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Dipolar quantum solids emerging in a 
Hubbard quantum simulator

Lin Su1 ✉, Alexander Douglas1, Michal Szurek1, Robin Groth1, S. Furkan Ozturk1,  
Aaron Krahn1, Anne H. Hébert1, Gregory A. Phelps1, Sepehr Ebadi1, Susannah Dickerson1, 
Francesca Ferlaino2,3, Ognjen Marković1 & Markus Greiner1 ✉

In quantum mechanical many-body systems, long-range and anisotropic interactions 
promote rich spatial structure and can lead to quantum frustration, giving rise to a 
wealth of complex, strongly correlated quantum phases1. Long-range interactions 
play an important role in nature; however, quantum simulations of lattice systems 
have largely not been able to realize such interactions. A wide range of efforts are 
underway to explore long-range interacting lattice systems using polar molecules2–5, 
Rydberg atoms2,6–8, optical cavities9–11 or magnetic atoms12–15. Here we realize novel 
quantum phases in a strongly correlated lattice system with long-range dipolar 
interactions using ultracold magnetic erbium atoms. As we tune the dipolar 
interaction to be the dominant energy scale in our system, we observe quantum 
phase transitions from a superfluid into dipolar quantum solids, which we directly 
detect using quantum gas microscopy with accordion lattices. Controlling the 
interaction anisotropy by orienting the dipoles enables us to realize a variety of 
stripe-ordered states. Furthermore, by transitioning non-adiabatically through the 
strongly correlated regime, we observe the emergence of a range of metastable 
stripe-ordered states. This work demonstrates that novel strongly correlated 
quantum phases can be realized using long-range dipolar interactions in optical 
lattices, opening the door to quantum simulations of a wide range of lattice models 
with long-range and anisotropic interactions.

Quantum simulations16 with ultracold atoms in optical lattices enable 
the exploration of strongly correlated quantum matter described by 
the Hubbard model17 and are reaching regimes that are extremely chal-
lenging to access numerically18. Quantum simulations of the Hubbard 
model, however, have so far largely been limited to local on-site inter-
actions, and it has been a long-standing goal to realize simulations 
with strong long-range interactions. This would allow the quantum 
simulation of models that more accurately describe realistic quan-
tum materials like transition metal dichalcogenides, which typically 
experience finite off-site Coulomb repulsion19. Tunable anisotropic 
long-range interactions would furthermore open the door to model-
ling quantum materials such as spin ice20, anisotropic materials21 and 
twisted bilayer materials22, as well as a wide range of models beyond cur-
rent quantum material realizations. Long-range interactions naturally 
promote spatial structure, leading to the emergence of solid phases. In 
stark contrast to short-range Hubbard models, long-range interactions 
can lead to frustration in otherwise non-frustrated geometries, hosting  
supersolids23–27, spin liquids28 and fractionalization29. Generally, a 
fundamental question arises about how do long-range interactions 
compete with kinetic energy and on-site interactions to give rise to 
novel quantum phases of matter.

Developing approaches for realizing long-range interacting systems 
and addressing this question is an exceptionally active field of research. 

Significant progress has been made to create controllable systems 
of cold polar molecules2,5, with ongoing efforts towards itinerant  
lattice gases3,4. Rydberg interactions have enabled the quantum simula-
tions of programmable Ising and XY spin models2,6,7. However, using 
Rydberg dressing to realize itinerant models8 presents challenges due 
to Rydberg decay. Dynamic light fields in optical cavities enable the 
study of infinite-range9,10 and finite-range11 interacting atom systems, 
with dissipation being the main hurdle for reaching strongly correlated 
lattice physics. Furthermore, recent experiments in condensed matter 
systems have simulated long-range interacting Hubbard systems with 
bulk measurements30–32; yet, it is challenging to perform site-resolved 
studies in these simulators.

Magnetic atoms provide an attractive alternative to the systems 
mentioned above, as they are relatively simple to control and interact 
through the long-range magnetic dipole–dipole interaction33. In bulk 
systems, the atoms collectively order in the presence of a magnetic 
interaction, leading to intriguing effects such as macroscopic dipolar 
droplets forming a supersolid phase12. To realize strongly correlated 
physics, however, the long-range interaction energy between pairs 
of individual atoms needs to become large compared to the kinetic 
energy34. It has been shown that a small-spacing optical lattice of mag-
netic atoms leads to a Hubbard system with dipolar interactions large 
enough to cause a notable shift of the superfluid to Mott insulator 
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transition13. However, whether the intersite dipolar interactions can 
experimentally be made the dominant energy scale and larger than 
the kinetic energy and temperature remained an open question. Here, 
we present an affirmative answer to this question by observing quan-
tum phase transitions from a strongly correlated superfluid to dipolar  
quantum solids, that is phases of matter that show spontaneous peri-
odic density modulation in the presence of quantum fluctuations due 
to finite tunnelling. This long-range and anisotropic interaction is 
expected to give rise to a rich set of states with fractional fillings24,25,35–38. 
In this work, we probe such states at half-filling.

