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In quantum mechanical many-body systems, long-range and anisotropic interactions
promoterich spatial structure and can lead to quantum frustration, giving rise to a
wealth of complex, strongly correlated quantum phases'. Long-range interactions

play animportantrole in nature; however, quantum simulations of lattice systems
have largely not been able to realize such interactions. A wide range of efforts are
underway to explore long-range interacting lattice systems using polar molecules®?,

2,6-8

Rydberg atoms

,optical cavities

1 or magnetic atoms? ™, Here we realize novel

quantum phasesin astrongly correlated lattice system with long-range dipolar
interactions using ultracold magnetic erbium atoms. As we tune the dipolar
interaction to be the dominant energy scale in our system, we observe quantum
phase transitions from a superfluid into dipolar quantum solids, which we directly
detect using quantum gas microscopy with accordion lattices. Controlling the
interaction anisotropy by orienting the dipoles enables us to realize a variety of
stripe-ordered states. Furthermore, by transitioning non-adiabatically through the
strongly correlated regime, we observe the emergence of a range of metastable
stripe-ordered states. This work demonstrates that novel strongly correlated
quantum phases can be realized using long-range dipolar interactions in optical
lattices, opening the door to quantum simulations of a wide range of lattice models
with long-range and anisotropic interactions.

Quantum simulations'® with ultracold atoms in optical lattices enable
the exploration of strongly correlated quantum matter described by
the Hubbard model” and are reaching regimes that are extremely chal-
lenging to access numerically™. Quantum simulations of the Hubbard
model, however, have so far largely been limited to local on-site inter-
actions, and it has been a long-standing goal to realize simulations
with strong long-range interactions. This would allow the quantum
simulation of models that more accurately describe realistic quan-
tum materials like transition metal dichalcogenides, which typically
experience finite off-site Coulomb repulsion'. Tunable anisotropic
long-range interactions would furthermore open the door to model-
ling quantum materials such as spin ice?, anisotropic materials* and
twisted bilayer materials®, as well as awide range of models beyond cur-
rent quantum material realizations. Long-range interactions naturally
promote spatial structure, leading to the emergence of solid phases. In
stark contrast toshort-range Hubbard models, long-range interactions
canleadto frustrationin otherwise non-frustrated geometries, hosting
supersolids®?, spin liquids® and fractionalization®. Generally, a
fundamental question arises about how do long-range interactions
compete with kinetic energy and on-site interactions to give rise to
novel quantum phases of matter.

Developing approaches for realizing long-range interacting systems
and addressing this questionis anexceptionally active field of research.

Significant progress has been made to create controllable systems
of cold polar molecules?*, with ongoing efforts towards itinerant
lattice gases®*. Rydberginteractions have enabled the quantumsimula-
tions of programmable Ising and XY spin models*®’. However, using
Rydberg dressing torealize itinerant models® presents challenges due
to Rydberg decay. Dynamic light fields in optical cavities enable the
study of infinite-range®® and finite-range! interacting atom systems,
withdissipationbeing the main hurdle for reaching strongly correlated
lattice physics. Furthermore, recent experiments in condensed matter
systems have simulated long-range interacting Hubbard systems with
bulk measurements® 2 yet, itis challenging to perform site-resolved
studies in these simulators.

Magnetic atoms provide an attractive alternative to the systems
mentioned above, as they are relatively simple to control and interact
through the long-range magnetic dipole-dipole interaction®. In bulk
systems, the atoms collectively order in the presence of a magnetic
interaction, leading to intriguing effects such as macroscopic dipolar
droplets forming a supersolid phase®. To realize strongly correlated
physics, however, the long-range interaction energy between pairs
of individual atoms needs to become large compared to the kinetic
energy**. It has been shown that a small-spacing optical lattice of mag-
neticatomsleads to a Hubbard systemwith dipolarinteractionslarge
enough to cause a notable shift of the superfluid to Mott insulator
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Fig.1|Experimental set-up. Magnetic erbiumatomsin anoptical lattice
realize an extended Hubbard model with anisotropic long-range interactions,
thus enabling the realization of novel strongly correlated quantum phases.

a, Orienting the magnetic dipoles using an external magnetic field allows us
towidely tune the anisotropy of the interaction, with being the polar angle,

¢ the azimuthal angle, the pink (green) lines denoting attractive (repulsive)
dipole-dipoleinteraction Vand the grey arrow denoting tunnelling t.b, We use
asmall-spacing lattice to maximize the dipolarinteraction strength. Quantum
gasmicroscopy is realized by handing off atoms from the small-spacing retro-
reflected lattices (green) to tunable-spacing accordion lattices (blue). c, After

transition™. However, whether the intersite dipolar interactions can
experimentally be made the dominant energy scale and larger than
thekinetic energy and temperature remained an open question. Here,
we present an affirmative answer to this question by observing quan-
tum phase transitions fromastrongly correlated superfluid to dipolar
quantum solids, that is phases of matter that show spontaneous peri-
odicdensity modulationin the presence of quantum fluctuations due
to finite tunnelling. This long-range and anisotropic interaction is
expected togiverise toarich set of states with fractional fillings**>>38,
In this work, we probe such states at half-filling.

