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1 | INTRODUCTION

1.1 | Background and Motivation

In recent years, there has been continued interest in state estimation and control over networks due to the growing viability
of low cost digital communication networks in settings and applications with deterministic constraints. The implementation of
such networks as a communication medium for control systems has posed challenges in controller and observer design when
the inherent characteristics and limitations of networks are considered. The problems posed by these challenges have given way
to the interdisciplinary field of Networked Control Systems (NCSs) that deals, specifically, with the problems posed by these
challenges, see” .

Network disturbances in the form of packet delays and dropouts can often degrade control system performance and may,
in some cases, destabilize the system if not properly accounted for, see’. Many of the constraints and disturbances intro-
duced by networks are circumvented with the implementation of deterministic friendly networking protocols (e.g., CAN-bus,
FlexRay, TTP, etc.), see’ . However, in cases were such protocols prove impracticable, a model-based design of the system with
assumptions on network disturbances may be the only approach. This paper addresses the latter scenario.

For the model-based design setting, we consider a continuous-time linear system, given by

z= Az

1
= Mz ey
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Figure 1 Block diagram of the networked plant-observer system with 7 > 6 > 0.

where z € R” is the system state and y € R” is the measured output. The matrices A and M are constant and of appropri-
ate dimensions. Now, consider a network-connected observer designed to generate estimates Z of the system state z utilizing
measurements y sampled and broadcast at random times 7,, k € 1,, !, where

1, ={2i+1:ieN} 2)
N denotes the set of natural numbers, i.e., N = {0, 1,2, ... }. Moreover, we assume the network experiences variable transmission
delays: the sampled measurements y(t,) are available only at random times ¢, k € 1, 2 where

1,:={2i:i€eN} 3)

See Fig. 1 for a block diagram representation of the proposed networked observer system.
The measurement sampling and arrival events are described by a strictly increasing unbounded sequence of instants {7, };?
where
0<t, <1V
TN <ty -1, , <T) VkeT, k>2 C))
0<t,—t, | <T? VkeIl, k>1
with 7, = 0. The scalars TIN and T2N define the minimum and maximum allowable transfer interval (MATI), respectively, while
T is an upper bound on the transmission delay and are such that T, > TN > T > 0.

The goal is to generate an estimate of the state Z € R”", using the measured output from the plant in an impulsive-type
Luenberger observer that is modeled after the algorithm presented in® . While the observer presented in” is a viable solution
for the scenario where the measurement output is aperiodic and instantaneously available, it is not robust to small delays when
the plant state grows unbounded. This point is demonstrated in Section A of the appendix where we provide simulations in
the measurement delay setting of the observer in? and a second observer that is a modification on the former. The lack of
convergence observed in the aforementioned examples motivate a hybrid observer design, with a clock synchronization scheme
to estimate the delay, that properly uses the information received even under the scenario of measurement delays.

As demonstrated by the preceding examples, the prime challenges to solve this problem are given as follows:

1. Aperiodic measurement broadcast events at unknown times: the event times at which plant measurements are sampled
and broadcast to the network for the observer are not known a priori. In addition, the time elapsed between each broadcast
event time instant is variable within a minimum and maximum allowable transfer interval.

2. Variable transmission delays: the network is treated as a non-ideal communication medium hence, it is subject to latency
delays that are also assumed to be variable. Similar to the aperiodicity of the broadcast event times, the time-elapsed
between between measurement broadcast and arrival is not fixed nor is it known a priori.

3. De-Synchronized network clocks: due to the variability in the broadcast and arrival times of measurements, consensus
between networked agents on the system time frame is necessary to maintain the temporal ordering of measurement
sampling events. However, imperfections in the dynamics and initialization of the clocks for each agent can lead to de-
synchronization and thus a lack of consensus on event ordering.

I'The even-odd indexing of measurement sampling and delay is an artifact of the proposed modeling scheme and is not a standing assumption. Its introduction facilitates
the trajectory-based analysis that follows in the main results of the presented work
2See Footnote 1
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1.2 | Related Work

State estimation and, in particular, feedback control in networked settings has received much attention over the years and has been
posed in a variety of problem formulations and scenarios. Initial works on the subject examined traditional settings of periodic
sampling and fixed delay, for which the system is treated as a time-invariant discrete-time system. Stability of the system can be
easily established by checking that the eigenvalues of the state transition matrix for the closed-loop system have magnitude less
than one. An example of such an approach is explored and argued in’ . However, the approach proves limiting in cases where
the delay in the system communication is variable and no longer deterministic.

The nondeterministic scenario, on the other hand, considers the problem of networked control system that exhibit periodic
sampling with variable communication delay or similarly, aperiodic sampling with fixed communication delay, see’ and?.
Results of such scenarios have been given from a variety of control theoretic disciplines. Discrete-time approaches via system
integration or tractable stability conditions using linear matrix inequalities (LMIs) have seen much popularity in the networked
control setting as exhibited in the works of”,”,” and the comprehensive treatment given in’ . For the state estimation and
observer design setting, see’ and”’ . The problem has also been formulated into a time-delay setting where Lyapunov-Krasovskii
functionals and Razumikhin-type methods are used to show system stability. Examples of such approaches are exhibited in*,?,
and’

Of particular interest, however, is the problem formulation in a hybrid systems setting that considers the continous dynamics
of the system between the impulsive events of measurement sampling and control actuation. General solutions using a hybrid
systems approach have been presented in the works of* and” where design conditions have been given to ensure system stability.
For the observer case we have the results of* and those of?,” , and” that give design conditions using linear matrix inequalities.

A related nondeterministic scenario that has received less attention, of which is the interest of this paper, is that of aperiodic
sampling and time-varying delay. The authors in’® consider a control system setting for such a problem utilizing a discrete-
time approach. They show that the system can be rendered stable using a Lyapunov function that considers both sampling and
measurement delay intervals that are assumed to be bounded. However, finding numerical solutions is only feasible for particular
restrictions on the interval bounds and proves to be intractable for the general case. By relying on a hybrid systems approach,
the joint effect of aperiodic sampling and time-varying delays in networked control systems has been studied in’ . Therein the
authors propose sufficient conditions to ensure suitable stability properties.The authors in? also present a solution to the problem
of aperiodic sampling and delay by giving a result that yields semi-global practical stability through a well-posedness property.
However, the viability of the solution predicates on a priori knowledge of the delay.

In the context of systems with mismatched clocks, the authors of? provide LMI design conditions to design a controller that
renders a plant with uncertain dynamics stable in a networked control setting where clock synchronization errors exist.

1.3 | Outline of the Proposed Observer Algorithm
Motivated by the challenges outlined in Section 1.1, we propose the following a new hybrid strategy for reconstructing the state
z:

e Measurements y broadcast at times ?#,, k € 1, are accompanied by a time-stamp Z,(¢;) = t,.

e When the subsequent measurements arrive at times 7,, k € 1, the current state estimate 2(¢,) is backward propagated to

Z(t,_y) via

2(t_y) = €M% 2(t,)

where 6, =1, — ¢,(t;_,) is the incurred delay.

o With the estimate 2(¢,) retrieved, the reset law in (A1) is applied, namely,
25 =2(t_) + L(y(t,_) — M2(t,_)))
= e M 2(t) + L(y(t_y) — Me % 2(1)))
where 2* is the value of the estimate obtained after the reset law is applied.

e The reset estimate Z* (t;_l) is then forward propagated to 7,

25 (1y) = e 2"
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Combining the above steps into a model as in (A1), the proposed hybrid observer law can be summarized as follows:

Z=Az Vi & {1}y
) (1) + e L(y(t))—Me™ 4% 2(1,)) Vi=t,, k € 1, 6))
Z =

k 2(t,) Vi=t,, k€ T,

Excluding the measurement output y, the proposed strategy relies on the accessibility to information on the delay interval 6,,
which assumes both plant and observer are operating on the same time scale. Therefore, in addition to the presented strat-
egy for generating state estimates, the observer incorporates a clock synchronization scheme, that guarantees finite time clock
synchronization, to ensure accessibility to the delay interval when the measurements are time-stamped.

