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Abstract—For a broad class of hybrid dynamical systems
with inputs, termed open hybrid inclusions, a general inter-
connection model and solution concept are introduced. This
model is employed to certify forward invariance of a set for
the interconnection. The forward invariance notion allows for
Zeno solutions and solutions that end prematurely — namely,
maximal solutions that are not complete. Sufficient conditions
for forward invariance of a set that are compositional and
involve a properly defined scalar-valued barrier function are
proposed. An example illustrates the ideas.

I. INTRODUCTION

Compositions of dynamical systems are prevalent and
emerge in a broad range of problems in science and engi-
neering. Systems interconnected in series (or cascades) are of
particular relevance to synchronization, cooperative control,
and networked control, which have received significant at-
tention in the literature, see, e.g., [1], [2], [3], to just list
a few. A particularly important property to guarantee for
networked dynamical systems is invariance of the resulting
interconnection. By defining a set of points K where the
evolution of the state of the interconnection should remain,
the problem to solve is as follows:

Given a set K, determine if it is forward invariant for the
interconnection, regardless of the value of the input.

Unfortunately, analyzing forward invariance for the full inter-
connection leads to conditions that depend on the entire state
and input of the interconnection. The conditions involved
from using such an approach are not local to each system.
Very importantly, the approach does not scale with the
number of systems in the interconnection.

Compositional approaches that certify forward invariance
of an interconnection from properties of the individual sys-
tems are more effective than those that study the intercon-
nection as a whole. A compositional approach to determine
safety via barrier certificates for a class of continuous-
time systems is presented in [4]; see also [5]. In [6], [7],
a compositional approach based on passivity is presented
to study and verify stability and safety of continuous-time
systems. Also exploiting dissipativity properties, the work in
[8] proposes abstractions of models of the systems involved
in the interconnection to certify and verify, in a compositional
manner, safety. In [9], and in the context of differential
inclusions, the authors employ assume-guarantee contracts
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to certify specifications for interconnections by exploiting
the properties of the subsystems. The work in [9] considers
assume-guarantee contracts for forward invariance and, using
tools from viability theory [10] — specifically, tangent cone-
based conditions — shows that invariance of an interconnec-
tion can be established using assume-guarantee contracts for
invariance. Also recently, in [11], the authors borrow ideas
from the small-gain theorem for continuous-time systems and
introduce the notion of compositional barrier certificates to
assure safety of an interconnection.

In this paper, we propose conditions for forward invariance
for interconnections that, as a difference to the work in the
literature, allow for the subsystems to have hybrid dynamics.
We consider hybrid dynamical systems within the framework
in [12], [13], which can model hybrid automata, impulsive
systems, differential inclusions, and difference inclusions
with constraints. In this framework, a hybrid system has a
state that can evolve continuously within a set called the flow
set according to a differential inclusion and, at times, the state
can jump instantaneously from a set called the jump set to a
value determined by a difference inclusion. Specifically, we
aim at the following:

1) Formulate conditions requiring local information of the

state and input, and

ii) Exploit (over) approximations of the range of output

values provided by the output of the systems connected

to inputs of other systems.
The conditions provided in this paper do not require checking
for solutions to the systems involved in the interconnection
— in fact, the conditions are infinitesimal. By extending
the notion of barrier certificate in [14] to the case of
interconnections, we formulate conditions that individual
barrier certificates need to satisfy at points where evolution
of solutions is allowed, relative to the flow and jump set, and
relative to the values that the outputs assigning inputs can
take when interconnected. Due to the generality of the model
considered, our results handle the more classical situation
when continuous-time systems and discrete-time systems are
interconnected, even under constraints.

_ _ w2
w = Uz Uy =Y Z Y2
] Ho _‘ Ho
L Y1
7, . " Hy wq

Fig. 1. Interconnections of hybrid systems: series (left) and parallel (right).

The remainder of the paper is organized as follows.
An overview of interconnecting hybrid systems, along with



a general interconnection model and the formal problem
statement, are provided in Section II. The notion of barrier
function and sufficient conditions for forward invariance are
in Section III. An example is presented in Section IV.