Dipolar quantum gas microscope

We realize the two-dimensional (2D) extended Bose-Hubbard model
with anisotropic long-range dipolar interactions by employing mag-
netic erbium atoms in an optical lattice (Fig. 1a). In this work, we
choose the atomic on-site Hubbard repulsion to be much larger than
other energy scales. This realizes an extended Hubbard model in the
hard-core boson limit in which each lattice site is populated by either
zero or one atom (Methods). The Hubbard Hamiltonian of our system s

H==t ¥ @@+ hc)= Y pa+ YV, fify. 1)
i) i isj

Here, d;rdj describes the tunnelling of hard-core bosons between
nearest-neighbour sites with amplitude ¢, 73; is the number operator
onsite i and y;is the chemical potential on site i. The dipolar inter-
action between lattice sites i.an_dj\ZNith distanced, ;= (d,, d,) sitesis
V,-J- _ l/01— 3((dx/d)sm0cosj3+ (dy/ d)sinfsing) i where (9’ ¢) arethedipole polar
andazimuthal angles (Fig.1a), d = |d, | and V, is the nearest-neighbour
repulsive interaction energy when the dipoleis oriented out of the 2D
plane (6=0°).

The major challenge when observing dipolar quantum solids using
magnetic atoms is posed by the relatively weak magnetic interac-
tions between atoms compared to the typical energy scales in quan-
tum simulators. We reach a nearest-neighbour interaction energy of

V,=h %30 Hz, where his Planck’s constant, by using a small-spacing

3 um spacing

expanding theaccordionlattice, fast fluorescenceimaging resultsinsite-
resolved single-shotimages. d, Schematic of the extended Bose-Hubbard
phase diagram with dipolarinteractions. The solid arrow indicates the ramp
we performtoinduce aquantum phase transition from astrongly correlated
superfluid to a half-filling dipolar quantum solid. Insets, an exemplary single-
shotimage of asolid (same as Fig. 2c) and time-of-flight images taken at the star
location before the ramp (top) and after ramping back to the superfluid phase
along the dashed arrow (bottom). The persistence of the superfluid matter
wave peaks after rampingback from the solid qualitatively demonstrates the
adiabaticity of theramp.

optical lattice (green beamsinFig.1b) with a = 266 nm lattice spacing®.
Toresolveindividualsitesinthislattice, we developed anovel quantum
gas microscopy technique using a tunable-spacing two-dimensional
accordion lattice projected in vacuo through an objective with a high
numerical aperture (blue beamsin Fig.1b). Forimaging, we transferred
atoms from the small-spacinglattice to the accordion lattice and then
expanded the spacing of the accordion lattice. Finally, weimaged with
single-site resolution (Methods); asnapshot of aMottinsulatoris shown
inFig.1c.

Thedipolarinteraction strengthis nearly four orders of magnitude
smaller than the opticallattice depth; hence, itis essential to minimize
thelattice disorder that causes the disorder inthe chemical potential ;.
Wereduced the potential disorder to within afraction of V, by minimiz-
ingthe scattered lightintensity in the atom plane and ensuring that the
residual disorder length scale is large. This was done by making sure
that all optical surfaces on which lattice beams were incident were at
least a few Rayleigh ranges away from the atomic plane®. This neces-
sitates a custom objective with a central bore to minimize scattering
ofthe vertical lattice beam (Methods).

For the experiment, we started with a Bose-Einstein condensate of
168Er created in less than 1s using narrow line laser cooling*°. We then
loaded the atoms into a single layer of a retro-reflected vertical lat-
tice (Methods). We robustly loaded sufficient atomsinto the lattice to
reach around 100 atoms on 200 sites in the central region of interest.
The atomic dipole direction was set by aligning the dipoles to a tun-
able external magnetic field that was static during the lattice ramp.
The small-spacing lattice power was ramped adiabatically to reach
the target lattice depth following the solid arrow in Fig. 1d, such that
we achieved t/V, = 0.1. Remarkably, we were able to ensure that the
process was adiabatic down to low tunnelling strengths, correspond-
ing to adiabatic cooling* to temperatures (T) of only several hundred
picokelvin (k;T/V, = 0.5, where kg is the Boltzmann constant). Forimag-
ing, we rapidly increased the lattice depth to turn off the tunnelling
inthe small-spacing lattice and projected the state of the system into
the occupation basis. We then handed off the atoms to the accordion
lattice and expanded the lattice spacing to 3 pm. The lattice dynamics
were kept frozen when expanding the accordion lattice spacing such
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Fig.2|Dipolar quantumsolids. As the dipolarinteraction V,becomes
dominant over tunnelling ¢, dipolar quantum solids emerge. a,b, In row (i),
dipoles pointingin the zdirection (a) giverise to isotropic 1/d® repulsion (b).
¢, Anexemplary single-shotimage shows the chequerboard solid arising at half-
filling (blue shading to guide the eye). d, The emerging order canbe analysed
quantitatively by calculating the connected density-density correlator C4
averaged over experimental realizations, with alinear colour bar between