The continuous and discrete nature of the proposed observer in addition to the interconnection of a clock synchronization
scheme, makes it an ideal candidate to model it as a hybrid system using the framework in? .

1.4 | Contributions

This paper proposes a hybrid observer interconnected with a hybrid clock synchronization scheme that estimates the state of a
linear plant over a network subject to latency delays. Building on the results in? , this paper introduces a hybrid system model
of an NCS that possesses the ability to capture aperiodic sensor sampling with communication delays and desynchronized node
clocks utilizing the framework presented in? . We emphasize that the variable delay in our setting is not known explicitly but is
estimated via the plant and observer clocks to reflect a more realistic NCS setting.

In particular, we present results that show the viability of our proposed solution by providing analysis on the asymptotic
attractivity of the system trajectories to a set of interest for a few scenarios. We first show the feasibility of our solution by
presenting results for the ideal case where there is no incurred delay in the transmission of the measurements and we assume
the observer clocks are synchronized. We then provide results with the incurred delay but we assume the clocks at the plant
and observer are synchronized. Finally, our third contribution is an attractivity analysis of the estimation error for the case
where clocks at the plant and observer are not initially synchronized but synchronize in finite time while being subjected to
measurement delays.

The inability to apply existing results to an NCS that considers the challenges outlined in Section 1.1, motivates the work
in this paper and constitutes a noted discrepancy in the existing literature. Moreover, we are not aware of any such result that
considers concurrency of the measured output via the inclusion of a clock synchronization scheme. This work is an extension
of our conference paper’ that builds on those previous contributions by establishing a set of required properties for the clock
synchronization inputs to the observer system. In addition to those properties, incremental results supporting the main contri-
butions have been given to provide direct comparisons between nominal and time-delayed solutions. Finally, we give full proofs
for each result, unlike the conference paper which did not contain any proofs therein.

The remainder of this paper is organized as follows: Section 2 presents some preliminaries on hybrid systems. Section 3
presents the problem we solve and the associated hybrid model of the system. Section 4 details the main results and Section 5
outlines several numerical examples.

1.5 | Notation

The symbol N denotes the set of natural numbers, i.e., N := {0, 1,2, ..}, N, denotes the set of natural numbers not including 0,
ie., Ny := {1,2,..}, R denotes the set of real numbers, and R, denotes the set of nonnegative real numbers, i.e., R, = [0, 00).
The notation R” denotes n-dimensional Euclidean space, while R™™ represents the set of n X m real matrices. Given topological
spaces X and Y, F: X =3 Y denotes a set-valued map from X to Y. For a matrix A € R™™, AT denotes the transpose of A.
The symbol |x| denotes the Euclidean norm of the vector x. Given two vectors x € R” and y € R™, (x,¥) :=[x" y' 7. Given
a symmetric matrix A, A,,,,(A) denotes the largest eigenvalue of A and 4,,;,(A) denotes the smallest eigenvalue of A. Given a
matrix A, |A| := max{ \/m : A € eig(AT A)}. For two symmetric matrices A, B € R"™", A > B means that A — B is positive
definite, conversely A < B means that A — B is negative definite. Given a closed set A C R” and closed set B C A, the projection
of A onto B is denoted by IT1;(A). Given a function f : R"” — R"™, the range of f is givenbyrge f :={y| I x withy € f(x)}.
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2 | PRELIMINARIES ON HYBRID SYSTEMS

We recall that a hybrid system H on R” is composed by the following data:
e aset C C R”, called the flow set;
e a set-valued mapping F : R” = R” with C C dom F, called the flow map;
e aset D C R”, called the jump set;
e aset-valued mapping G : R" =3 R” with D C dom G, called the jump map.

Then a hybrid system H := (C, F, D, G) with state vector x € R” written in its compact form is given by

{x €F(x) xeC
H (6)
xteGkx) xeD

Solutions to a hybrid system H, denoted ¢, are parameterized by (7, j) where ¢ € R, defines ordinary time and j € N counts
the number of jumps. The evolution of a solution is described by a hybrid arc on a hybrid time domain® . A hybrid time domain
is given by dom ¢ C R, X N if, for each (T, J) € dom ¢, dom ¢ N ([0, T] X {0, 1,..., J }) is of the form U;:O([tj, Ll X {7,
with 0 =1, <t; <t, <t;,,. Moreover, we use S;, to represent the set of all solutions to H.

A solution ¢ is said to be maximal if its evolution cannot be extended by a period of flow or a jump and complete if its domain
is unbounded. A hybrid system is well-posed if it satisfies the hybrid basic conditions in? - Assumption 6.5,

Let A C R"beaclosed setand |x| 4 := inf,¢ 4|x —y|. For a hybrid system that is well-posed, the closed set A C R" is said to
be: stable for H if for every e > 0 there exists 6 > 0 such that every solution ¢ to H with |¢(0,0)| , < 6 satisfies |@(, j)| 4 < €
for all (7, j) € dom ¢; attractive for H if there exists y > 0 such that every solution ¢ to H with |¢(0, 0)| , < p is complete and
satisfies lim, ;_, ., |¢(1, j)| 4 = 0; asymptotically stable for H if both stable and attractive for H; globally exponentially stable
for M if there exists positive scalars k, 1 > 0 such that every solution ¢ to H is such that [¢(#, j)| 4 < ke™*+)|p(0,0)| 4 forall
(t,j) € dom ¢. When inputs are added one has similar notions as long as every static solution for every input satisfies the same
properties. For more details on hybrid systems, see” .

3 | PROBLEM STATEMENT AND HYBRID MODELING

3.1 | Problem Statement
The problem addressed in this paper is as follows:

Problem 1. Given the linear time invariant system (1) 3 and positive constants 0 < T% < TIN < T2N , design a hybrid algorithm
including the hybrid observer in (5) such that the resulting closed-loop system H is such that 2(¢, j) — z(#, j) converges to zero
ast+j — oo.

To solve this problem, we employ the hybrid observer in (5). The design of this hybrid algorithm requires finding a proper
choice of the matrix L. To find such an L, we consider the LMI condition presented in® for which an algorithm is given to
solve. The hybrid algorithm proposed in this paper also includes provisions for a clock synchronization algorithm for the clocks
determining time for both the plant and the observer. Note that a solution to the problem given as a closed-loop hybrid system
H implies convergence of the state estimate Z on to the system state z. Formulating the problem and its associated solution in
this way allows for a set-based convergence analysis that accounts for all aspects the system i.e. communication strategy, clock
synchronization, delays, etc.

3.2 | Hybrid Model

Next, we define the hybrid model that provides the framework and solution to Problem 1. The model is constructed such that
the observer defined in (5) is recast with the dynamics of the network as a hybrid system with a set-valued jump map. Moreover,

3 An input may be considered provided that the input is continuous and locally bounded. However, the inclusion of an input would not substantially change the design
of the observer nor its analysis since the latter is performed on the estimation error coordinates resulting in the cancellation of the input term.
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Figure 2 Diagram of the observer H, and clock synchronization H, subsystems and their interconnection.

provisions are included to facilitate the inclusion of a clock synchronization strategy to ensure proper function of the hybrid
observer. To build such a model, we treated the observer and clock synchronization strategy as individual but interconnected
subsystems. Figure 2 describes such a system, where H,, is the plant-observer subsystem and H, is the clock synchronization
subsystem. With the chosen design of H, the system can be viewed as the interconnection of two hybrid subsystems.