Notation: The set of real numbers is denoted by R, its subset
of nonnegative real numbers by R>(, the natural numbers
including 0 by N, the n-dimensional Euclidean space by
R™, and the closed unit ball in Euclidean space centered at
the origin by B. Given a set S, 'S denotes its closure, 0S
denotes its boundary, and U/(S) a neighborhood (open or
closed). Given z and y, (z,y) denotes their inner product.
Given a set S C R™ x R™, II(S) denotes the projection of
on its first component, i.e., {x € R" : Ju s.t. (z,u) € S },
A(S) the projection on the second component, i.e.,
A(S) = {u : JxeR"st (x,u) €S}, and, given
x € R", U(z,S) denotes the set of values u such that
(x,u) € S, ie, ¥(z,5) = {u : (z,u) €S }. Given a
set S C R™ x R™, a set K C R"”, and a neighborhood
of 0K, denoted U(JOK), define ®(S,K,U(OK)) :=
{(z,u) : v € (UOK)\ K)NI(S),u e ¥(x,S)}. The
operator @ collects all points = nearby K that are in the
projection of S to the space of x but not in K, along
with all the associated values for u. Given a function f,
f°(x,v) denotes the Clarke generalized derivative of f at
x in the direction v and rge f denotes the range of f, i.e.,
rge f = f(dom f), where dom f is the domain of definition
of the function f.

II. INVARIANTS FOR COMPOSITIONS OF OPEN HYBRID
SYSTEMS WITH LOCAL INFORMATION

A. Preliminaries

In this paper, we study interconnections of hybrid dynam-
ical systems. We employ the framework in [13] to model
hybrid systems with inputs. Following [13], the i-th hybrid
system in the interconnection is denoted by H;, has state
vector x;, input u;, and output y;, where i € {1,2,..., N}.
A model for H; is given by

(zi,ui) € C; &y € Fi(wi, ug)
Hi S (vi,wi) € D ] € Gi(wy,uy) (D
yi = hi(zi, u;)

The state x; can evolve as follows:

o Flow: z; is allowed to evolve continuously — namely,
to flow — when, for given input u;, the condition

(,Ti, ui) (S Ci

is satisfied. The set C; is a subset of the state and input
space. This set can include constraints that the state and
the input have to satisfy during flows. During flows,
x; changes continuously according to the differential
inclusion

& € Fi(xq, u;)
In simple words, given an input u;, the state z; evolves

continuously, with a velocity defined by F; when
(x4, u;) is in the set C;.

o Jump: The state x; might also experience instantaneous
changes — namely, jumps. Jumps are allowed when the
condition

(Ii, UZ) eD;

is satisfied. The set D; is a subset of the state and input
space. Similar to Cj;, the set D; can include constraints
that the state and the input have to satisfy for jumps
to occur. When a jump occurs, the new value of the
state, which is denoted x;r, is assigned via the difference
inclusion
:ZT:r S Gl(xz,ul)
In other words, the state x; is instantaneously reset to
a value given by G; when (z;,u;) belongs to D;.
The output of #; is defined by the function h; as
yi = hi(zs, u;)
The hybrid system model H; is defined by the data
(Ci, Fi, Di; Gi, hz), where

C R™ x R™ is the flow set,
:R™ x R™ = R™ is the flow map,

e C

o I

e D; CR™ x R™ is the jump set,

o G;:CR™ xR™ == R" is the jump map, and

o h;:R"™ x R™ — R"™ is the output map.

Since F; and (; may give rise to a differential inclusion
and a difference inclusion with inputs, respectively, we refer
to H; as an open hybrid inclusion. The data of H; is
(Ci, F;, D;, Gy, h;). When it is important to denote the data
of H; explicitly, we write H; = (Cy, Fi, D;, G;, h;).

In this paper, solutions to H; are given in terms of pairs
of hybrid arcs and hybrid inputs on hybrid time domains;
see [12], [13]. In Section III, a notion of solution for the
interconnection of hybrid dynamical systems is presented.