that the imaged lattice occupation faithfully represented the state of
the atomsin the small-spacing lattice (Methods). We then performed
fluorescence imaging by exposing the atoms to resonant highly satu-
rated light for 8 ps (ref. 42). A few hundred fluorescence photons per
atom were scattered and collected by the objective (Fig. 1b). About
50 photons per atom were detected by the electron-multiplying
charge-coupled device (CCD) camera, forming an image from which
we extracted the atom occupation number per lattice site. The total
experimentcycle timewas2.5s.

Dipolar quantum solids

We observed the atoms self-organize into different dipolar quantum
solids when the dipole-dipole interactions became the dominant
energy scale in our system (Fig. 2). These periodically ordered states
arose after quantum phase transitions from a strongly correlated super-
fluid into a dipolar quantum solid, with possible intermediate phases
that will be the focus of future work. We transitioned into the solid by
adiabatically reducing the kinetic energy of the atoms in the lattice
using a linear ramp of lattice depth. The periodic ordering, which is
distinct from the periodicity of the lattice, was a signature that the
underlying lattice symmetry was broken. By tuning the orientation of
thedipoles with the external magnetic field, werealized a wide variety of
isotropic and anisotropicinteractions, leading to phases with different
periodic ordering depending on the dipole orientation (Fig. 2, rows (i),
(ii) and (iii)). We analysed the quantum solids directly from single-shot
images or by calculating the connected density—density correlation:

4 A ANy A
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a, (wa)

-0.01and 0.01andlogarithmicelsewhere.e, AFourier transform of Cyyields
thestructure factor S(q), whose magnitude squared is plotted with alinear
colourbarstarting from zero. With the dipole aligned in the x direction (row (ii)),
theinteractionbecomes highly anisotropic, and the atoms form astripe solid.
For diagonally aligned dipoles (row (iii)) (here, 8=50° and ¢ = 45°), we observe
diagonally ordered states. Remarkably, the transition into the diagonal stripe
solidis entirely driven by beyond-nearest-neighbour interaction terms.

where we sum over Ny pairs of lattice sites at distance vector d in the
analysis region and average over hundreds of experimental realiza-
tions*. Such a correlation shows strong periodic patterns depending
on the specific quantum solid (Fig. 2d). The Fourier transform of the
correlation (the structure factor)

st 3 o, .
d

(qis the quasi-momentum) exhibits peaks at positions set by the perio-
dicity of the quantum solid state (Fig. 2e).

Chequerboard solid

First, we tuned the dipole orientation to explore isotropic long-range
repulsion. Whenthe atomic dipoles pointed perpendicular to the plane,
that is 8= 0° (Fig. 2a(i)), the atoms isotropically repelled each other
with a strength that decays as 1/d?, where d is the distance between
two lattice sites (Fig. 2b(i)). At half-filling and weak tunnelling, the
atomsarranged themselvesinthe energetically favoured chequerboard
pattern. In Fig. 2c(i), we show a chequerboard in a cropped region of
an example single-shot image. The periodic chequerboard structure
in the observed density correlation (Fig. 2d(i)) and the structure fac-
tor exhibiting (+1t/a, +m/a) peaks (Fig. 2e(i)) is a hallmark of lattice
symmetry breaking in a solid®.

Stripe solid

Next, we maximized the interaction anisotropy between the two lat-
tice axes by orienting the atomic dipoles in the 2D atom plane along
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Fig.3|Solids and global phase separation with spatial anisotropy. For dipoles
aligned diagonally withrespectto thelattice vectors (¢ = 45°), different polar
angles O giverisetostripe solids with different periodicity. a, Dipole orientation
with the polar angle highlighted in green. b, Anisotropic long-range dipolar
interaction energy. c, Measured connected density-density correlation.

d, Magnitude-squared structure factors. e, Quantum Monte Carlo simulation
of emerging phases. Grey shadingindicates solids and white indicatesa
superfluid region. Each colour border represents a different solid with the
ordering shownintheinset. Between 53°and 72°, there are more solid phases
without theirboundaries marked outin colour. Our adiabatic paths follow the

one of the lattice directions, that is (6, ¢) = (90°, 0°) (Fig. 2a(ii)). We
observed in single-shot images long chains of atoms aligned with the
atomic dipole direction, with an example cropped image shown in
Fig.2c(ii). The phase of the chains changed from shot to shot (Methods),
showing the characteristics of spontaneous symmetry breaking. The
extracted connected density-density correlation had a periodic stripe
pattern (Fig. 2d(ii)) and the density structure factor (Fig. 2e(ii)) clearly
exhibited (0, +m/a) peaks.

