if is.a_new_vertex_generated & is_vertex_locally
_the best(Tnew, COStnew, S, ds) then
Unew Vactive-addfvertex(l’new7 COStnew);
E~addfedge(vcur7 VUnew, wnew)Q
(Sy Vactivey ‘/inacti'uﬁ’ E) <~ prune,dominated,
Vertices(vneuu S, Vactives Vinactive; E);
end if
: end for
: return 7

witness or cost is less than the cost of the closest witness’s
representatives (line 7), then the state x with the cost cost
is locally optimal and a true signal is returned (line 8).
Otherwise, a false signal is returned.

Algorithm 2 is vertex_locally the best(z,cost,S,ds)

1: Spew  nearest(S,z);

2: if | — Spew| > s then

3 Snew — T

4 Snew.rep < NULL

5: S+ SU{snew};

6: end if

7: if spew.rep == NULL or cost < Cs,,.,,.rep then
8: return true;

9: end if
10: return false;

3) (S, Vactives Vinactive, E) < prune_dominated
_vertices(v, S, Vactives Vinactive, 2): The function call
prune_dominated_vertices describes the pruning pro-
cess as in Algorithm 3. First, this function searches for the
witnesses Sy, that are closest to T, and their representatives
Upeer (lines 1 - 2). Then, vpee, is moved from Viciipe tO
Vinactive (lines 4 - 5) and, consequently, v replaces vpeer as
the representative of sy, (line 7). Then, vy, is removed
from Vinqctive, along with all its parent vertices that are in
Vinactive and that have no child vertices after the removal of
Upeer (lines 8 - 13).

4) Trana¢random_state(S): The function call
random_state randomly selects a point from S C R".

5) Veur ¢ best_near_selection(Trand, Vactive, 0OBN,
X,): The function call best _near_selection searches



for a vertex v.,, in the active vertex set V.iive such that
its associated state value is in the intersection between the
set X, and Z,qnq + 0B, and has minimal cost, where %
is either ¢ or d. This function is implemented by solving

Algorithm 3 (S, V,ctive, Vinactive, E) < prune_dominated.
vertices(v, Sy Vacti'uea ‘/inactivey E)

I: Spew ¢ nearest(S,Ty);

2: Vpeer < Snew-TEP;

3: if vpeer! = NULL then

4: Vactive < Vactive\{vpeer};

5 ‘/inacti'ue <~ ‘/’Lnactive U {Upeer};
6: end if

7. Spew-TEP — V;

8: while isleaf(vpeer) and vpeer € Vinactive d0
9: Uparent < parent(Vpeer);

10: E «+ E\{('Uparenh 'Upeev")};

11: ‘/ina,cti'ue — ‘/inactive\vpeer§

12: Upeer < Uparent;

13: end while

the following optimization problem.

Problem 2: Given T,q,q € R™, a radius dgy > 0 of the
random state neighborhood, a tunable state constraint set X,
and an active vertex set Vctive, SOlve

argmin ¢,
VEVactive
S.t. ‘fv - ‘rrand| S (SBN
T, € X,.
Data of Problem 2 comes from the arguments of
best_near_selection function call. This optimization
problem is solved by traversing all the vertices in Vjctpe-

6) (is.a_new_vertex_generated, Tnew, Vnew,
COSlpew) <+ new.state(veur, Uc,Up),H,X,): If
Zu,,, € C'\D' (respectively, Z,,,, €D'\C’), the function
call new_state generates a new solution pair ¥,e, to the
hybrid system H starting from z,_, , by applying an input
signal u (respectively, an input value up) randomly selected
from Uc (respectively, Up). If T, € C’ N D', then this
function generates 1,,¢,, by randomly selecting flow or jump.
The final state of Ynew = (Pnew,Unew) 1S denoted as
Tpew- The COSt cOStpeqy At Tpeq 1S computed by costy ey —
E'Uuu,« + C((bnew)-

After pe and T,e, are generated, the function
new_state checks if there exists (¢,j) € domvyey
such that  Y,ew(t,)) € X, If so, we have
is_a_new_vertex_generated < false. Otherwise,
we have is_a_new_vertex_generated < true.

7) Vnew 4 Vactive-add-vertex(Tpew, C0Stpew) and
E.add_edge(veyr, Ynew): The function call
Vactive-add_vertex adds a new vertex vy, t0 Vyctive SUCh
that T, ¢ Tpew and c,,,,, < Costney, and, consequently,
returns vneq. The function call EF.add_edge adds a new
edge enew = (Veur, Unew) associated with ¢,,e,, to E.

Unew)

C. Solution Checking during HySST Construction

At each iteration, when a
a new edge are added to the search tree, i.e.,
is_a_new_vertex_generated = true, a solution
checking function is employed to check if a path in T

new vertex and

can be used to construct a motion plan to the given
motion planning problem. If this function finds a path
p = ((vo,v1), (V1,V2), ety (Un—1,Vn)) =: (€0,€1, e, €n—1)
in 7 such that 1) 7,, € Xy and 2) T, € Xy, then
the solution pair {/;p is a motion plan to the given motion
planning problem.

V. ASYMPTOTIC NEAR-OPTIMALITY ANALYSIS

This section analyzes the asymptotic optimality property
of HySST algorithm. The following assumption assumes that
the cost functional is Lipchitz continuous along the purely
continuous solution pairs, locally bounded at jumps, and
satisfies additivity, monotonicity, and non-degeneracy.