B. General Interconnections and Problem Formulation

We consider an interconnection of N hybrid dynamical
systems, in which each system is modeled as an open hybrid
inclusion. Specifically, for each i € V := {1,2,...,N},
the ¢-th hybrid dynamical system in the interconnection is
given by H; as in (1), with data (C;, F;, D;, G;, h;). The
interconnection between the N hybrid dynamical systems in
the family

{Hi = (Ci, Fi, Di, Gi) }iep

is determined by the interconnectivity graph

I'=(W,&,G,{vi,sitiev)

The set £ collects the edges given by pairs (¢, k) indicating
that the output of H;, is connected to the input of H,. The
matrix G is the adjacency matrix. Its (¢, k)-th entry g is
equal to one if (£, k) € £. (Note that (V,&€,G) defines a
directed graph.) Without loss of generality, the function ¢;
assigns the first s; components of the input of H; using the
output of the systems that connect to it, namely,

ui = (0i ({Yrteen)) »wi) )

where N (1) is the set of indices corresponding to the neigh-
bors that are connected to #; and w; are the components



of the input w; that are not assigned via ¢;. The pair
({Hi},cy ') defines the interconnection, which is denoted
Hinl'

A hybrid model of the interconnection H™ is given by

(x,w) e C &€ F(x,w)
H™:{ (r,w) € D T € G(a,w) (3)
v = h{z, w)

where @ = (x1,22,...,2y) € R™ is the state with n =
Zf\;l ni, w = {w; bicy: s;<m; € R™> collects the compo-
nents of the inputs of each system that are not connected to
outputs of other systems — namely, w; € R™wi is the vector
of inputs of H; that are unassigned, in which case s; < m;
—and y € RP is defined by the function h which collects the
desired outputs of the individual systems.

To define the data C, F, D, and G of H™, a rule (or
semantics) for flows and jumps of the individual systems
needs to be formulated. In this paper, we employ the follow-
ing interconnection rules:

1) For a solution to the interconnection to flow, all sys-

tems in the family {#;},.,, should be able to flow,
i.e., for each 7 € V, the flow conditions imposed by
H,; need to be satisfied;
2) A solution to the interconnection jumps when at least

one system in the family {#;},.,, is able to jump,
i.e., these exists 7 € V such that the jump conditions
imposed by H; are satisfied.

Following these interconnection rules, the flow map of H™

is given by

F(z,w) == (Fy(z,w), Fy(z,w),..., Fy(z,w)) (%)
where I (x,w) = Fy(x;,0; ({yk}keN(i)) ,w;) with y
being the output of H, which depends on the state z;, and

the input u (which, in addition, depends on the assignment
(2)). The flow set C' is given by

{(z,w) : (xi,u;) € C; Vi €V, u; as in (2), 5)
w = {w;}iev: s;<m;}
The jump set D is defined as
{(z,w) :F €V : (x;,u;) € D;, u; as in (2), (6)
w = {w; }iev: s;<m,}
and, at each (z,w) € D, the jump map is given by
G(z,w) == U G, w;) @)
i€V

where G; : R x R™w:i = R™ is nonempty on

{(@i,wi) -

and empty elsewhere. To properly reset the component of x
associated to the state of system that jumps, the i-th entry
of G; is equal to G;(zi, v; ({yr}renrs)) » wi), and, for each
ke V\ {i}, its k-th entry is equal to z.

To define the notion of solution for H™ in (3), we
introduce the following objects.

(:I:iu ul) € Diu (ui7 wl) satisfying (2) }

Definition 2.1 (hybrid time and domain): A compact hy-
brid time domain is a set of the form
J—1
o= (Itotin] < {1}) ®)
i=0
where J € N, and 0 = tg < t; < --- < tj. A hybrid time
domain is the union of a nondecreasing sequence of compact
hybrid time domains Fy C EFo C E3 C .... Each element
(t,j) € E denotes the elapsed hybrid time, which indicates
that ¢ seconds of flow time and j jumps have occurred.