To model the aperiodic measurement sampling of the plant, a timer variable 7, is used. Between measurement sampling
events the timer flows with dynamics given by 7, = —1 and when 7, = 0, the state 7, is reset to a value in the interval
[TIN ,TN]. The transmission delay is modeled by an additional timer z; with dynamics #; = —q. Here ¢ € {0, 1} is a discrete
variable used to control the dynamics of 7; such that the timer is active only following measurement broadcast events. More
precisely, ¢ = 1 denotes an active measurement in the network and ¢ = 0 denotes the absence of such a measurement in the
network. Thus, when 7, = 0, 7; is reset to a point in the interval [0, T?]and g is reset to 1. When 75 = 0, indicating measurement
arrival, 75 is reset to —1 and g is reset to 0. Having the timers 7, and 7; defined in this way, with the addition of g, enforces the
constraints defined in (4) for broadcast and arrival events.

Additionally, we let £, and #_ represent memory states that define the plant measurement data and associated timestamp,
respectively. The states 7, and 7, represent the global clocks for the respective plant and observer. The state y represents the
state variables for a clock synchronization algorithm.

Then, we define the state vector of the interconnection of the plant and the observer system H as x := (x,, x,) € X, X&), =: &
where X, i= (2, 2,7y, 75, 6,0, ;) € X,y Xy 1= (Tp, To, 1) € Xy with X, 1= R"XR"x [0, T)V]x ({1} U[0,T]) x {0, 1} X
R™ xR, and &, := R, X R, X M. The closed set M defines possible values of u. The flow map is given by

F (x)
F(x) := arra VxeC
( ) [Fb(xb7 Z7 fy? ffp)
where
F,(x,) = (Az, A%,-1,-4,0,0,0)
and

Fy(xp, 2,0, ¢,) i= (1,1, F(xy, 2,€ . €. ))
with F; governing the continuous dynamics of y according to a chosen clock synchronization scheme. The flow set C is defined
as C 1= C,NCy, where C, :=C, UC,, with C, and C, given by

C, ={xeX:ig=017=-1}
C, ={xeX:iqg=11¢€ [0, 791}

and C, is the flow set defined by the clock synchronization algorithm. The jump map is given by

G (X4, Tps Tp)
G(x) := A VxeD
0 [Gb(ﬁ, bt x| S
where G, is defined as
G (x,,7p) ifxe D, \ D,
G, (x,,7p) if x € D, \ D,
G, (x,,tp,T0) 1=13X, if x € D,\(D, UD,)

{x,,G(x,,7p)} ifxe€ D, nD,
{x,,Gy(x,,70)} ifx€ D, nD,

L
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for each x € D,

S
z
(TN, T)]
G (x,,7p)=| [0,T9] V(x,7p): X € D,
1
Mz
7p
_ . -
2+ (¢, — Me M0 ) z)
N
Gy(x,,70) = -1
0
Zy
L fTP i

for each (x,, 7o) such that x € D, , where
D, = {(xe& 7y =0,q=0}
D, =={xeX :73=0,g=1}
In the definitions above, G, and D,, respectively, define the jump map and jump set for the clock synchronization algorithm.

The resulting jump set is
D :=D,uD,
where
D,:=D, uD,
The hybrid system data above now define 7 as follows

H=(C,F,D,G) (7

Separating the clock synchronization from the system H, one has a subsystem that is comprised only of the plant, observer, and
network dynamics, denoted by
H,=(C,F,D,G, 8)

Conversely, the hybrid subsystem denoted by
Hb = (Cb, F[y Db7 Gb) (9)

models the clock dynamics and synchronization algorithm.
For several of the results that follow, we consider the hybrid system H, with D, = @. Observe that H, with D, = @ has data

G (x,, ifxe D
) - <C0’F0’Da UDa ’ l(xa TP) : i ) >
D,=f ! P Gylx, ) ifx e D,

,G

(Ca’ Fa’ Da Db=ﬂ a

3.3 | Properties of H

Definition 1. A solution ¢ € S}, is a nominal maximal solution if it belongs to the subset of maximal solutions defined by
Syt i={p €Sy, trgep, C {0,-1}} (10)

where ¢, is the 7; component of ¢. Additionally, we say that a solution ¢ € Sy, is a delay maximal solution if it belongs to
the subset of maximal solutions defined by Sﬁl =Sy, \ S

Qualitatively, one can interpret solutions belonging to S;‘{‘:m as a representation of the scenario where the measurements are
free of transmission delays. For a given ¢ € S;, , when the timer 7y expires (i.e., 7y = 0) the state jumps according to G. As a
consequence of (10), the 7; component of the respective ¢, solution is mapped to zero following the construction of G,. Then,
nominal maximal solutions jump from D, to D, , resulting in a subsequent jump with no flow between the two jumps.
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Remark 1. Definition 1 applies to both H, and H. Thus, we let S;P™ denote the set of nominal maximal solutions to H and
Sﬁl =S5, \ S;;" denote the set of delay solutions to H.

With the given definitions for the hybrid system 7 and its respective subsystems 7, and H,, the next two results establish
existence of solutions to H, and that every maximal solution to H,, is complete.

Lemma 1. The hybrid system M, with D, = @ satisfies the hybrid basic conditions in*-Assumption 6.5,
Proof. The following hold:

e (Al) in?-Assumption65 holds since C, and D, are closed sets.

e (A2) in?-Assumption 65 holds since F, is continuous on C,.

e (A3) in?-Assumption65 holds since G, b= is outer semicontinuous and locally bounded. Indeed, G, corresponds to a
=
continuous single-valued map on D, and D, and D, N D, = @.

Thus, H, with D, = {J satisfies the hybrid basic conditions. O
Lemma 2. The data (C,, F,, D,,G,) of H, with D, = @ and inputs (zp, 7,) is such that

1. G,(x,,7p,79) CC,U D, forall (x,,7p,79) : X € D,

2. F(x,) CT¢ (x,) forall (x,,7p,70) : x € C,\ D,
Proof. To prove item 1), pick x € D,

e If x € D, , since D, =@, then G ,(x,, Tp, 7p) = G(x,,7p) C D, C C,,

e If x € D, ,since D, =@, then G, (x,, 7p, 79) = G5(x,,79) C D, CC,

Therefore, item 1) holds.
To prove item 2), pick x € C, \ D,. The tangent cone Te (x,) is given by

R"XR" X Ryg X Ryg X {0} X R" X Ry, if x, € X!
R"XR"XR xRy, X {0} x R" X R if x, € X2
R*"XR" X Ryg X Ryg X {0} x R" X Ry if x, € &2
R*XR"XRyg X Ryg X {1} X R" xRy, ifx, € X2
R*XR" X Ryg X Ryg X {1} X R" X Ry, ifx, € &3
R"XR"X R,y x RX {1} x R™ X R, if x, € X¢

Te (x,) =3

L

where
X i={x,€X,:1q=0,7y=0,75=-1}
X2 i={x,€X,:1q=0,7y =0,T,)), 75 = -1}
X i={x,€X, 1 q=0,7y =T, 7, =-1}
Xti={x,€eXx, 1 q=11;=0}
X i={x,€X, 1 q=11,=T
X0 i={x,€X, 1 q=11,=(0,T9}
By inspection F,(x,) C T, (x,). Therefore item 2) holds. O]