Assumption 5.1: The cost functional ¢ : Sifl — Ry,
satisfies the following:

1) It is Lipschitz continuous for all continuous solution
pairs (¢o, ug) and (¢1,u1) to H such that ¢o(0,0) =
©1(0,0); specifically, there exists K. > 0 such that
|C(¢0)—C(¢1)| < K. SUP(£,0)edom ¢pNdom ¢1{|¢0(t70)_
¢1(t,0)[}.

2) For each pair of purely discrete solution pairs (¢o, uo)
and (¢1,u1) to H such that dom ¢y = dom ¢; = {0} x
{0,1} and ¢¢(0,0) = ¢1(0,0), there exists Kz > 0
such that |c(¢o) — c(¢1)| < Kasupjeo13{lbo(0,) —
$1(0, )1}

3) Consider two solution pairs 19 = (¢, uo) and 1 =
(¢1,u1), and let their concatenation be g|t1. The
following hold:

a) c(po|d1) = c(Po) + c(é1) (additivity);
b) e(¢1) < e(dol¢1) (monotonicity):
¢) For each t2 > t; > 0 such that (¢1,5) € dom )y and
(t2,7) € dom g for some j € N, there exists M, >
0 such that t5 —t; < MC|C(¢0(t27j)) — C(¢O(t17j))|
(non-degeneracy during flows).
d) For each ji,j2 € N such that jo > j1, (¢,j1) €
domy and (t,jo) € domvy for some ¢t €
R, there exists Mg > 0 such that j, — j; <
Male(¢o(t, j2)) — c(¥o(t, j1))| (non-degeneracy at
jumps).
Next we define the clearance of the potential motion plans,
which is heavily used in the literature; see, e.g., [16].

Definition 5.2: (Safety clearance of a motion plan) Given
a motion plan v = (¢,u) to the motion planning problem
P = (Xo,Xs, Xy, (C, f,D,g)), the safety clearance of ¢ =
(¢,u), denoted Js, is such that for each &' € [0,0,], the
following conditions are satisfied:

1) ¢(0,0) + ¢'B C Xo;

2) ¢o(T,J)+ 6B C Xy, where (T, J) = max dom ¢;

3) For all (¢,j) € dom, (¢(t,5) + 6B, u(t,j) + 'B) N

X,=0

Assumption 5.3: The optimal motion plan to the optimal
motion planning problem has positive safety clearance.

Assuming that the optimal motion plan is away from the

boundary of the flow set and jump set is restrictive for hybrid
systems [13]. To overcome this issue, the J¢-inflation of



hybrid systems, denoted Hs, := (Cs,, fs,,Ds,,9s,) for
some 6¢ > 0, is employed to create a positive dynamics
clearance in our previous work [13].

The following assumption relating the safety clearance d
of the optimal motion plan and the inflation parameter ¢
with the algorithm parameters dpn and §; guarantees that
the pruning process maintains at least one vertex close to the
optimal motion planning if such vertex has been generated;
see [8, Lemma 27] for details.

Assumption 5.4: The parameters dpy and J; need to
satisfy 0pn + 20s < min{d,,dy}.

The conditions in [13, Assumptions 5.3 - 5.6] regarding
the random process, input library, and the continuous and
discrete dynamics are also assumed in this paper. These
assumptions are expected, based on what is known for the
continuous-time and discrete-time cases. We are ready to
provide our main result, which states that, by feeding the
inflation H;,, HySST returns a motion plan with cost that
is close to the minimal cost.

Theorem 5.5: Given an optimal motion planning problem
P* = (Xo, X5, Xu,(C, f,D,g),c), suppose Assumptions
5.1, 5.4, and assumptions in [13, Assumptions 5.3 - 5.6]
are satisfied and that there exists an optimal motion plan
v* = (¢*,u*) to P* satisfying Assumption 5.3 for some
0s > 0. When HySST is used to solve the motion planning
problem P;f = (Xo, Xy, Xu, (Cs;, f5;, D5, 95, ), ¢) where,
for some 6¢ >0, (Cs,, fs;, Ds;, gs,) denotes &s-inflation of
(C, f, D, g), the probability that HySST finds a motion plan
Y = (¢,u) such that ¢(¢) < (1 + ad)c(p*) converges to
one as the number of iterations k approaches infinity, where
a >0 and § = min{ds,dr}.

VI. HYSST SOFTWARE TOOL FOR OPTIMAL MOTION
PLANNING PROBLEMS FOR HYBRID SYSTEMS

Algorithm 1 has been implemented in a software tool!
to solve the optimal motion planning problems for hybrid
systems. This software only requires the inputs listed in
Algorithm 1. Next, the HySST algorithm and this tool are
illustrated in Example 3.1.

* Active vertex
o Witness

Initial state
o Final state

Fig. 1. The motion plan generated by HySST for the collision-resilient
tensegrity multicopter in Example 3.1. The blue rectangles denote the walls
where collisions potentially occur. The green circle denotes the forbidden
zone. The yellow arrows point to the location where collisions occur.

'Code at https://github.com/HybridSystemsLab/hybridSST.

Example 6.1: (Collision-resilient tensegrity multicopter in
Example 3.1, revisited) The simulation result in Figure 1
shows that HySST is able to ultilize the collision with
the wall to decrease the hybrid time of the motion plan
for multicopter. The simulation for this problem takes 54.7
seconds and creates 2094 active vertices on average.

VII. CONCLUSION

In this paper, a HySST algorithm is proposed to solve
optimal motion planning problems for hybrid systems. The
proposed algorithm is illustrated in the multicopter example
and the results show its capacity to solve the problem. In ad-
dition, this paper provides a result showing HySST algorithm
is asymptotically near optimal under mild assumptions.
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