Definition 2.2 (hybrid input): A function w : domw —
R™w is a hybrid input if domw is a hybrid time domain
and if, for each j € N, the function ¢ — w(t, j) is Lebesgue
measurable and locally essentially bounded on the interval
Il :={t : (t,j) € domw }.

Definition 2.3 (hybrid arc): A function x : domxz — R"
is a hybrid arc if dom x is a hybrid time domain and if, for
each j € N, the function ¢ — z(t,7) is locally absolutely
continuous on the interval 7.

We are ready to introduce a notion of solution for H™.

Definition 2.4 (solution to H™): A hybrid input w and a
hybrid arc 2 define a solution (z,w) to the hybrid system
H™ in (3) if
(S0) (2(0,0),w(0,0)) € C or (x(0,0),w(0,0)) € D, and

domz = domw (= dom(z,w));
(S1) For each j € N such that I

() has a nonempty

interior int(I(jz_u)), t— (x(t,j),w(t,j)) satisfies

(x(t,5), w(t,j) €C forall t €int(l}, )
and
d . . . j
Zo(t.d) € Fa(t,j), w(t,j)  for amostall t € I, )

(S2) For each (t,j) € dom(x,w) such that (¢,7 + 1) €
dom(z,w), (t,7) — (x(t,7), w(t,j)) satisfies

((t,j), w(t, j)) € D

and
a(t,j+1) € G(x(t, j), w(t, j))

A solution pair (z,w) to H™ is said to be complete if
dom(z,w) is unbounded. It is said to be maximal if there
does not exist another pair (x,w)" such that (z,w) is a
truncation of (x, w)’ to some proper subset of dom(z, w)’. A
solution (z,w) is Zeno if it is complete and the projection
of dom(z,w) to R>( is bounded. For more details about
solutions to hybrid systems with inputs, see [15], [13].

To formally state the problem to solve, we introduce
the following forward invariance notion of a set for the
interconnection H™ in (3).

Definition 2.5 (uniform forward pre-invariance): Given a
hybrid system H™ as in (3), a set K C R” is said to be
SJorward pre-invariant for H™ uniformly in w if for every
solution pair (z,w) with 2(0,0) € K, the state component
x satisfies x(t,j) € K for all (t,7) € dom(x,w).

Remark 2.6: The term “pre” in uniform forward pre-
invariance is included to capture the situation when maximal



solutions from K are not complete. When maximal solutions
to ‘H™ from K are complete, then forward pre-invariance
becomes forward invariance.

Following the problem outlined in Section I, we are ready
to state the problem to solve.

Problem (x): Given an interconnectivity graph I', a family
of dynamical systems

{Hi = (Ci, Fi, Di, Gi) }ieyp
and a collection of sets {K;};cy with

K; Cc R™ Viey
defining sets to render invariant for #;, determine local
conditions at each agent guaranteeing that the set

K=K xKyx...xKpn )

is forward pre-invariant for the interconnection H™ in (3)
uniformly in w.

III. SUFFICIENT CONDITIONS FOR INVARIANCE OF
INTERCONNECTIONS USING LOCAL INFORMATION

To formulate sufficient conditions that solve Problem (x),
given information about the possible input values for each
system, we define an over approximation of the output sets
Y; for each system in Section III-A. Using these sets, and
in that same section, we characterize the range of solution
pairs to H,; and H™. The proposed sufficient conditions are
given in Section III-B.

A. Definitions and Properties of Solutions

For each 7 € V, and with ¢; defining (via (2)) the assign-
ment of the input u; of H; using the output of its neighbors
{Hr}rens)» we denote by Yj an over approximation' of
the set of output values that the solutions to ;. can attain,
which is denoted Y*. With this information, we define C;
and D; as the effective flow and jump sets for H; as follows:

o We define the set Z¢ collecting the values of u; that,
through the assignment in (2), are possible during flows
in light of the effect of the outputs of the systems that
are connected to H;, namely, {H }renri). This set is
defined as

T¢ =

{us = @i wi) € A(C) i € 01 ({(Tihewn) )

where u; represents the input components of u; that are
assigned through ;. Then, the effective flow set for H;
resulting from the interconnection is