Lemma 3. For every initial condition ¢ € C, U D, there exists, at least, a nontrivial solution ¢ to the hybrid system H, with
D, = @ and inputs (7p, 7,) such that {r : (¢, j) € dom (zp, 7))} is unbounded. Moreover, every maximal solution to H, with
inputs (zp, 7o) and D, = @ is complete.
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Proof. To prove completeness of solutions we consider the extension of ? » Proposition 610 £ the case of Hybrid Systems with inputs
as presented in” . Given that H,, satisfies the hybrid basic conditions, consider an arbitrary x, € C, U D, and recall the tangent
cone Tca(xa) from the result of Lemma 3. Since F, is independent of the inputs, by inspection, F,(x,) N Tca(xa) # ¢ holds for
every (x,, Tp, 7o) such that x € C,\ D,. Then, case (c) in® - Proposition 610 cap e ruled out since by item 1) Lemma 2 with D, = #,
G,D,) C C,UD,. Case (b) in?- Proposition 610 cap be excluded since by inspection F, is Lipschitz continuous on C,. Thus, each
¢ to H, with D, = @ and inputs (7, 7,,) such that {z : (¢, j) € dom ¢} is unbounded must satisfy case (a) in* - Proposition 6.10 7

Remark 2. For the closed-loop hybrid system H, the completeness of maximal solutions to the interconnection between H, and
H, depend on the hybrid system data that defines H,. See? - Proposition 2.10 3nq ? . Proposition 6.10 foyr details.

4 | MAIN RESULTS

In this section, results guaranteeing convergence of the estimation error € := z—Z to zero with the proposed algorithm are given.
First, attractivity is shown for nominal solutions through a comparison to the exponentially converging trajectories guaranteed
by the observer in” . Next, a Lyapunov-like approach is used to show convergence of delay maximal solutions to a set of interest
by comparing the observer trajectories of a delay maximal solution against those of a corresponding nominal maximal solution.
Finally, we present a result on the convergence of the estimation error to zero for the case where the plant and observer clocks are
mismatched but synchronize in finite time due to the inclusion of a clock synchronization algorithm such as the one in Example
5.2.

4.1 | Asymptotic attractivity for nominal solutions

In this section we show that the nominal maximal solutions to H,, are such that the estimation error converges to zero. We prove
this claim by showing that for a given set of parameters and initial conditions, the trajectories of the component 2 for H,, with
synchronized clocks inputs are equivalent to those for the hybrid model presented in? . To this end, let us consider the hybrid
system in® written in plant-observer coordinates, x, 1= (z,2,7y) € R2" x R.o

[ Az
F.(x,) :=|Az Vx, € C,
[ -1
[ z
G.(x,):=|2+LM(z—-2) Vx, € D,
[TV, TN

C = {(z.27) €R"XR"XRy, : 7y € [0, T}
D, :={(z,2,1) e R"XR"X R4 : 7y =0}

We denote this system as H, and represent it in a compact form as follows:

x, = F, eC
Hr Xy r(xr) Xy r (1 1)
xt€G.(x,) x, €D,
A simple analysis shows that the hybrid time of a generic maximal solution to H, is given by
U (11101 x 1) (12)

jeN
where
TN <t —1,<T)Y Vje{k>1:keN]
0<1 <T)
Following? , if matrices L and P = PT > 0 are such that

- LM)TeA Pt~ LM)- P <0 Yoel[T), TN (13)
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Figure 3 Plot of ¢" and ¢ solution trajectories.

holds for given T. 2N > TIN > 0, then the system H, has the set
A, :={(z,2,7y) € R"XR"X[0, T,V ] : z=2} (14)

globally exponentially stable. Prior to comparing the trajectories of 7, and H_,, note that {, resembles system 7{, with synchro-
nized clock inputs 7 and 7, for the case where T¢ = 0. However, as noted in Remark 9, the hybrid time domain of a solution
@"°™ to H, observes an additional jump in between periods of flow as demonstrated in Figure 3.

Remark 3. Condition (13) is in general hard to exploit directly from a numerical standpoint. Indeed, such a condition is non-
linear in the decision variables P and L and needs to be checked for infinitely many values, i.e., for all v € [TIN TN A
possible approach to deal with these two shortcomings is proposed in? . Alternative approaches to deal with the above mentioned
nonlinearity include the use of dualization lemma in”? .

Remark 4. Condition (13) is only sufficient for A, to be globally exponentially stable H,. Less conservative, yet computationally
more expensive, conditions can be established by relying on an approach similar to that in? .

Observe that x, is a strict sub-vector of x,. Thus, for a given initial condition ¢"(0, 0) for H,, an initial condition for 7, is
given by

$(0,0) = (¢,(0,0), ¢.,(0,0), $,(0,0). ¢, (0,0), e, O, 0))

Moreover, for given matrices A, M, and L of appropriate dimensions, constants 0 < TIN < T2N , one can pick solutions ¢" and
¢ to H, and H_,, respectively, observing the same jump times triggered by 7, = 0.

Using the above relationships between the two systems, in the result that follows, we establish attractivity for nominal solutions
by showing that ¢, = ¢’ and ¢, = ¢}. The proof of the result is segmented into two cases; the first addresses attractivity
for solutions to H, with initial condition ¢(0,0) € C, VD, or $(0,0) € {x € C,uD, : £, = Mz, fTP = 7p}. The
second address attractivity for solutions with initial condition ¢(0,0) € {x € Ca2 U Da2 1, F Mzl o # 7p}. A separate
proof for the second case is necessary to address the scenario of incorrectly initialized memory states that could lead to an
“incorrect” observer law update when a jump according to G, is triggered. To this end, we define sets W, := C, U D, and
W, ={xeC,uD, ¢, =Mz = 1p(0,0)} Then, solutions ¢ to H, with ¢(0,0) € W, U W, are referred to as
conventional solutions and solutions with ¢(0,0) € (C, U D,) \ (W, UW,) are referred to as non-conventional.

Proposition 1. Given hybrid systems H, in (11) and H, in (8) with D, = @ and input pair 7, = 7, such that {¢ : (¢,j) €
dom (zp, 7,)} is unbounded, suppose that there exists P = PT > 0 such that T. 2N , TIN , L, and M satisfy condition (13). Then,
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for T¢ = 0, each solution ¢ to H, with D, = §f and input pair 7, = 7, is such that
Jim 1t )l 4, =0
where
Ay = A, X ({=1}U[0,T9]) x {0,1} X R" x Ry, (15)

Proof. Pick solutions ¢" and ¢ with initial conditions ¢"(0,0) € C, U D, and ¢(0,0) € {(¢"(0,0),75,9,7,,7 TP) eC,uD,
¢, = Mz} such that

b, (1)) = &, (t,rs())) v(,j) € dom ¢
wherery : {j 1 (#,j) € dom ¢"} — {j : (#,j) € dom ¢} is a parametrization function that maps the jump index of a solution
¢" to H, onto the hybrid time domain of ¢ to H, for the same flow time ¢. This function selects the appropriate value of j to
accommodate for the additional jump observed in the solutions to H, due to the jump map G,.