Dipolar quantum gas microscope
We realize the two-dimensional (2D) extended Bose–Hubbard model 
with anisotropic long-range dipolar interactions by employing mag-
netic erbium atoms in an optical lattice (Fig. 1a). In this work, we 
choose the atomic on-site Hubbard repulsion to be much larger than 
other energy scales. This realizes an extended Hubbard model in the 
hard-core boson limit in which each lattice site is populated by either 
zero or one atom (Methods). The Hubbard Hamiltonian of our system is
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†  describes the tunnelling of hard-core bosons between 

nearest-neighbour sites with amplitude t, ̂ni is the number operator  
on site i and μi is the chemical potential on site i. The dipolar inter
action between lattice sites i and j with distance di, j = (dx, dy) sites is 
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3 , where (θ, ϕ) are the dipole polar 
and azimuthal angles (Fig. 1a), d = ∣di,j∣ and V0 is the nearest-neighbour 
repulsive interaction energy when the dipole is oriented out of the 2D 
plane (θ = 0°).

The major challenge when observing dipolar quantum solids using 
magnetic atoms is posed by the relatively weak magnetic interac-
tions between atoms compared to the typical energy scales in quan-
tum simulators. We reach a nearest-neighbour interaction energy of 
V0 ≈ h × 30 Hz, where h is Planck’s constant, by using a small-spacing 

optical lattice (green beams in Fig. 1b) with a = 266 nm lattice spacing13. 
To resolve individual sites in this lattice, we developed a novel quantum 
gas microscopy technique using a tunable-spacing two-dimensional 
accordion lattice projected in vacuo through an objective with a high 
numerical aperture (blue beams in Fig. 1b). For imaging, we transferred 
atoms from the small-spacing lattice to the accordion lattice and then 
expanded the spacing of the accordion lattice. Finally, we imaged with 
single-site resolution (Methods); a snapshot of a Mott insulator is shown 
in Fig. 1c.

The dipolar interaction strength is nearly four orders of magnitude 
smaller than the optical lattice depth; hence, it is essential to minimize 
the lattice disorder that causes the disorder in the chemical potential μi. 
We reduced the potential disorder to within a fraction of V0 by minimiz-
ing the scattered light intensity in the atom plane and ensuring that the 
residual disorder length scale is large. This was done by making sure 
that all optical surfaces on which lattice beams were incident were at 
least a few Rayleigh ranges away from the atomic plane39. This neces-
sitates a custom objective with a central bore to minimize scattering 
of the vertical lattice beam (Methods).

For the experiment, we started with a Bose–Einstein condensate of 
168Er created in less than 1 s using narrow line laser cooling40. We then 
loaded the atoms into a single layer of a retro-reflected vertical lat-
tice (Methods). We robustly loaded sufficient atoms into the lattice to 
reach around 100 atoms on 200 sites in the central region of interest. 
The atomic dipole direction was set by aligning the dipoles to a tun-
able external magnetic field that was static during the lattice ramp.  
The small-spacing lattice power was ramped adiabatically to reach 
the target lattice depth following the solid arrow in Fig. 1d, such that 
we achieved t/V0 ≈ 0.1. Remarkably, we were able to ensure that the 
process was adiabatic down to low tunnelling strengths, correspond-
ing to adiabatic cooling41 to temperatures (T ) of only several hundred 
picokelvin (kBT/V0 ≈ 0.5, where kB is the Boltzmann constant). For imag-
ing, we rapidly increased the lattice depth to turn off the tunnelling 
in the small-spacing lattice and projected the state of the system into 
the occupation basis. We then handed off the atoms to the accordion 
lattice and expanded the lattice spacing to 3 μm. The lattice dynamics  
were kept frozen when expanding the accordion lattice spacing such 
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Fig. 1 | Experimental set-up. Magnetic erbium atoms in an optical lattice 
realize an extended Hubbard model with anisotropic long-range interactions, 
thus enabling the realization of novel strongly correlated quantum phases.  
a, Orienting the magnetic dipoles using an external magnetic field allows us  
to widely tune the anisotropy of the interaction, with θ being the polar angle,  
ϕ the azimuthal angle, the pink (green) lines denoting attractive (repulsive) 
dipole–dipole interaction V and the grey arrow denoting tunnelling t. b, We use 
a small-spacing lattice to maximize the dipolar interaction strength. Quantum 
gas microscopy is realized by handing off atoms from the small-spacing retro- 
reflected lattices (green) to tunable-spacing accordion lattices (blue). c, After 

expanding the accordion lattice, fast fluorescence imaging results in site- 
resolved single-shot images. d, Schematic of the extended Bose–Hubbard 
phase diagram with dipolar interactions. The solid arrow indicates the ramp  
we perform to induce a quantum phase transition from a strongly correlated 
superfluid to a half-filling dipolar quantum solid. Insets, an exemplary single- 
shot image of a solid (same as Fig. 2c) and time-of-flight images taken at the star 
location before the ramp (top) and after ramping back to the superfluid phase 
along the dashed arrow (bottom). The persistence of the superfluid matter 
wave peaks after ramping back from the solid qualitatively demonstrates the 
adiabaticity of the ramp.
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that the imaged lattice occupation faithfully represented the state of 
the atoms in the small-spacing lattice (Methods). We then performed 
fluorescence imaging by exposing the atoms to resonant highly satu-
rated light for 8 μs (ref. 42). A few hundred fluorescence photons per 
atom were scattered and collected by the objective (Fig. 1b). About 
50 photons per atom were detected by the electron-multiplying 
charge-coupled device (CCD) camera, forming an image from which 
we extracted the atom occupation number per lattice site. The total 
experiment cycle time was 2.5 s.