Ci=C;N(R™ x IY) (10)

'Note that the inputs of #j may depend on the values of the output
of other systems, which may include #; if the interconnection assignment
includes feedback.

o The set Z¢ collects the values of u; that are possible
at jumps of H; under the effect of the outputs of
{Mr}reni)- We define this set as

T =
{Ui = (ui,w;) € A(D;) = U; € @ ({i}k}keN(i)) }

Then, the effective jump set for H; resulting from the
interconnection is

D; = D;N (R™ x IF) (11)

For series interconnections, the definition of the effective
flow set C; and jump set D; is explicit and these sets can be
constructed sequentially, starting from the first system that
is in series, and continuing down the interconnection. For
interconnections with feedback, the definition is unavoidably
implicit and typically requires to solve for these sets simul-
taneously.

Remark 3.1: When the possible values of the output of the
k-th neighbor to H; are known, then Y}, can be choser/l\ to be
equal to Yj. Without any such information, the set Y} can
simply be chosen as R"*. A smaller choice for Y;, might be
possible if one is able to identify a set including all possible
values attained by the output of ;. Such a potentially
smaller choice than R may lead to smaller effective flow
and jump sets, C; and D;, respectively. Reducing the size
of these sets is beneficial for the forthcoming sufficient
conditions for forward invariance. Such information can be
obtained from knowing the data of each system and the inter-
connection assignment. In applications, logging the evolution
of the output of the systems and employing reachability tools
can aid in obtaining such information.

The following result characterizes the range of the solu-
tions pairs to H™ in (3) in terms of the sets C;, D;, and
Gi(D;). It follows directly from the construction of the sets
C; and D;, the data of H™, and the definition of solution in
Definition 2.4.

Lemma 3.2: Every solution (z,w) to H™ satisfies

rge(x, w) C (ﬂ EZ> U <U 51> (12)

i€V i€V

U U Gl(ﬁz) x A EiUﬁi )
(Y (@@= @un))
where the sets {C;}Yicy and {D;}icy are defined via (10)
and (11), respectively.

B. Sufficient Conditions using Local Barrier Certificates

This section presents sufficient conditions guaranteeing
forward pre-invariance of the set K in (9). The conditions
provided are in terms of barrier certificates, namely, state-
dependent scalar functions that are nonincreasing at points in
an outer neighborhood of the set K guarantee that solutions
cannot leave K. Inspired by [14], [13], we define the follow-
ing notion of barrier function candidate for interconnections.

Definition 3.3: (barrier  function candidate  for
interconnections) Given the family of hybrid systems



{Hi = (Ci, Fi, D;,G;)},cy» the interconnection graph
I = V,&,G,{i,si}icv), and the collections of closed
sets {K;}icy, the collection of functions {B;};cy define
a barrier function candidate for the interconnection
H" = ({Hi}iey,T) with respect to K in (9) if the
following properties hold: for each i € V,

2) For some open neighborhood U; of OK;, B; is locally

Lipschitz on (U;(0K;) \ K;) N1I(C}).

Remark 3.4: The condition in item 1 requires the exis-
tence of B; such that every point in the given set K is in
the zero sub-level set of B;, restricted to II(C; UD;). In turn,
for points in I1(C; U D;) but not in K;, the value of B; is
positive. Item 2 assumes basic regularity properties to be able
to take derivatives of B; in terms of the Clarke generalized
derivative, which is required to impose conditions that render
B; nonincreasing along solutions. Note that the conditions
in Definition 3.3 only depend on information available at
each agent; in particular, they do not depend on the effective
flow and jump sets C; and D;. However, to assure that a
barrier certificate guarantees forward pre-invariance of K,
information about the input to each system provided by the
neighbors can be exploited, as the following result states.