Furthermore, we probed the adiabaticity of the transition from the
superfluid to dipolar quantum solids by measuring the superfluid
coherence peaks before and after the lattice ramp. The superfluid
fraction was qualitatively estimated by observing coherence peaks
in time-of-flight images, after releasing atoms from the lattice**. The
inset in Fig. 1d above the solid arrow is a time-of-flight image before
ramping into the stripe solid and shows the superfluid coherence
peaks, demonstrating the quantum coherence of our initial state. To
demonstrate that the rampinto the ordered state was nearly adiabatic,
we performed aclosed pathin parameter space and ramped backinto
the superfluid phase following the dashed arrow shown in Fig. 1d. We
qualitatively checked the return fidelity with the time-of-flight image
shownbelow the dashed arrow. The appearance of interference peaks
indicates that ramp to the solid was close to adiabatic.

Diagonal stripe solid

To probe the long-range nature of the dipole-dipole interaction, we
aligned the atomic dipole out of the lattice plane along the (8, ¢) =
(50°, 45°) direction. If our interactionsincluded only nearest-neighbour
interactions, this dipole orientation with repulsive nearest-neighbour
interactions (Fig. 2b(iii)) would be like the first case with 8 =0°

f

IS[?

Viaxtioyt <2
1 Videlloy < 1 ﬁ
rk+ |
| 1 L | | 1 L
0 18 36 54 72 90

0()
grey arrows. f, Experimental structure factor along the orange diagonal line
frommarker T to M’shownin the rightmost subfigure ofd, whose coordinates
are(q,, —q,).Shaded areas show the quantum Monte Carlo simulation results
with one standard deviation error. The blue areais asimulationincluding only
nearest-neighbour and diagonal next-nearest-neighbour interaction terms
(Id,l,1d,| <1). Thered areaincludes beyond-next-nearest-neighbourinteraction
terms(|d,], |d,| <2). Theexperimental dataagree better with thelatter, indicating
thatlong-range tails beyond-next-nearest-neighbour terms play a significant
roleinoursystem.

(Fig. 2b(i)), where we observe the chequerboard solid. In contrast to
the chequerboard case, the dipolarinteractions beyond nearest neigh-
bours showed a diagonal attraction along one lattice diagonal and
repulsion along the other. These interactions gave rise to a ground
state of diagonal stripes with a period of 2./2 a, as shown in Fig. 2c,d(iii)
witha corresponding peakinthestructure factor at +(m/2, -1/2) shown
in Fig. 2e(iii). The observation of this diagonal stripe solid not only
demonstrates the long-range dipolar nature of our interactions but
also highlights the low disorder of the local chemical potential y; and
the low temperature of our system compared to the maximum interac-
tion energy of only 2 x 10 Hz with this dipole orientation.

The example solid in Fig. 2(iii) demonstrates that aligning the dipole
orientation toanazimuthal angle ¢ = 45° between the xand y axes can
resultinanisotropic nearest-neighbourinteractionbutananisotropic
next-nearest-neighbour interaction, leading to translation symmetry
breakinginto alarge unit cell*. Here, we further explored the ordering
of the system at low temperature for different polar angles 0 (Fig. 3a).
We adiabatically reduced the tunnelling and approached the ground
state with t/V,, = 0.1 at different polar angles 6 with the same ¢ = 45°
(Fig. 3a). As 6 (green arc in Fig. 3a) increased, the observed periodic-
ity of the diagonal stripe increased (Fig. 3¢) and the structure factor
peak (Fig. 3d) moved closer to the origin, indicating a larger unit cell.
To gain theoretical understanding, we performed quantum Monte
Carlo simulations (Methods) and identified the emerging phases for
the experimental parameters in Fig. 3e.

To compare the observed structure factor with the results of quan-
tum Monte Carlo simulations, we plotted the measured density struc-
ture factors S(q) along the straight line from point I to pointM’in the
Brillouin zone (the dotted diagonal line shown in the rightmost
subfigure of Fig. 3d), whose coordinates are (q,, —q,), and we plotted
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Fig.4|Out-of-equilibrium dynamics. After ramping non-adiabatically into
the global phase separation state, we observe diagonal stripe solids with
different periodicities depending on the ramp speed, which demonstrates the
richmanifold of metastable states lying above the global phase separation state.
a,b, Thedipoleisoriented diagonallyinthex-y planeat ¢ =45°and 8=90° (a),
leading to the anisotropic dipolarinteractionenergy (b). c-e, The connected

theresultsinFig. 3finincrements of 4.5°. The structure factor indicates
that there was chequerboard order between 8= 0° and 6 = 30°. Then,
the peaklocation of the density structure factor was gradually moved
towardsthe origin until 8 = 80°. At this point, the attractive long-range
interaction dominated over the repulsive one. We observed that the
ground state of our finite systemwas no longer adiagonal stripe solid,
butinstead, it was aself-organized state with the lattice separated into
unity-filled and empty regions, each occupying only half of the sitesin
the region of interest. We denoted this as a global phase separation
state, where the unity-filled region was a self-bound insulator. This
state is fundamentally distinct from a unity-filled Mott insulator, as
the system would form a half-filling superfluid in the absence of
dipolarinteractions.