Dipolar quantum solids
We observed the atoms self-organize into different dipolar quantum 
solids when the dipole–dipole interactions became the dominant 
energy scale in our system (Fig. 2). These periodically ordered states 
arose after quantum phase transitions from a strongly correlated super-
fluid into a dipolar quantum solid, with possible intermediate phases 
that will be the focus of future work. We transitioned into the solid by 
adiabatically reducing the kinetic energy of the atoms in the lattice 
using a linear ramp of lattice depth. The periodic ordering, which is 
distinct from the periodicity of the lattice, was a signature that the 
underlying lattice symmetry was broken. By tuning the orientation of 
the dipoles with the external magnetic field, we realized a wide variety of 
isotropic and anisotropic interactions, leading to phases with different 
periodic ordering depending on the dipole orientation (Fig. 2, rows (i), 
(ii) and (iii)). We analysed the quantum solids directly from single-shot 
images or by calculating the connected density–density correlation:

̂ ̂ ̂ ̂∑C
N

n n n n=
4
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d d d

where we sum over Nd pairs of lattice sites at distance vector d in the 
analysis region and average over hundreds of experimental realiza-
tions43. Such a correlation shows strong periodic patterns depending 
on the specific quantum solid (Fig. 2d). The Fourier transform of the 
correlation (the structure factor)

∑S C( ) ∝ e , (3)
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d

q d
d

(q is the quasi-momentum) exhibits peaks at positions set by the perio-
dicity of the quantum solid state (Fig. 2e).

Chequerboard solid
First, we tuned the dipole orientation to explore isotropic long-range 
repulsion. When the atomic dipoles pointed perpendicular to the plane, 
that is θ = 0° (Fig. 2a(i)), the atoms isotropically repelled each other 
with a strength that decays as 1/d 3, where d is the distance between 
two lattice sites (Fig. 2b(i)). At half-filling and weak tunnelling, the 
atoms arranged themselves in the energetically favoured chequerboard 
pattern. In Fig. 2c(i), we show a chequerboard in a cropped region of 
an example single-shot image. The periodic chequerboard structure 
in the observed density correlation (Fig. 2d(i)) and the structure fac-
tor exhibiting (±π/a, ±π/a) peaks (Fig. 2e(i)) is a hallmark of lattice  
symmetry breaking in a solid23.

Stripe solid
Next, we maximized the interaction anisotropy between the two lat-
tice axes by orienting the atomic dipoles in the 2D atom plane along 
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Fig. 2 | Dipolar quantum solids. As the dipolar interaction V0 becomes 
dominant over tunnelling t, dipolar quantum solids emerge. a,b, In row (i), 
dipoles pointing in the z direction (a) give rise to isotropic 1/d3 repulsion (b).  
c, An exemplary single-shot image shows the chequerboard solid arising at half- 
filling (blue shading to guide the eye). d, The emerging order can be analysed 
quantitatively by calculating the connected density–density correlator Cd 
averaged over experimental realizations, with a linear colour bar between 

−0.01 and 0.01 and logarithmic elsewhere. e, A Fourier transform of Cd yields 
the structure factor S(q), whose magnitude squared is plotted with a linear 
colour bar starting from zero. With the dipole aligned in the x direction (row (ii)), 
the interaction becomes highly anisotropic, and the atoms form a stripe solid. 
For diagonally aligned dipoles (row (iii)) (here, θ = 50° and ϕ = 45°), we observe 
diagonally ordered states. Remarkably, the transition into the diagonal stripe 
solid is entirely driven by beyond-nearest-neighbour interaction terms.
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one of the lattice directions, that is (θ, ϕ) = (90°, 0°) (Fig. 2a(ii)). We 
observed in single-shot images long chains of atoms aligned with the 
atomic dipole direction, with an example cropped image shown in 
Fig. 2c(ii). The phase of the chains changed from shot to shot (Methods), 
showing the characteristics of spontaneous symmetry breaking. The 
extracted connected density–density correlation had a periodic stripe 
pattern (Fig. 2d(ii)) and the density structure factor (Fig. 2e(ii)) clearly 
exhibited (0, ±π/a) peaks.

Furthermore, we probed the adiabaticity of the transition from the 
superfluid to dipolar quantum solids by measuring the superfluid 
coherence peaks before and after the lattice ramp. The superfluid 
fraction was qualitatively estimated by observing coherence peaks 
in time-of-flight images, after releasing atoms from the lattice44. The 
inset in Fig. 1d above the solid arrow is a time-of-flight image before 
ramping into the stripe solid and shows the superfluid coherence 
peaks, demonstrating the quantum coherence of our initial state. To 
demonstrate that the ramp into the ordered state was nearly adiabatic, 
we performed a closed path in parameter space and ramped back into 
the superfluid phase following the dashed arrow shown in Fig. 1d. We 
qualitatively checked the return fidelity with the time-of-flight image 
shown below the dashed arrow. The appearance of interference peaks 
indicates that ramp to the solid was close to adiabatic.