There are two scenarios to be considered that are contingent upon the initial conditions of the solution, in particular, the initial
conditions for the memory states q’)f (0,0) and (bf (0, 0). We first consider the conventional case with ¢(0,0) € W, U W, and
then the non-conventional case ¢(0, 0) e(C,uD ) \ (W, UW,).

e Proof of Conventional Case

If ¢"(1,j) € D,, a jump according to G, is triggered. In particular, for ¢} one has
PL(t. ) = Pt j-1) + LM (¢ (2, j-1) — $5(2. j-1)) (16)
for each (t,j — 1), (¢, j) € dom ¢".
For the solution ¢ with ¢(0,0) € W, UW,, if ¢(t, j) € C, it flows according to F,. When a jump occurs at (¢, j — 1), two
solution behaviors are possible depending on whether ¢(1,j — 1) € D, or ¢(t,j — 1) € D,,. Namely,
a) Ifp(r,j—1) € D,, for ¢; one has
G:(1,)) = :(t,j — 1) a7
b) If ¢(r,j — 1) € D, , then

bt )) = st j— 1) + eA(To(t,j—l)—qﬁf,P(f,j—l))L(d)fy(t’J. —1)- Me—A(To(i.j—l)—dJ/,,, (t,j—l))d)i(t’j_l)) (18)

Now, since T¢ = 0 and (l)f (0,0) = 7,5(0,0), the delay term z,(t, j) — c[),/ﬂ (¢, j) in the expression for the update law in
(18) is zero at each jump accordmg to G,, that is, for all (I‘J,j) e {(t,)) € dom ¢: j € 1,}. Furthermore, ¢)f 0,0) =
M ,(0,0), thus ¢, (1,j) = M ¢,(¢, j) at each jump according to G, or for all (¢, j) € {(z,j) Edom¢: j € T, } Then,
(18) can be expresséd as

¢:(1.7) = d:(t.j=1) + LM (¢.(t. j-1) = ¢:(t. j-1))
Noting the equivalence to the expression in (16), we can express ¢ along jumps as a function of ¢/, as follows:
. PL(t,rg(j-1)) Vj€eT,
p:(t, ) =14 2 ,
try() V€T,
where 7,, and T, are defined, respectively, in (2) and (3). Now, given identical flow dynamics in z, Z, and 7, one then has
d)(ts .]) = (¢r(t9 r¢(.]))v ¢15 (t’ .])’ ¢q(t9 ])9 ¢fy(ts .])s ¢/TP (ts .])) V(ts .]) dom ¢
From the above expression and the definition of the set A, in (15) it follows that
(. ryGDy, = 16 DIy, V(. j)domg (19)
Now observe that by ? - Theerem 1 solutions to H, converge exponentially to .A,. This implies that
Jim 1)l =0
Therefore, combining the above expression with (19) gives:

i @t )l = Jim 16 re())]a, = 0.
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e Proof of Non-conventional Case
For solutions with initial conditions ¢(0,0) € (C, U D,) \ (W, U W,), namely those with d)f}_(O, 0) # M¢,(0,0) and
¢, (0,0) # 7,(0,0), there exists T* > 0 such that for all (¢, j) € dom ¢, t + j > T* implies ¢(t, j) € A,. Consider a
4
solution ¢ with initial condition ¢(0,0) € {x € c,uD, : £, # Mz, z,”TP # 75(0,0)}. Since T¢ = 0, $(0,0) € D, and
the solution jumps according to G,. In particular, at (¢, 1),
A(7(0.0—¢, (0,0 —A(r5(0.0)~¢,_ (0.0
(11, 1) = $:(0,0) + "0V OV (g, 0,0) = MOV 0P g0, 0))
with ¢, (0,0) # M ¢,(0,0) and ¢, (0,0) # 7p(0,0), ¢(z,, 1) may diverge away from .A,. The solution then flows in the
y p
interval [7;,1,] X {1} until ¢(z,, 1) € D, , when the solution jumps according to G,. In particular, at (,,2), ¢, (1,,2) =
Me,(t,,1) and 4)/{ (t5,2) = 7p(t,, 1) which means ¢(t,,2) € W, UW,. Thus, we can show that for some (¢, j) € dom ¢

suchthatt 4 j > T*, ¢(t, j) € W; UW,. Moreover, following the proof for the conventional case, the solution converges
to A,.

O

4.2 | Attractivity for delay solutions with synchronized clocks

With attractivity established for the nominal case, we now establish attractivity of the set A, for the delay case. to this end,
consider the Lyapunov function candidate from”® defined for every x, € X, as
V(x,) =e'er ™ Petine (20)

where € = z — 2 and P = PT > 0. Then, given ¢?(0,0) € C, U D,, we show that delay solutions ¢° € Sﬁl converge to the
set A, exponentially. Moreover, we show that function (20) evaluated along a delay solution ¢° for a given initial condition is
bounded by the Lyapunov function evaluated along its nominal counterpart ¢"°™ (see Proposition 3) and a bounded perturbation.
To facilitate the analysis in the result that follows, which establishes these properties, let ¢p°" = ¢7°" — ¢Z°" and (,b;:S = d)i — ¢§
denote the trajectories of the state error for the respective nominal (¢"°™) and delay (¢°) solutions.

To assist with the analysis between the two solution types, given a solution to H,, we define a reparameterization function
Sp given as follows:

o If$(0,0)0€C, UD,

) J Vjel,
Sp(f) 1= 4" :
j+1 Vvjel,

o If $(0.0)€ C, UD,,

. J vVjiel,
sp() =9, .
j+1 Vvjel,

The function s, allows to compare solutions ¢"" to H, and ¢’ to H,,.

Theorem 1. Given the hybrid system H, in (8) with D, = fJ and input pair 7, = 7, such that {z : (¢, j) € domr} is unbounded,
suppose that there exists P = P' > 0 such that Y, TV, L, and M satisfy condition (13). Then, for each T* € [0, T"], each
solution ¢ to H, with D, = @ and input pair 7, = 7, is such that
li j =
Jm (. )], =0

Furthermore, there exist positive constants a and # such that each ¢° € 5751 with D, = @ and input pair 7, = 7, satisfies

alg®(t, Dl g, <V (971, 1) S V(@™ 54())) + B0, /) "2, /) @
for each (¢, j) € dom ¢°, where ¢"°™ is a nominal maximal solution for the same initial condition to ¢° and G = Pl — I,

Remark 5. Prior to giving the proof of the result, we want to note the implication of this result for the original system and the
proposed observer given in (1) and (5), namely, that this result establishes convergence of the state estimate Z on the system state
z when the observer is subjected to delays in the measurement. Furthermore, this result gives a relationship in the convergence
rate of the observer between the network settings when the measurements are and are not subject to a delay.
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Proof. Given matrices A, L, and M of appropriate dimensions and positive scalars T¢ < TN < T}V, Pick a solution ¢° with
initial condition ¢°(0,0) € {x, € C,uU D, : ¢, = Mz} and its nominal counterpart ¢"*" for the same initial condition and
identical 7, trajectories, i.e., qb'r‘zm(t, j)= ¢fN (,j) for all (¢, j) dom ¢°. Consider the Lyapunov function candidate (20). Then,
o V1, 54()) 1= V(™M1 54())) V(2. j) € dom ¢’

Vo)) 1= V(@°(t. ) v(t,j) € dom ¢’
Noting the relationship between ¢"°™ and ¢° as established in Proposition 3, let ¥°(z, j) be expressed as a perturbation of
Vrom(e, s4(j)), i.e.