The various types of diagonal stripes that can form between the
chequerboard solid and the global phase separation state exemplify
the long range of the dipolar interactions beyond next nearest neigh-
bours. We simulated the dipolar interaction cutoff with |d,|, |d)| <1
(Fig.3f,blue shade, 3by 3 box, includesinteractions only for the nearest
neighbour and the next nearest neighbour) and |d,, |d,| < 2 (Fig. 3f, red
shade, 5 by 5box, includes interactions beyond next nearest neigh-
bour). The tail of the long-range interactions plays an important role
in the self-organization of stripe solids with long periodicity when 6
is between 50° and 70°, causing the significant difference between
the simulation results with different cutoff ranges. Remarkably, we
observed that our data agree with the simulation results, including
beyond-next-nearest-neighbour interactions (red shade), highlighting
theimportant role of long-range interaction terms.

Out-of-equilibrium dynamics

Weexplored the rich out-of-equilibrium physics that emerges from the
dipolarinteractions (Fig.4).In particular, the global phase separation
statewhen (6, ¢) = (90°, 45°) exhibited a variety of low-lying metastable
states, whichis a characteristic of long-range interacting systems**.
Toexplore these metastable states, we dynamically ramped the system
starting fromahalf-filling superfluid using alinear ramp of lattice depth,
resultingin an exponential rampin tunnelling energy from h x 300 Hz
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ooce Ramp duration (ms)

density-density correlation (c), the structure factor (d) and single-shot images
(e) show the various periodicities for different ramp durations of15ms, 100 ms
and 360 ms. f,g, We plot the diagonal structure factor (f) and the centre (within
theblueboxine)fillingratio (g) toshow the emerging phase separation as the

filling at the centre approaches unity (the error bars denote the standard error
ofthe mean).

to h x 3 Hz. By varying the ramp time, we observed diagonal stripes
with different periodicities (Fig. 4c). When the ramp was faster than
100 ms, the structure factor had a signature of diagonal stripes, and the
atoms were sparsely arranged throughout the analysis region (Fig. 4e,
left). These diagonal stripes were among the lowest-lying metastable
states because the dipolarinteraction (Fig.4b) strongly biases diagonal
stripes aligned with the dipole direction. As the ramp became more adi-
abatic, the structure factor peaks migrated towards the origin (Fig. 4f)
until they became limited by the system size, and the atoms formed a
state that was close to unity-filled (Fig. 4e, right). Due to the finite
temperature, we still observed sporadic excitations from the ground
state in the form of a missing atom in the centre of the cloud. These
excitations did not exhibit a significant spatial structure, unlike the
metastable diagonal stripe patterns. Overall, the long-range nature of
the dipolarinteraction was responsible for the rich out-of-equilibrium
physics observed in this system.

Conclusion and outlook

We observed various dipolar quantum solids and global phase sepa-
ration using ultracold atoms with single-site resolution, finding rich
phases caused by the anisotropic long-range dipolar interactions. We
found evidence of metastable states, which we accessed by chang-
ing the ramp speed across the phase transition from superfluid to the
global phase separation state. These observations mark the beginning
of studyingitinerant, strongly correlated quantum phases originating
from dipolar interactions. The dipolar quantum gas microscope is
aflexible platform for examining a host of quantum phase transitions
between different statesin the dipolar system and dynamics across such
transitions, such asfirst-order phase transitions and transitions exhibit-
ingintermediate ‘microemulsion’ phases®**%, Furthermore, metastable
states represent an exciting frontier in many-body quantum systems
and open the gate to quantum orders notstable in equilibrium*. Moreo-
ver, going beyond the hard-core boson limit and allowing multiple
particles to occupy the same site allows supersolid phases to occupy
amuchlargerregionin the phase diagram***' and gives rise to Haldane
insulators in one dimension®. Leveraging the anisotropic long-range



interactions in this system will allow spin liquids®® and fractionaliza-
tion® to be examined. Finally, employing fermionic species of magnetic
atoms will enable the realization of extended Fermi-Hubbard modelsin
the study of spinfulitinerant systems with dipolar interactions, which
can show a wide variety of phenomena including bond order waves™
and ultralong-range order*.
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Methods