Theorem 3.5: (invariance of interconnections using bar-
rier functions) Given the family of hybrid systems
{Hi = (Ci, Fi, Di, Gi)} .y the interconnection graph T' =
IV, E,G,{¢i, i }iev), the collection of closed sets { K;}icv,
and the collection of functions {B;}icy defining a bar-
rier function candidate for the interconnection H™ =
({Hi};ey ) with respect to K in (9), the set K is forward
pre-invariant for H™ in (3) uniformly in w if the following
properties hold:* for each i € V,

B (xi, fi) <0 Vfi € Fy(zi,u), (13)
V(xi,ui) € Ci N ®(Ci, Ky, Us),
Bi(gi) <0 Vg; € Gi(wi,u;), (14)
Y(zi,ug) € 51 N (K; x R™),
Gi(zi,u;) C TI(C;) UTI(Dy) (15)

V(xi,ui) S .51' N (Kl X le)

where U; := U(OK;) and ®(C;, K;,U;) collects all points
x; nearby K; that are in the projection of C; to R™ but
not in K, along with all the associated values for u;; see
Notation in Section I

Remark 3.6: The effective flow set C; and jump set D;
enter (13)-(15) in a modular manner, as intersections to the
set of points at which the infinitesimal conditions therein
are to be checked. Due to the construction of the map P,
condition (13) has to be checked on an outer neighborhood
(of any size) around the set K;; see the interconnection in
Section IV. When B; is continuously differentiable, we can
replace the generalize Clarke derivative BY(z;, f;) by the

2Conditions (13)-(15) are written in terms of w;, but note that the
interconnection assignment in (2) is encoded in those conditions through
C; and D;, which, in turn, lead to w;’s collecting the unassigned inputs to

Hi.

inner product (VB;(x;), f;). On the other hand, to prevent
solutions from jumping outside of K;, condition (14) is
checked at all points in D; with state component that is in
K;, as long as is allowed by the interconnection assignment —
which is encoded by D;. Note that the intersection by C; and
D, reduce the set of points at which these conditions are to
be checked. As pointed out in Remark 3.1, these sets can be
reduced when information about the output of its neighbors
is available.

C. Establishing Uniform Forward Invariance

With forward pre-invariance of a set K (uniformly in w)
established for H™ using Theorem 3.5, one may want to
show that maximal solutions form K are complete, so that
K is forward invariance (uniformly in w); see Remark 2.6.
Showing that maximal solutions to H™ are complete can
established using results in [16], [17], which, in particular,
exploit the ideas in [12, Proposition 2.10 and Proposition
6.10] along with linear growth or boundedness of the flow
map. Note that the class of inputs w would need to be
restricted, due the difficulty of assuring viability of flows
in the presence of state constraints.

1V. EXAMPLE:
INTERCONNECTIONS OF TWO THERMOSTATS

We consider interconnections defined by coupling between
models of temperature of two rooms. The temperature of
each room is controlled by an independent thermostat sys-
tem. The temperature of the first room is denoted z; and
the temperature of the second room is denoted z. The
thermostat systems control the heater present in each room
with capacity z3 o > 0 and 22 A > 0, respectively. The
external temperature to each room is denoted by 2 ou and
22 out> respectively.

The hybrid systems 1 and # are identical and defined as
follows. For each ¢ € {1, 2}, the state of H; is x; = (24, ¢;),
where z; € R is temperature and ¢; € @ := {0, 1} is a logic
state that when equal to zero indicates that the i-th heater is
off and when equal to one indicates that it is on. The data
(Ci, Di, Fi, Gi, hl) of Hi is given by3

Ci={ri eRxQ
U{.’L‘iERXQ

© % > Zimin, ¢i =0 }
D2 < Zimaxs @i = 1 }) X Uj

—_ ] ) qi
Fi(wsu) = |7 I [UJ V(zi,ui) € Cy,
Di:{_xieRxQ ¢ % < Zimin, @i =0 }
U{z; ERXQ : 2> Zimax, @i =1 }
Gi(z;) = 555)} Vr; € D;

where U; C R defines the possible values for wu;, 0(g;) =
1 — q; toggles q; from zero to one when z; is smaller than
or equal the threshold z; min, and from one to zero when z;
is larger than or equal to the threshold z; max-.

3Since the input of H; affects the flows only, for simplicity, it is omitted
from D; and G;.