V(t,)) =V (@™, s5()) + p(t,j)  V(t,j) € dom ¢’

Since
P =) VepeT = ) (15.0,1x )
je{2k:keN}
when the initial condition is in ¢, vD, where t? = min{t: (¢,j) € dom ¢’} (see Proposition 3 for more details).* The

quantity p(t, j) is given by,
ot ) = V($°(1, ) = V(™" (t, 54()) V(. )) €T,
’ 0 VL) ET,

where

o= U (e,0xu)
JE{2k+1:keN}
Observe that for each x, € C,, (VV(x,), F,(x,)) = 0, therefore p remains constant during flows and can instead be expressed
by its value at jump times as follows:

V@, ) = V@, s () YLD ET,
p(t,j) = ¢ ,
0 v, j)ET,

Before p is expanded further, observe that nominal solution following jumps according to G, can be expressed in a compact
form via parameterization function sd,(j). That is, for each (¢ I Sd)( j—=1),( I s¢( j)) € dom ¢?, one has

B (1,90 550)) = B (14,00 550G =1)) = (D17 (11,0 55G=D)+LM (17 (1, 54G=1)) = 2™ (1, 5,G-D) ) )
= (I=LM)¢$™™(t, ), 5,(j-1)
For the same jump index j, that is, following each (7,,,, j) € 7}, the delay solution qﬁf is given by
Ser N — 48(s Sop
Gt ) = 425, j-1) = $21;, j-1)
ateach (t,,j — 1), (¢,,j) € dom ¢° for all j € T, . Then, substituting the expressions into p leads to
J J m g p
p(t, ) =V (°(t;. ) = V ("™ 1))
= @21}, =10, J-DBL(t;, J=D=¢" )0 5, G~ U-LMYT O}, 5,i-DIT-LM)G™™ 1, ;). 5,(j-1)
where Q(t, j) := eA ") PeAT~(t))_Then, since ¢"™(z, j) = ¢°(z, j) for all (1, j) € T;, we make the appropriate substitutions
to get
P ) = B0 55G=D)T ()0 = D=-(T=LM)T O 55, G=DIT=LM) )8, 54 G-1)

Thus allowing p to be bounded as follows

|p(t, DI < PGty 5 G=DNT G )0 55 (= 1) (22)

where
f:= max A (f‘ W PeA™N )| I-(I-LM) (I-LM))|

ey€l0 TN T

“Recall that for a given solution ¢ to a hybrid system 74, 1; represents the jump times of the solution defined as #; := min{z: (7,/) € dom¢}.
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Figure 4 A sample plot of the function V' evaluated along the trajectories of ¢™™ and ¢°.

which exists due to continuity of the matrix exponential. Then, one has
V= 4 V(@ 5,00) +olt) VD ET,
’ V(™" (1, 54()) V(t.j) €T,

In particular, one has

ald® (@, )|, V(7. 0)) SV ("W 540))) + (2, )) (23)
where
a = min A, (e’ Pet)
vel0,T;]

Now, since p(#, j) decays to zero in the limit due to (22) and ¢"™ (2, s4(j)) converges to the set A" via Proposition 1, then by
the relations in (23) solutions ¢° also converge to the set A,

Now we consider the case in which ¢? is such that ¢°(0,0) € C,, U D, . Namely, ¢° is a solution that begins with a period
of flow modeled by the measurement delay dynamics or jump due to the impulsive observer dynamics, the result follows from
similar steps with ¥9(z, j) and p(t, j) given by

P V (¢rom(, s¢(j))) +pt,j) YVt j)ET
Ve, j) =
V (o1, 5,())) V@, j) €T,
where
ot ) = V(@21 ) = V(™™ (1 s4()) Y.J)ET,
’ 0 V) ET,
O

Figure 4 illustrates the evolution of the function V" along the trajectories for the two solution types. From the same initial con-
dition, both solutions flow together. Then the solutions separate with the nominal solution (blue) decreasing upon measurement
retrieval and the delayed solution (red) diverging due to the measurement delay. After some hybrid time, the delayed solution
retrieves the delayed measurement and converges with the nominal solution. Example 5.2 illustrates Theorem 1 in Section 5.

4.3 | Attractivity for delay solutions with clocks that synchronize in finite time.

In this section, we present our results for the case where the clock inputs 7 and 7, to H, are not necessarily the same initially,
but eventually synchronize in finite time (see Remark 7). The first result establishes attractivity to A, for H, with D, = @ and
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input pair (7p, 7,) satisfying conditions such that solutions to {, are complete and the input pair synchronize in finite time.
In the result that follows, we show attractivity to a set of interest for the full hybrid system H with conditions on the clock
synchronization subsystem 7, such that the solutions to { are complete and the clock inputs to the subsystem 7, synchronize
in finite time.

In what follows, we will distinguish between solutions to }, and solutions to { by denoting

¢, € SHa
and

¢ € Sy

Proposition 2. Given the hybrid system H_ in (8), suppose that there exists P = PT > 0 such that T2N , TlN , L, and M satisfy
condition (13). Then, for each T? € [0, TN] and each input pair (zp, 7)) to H, satisfying

B1) {t : (t,j) € dom (7p, 1)} is unbounded, and

B2) there exist T* > 0 such that
TP(t’ .1) = To(t’ ./)
for all (¢, j) € dom (7p,7,)} Witht + j > T*

each solution ¢, to H,, with input pair (zp, 7) and D, = @ is such that
1. {t : (t,j) € dom ¢,} is unbounded, and
2. 1m0 1@t DIy, = 0.

Proof. To prove item 1), we proceed by contradiction. To this end, suppose there exists a solution with input pair (zp, 7o)
satisfying B1) and such that 7 := {¢: (¢, j) € dom ¢,} is bounded. The existence of such a solution implies that either

a) ¢, is non-Zeno and dom ¢, is bounded and in particular (T', J) := sup dom ¢,. This further implies that either
a.l) (T,J —1)edom¢,and ¢,(T,J) & C,U D, or;
a.2) the solution ¢, reaches a point in C, \ D, from which flowing is not possible.

or

b) ¢, is genuinely Zeno, i.e. complete and with sup, dom ¢, < oco.

Case a.1) does not happen due to (7p, 7)) satisfying B1) and, by Lemma 2 item 1), G, cannot map points in D, outside of C,UD,
with D, = (J. Moreover, a.2) does not happen since (zp, 7)) satisfies B1) and, by Lemma 2 item 2), F,(x,) C T, c, (x) for each x,
such that x € C, \ D,. Case b) does not happen since (7p, 7)) satisfies B1); moreover, each flow interval is lower bounded by
TlN (see Remark 8). Therefore, it must be the case that the solution ¢, to H, with input pair (zp, 7y) satisfying B1) is such that
{t : (t,j) € dom ¢,} is unbounded. This contradicts our assumption that {z : (¢, j) € dom ¢,} is bounded and concludes the
proof of item 1).

To prove item 2), pick a maximal solution ¢, € Sy, with input pair (7p, 7o) satisfying B1) and B2) with D, = ¢. By item
1), {t : (t,j) € dom ¢,} is unbounded. Moreover, by Lemma 2, ¢,(t,j) € C, U D, for all (¢, j) € dom ¢,. Now observe,
for t + j > T, the conditions in Theorem 1 are satisfied since condition (13) is satisfied and the inputs (zp, 7) satisfy B2).
Therefore, by Theorem 1, item 2) holds. O

Theorem 2. Given the hybrid system H in 7, suppose that there exists P = PT > 0 such that T,¥, TV, L, and M satisfy
condition (13). Suppose further that the subsystem H,, in (9) is such that

1. every maximal solution ¢ to H is complete, and
2. condition B2) in Proposition 2 holds;
Then, for each T¢ € [0, T,"], each maximal solution ¢ to H is such that
li D 4 =
i (. )], =0

where A 1= A, XR,( X R 5 X M.
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Figure 5 The evolution of the estimation error with respect to hybrid time. The vertical dashes represent the resets of Z according
to 2% in (5).

Proof. Pick a maximal solution ¢ to H. By Lemma 2, d)xa(t, j) € C,u D, for all (t,j) € dom ¢ since ¢ does not escape in
finite time. For t + j > T, the conditions in Proposition 2 for the hybrid subsystem H,, are satisfied since (13) is satisfied and
H, renders ¢, (1,)) = ¢, (1, ) forall  + j > T*. Then by Proposition 2, lim, ;_,, |p(t, j)l 4 = 0. O

Remark 6. Observe that this result builds on the design of the nominal system H , for synchronized clock inputs by interconnect-
ing it with H, representing a finite time clock synchronization algorithm (see Remark 7) that satisfies the conditions in Theorem
2. As noted in Section 1.2, the authors of*> provide LMI conditions that renders a similar observer-based networked system with
variable delays, stable for a bounded clock synchronization error. However, as the authors note in their results, the design of the
observer and controller gains to satisfy the associated LMI conditions are not straightforward. We remind the reader that our
approach uses a tractable LMI condition (13) (see algorithm in” ) and a finite time clock synchronization algorithm for which
several solutions exist.