Model calibration

We studied the extended Bose-Hubbard modelin the hard-core boson
limit since the on-siteinteractionenergy Uin our systemis much larger
than the tunnelling energy ¢, dipolar energy scale V,, and chemical
potential i1. Thus, we neglect the on-site interaction term % Y (A -1)
inthe standard Bose-Hubbard Hamiltonian. We estimated the on-site
interactionenergy Utobe h x 1kHz to 2 kHz, depending on the atomic
dipole orientation. We measured Uby modulating the lattice intensity
and observingatom loss in the lattice when the modulation frequency
was close to U(ref.13). We also computed Uby taking into account the
vertical Wannier function width as well as the dipole orientation, finding
good agreement with previous measurements>, Such high Uresultsin
anegligible super-exchange energy of h x 0.01 Hz (4 x 10 V,) at typical
tunnelling energies at which we examine dipolar quantum solids.
To calibrate the tunnelling ¢ for the data in this paper, we measured the
lattice depth with lattice modulation®. From the measured lattice
depth, we numerically obtained the lattice band structure and esti-
mated the tunnelling from the ground bandwidth*. We computed the
density-induced tunnelling* to be an order of magnitude smaller than
the single-particle tunnelling ¢, so we neglected the term in the Ham-
iltonian. The variation of the chemical potential y;in our system con-
sisted of the global harmonic confinement introduced by the lattice
beams and the site-to-site disorder in the centre of the analysis region.
We measured the global harmonic confinement by measuring the oscil-
lation frequency of the atomic cloud after releasing the atoms from a
tight dipole trap. We estimated the chemical potential disorderin the
analysis region of interest (around 100 sites) by comparing the meas-
ured lattice filling to the exact diagonalization simulation. Specifically,
we ramped the lattice to different lattice depths and measured the
standard deviation of the average atom number filling. We compared
this measurement with a simulation of a 4 x 4 site system by exact
diagonalization, assuming that the disorder follows a uniform distribu-
tion¥. We estimated the chemical potential g, disorder to be h x 3 Hz
from site to site, in addition to a global harmonic confinement. We
computed the dipolar interaction strength V; ; at different distances
by taking into account the non-zero width of the Wannier function,
which can modify the interactions between the nearest-neighbour
sites significantly®,

Lattice stability

Atseveral pointsin the experimental sequence, we transferred atoms
between different sets of lattices, which required a stable relative lat-
tice phase for reliability. To achieve high stability, we used the vacuum
chamber as a reference for all the lattices in our experiment. The 2D
small-spacing 532-nm-wavelength lattices were retro-reflected from
mirrors attached to the vacuum chamber. The 2D tunable-spacing
488-nm-wavelength accordion lattices were sent through the objec-
tive, which was directly mounted inside the vacuum chamber. The
vertical1,064-nm-wavelength lattice was retro-reflected from amirror
mounted ontop of the in-vacuum objective. To match the phase of the
2D small-spacing retro-reflected lattices to that of the 2D accordion
lattices, we used a thin anti-reflection coated window mounted on a
galvanometer to tune the path length difference of the accordion
beams. Once the system had warmed up for 2 h, the phases of the
lattices stayed stable for more than 24 h.

Reducing the local chemical potential disorder

Achieving chemical potential disorder smaller than the dipolarinterac-
tionenergyscale V/;meansthat theintensity of scatteredlightinterfering
with the main lattice beam has to be less than 1 part per million—
an extraordinarily low ratio to achieve experimentally. We found that
the main source of chemical potential disorder in our experiment to
bethescattered vertical lattice light. Therefore, we tuned the intensity

of the vertical lattice to be as low as possible, while still keeping the
atoms in a single layer of the vertical lattice during the experimental
sequence®. The energy difference due to gravity in adjacent layers
of the vertical lattice prevented the resonant tunnelling of atoms.
Experimentally, we observed that a vertical lattice depth of around
7 Ex maximized the dipolar quantum solid order, where E is the verti-
callatticerecoil energy. The lifetime of the atoms at such lattice depth
was of the order of a second®. Thus, our experimental lattice ramps
of afew hundred milliseconds were short enough to keep most of the
atoms in the lattice.

State preparation

First, we created a Bose-Einstein condensate in less than a second as
described inref. 40. The single-chamber experiment design removes
the complexity of transport. Next, we compressed the atomsintoa
thin sheet using a vertical 532-nm-wavelength accordion lattice that
went through an asphericlens mounted inside the vacuum chamberin
400 ms. Thenwe transferred the atoms to asingle layer of the vertical
1,064-nm-wavelength retro-reflected lattice. We controlled the final
number of atoms in the lattice by tuning the power of an additional
optical dipoletrap as we turned ona magnetic field gradient to pull the
rest of the atoms out of the trap. This process took 600 ms. We observed
fluctuationsin the number of atoms of a few percent (standard devia-
tion) from shot to shot and did not postselect for exact half-filling
(except Extended Data Fig. 3). After turning off the field gradient, we
rotated the bias magnetic field to the desired orientation. Finally, we
ramped up the 2D small-spacing retro-reflected lattice exponentially
for 100 ms to 8 £z and then linearly for a few hundred milliseconds to
27 Ez. To demonstrate the adiabaticity of the lattice ramp, we probed
the coherence peaks as we changed the duration of the linear ramp
(Extended Data Fig.1).