Diagonal stripe solid
To probe the long-range nature of the dipole–dipole interaction, we 
aligned the atomic dipole out of the lattice plane along the (θ, ϕ) = 
(50°, 45°) direction. If our interactions included only nearest-neighbour 
interactions, this dipole orientation with repulsive nearest-neighbour 
interactions (Fig. 2b(iii)) would be like the first case with θ = 0° 

(Fig. 2b(i)), where we observe the chequerboard solid. In contrast to 
the chequerboard case, the dipolar interactions beyond nearest neigh-
bours showed a diagonal attraction along one lattice diagonal and 
repulsion along the other. These interactions gave rise to a ground 
state of diagonal stripes with a period of a2 2 , as shown in Fig. 2c,d(iii) 
with a corresponding peak in the structure factor at ±(π/2, −π/2) shown 
in Fig. 2e(iii). The observation of this diagonal stripe solid not only 
demonstrates the long-range dipolar nature of our interactions but 
also highlights the low disorder of the local chemical potential μi and 
the low temperature of our system compared to the maximum interac-
tion energy of only h × 10 Hz with this dipole orientation.

The example solid in Fig. 2(iii) demonstrates that aligning the dipole 
orientation to an azimuthal angle ϕ = 45° between the x and y axes can 
result in an isotropic nearest-neighbour interaction but an anisotropic 
next-nearest-neighbour interaction, leading to translation symmetry 
breaking into a large unit cell45. Here, we further explored the ordering 
of the system at low temperature for different polar angles θ (Fig. 3a). 
We adiabatically reduced the tunnelling and approached the ground 
state with t/V0 ≈ 0.1 at different polar angles θ with the same ϕ = 45° 
(Fig. 3a). As θ (green arc in Fig. 3a) increased, the observed periodic-
ity of the diagonal stripe increased (Fig. 3c) and the structure factor 
peak (Fig. 3d) moved closer to the origin, indicating a larger unit cell. 
To gain theoretical understanding, we performed quantum Monte 
Carlo simulations (Methods) and identified the emerging phases for 
the experimental parameters in Fig. 3e.

To compare the observed structure factor with the results of quan-
tum Monte Carlo simulations, we plotted the measured density struc-
ture factors S(q) along the straight line from point Γ to point M′ in the 
Brillouin zone (the dotted diagonal line shown in the rightmost  
subfigure of Fig. 3d), whose coordinates are (qx, −qx), and we plotted 
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Fig. 3 | Solids and global phase separation with spatial anisotropy. For dipoles 
aligned diagonally with respect to the lattice vectors (ϕ = 45°), different polar 
angles θ give rise to stripe solids with different periodicity. a, Dipole orientation 
with the polar angle highlighted in green. b, Anisotropic long-range dipolar 
interaction energy. c, Measured connected density–density correlation.  
d, Magnitude-squared structure factors. e, Quantum Monte Carlo simulation 
of emerging phases. Grey shading indicates solids and white indicates a 
superfluid region. Each colour border represents a different solid with the 
ordering shown in the inset. Between 53° and 72°, there are more solid phases 
without their boundaries marked out in colour. Our adiabatic paths follow the 

grey arrows. f, Experimental structure factor along the orange diagonal line 
from marker Γ to M′ shown in the rightmost subfigure of d, whose coordinates 
are (qx, −qx). Shaded areas show the quantum Monte Carlo simulation results 
with one standard deviation error. The blue area is a simulation including only 
nearest-neighbour and diagonal next-nearest-neighbour interaction terms 
(∣dx∣, ∣dy∣ ≤ 1). The red area includes beyond-next-nearest-neighbour interaction 
terms (∣dx∣, ∣dy∣ ≤ 2). The experimental data agree better with the latter, indicating 
that long-range tails beyond-next-nearest-neighbour terms play a significant 
role in our system.
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the results in Fig. 3f in increments of 4.5°. The structure factor indicates 
that there was chequerboard order between θ = 0° and θ ≈ 30°. Then, 
the peak location of the density structure factor was gradually moved 
towards the origin until θ ≈ 80°. At this point, the attractive long-range 
interaction dominated over the repulsive one. We observed that the 
ground state of our finite system was no longer a diagonal stripe solid, 
but instead, it was a self-organized state with the lattice separated into 
unity-filled and empty regions, each occupying only half of the sites in 
the region of interest. We denoted this as a global phase separation 
state, where the unity-filled region was a self-bound insulator. This 
state is fundamentally distinct from a unity-filled Mott insulator, as 
the system would form a half-filling superfluid in the absence of  
dipolar interactions.

The various types of diagonal stripes that can form between the 
chequerboard solid and the global phase separation state exemplify 
the long range of the dipolar interactions beyond next nearest neigh-
bours. We simulated the dipolar interaction cutoff with ∣dx∣, ∣dy∣ ≤ 1 
(Fig. 3f, blue shade, 3 by 3 box, includes interactions only for the nearest 
neighbour and the next nearest neighbour) and ∣dx∣, ∣dy∣ ≤ 2 (Fig. 3f, red 
shade, 5 by 5 box, includes interactions beyond next nearest neigh-
bour). The tail of the long-range interactions plays an important role 
in the self-organization of stripe solids with long periodicity when θ 
is between 50° and 70°, causing the significant difference between 
the simulation results with different cutoff ranges. Remarkably, we 
observed that our data agree with the simulation results, including 
beyond-next-nearest-neighbour interactions (red shade), highlighting 
the important role of long-range interaction terms.