Consider the series interconnection depicted in Figure 1
(left) defined by the interconnection assignment

uyp = z2, U2 = 22 out (16)

This assignment represents the situation when the outside
temperature for the first room is equal to the temperature of
the second room (e.g., the first room is physically contained
in the second room). Following the model in Section II-B,
w = uy for the resulting interconnection H™, whose model
is given in (3) with N = 2. For given parameters z1 min <
Z1,max and 22 min < 22 max determining the desired range
of temperatures for each room, the objective is to deter-
mine conditions on Uy, Uz, 21 A, and z2 A to keep z1 in
[21,mins 21, max] and z2 in [22 min, 22,max) for all hybrid time
if the temperatures start within those ranges. This objective
consists of rendering the set K in (9) with N = 2 forward
invariant uniformly in w for the resulting interconnection,
where, for each i € {1,2},

K; = [Zi,min7 Zi,max] X Q C R x Q

and, to assure that every maximal solution to H™ from K is
complete.

To certify this property, consider the barrier function B; :
R x @ — R defined for each z; = (z;,q;) € R x Q as the
locally Lipschitz function

a7

B;(z;) := max{2; — 2 max, Zi,min — 2i }

To have B;(x;) <0 on K; and B;(x;) > 0 outside K, note
that
max{z; — Zi max, Zi,min — Zi} <0

if and only if 2; — 2j max < 0 and z; min — 2; < 0. This
condition implies that z; should satisfy z; min < z; and 2z; <
Zi max for z; to belong to K;, which, since g; is unrestricted,
leads to the set K; defined in (17). Hence, since C; U D; =
R x Q, {Bi}ieq1,2y is a barrier function candidate for the
interconnection.

Using the definition of C; and K;, pick U; = U(OK;)
with U(JK;) an open neighborhood of K,;. When ¢; = 1,
this open neighborhood leads to points in the z; component
that are in the set (2i max, Zimax + €) for some ¢ > 0,
and, at such points, B;(z;) = 2z; — Zimax. Similarly, when
q; = 0, and for the same value of ¢;, this open neighborhood
collects z; points in the set (2; min — €i, 2i,min ), and, at such
points, B;(z;) = 2 min — 2i- It can be shown by analyzing
the variation of B; along flows that B; is nonincreasing along
flows if

W < 22 max < Z1,max

’ ' } Yw e Uy (18)
W + 22, A > Z2,min > Z1,min — 21,A
which require Us to be a compact subset of R. Hence, since
C; C C}, (13) holds. Since the jump map G; is such that
z; remains constant at jumps, then B;(G;(x;)) = B;(x;) for
each z; € D; N K;. Then, for each point z; € D; N K,
B;(G;(x;)) < 0; hence, since D; C D;, (14) holds. Using
the same argument, it is straightforward to show that (15)
holds. By Theorem 3.5, K as in (9), with K; in (17), is
pre-forward invariant for #™, uniformly in w = 2z oy taking
values on a compact set Us on which the conditions in (18)

hold — note that U; can be taken to be equal to R. To assure
that every maximal solution is complete, we assume that w
belongs to the class of piecewise-continuous functions taking
values from Us. The conditions mentioned in Section III-C
hold due to fact that, for each i € {1, 2}, C;\D; is open, F; is
smooth, and the jump map takes points in the jump set back
to the flow set. Moreover, H™ does not have Zeno solutions
since the distance between G(D) and D is uniformly lower
bounded by a positive constant and F; has linear growth
(hence, no finite escape times are possible).

V. CONCLUSION

The proposed compositional sufficient conditions for for-
ward invariance of K in (9) employ a scalar-valued barrier
function for each system. In light of the constructions in
[14], they can be replaced by vector-valued barrier func-
tions to allow for K; to be given by the intersection of
finitely many sublevel sets of barrier functions. Future work
includes developing algorithms to approximate the output
sets Y; using over approximations of reachable sets given by
multiple Lyapunov functions. The work in [9] also provides
motivation to extend assume-guarantee contracts to encode
and reason about invariance properties of H™.
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