Remark 7. Concerning the existence of finite time clock synchronizations implementable in H, we point the reader to the IEEE
1588 precision time protocol design for networked control systems in’ and firefly-based algorithms as given in® both of which
guarantee synchronization in finite time. Moreover, in” , a hybrid modeling formulation of the IEEE 1588 is presented for which
synchronization guarantees are formally proven.

5 | EXAMPLES

Example 5.1. Recall the system data from the motivation example in Section 1.1, A =1, M = 1, L = 1 — ¢~ with constants
T]N = TZN = 1. Then, let T = 0.2. Simulating the system H_, with synchronized clock inputs 7 and 7, the estimate converges
even in the presence of measurements delays as shown in Figure 5. Recall that this was not the case in the example presented in
the introduction. >

3Code at github.com/HybridSystemsLab/HybridObsScalarPlant
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Figure 6 Plot of the error on the state components (left) and of V' (x) evaluated along the trajectories of ¢"™ and ¢° (right) for
synchronized clocks from Example 5.2. Furthermore, a plot of the bound from (21) plotted in black.

. . . 01 . L
Example 5.2. Consider an oscillatory autonomous system given by A = [ | 0] and matrix M = [1 O] with timer bounds

T = TIN = 0.2, TQN = 1. Using the design algorithm outlined in? for the given parameters, the gain matrix is given by
L =[1.0097 0.6015] .

Starting with the case of synchronized clocks, i.e. ¢(0,0) € C; U D, such that d)rp 0,0) = d)TO (0, 0), Figure 6 depicts the error
in each state component for ¢™™ and ¢ and shows the norm of the error for the two solutions, in addition the bound in (21) is
plotted to demonstrate the asymptotic attractivity of ¢°.

As discussed in Section B, the two trajectories flow together from the initial condition, at the first jump the error on the
estimate for ¢"™ decreases due to the measurement arrival at broadcast while ¢° continues flowing. At the next jump the error
for ¢° decreases due to the arrival of the delay measurement and then resumes flowing with ¢"o™.

For the case where the clock nodes are not synchronized i.e. ¢(0,0) € C; U D, such that ¢rp 0,0) # d)TO (0, 0), consider a
simulation of the full system H where H, is a model representation of a Sender-Receiver protocol, see’ for details on the model.
Figure 7 presents the error norm trajectories and displays the error in the components for both ¢™™ and ¢°.

In both figures, the trajectories flow together from the initial condition, at the first jump the estimation error for ¢"°™ decreases
while ¢° continues flowing. In the sequence of jumps that follow, the error on the estimate of ¢"™ converges to zero. The error
on the estimate of ¢° however, increases until the clocks are synchronized as marked by the dashed line denoted ‘sync’. In the
jumps that follow from the synchronization point, the error estimate of ¢ converges toward zero.

Example 5.3. To demonstrate the flexibility of the system to account for a scenario of drifting clocks, consider the same system
from the previous example but with a drifting observer clock i.e. 7, = 1 4+ y where y = 0.001. In Figure 8, the error norm of
the two trajectories for the simulation is given. Note the periodic synchronization of the plant and observer clocks prevents the
drift in the observer clock from adversely affecting the norm of the error on the estimate for the delay solution.®

6 | CONCLUSION

In this paper, we modeled an NCS with aperiodic sampling and network delays in a state estimation setting, using the hybrid
systems framework in® . We proposed a modified state estimation algorithm for such a setting and a method to include a clock
synchronization scheme. Results were given to show the model’s equivalence to an NCS with aperiodic sampling and no network

%Code at github.com/HybridSystemsLab/HybridObsPlanarPlant
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Figure 7 Plot of the error on the state components (left) and of V' (x) evaluated along the trajectories of ¢"°™ and ¢° (right) for
the case of initially mismatched clocks 7, and 7.

delay. Results were also provided regarding its asymptotic attractivity to a set of interest in the presence of network delays and
initially mismatched clocks that eventually synchronize. Numerical results validating the theoretical findings were also given.
Future works include a thorough analysis of the effect of measurement noise.
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APPENDIX

A MOTIVATIONAL EXAMPLES

To show this, consider the impulsive observer,

=A% Vi g {1, )5
BH)= 2(t)+L(y(t,_)—-M2(t,)) Vi=t,, k€1, (AD)
k 2(1,) Vi=t, k€ I,

where L € R™" is a gain matrix designed according to the algorithm in® such that the estimation error € := z — 2 converges
to zero.

Now, consider the scalar example from”® given by the following system data: A = 1, M = 1 with chosen constants T, = T, = 1
and L = 1 — e™! designed such that the conditions outlined in® are satisfied. Then, let T¢ = 0.2. Simulating the observer in
(A1), Figure A1 shows that the norm of the estimate error € = z — Z for the given data diverges due to the small delay introduced
on the measurements. The observer proposed in this work solves this problem.
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Now suppose the measurements y(z,) are accompanied by a timestamp Z,(f, ). Then, consider the observer from (A1) modified
such that only instantaneous measurement arrivals are used and those that have incurred a delay during transmission are ignored
by the observer

2= A% Vi ¢ {1}
2Ty Vkel A2
2(t:) — zZ ( k) d ( )
) Vkel,

where

Z(t;) if Z,(t,_)) # 1,
Note that for this observer scheme, a local clock at the observer synchronized with the plant clock is necessary for the algorithm
to identify the delayed measurements. Even then, this observer does not reconstruct the state for all scenarios.

In fact, consider the same system data as above, namely A=1, M =1, L =1 - e~! with constants T, , =T, = 1. Then, let
T¢ = 0.2. Simulating the observer in (A2), at times t € {z, }ro, the estimate is corrected and the error decreases, but when the
measurements are delayed then the estimate provided by the observer does not converge. Figure A2 shows the behavior of the
norm of the estimate error € = z — 2 under such a scenario. The observer proposed in this work also solves this problem.

2t = {ﬁ(tk)+L(y(tk_1)—M2(tk)) if2,t,_) =1,

B PROPERTIES OF H, FOR SYNCHRONIZED CLOCKS

In this section, we present properties of the observer subsystem H,, to facilitate the analysis of the proposed observer algorithm
in the main results. The ability of the proposed observer to converge to the state z depends on the clocks 7, and 7, eventually
synchronizing. Thus, for the properties that follow, we consider , with given 7, and 7, input trajectories, such that the two
clocks are synchronized, i.e., 7p = 7. See Remark 7.

Remark 8. Each solution ¢° € Sf{ has flow intervals whose length is determined by the values of 7, and 7; after they jump.
Its domain is given as

dom ¢ = | (12,22,,1x {j}) (B3)

jeN
where tg = 0and {tf };io is a strictly increasing and unbounded sequence. Due to the jumps being triggered by two different
timers we note two types of bounds on the intervals of the time domain. Specifically, when ¢°(0, 0) is in C, VD, ,one has

o<’ <1V
0<10, —10<T? vjel,
TN < tfH -0<TY =T Vjel,
For the time domain of solutions from ¢°(0,0) € Ca2 U Daz, the following bounds hold:
0<?<T?
TN <, -8 <TN -T! Vjel,
0<td,, -10<T? vje1,

Remark 9. For solutions ¢"™ € S;Zm, flow intervals depend solely on the value of 7, after jumps. In particular
dom "™ = U (5m, 297X {j}) U@y, j + D)
JE{2k:keN}
where
N N : .
T, St;‘j’r‘}‘—t;‘omSTz Vie{k>1:keN}
N
0<A™<T,
Given the two solution types, for a chosen delay maximal solution ¢°, there exists a nominal maximal solution ¢"™ for which
the two solutions coincide over particular intervals of flow. More formally, we have the following result.