Out-of-equilibrium dynamics
We explored the rich out-of-equilibrium physics that emerges from the 
dipolar interactions (Fig. 4). In particular, the global phase separation 
state when (θ, ϕ) = (90°, 45°) exhibited a variety of low-lying metastable 
states, which is a characteristic of long-range interacting systems46,47. 
To explore these metastable states, we dynamically ramped the system 
starting from a half-filling superfluid using a linear ramp of lattice depth, 
resulting in an exponential ramp in tunnelling energy from h × 300 Hz 

to h × 3 Hz. By varying the ramp time, we observed diagonal stripes 
with different periodicities (Fig. 4c). When the ramp was faster than 
100 ms, the structure factor had a signature of diagonal stripes, and the 
atoms were sparsely arranged throughout the analysis region (Fig. 4e, 
left). These diagonal stripes were among the lowest-lying metastable 
states because the dipolar interaction (Fig. 4b) strongly biases diagonal 
stripes aligned with the dipole direction. As the ramp became more adi-
abatic, the structure factor peaks migrated towards the origin (Fig. 4f) 
until they became limited by the system size, and the atoms formed a  
state that was close to unity-filled (Fig. 4e, right). Due to the finite 
temperature, we still observed sporadic excitations from the ground 
state in the form of a missing atom in the centre of the cloud. These 
excitations did not exhibit a significant spatial structure, unlike the 
metastable diagonal stripe patterns. Overall, the long-range nature of 
the dipolar interaction was responsible for the rich out-of-equilibrium 
physics observed in this system.

Conclusion and outlook
We observed various dipolar quantum solids and global phase sepa-
ration using ultracold atoms with single-site resolution, finding rich 
phases caused by the anisotropic long-range dipolar interactions. We 
found evidence of metastable states, which we accessed by chang-
ing the ramp speed across the phase transition from superfluid to the 
global phase separation state. These observations mark the beginning 
of studying itinerant, strongly correlated quantum phases originating 
from dipolar interactions. The dipolar quantum gas microscope is  
a flexible platform for examining a host of quantum phase transitions 
between different states in the dipolar system and dynamics across such 
transitions, such as first-order phase transitions and transitions exhibit-
ing intermediate ‘microemulsion’ phases36,48. Furthermore, metastable 
states represent an exciting frontier in many-body quantum systems 
and open the gate to quantum orders not stable in equilibrium49. Moreo-
ver, going beyond the hard-core boson limit and allowing multiple 
particles to occupy the same site allows supersolid phases to occupy 
a much larger region in the phase diagram50,51 and gives rise to Haldane 
insulators in one dimension52. Leveraging the anisotropic long-range 

–4 0 4
–4

0

4
15 ms

–4 0 4

100 ms

–4 0 4

360 ms

–0.22
–0.06
–0.02
0
0.02
0.06
0.22

C
d

dx (sites)

d
y 

(s
ite

s)

–1 0 1
–1

0

1

–1 0 1 –1 0 1

|S
(q

)|2

qx (π/a)

q
y 

(π
/a

)

|S
|2

15 80 360
Ramp duration (ms)

0.70

0.75

0.80

0.85

0.90

C
en

tr
e 

�l
lin

g

–2 0 2
dx (sites)

–2

0

2

d
y 

(s
ite

s)

–60

–8

0

8
30

V
 (H

z)

a

b

c

d

e

g

f

Γ

Γ
M′

M′

x

z
y

Fig. 4 | Out-of-equilibrium dynamics. After ramping non-adiabatically into 
the global phase separation state, we observe diagonal stripe solids with 
different periodicities depending on the ramp speed, which demonstrates the 
rich manifold of metastable states lying above the global phase separation state. 
a,b, The dipole is oriented diagonally in the x–y plane at ϕ = 45° and θ = 90° (a), 
leading to the anisotropic dipolar interaction energy (b). c–e, The connected 

density–density correlation (c), the structure factor (d) and single-shot images 
(e) show the various periodicities for different ramp durations of 15 ms, 100 ms 
and 360 ms. f,g, We plot the diagonal structure factor (f) and the centre (within 
the blue box in e) filling ratio (g) to show the emerging phase separation as the 
filling at the centre approaches unity (the error bars denote the standard error 
of the mean).
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interactions in this system will allow spin liquids28 and fractionaliza-
tion29 to be examined. Finally, employing fermionic species of magnetic 
atoms will enable the realization of extended Fermi–Hubbard models in 
the study of spinful itinerant systems with dipolar interactions, which 
can show a wide variety of phenomena including bond order waves53 
and ultralong-range order54.
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Methods