Imaging procedure

At the end of each experiment, we froze the dynamics in the small-
spacing optical lattice by ramping up the lattice power so that the
tunnelling changes from roughly A x 3 Hz to A% 0.3 Hz in 100 ps.
We then transferred the atoms from the small-spacing lattice to the
2D accordion lattice in 6 ms. Next, we expanded the 2D accordion
lattice spacing from 266 nm to 3 pm in 80 ms (ref. 61). We performed
fluorescence imaging of the atoms by exposing them to highly satu-
rated 401 nm resonant beams for 8 pus without cooling or trapping*.
Thanks to the large 30 MHz linewidth of the imaging transition, we
detected roughly 50 photoelectrons during the exposure time using
anelectron-multiplying CCD camera. To minimize the net momentum
ontheatomsexerted by theimaging beams, we exposed the atoms to
two counter-propagating imaging beams. We alternately pulsed the
two counter-propagating beams to eliminate the effect of a standing
wave created when both beams were applied at the same time*2. We
kept the beam intensity much higher than the saturation intensity
I, such that the scattering rate and, thus, the average momentum
imparted by each beam onto the atoms were stable without the need
for closed-loop feedback of the beam power. During imaging, the atoms
experienced movement due to stochastic momentumkicks imparted by
the spontaneously emitted photons; however, the random walk moved
the atoms by less than halfthe accordion lattice spacing in most cases.

Imaging fidelity

To distinguish between one and zero atoms on each lattice site, we
summed the signals of all camera pixels corresponding to the site
and then digitized the number of atoms per site with a precalibrated
threshold of 20 photoelectrons per site. Extended Data Fig. 2ais a his-
togram of the total photoelectron counts of the same site in 9,000
shots collected over 10 h. The two Gaussian-like peaks are well sepa-
rated and correspond to afidelity to distinguish between zero and one
atomabove 99%. Characterizing the loss during the imaging protocol,



including the loss during the transfer into the blue accordion lattice as
well as during the expansion of the blue accordion lattice, was more
challenging. We prepared a Mott insulator with one particle per site
(n=1) and estimated an upper bound of the loss by assuming that
the Mottinsulator we made has100% fidelity. Extended Data Fig. 2b is
ahistogram of the total photoelectron counts within all lattice sitesin
the centre 10 by 10 sites. We detected the filling of the Mott insulator
to be higher than 98%, giving us an upper bound for the loss of 2%.

Numerical simulations

We performed worm-type quantum Monte Carlo simulations based on
anexisting package®?, which we modified to include long-range dipolar
interactions. We benchmarked our simulations with finite-temperature
exact diagonalization® for a 4 x 4 site system. For typical values of
the experimental parameters used in this work, we found that the
auto-correlation time was short after thermalization, needing about
ten measurements for the density-density correlations compared to
the 5,000 measurements we performed. The short auto-correlation
time was partially due to the metastability of the states in the long-range
interacting system’s Hilbert space. To avoid this, we thermalized 64
different seeds and averaged the results. When estimating the tempera-
ture of the solids, we set the boundary condition to open and included
measured harmonic confinementin the simulation butdid notinclude
thelocal chemical potential disorder. For the phase diagramin Fig. 3e,
weset the temperatureto 7= 0.2V,/k; (0.3 nK), the system size to 20 by
20sites and the boundary condition to open. In addition, we assumed
that the chemical potential was flat with no harmonic confinement
and no disorder. For all phases, we used the location of the peak of
the structure factor as the order parameter, which we then compared
with the location of the structure factor peak in the classical limit of
no tunnelling. The simulation of the structure factor in Fig. 3f has the
same conditions as the phase diagram, but we used the experimental
uncertainty intunnelling to determine the error bars. Insimulations at
lower temperatures, the location of the structure factor peak did not
shift but only narrowed, allowing us to simulate the emerging phases
downto ¢/V,=0.05for Fig. 3e.

Data analysis

All density correlation and structure factor data shown in this paper
were computed for a square-box analysis region whose size ranged
from 11 by 11 sites to 15 by 15 sites, resulting in a full C; matrix of 23 by
23 sitesto 31by 31sites depending on the particular dataset. We show
Cqinthefiguresonlywithin|d,|, |d,| < 4 sites because most of the order-
ing we studied decayed within four sites. We computed the connected
density-density correlationinstead of the disconnected one because
we wanted to distinguish the classical solid with a static phase from
asolid with an uncertain phase. If static chemical potential disorder
were to pin the solids down to one of the static phases, we would no
longer have seen a signal in the connected density-density correla-
tion. The observed correlation decayed exponentially over distance,
sowe mainly used alogarithmic colour scale and connected the posi-
tive and negative logarithmic scales with alinear scale. We computed
the structure factor from the connected density-density correlation
matrix extracted from, typically, up to |d,|, |d,| < 9 sites. To obtain the
diagonal structure factors shown in Figs. 3f and 4f, we integrated the
structure factor perpendicular to the straight line (shown in Figs. 3d
and 4d) with a Gaussian envelope centred on the straight line. The
centre filling was calculated by finding the maximum filling ratioin a
6 by 6 box among shots with a certain filling range (40% to 45%) in the
whole analysis region of 16 by 16 sites.