Proposition 3. For each delay solution ¢° € S;i[ , there exists a nominal solution ¢"™™ € S™ such that
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1) If $(0.0) € C, U D, . then ¢™™(z, j) = ¢°(z, j) for all (1, j) € T, where
= J (e 1xU))

Jj€{2k:keN)
2) If $(0,0) € C,uD,, then ¢™™ (¢, j) = ¢°(¢, j) for all (¢, j) € T, where

o= U (e 0xi))
JjE{2k+1:keN}

where the sequence {tf };‘;0 is defined in (B3).

Proof. Given H,, constants T? < TV < T,¥ and inputs ¢, and ¢, such that ¢, (1,)) = ¢, (1,)) ¥(t,j) € dom ¢, pick a
solution ¢° € Sﬁl such that ¢(0,0) € C, U D, . For clarity we define

6 e (48 48 45 48 48 48 16
¢ 1= (41457 . 47,40, .4, )

Then, for the same ¢(0, 0), construct a nominal solution "™ where dom ¢™™ C dom ¢° and whose components are defined

as follows:

¢nom . (¢nom ¢nom d)nom ¢n0m ¢nom d)nom’ no;n)

In particular, let

PRt ) = b7 (1)) v(t.j) € dom ¢° (B4)
In the flow interval [0, t‘]s] x {0} c dom ¢?, both solutions flow according to F. Thus from ¢(0, 0), one has

P""(1,0) = ¢°(1,0) vt € [0,1°]
Due to identical trajectories for 7y, at (1,0), ¢"™(#1°",0) € D, and ¢°(2,0) € D, , where £1°" = . Thus both solutions
jump according to G,.
When ¢"°™ is mapped by G, let all components except qﬁ’r‘;’m jump to the same value as those belonging to ¢°. Thus at time
. 1),
HGRVE (qﬁi(t?,O), ¢3(17.0), 7 (13, 1), 42 (13, 1),

LMEE.0). 6] (. 1))

where d)fN #, 1) e (TN, TN, qﬁfé(t‘s, 1) € (0,T9], and d)‘; @, 1) = (j)TP(t‘S, 0). Now, pick ¢? (12, 1) such that ¢fs(16, 1) # 0. For
¢n0m’ LS

(BS)

PO, 1) = (@I, 0O, 0), T 1),
0 1 M¢nom(tn0m 0) ¢n0m(tnom’ 1))
where ¢“"m(t5, = ¢5 (#°,1) and ¢"°m(t“°"‘ 1) = ¢, (#1°", 1). Then, since ¢5 (t‘s, 1) # 0, ¢° flows in the interval [1,£5] x {1}.
For the nommal solutlon at time (t“"m 1) one has
¢nom(tnom 1) — 0 ¢nom(tnom 1) — 1
Thus, ¢"™"(#]°", 1) € D, and the solution ¢"™ is mapped according to G,. Here ¢;°™ jumps according to the observer law
presented in (5). Then, at tlme (#3°™,2) we have
B, 2) = (TR 1), G, 2), RN 1),
1 0 ¢n0m(tnom 1) d)nom(tnom 1))

where A, (1, D)=¢mm (¢ 1))
d)gom(tz,z) — ¢gom(t1? 1)+€ o1 frp 10

= A, (1 ,1)—¢;‘;: (1,1)

(d)nom(tl’ 1)

— Me Grm (1), 1))
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Since ¢];(::1(t19 1) = ¢1P(t1’ O) and ¢1P(t1, O) = (b-po(t]’ 1)’ ¢20m(t2, 2) reduces to

P (1, 2) = P3Ny, 1) + L(¢;(;m(t1a 1) — M@P™(1,,1))

Substituting q’);"m(tl 1) = M @™ (#1°™, 0) according to (B),
P™(15,2) = G (1, 1) + LM (1M1, 0) — 1™ (1, 1)) (B6)
The nominal solution then flows in the interval [£°™, £2°™] X {2}. Then, for the delay solution, at (,, 1) € dom ¢°
¢ (5, 1) =0, 7 (1. D=1
That is ¢°(7,,1) € D, and then

$0(13,2) = (4203 1,425, 2), 42, (13,10, -1,0,
TACRNACERYY

where Al Ita 1 ¢5 (1‘5 1)
$3(t3,2) = 2015, D+ e 0T T UL(¢ (15,1)

_ Me—A@%O(’g,l)—(i)jrp (tg,l))d)g(tg, 1))
Noting ¢;,P (ty, 1) = ¢fp(t1, 0), from (B5), and that qﬁfp(tl, 0) # ¢fo(t2, 1). With synchronized timers 7, and 7, one has

¢, (15, 1) - ¢‘;{P (t, D =1t-1 (B7)
Additionally, d)‘; @, H=M d)i(t‘S ,0) then d)‘;(t‘s, 2) can be expressed as follows

P2(15.2) = @215, 1) + e TV LM (215, 0) — e AT @2(5, 1)
= ¢2(65. 1) + TV LM (217, 0) — $(17.0))

Then, by letting d)i(t‘s, )= eA(’Z"l)d)Z(t‘s, 0),
$2(15.2) = "G, 0) + T LM (4117, 0) — 9517, 0))
= A (3015, 0) + LM (43015, 0) - ¢23,0)) )

thus, the estimate is a forward propagation of (B6). Therefore, at time (¢2,2)
508 7Y — s
$3(15,2) = $°7(15,2) (B8)
For j = 2, each solution flows with the updated estimate resulting from the jump according G,. Then, given the bounds T9 <
TN < T} and thanks to (B4), it follows
5 48
[£5. 151 C [£5°™, 15°7] (B9)
hence
$2(1,2) = PP"(1,2) V1 € [13,15] (B10)

From here, the two solutions repeat the same behavior:

e Forj € {2k +1 : k € N}, i.e., odd values of j, ¢° evolves with the old state estimate while ¢"°™ experiences a jump
from which no evolution occurs.

e For j € {2k : k € N}, i.e., even values of j, both solutions jump with the new state estimate and observe matching
trajectories.

Thus,

P ) =¢ ) Yepe | (1.2, 1x 1)) B11)
je{2k:keN}
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For solutions with initial conditions ¢(0,0) € C, U D,,, the same trajectory-based logic can be applied. From the initial
condition, the two solutions either jump if ¢(0, 0) € Da2 or flow in the interval [0, #,]x {0} until ¢°(¢,,0) € Da2 and ¢"°"(¢,,0) €
D,,. The solutions then jump according to G, such that P, 1) € C, U D, and ¢""(1},1) € C, U D, . From there, the
trajectories follow the behavior as described for solutions with ¢(0,0) € C, U D, . Thus, by inspection

PN, j) = 01, j) V(.)€ U ([ff,lfH]X{j}) (B12)
JE{2k+1:keN)
Figure B3 provides a graphical example of the two solution trajectories. This concludes the proof. [
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Figure 8 Plot of the error norm for ¢™™ and ¢° with drifting 7, clock.
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Figure A1 The evolution of the estimation error with respect to time. The vertical dashes represent the jumps of Z according

to 2*.



24 Marcello Guarro ET AL
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Figure A2 The evolution of the estimation error with respect to real time with the observer law that rejects delayed measure-
ments. The vertical dashes represent the resets of 2 according to 2t in (A2).

Figure B3 Sample plot of the two solutions ¢"™ and ¢° showing the overlap over particular intervals of flow.
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