Model calibration
We studied the extended Bose–Hubbard model in the hard-core boson 
limit since the on-site interaction energy U in our system is much larger 
than the tunnelling energy t, dipolar energy scale V0 and chemical 
potential μi. Thus, we neglect the on-site interaction term ̂ ̂n n∑ ( − 1)U

i i i2  
in the standard Bose–Hubbard Hamiltonian. We estimated the on-site 
interaction energy U to be h × 1 kHz to 2 kHz, depending on the atomic 
dipole orientation. We measured U by modulating the lattice intensity 
and observing atom loss in the lattice when the modulation frequency 
was close to U (ref. 13). We also computed U by taking into account the 
vertical Wannier function width as well as the dipole orientation, finding 
good agreement with previous measurements55. Such high U results in 
a negligible super-exchange energy of h × 0.01 Hz (4 × 10−4 V0) at typical 
tunnelling energies at which we examine dipolar quantum solids.  
To calibrate the tunnelling t for the data in this paper, we measured the 
lattice depth with lattice modulation13. From the measured lattice 
depth, we numerically obtained the lattice band structure and esti-
mated the tunnelling from the ground bandwidth56. We computed the 
density-induced tunnelling34 to be an order of magnitude smaller than 
the single-particle tunnelling t, so we neglected the term in the Ham-
iltonian. The variation of the chemical potential μi in our system con-
sisted of the global harmonic confinement introduced by the lattice 
beams and the site-to-site disorder in the centre of the analysis region. 
We measured the global harmonic confinement by measuring the oscil-
lation frequency of the atomic cloud after releasing the atoms from a 
tight dipole trap. We estimated the chemical potential disorder in the 
analysis region of interest (around 100 sites) by comparing the meas-
ured lattice filling to the exact diagonalization simulation. Specifically, 
we ramped the lattice to different lattice depths and measured the 
standard deviation of the average atom number filling. We compared 
this measurement with a simulation of a 4 × 4 site system by exact 
diagonalization, assuming that the disorder follows a uniform distribu-
tion57. We estimated the chemical potential μi disorder to be h × 3 Hz 
from site to site, in addition to a global harmonic confinement. We 
computed the dipolar interaction strength Vi, j at different distances 
by taking into account the non-zero width of the Wannier function, 
which can modify the interactions between the nearest-neighbour 
sites significantly58.

Lattice stability
At several points in the experimental sequence, we transferred atoms 
between different sets of lattices, which required a stable relative lat-
tice phase for reliability. To achieve high stability, we used the vacuum 
chamber as a reference for all the lattices in our experiment. The 2D 
small-spacing 532-nm-wavelength lattices were retro-reflected from 
mirrors attached to the vacuum chamber. The 2D tunable-spacing 
488-nm-wavelength accordion lattices were sent through the objec-
tive, which was directly mounted inside the vacuum chamber. The 
vertical 1,064-nm-wavelength lattice was retro-reflected from a mirror 
mounted on top of the in-vacuum objective. To match the phase of the 
2D small-spacing retro-reflected lattices to that of the 2D accordion 
lattices, we used a thin anti-reflection coated window mounted on a  
galvanometer to tune the path length difference of the accordion 
beams. Once the system had warmed up for 2 h, the phases of the  
lattices stayed stable for more than 24 h.

Reducing the local chemical potential disorder
Achieving chemical potential disorder smaller than the dipolar interac-
tion energy scale V0 means that the intensity of scattered light interfering 
with the main lattice beam has to be less than 1 part per million— 
an extraordinarily low ratio to achieve experimentally. We found that 
the main source of chemical potential disorder in our experiment to 
be the scattered vertical lattice light. Therefore, we tuned the intensity 

of the vertical lattice to be as low as possible, while still keeping the 
atoms in a single layer of the vertical lattice during the experimental 
sequence59. The energy difference due to gravity in adjacent layers 
of the vertical lattice prevented the resonant tunnelling of atoms. 
Experimentally, we observed that a vertical lattice depth of around 
7 ER maximized the dipolar quantum solid order, where ER is the verti-
cal lattice recoil energy. The lifetime of the atoms at such lattice depth 
was of the order of a second60. Thus, our experimental lattice ramps 
of a few hundred milliseconds were short enough to keep most of the 
atoms in the lattice.

State preparation
First, we created a Bose–Einstein condensate in less than a second as 
described in ref. 40. The single-chamber experiment design removes 
the complexity of transport. Next, we compressed the atoms into a 
thin sheet using a vertical 532-nm-wavelength accordion lattice that 
went through an aspheric lens mounted inside the vacuum chamber in 
400 ms. Then we transferred the atoms to a single layer of the vertical 
1,064-nm-wavelength retro-reflected lattice. We controlled the final 
number of atoms in the lattice by tuning the power of an additional 
optical dipole trap as we turned on a magnetic field gradient to pull the 
rest of the atoms out of the trap. This process took 600 ms. We observed 
fluctuations in the number of atoms of a few percent (standard devia-
tion) from shot to shot and did not postselect for exact half-filling 
(except Extended Data Fig. 3). After turning off the field gradient, we 
rotated the bias magnetic field to the desired orientation. Finally, we 
ramped up the 2D small-spacing retro-reflected lattice exponentially 
for 100 ms to 8 ER and then linearly for a few hundred milliseconds to 
27 ER. To demonstrate the adiabaticity of the lattice ramp, we probed 
the coherence peaks as we changed the duration of the linear ramp 
(Extended Data Fig. 1).