Solid temperature

We compared the density—-density correlation measured experimen-
tally with theresults of aquantum Monte Carlo simulation to estimate
the temperature of our system. For the stripe solid, we estimated the

temperature to be 0.8 nK; for the chequerboard solid, we estimated
thetemperature to be 0.7 nK. We computed the critical temperature to
be around 0.5 nK for the stripe solid and estimated the critical tem-
perature tobelower for the other types of solids examined in this work.
To fix the particle density, we swept both the temperature and chemi-
cal potential, and then, for each temperature, we used the chemical
potential that replicates the experiment’s filling fraction in the central
16sites. All solids in this paper exhibited a connected density-density
correlation that decayed exponentially as we increased d, indicating
that the system was above the critical temperature of the solids or
that the chemical potential disorder and harmonic confinement were
toolarge”. The exponential fits to the density correlations (d > 1) give
the correlation length. Specifically, the stripe density-density cor-
relation decayed exponentially with a correlation length of 2.22(5)
sites for d = (d,, 0) and 1.21(15) sites for d = (0, d,). The chequerboard
correlation decayed exponentially with a correlation length of 0.82(5)
sitesisotropically. The diagonal stripe correlation decayed with a cor-
relation length of 0.6(2) along the diagonal directions. The observed
correlations decayed exponentially in the experiment, but they were
the same ones that were established atlong range in the solid phases,
and they can be observed in a whole subregion in some single-shot
images (Fig. 2c).

Solid lifetime

After we ramped into the solid phases, we held the atoms for various
durationsand measured the overlap of the connected density-density
correlation with the perfect solid correlation. We observed that overlap
decayed roughly exponentially with alifetime of 1 s for the stripe solid
when the atomic dipole pointed along one lattice direction and 0.7 s
for the chequerboard solid. The finite lifetime of our Wannier-Stark
state in the vertical lattice as well as heating from technical sources
like laser noise and scattering can contribute to the decay of the solid
order.Suchalifetime enables future work that explores the phase tran-
sitions between dipolar quantum solids and supersolids, since such
experiments require adiabatic ramps of the dipole orientation when
the tunnelling energy is small.

Spontaneous symmetry breaking of stripe solids

Using the site-resolved single-shotimages, we were able to examine the
spontaneous symmetry breaking as we transitioned into astripe solid.
We chose a2 by 6siteregionin our system and studied the stripe order-
ing after postselection when there were exactly six atoms over these
12 sites. We defined a value that measures the distance of a single-shot
image tothe stripes of phases Aand B (bottom of Extended DataFig. 3a).
With the simulated infinite temperature state, we saw that most of the
values were centred between the two stripe patterns A and B, as the
orange points show in Extended Data Fig. 3a. But in our experiment
with the stripe solid, we observed the perfect stripe ordering more
frequently, leading to a bimodal distribution. To demonstrate that
there was no temporal correlation between the two stripe patterns
and support the claim that the symmetry breaking was random, we
calculated the auto-correlation of the stripe overlap values over differ-
entshotsand demonstrated that the overlap value was stochastic with
no auto-correlation peaks (Extended DataFig.3b). The above provides
evidence that our stripe solid is a spontaneous symmetry-breaking
state.

Data availability

The datathat support the findings of this study are available from the
corresponding authors on reasonable request.
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a 1ms b 9 ms

Extended DataFig.1|Adiabaticity of thelatticeramp. We probe the
adiabaticity of the lattice ramp by varying the duration as we follow the solid
and dashed arrow toreturnto the star positionat 7 Egin Fig. 1d. When the ramp
durationis very shortat1ms (a), we see sharp coherence peaksin the time-of-
flightimage. As we slow down theramp to aduration of 9 ms (b), the coherence
peaksinthetime-of-flightimage are the least resolved. Furtherincreasing the

ramp duration up to 438 ms (c), we observe well-resolved coherence peaks
again. The peaks are less sharp compared to thoseina, possibly dueto the
decoherenceand atomloss during the ramps, whichin total takes almost
900 ms. These averaged images demonstrate that, with the ramp duration
ontheorder of 100 msin this paper, the systemisin the adiabatic regime.
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Extended DataFig.2|Histogram for digitization of occupationnumber. distinguish between 0 and 1filling per site after expanding the 2D accordion
We perform high-fidelity site-resolved imaging after expanding the 2D latticeis more than 99%. b, unity-filling histogram. The efficiency of transferring
accordion lattice to 3 um spacing. a, half-filling histogram. The fidelity to atomstothe 2D accordion lattice and expandingis more than 98%.
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Extended DataFig.3|Stripe overlapina2by 6 box. We demonstrate the bimodal distribution of the macrostate that is temporally uncorrelated. a, histogram of
the overlap of the stripe order with the single shot data (blue) and simulation of the infinite temperature state (orange). b, Auto-correlation of the stripe overlap data.
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