Imaging procedure
At the end of each experiment, we froze the dynamics in the small- 
spacing optical lattice by ramping up the lattice power so that the 
tunnelling changes from roughly h × 3 Hz to h × 0.3 Hz in 100 μs. 
We then transferred the atoms from the small-spacing lattice to the 
2D accordion lattice in 6 ms. Next, we expanded the 2D accordion  
lattice spacing from 266 nm to 3 μm in 80 ms (ref. 61). We performed 
fluorescence imaging of the atoms by exposing them to highly satu-
rated 401 nm resonant beams for 8 μs without cooling or trapping42. 
Thanks to the large 30 MHz linewidth of the imaging transition, we 
detected roughly 50 photoelectrons during the exposure time using 
an electron-multiplying CCD camera. To minimize the net momentum 
on the atoms exerted by the imaging beams, we exposed the atoms to 
two counter-propagating imaging beams. We alternately pulsed the 
two counter-propagating beams to eliminate the effect of a standing 
wave created when both beams were applied at the same time42. We 
kept the beam intensity much higher than the saturation intensity 
Isat, such that the scattering rate and, thus, the average momentum 
imparted by each beam onto the atoms were stable without the need 
for closed-loop feedback of the beam power. During imaging, the atoms 
experienced movement due to stochastic momentum kicks imparted by 
the spontaneously emitted photons; however, the random walk moved 
the atoms by less than half the accordion lattice spacing in most cases.

Imaging fidelity
To distinguish between one and zero atoms on each lattice site, we 
summed the signals of all camera pixels corresponding to the site 
and then digitized the number of atoms per site with a precalibrated 
threshold of 20 photoelectrons per site. Extended Data Fig. 2a is a his-
togram of the total photoelectron counts of the same site in 9,000 
shots collected over 10 h. The two Gaussian-like peaks are well sepa-
rated and correspond to a fidelity to distinguish between zero and one 
atom above 99%. Characterizing the loss during the imaging protocol, 



including the loss during the transfer into the blue accordion lattice as 
well as during the expansion of the blue accordion lattice, was more 
challenging. We prepared a Mott insulator with one particle per site 
(n = 1) and estimated an upper bound of the loss by assuming that  
the Mott insulator we made has 100% fidelity. Extended Data Fig. 2b is 
a histogram of the total photoelectron counts within all lattice sites in 
the centre 10 by 10 sites. We detected the filling of the Mott insulator 
to be higher than 98%, giving us an upper bound for the loss of 2%.

Numerical simulations
We performed worm-type quantum Monte Carlo simulations based on 
an existing package62, which we modified to include long-range dipolar 
interactions. We benchmarked our simulations with finite-temperature 
exact diagonalization63 for a 4 × 4 site system. For typical values of 
the experimental parameters used in this work, we found that the 
auto-correlation time was short after thermalization, needing about 
ten measurements for the density–density correlations compared to 
the 5,000 measurements we performed. The short auto-correlation 
time was partially due to the metastability of the states in the long-range 
interacting system’s Hilbert space. To avoid this, we thermalized 64 
different seeds and averaged the results. When estimating the tempera-
ture of the solids, we set the boundary condition to open and included 
measured harmonic confinement in the simulation but did not include 
the local chemical potential disorder. For the phase diagram in Fig. 3e, 
we set the temperature to T = 0.2V0/kB (0.3 nK), the system size to 20 by 
20 sites and the boundary condition to open. In addition, we assumed 
that the chemical potential was flat with no harmonic confinement 
and no disorder. For all phases, we used the location of the peak of 
the structure factor as the order parameter, which we then compared 
with the location of the structure factor peak in the classical limit of 
no tunnelling. The simulation of the structure factor in Fig. 3f has the 
same conditions as the phase diagram, but we used the experimental 
uncertainty in tunnelling to determine the error bars. In simulations at 
lower temperatures, the location of the structure factor peak did not 
shift but only narrowed, allowing us to simulate the emerging phases 
down to t/V0 = 0.05 for Fig. 3e.

Data analysis
All density correlation and structure factor data shown in this paper 
were computed for a square-box analysis region whose size ranged 
from 11 by 11 sites to 15 by 15 sites, resulting in a full Cd matrix of 23 by 
23 sites to 31 by 31 sites depending on the particular dataset. We show 
Cd in the figures only within ∣dx∣, ∣dy∣ ≤ 4 sites because most of the order-
ing we studied decayed within four sites. We computed the connected 
density–density correlation instead of the disconnected one because 
we wanted to distinguish the classical solid with a static phase from 
a solid with an uncertain phase. If static chemical potential disorder 
were to pin the solids down to one of the static phases, we would no 
longer have seen a signal in the connected density–density correla-
tion. The observed correlation decayed exponentially over distance, 
so we mainly used a logarithmic colour scale and connected the posi-
tive and negative logarithmic scales with a linear scale. We computed 
the structure factor from the connected density–density correlation 
matrix extracted from, typically, up to ∣dx∣, ∣dy∣ ≤ 9 sites. To obtain the 
diagonal structure factors shown in Figs. 3f and 4f, we integrated the 
structure factor perpendicular to the straight line (shown in Figs. 3d 
and 4d) with a Gaussian envelope centred on the straight line. The 
centre filling was calculated by finding the maximum filling ratio in a 
6 by 6 box among shots with a certain filling range (40% to 45%) in the 
whole analysis region of 16 by 16 sites.

Solid temperature
We compared the density–density correlation measured experimen-
tally with the results of a quantum Monte Carlo simulation to estimate 
the temperature of our system. For the stripe solid, we estimated the 

temperature to be 0.8 nK; for the chequerboard solid, we estimated 
the temperature to be 0.7 nK. We computed the critical temperature to  
be around 0.5 nK for the stripe solid and estimated the critical tem-
perature to be lower for the other types of solids examined in this work. 
To fix the particle density, we swept both the temperature and chemi-
cal potential, and then, for each temperature, we used the chemical 
potential that replicates the experiment’s filling fraction in the central 
16 sites. All solids in this paper exhibited a connected density–density 
correlation that decayed exponentially as we increased d, indicating 
that the system was above the critical temperature of the solids or 
that the chemical potential disorder and harmonic confinement were 
too large57. The exponential fits to the density correlations (d > 1) give 
the correlation length. Specifically, the stripe density–density cor-
relation decayed exponentially with a correlation length of 2.22(5) 
sites for d = (dx, 0) and 1.21(15) sites for d = (0, dy). The chequerboard 
correlation decayed exponentially with a correlation length of 0.82(5) 
sites isotropically. The diagonal stripe correlation decayed with a cor-
relation length of 0.6(2) along the diagonal directions. The observed 
correlations decayed exponentially in the experiment, but they were 
the same ones that were established at long range in the solid phases, 
and they can be observed in a whole subregion in some single-shot 
images (Fig. 2c).

Solid lifetime
After we ramped into the solid phases, we held the atoms for various 
durations and measured the overlap of the connected density–density 
correlation with the perfect solid correlation. We observed that overlap 
decayed roughly exponentially with a lifetime of 1 s for the stripe solid 
when the atomic dipole pointed along one lattice direction and 0.7 s 
for the chequerboard solid. The finite lifetime of our Wannier–Stark 
state in the vertical lattice as well as heating from technical sources 
like laser noise and scattering can contribute to the decay of the solid 
order. Such a lifetime enables future work that explores the phase tran-
sitions between dipolar quantum solids and supersolids, since such 
experiments require adiabatic ramps of the dipole orientation when 
the tunnelling energy is small.

Spontaneous symmetry breaking of stripe solids
Using the site-resolved single-shot images, we were able to examine the 
spontaneous symmetry breaking as we transitioned into a stripe solid. 
We chose a 2 by 6 site region in our system and studied the stripe order-
ing after postselection when there were exactly six atoms over these 
12 sites. We defined a value that measures the distance of a single-shot 
image to the stripes of phases A and B (bottom of Extended Data Fig. 3a). 
With the simulated infinite temperature state, we saw that most of the 
values were centred between the two stripe patterns A and B, as the 
orange points show in Extended Data Fig. 3a. But in our experiment 
with the stripe solid, we observed the perfect stripe ordering more 
frequently, leading to a bimodal distribution. To demonstrate that 
there was no temporal correlation between the two stripe patterns 
and support the claim that the symmetry breaking was random, we 
calculated the auto-correlation of the stripe overlap values over differ-
ent shots and demonstrated that the overlap value was stochastic with 
no auto-correlation peaks (Extended Data Fig. 3b). The above provides  
evidence that our stripe solid is a spontaneous symmetry-breaking 
state.

Data availability
The data that support the findings of this study are available from the 
corresponding authors on reasonable request.
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Extended Data Fig. 1 | Adiabaticity of the lattice ramp. We probe the 
adiabaticity of the lattice ramp by varying the duration as we follow the solid 
and dashed arrow to return to the star position at 7 ER in Fig. 1d. When the ramp 
duration is very short at 1 ms (a), we see sharp coherence peaks in the time-of- 
flight image. As we slow down the ramp to a duration of 9 ms (b), the coherence 
peaks in the time-of-flight image are the least resolved. Further increasing the 

ramp duration up to 438 ms (c), we observe well-resolved coherence peaks 
again. The peaks are less sharp compared to those in a, possibly due to the 
decoherence and atom loss during the ramps, which in total takes almost  
900 ms. These averaged images demonstrate that, with the ramp duration  
on the order of 100 ms in this paper, the system is in the adiabatic regime.
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Extended Data Fig. 2 | Histogram for digitization of occupation number.  
We perform high-fidelity site-resolved imaging after expanding the 2D 
accordion lattice to 3 μm spacing. a, half-filling histogram. The fidelity to 

distinguish between 0 and 1 filling per site after expanding the 2D accordion 
lattice is more than 99%. b, unity-filling histogram. The efficiency of transferring 
atoms to the 2D accordion lattice and expanding is more than 98%.



Extended Data Fig. 3 | Stripe overlap in a 2 by 6 box. We demonstrate the bimodal distribution of the macrostate that is temporally uncorrelated. a, histogram of 
the overlap of the stripe order with the single shot data (blue) and simulation of the infinite temperature state (orange). b, Auto-correlation of the stripe overlap data.
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