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ABSTRACT
The intracluster medium of galaxy clusters is an extremely hot and diffuse, nearly collisionless plasma, which hosts dynamically
important magnetic fields of ⇠`G strength. Seed magnetic fields of much weaker strength of astrophysical or primordial origin
can be present in the intracluster medium. In collisional plasmas, which can be approximated in the magneto-hydrodynamical
(MHD) limit, the turbulent dynamo mechanism can amplify weak seed fields to strong dynamical levels efficiently by converting
turbulent kinetic energy into magnetic energy. However, the viability of this mechanism in weakly collisional or completely
collisionless plasma is much less understood. In this study, we explore the properties of the collisionless turbulent dynamo
by using three-dimensional hybrid-kinetic particle-in-cell simulations. We explore the properties of the collisionless turbulent
dynamo in the kinematic regime for different values of the magnetic Reynolds number, Rm, initial magnetic-to-kinetic energy
ratio, (⇢mag/⇢kin)i, and initial Larmor ratio, (ALarmor/!box)i, i.e., the ratio of the Larmor radius to the size of the turbulent system.
We find that in the ‘un-magnetised’ regime, (ALarmor/!box)i > 1, the critical magnetic Reynolds number for the dynamo action
Rmcrit ⇡ 107± 3. In the ‘magnetised’ regime, (ALarmor/!box)i . 1, we find a marginally higher Rmcrit = 124± 8. We find that the
growth rate of the magnetic energy does not depend on the strength of the seed magnetic field when the initial magnetisation is
fixed. We also study the distribution and evolution of the pressure anisotropy in the collisionless plasma and compare our results
with the MHD turbulent dynamo.

Key words: dynamo – turbulence – magnetic fields – methods: numerical – galaxies: clusters: intracluster medium – plasmas

1 INTRODUCTION

The intracluster medium (ICM) of galaxy clusters is an extremely
hot (⇠107–108 K) and diffuse (⇠10�2–10�3 cm�3) plasma. As a
result, the mean free path between Coulomb collisions in the ICM
is large (_mfp ⇠ 30 kpc), with only limited scale separation between
it and the characteristic length scales of bulk flows and temperature
profiles (!ICM ⇠ 100 kpc). As a result, the ICM is said to be ‘weakly
collisional’ (Simionescu et al. 2019; Kunz et al. 2022). The ICM is
also turbulent, with chaotic fluid motions driven by several physical
processes like galaxy mergers, wakes of infall events, and feedback
from active galactic nuclei (Subramanian et al. 2006; Banerjee &
Sharma 2014; Mohapatra & Sharma 2019). Turbulent velocities of
⇡160 km/s have been observed in the Perseus cluster by Hitomi
Collaboration (2016), significantly smaller than the typical thermal
speed of the hot ICM plasma, +th ⇠ 1000 km/s. The implied sonic
Mach number of ⇠0.1 � 0.35 is low, but not atypical of the sub-
sonic turbulence that is routinely inferred from high-resolution X-ray
spectroscopy (e.g., Sanders et al. 2011; Gatuzz et al. 2022a,b, 2023).
Merging galaxy clusters can have higher turbulent speeds and Mach
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numbers compared to relaxed clusters (Domínguez-Fernández et al.
2019).

The evolution of magnetic fields in weakly collisional and colli-
sionless plasmas in the presence of such turbulence has been studied
with increasing interest in recent years (e.g., Schekochihin et al.
2005a; Schekochihin & Cowley 2006; Mogavero & Schekochihin
2014; Santos-Lima et al. 2014; Melville et al. 2016; Rincon et al.
2016; St-Onge & Kunz 2018; St-Onge et al. 2020; Rappaz & Schober
2023). However, detailed numerical studies investigating the ampli-
fication of magnetic fields via the collisionless turbulent dynamo
remain in short supply. Such numerical experiments have signifi-
cantly more computational cost when compared to their collisional
MHD counterparts. To understand the collisionless turbulent dy-
namo, where a fluid description of the plasma is no longer suit-
able, one must resort to a kinetic treatment of the plasma. Rincon
et al. (2016) performed numerical simulations of the collisionless
turbulent dynamo by solving the Vlasov equation in six dimensions,
demonstrating in a proof-of-concept manner that a turbulent dynamo
mechanism is plausible in collisionless plasma. St-Onge & Kunz
(2018) used a hybrid-kinetic particle-in-cell (PIC) code to explore
different regimes of the collisionless turbulent dynamo.

The magnetic Reynolds number, Rm, is the ratio of the induc-
tive motions (which amplify magnetic fields) and magnetic diffusion
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which decays magnetic fields. The Rm is an important parameter
for dynamo action, and it has been shown that there exists a critical
magnetic Reynolds number, Rmcrit, above which the amplification
of magnetic fields by the MHD turbulent dynamo is possible (Mof-
fatt 1978). However, the critical magnetic Reynolds number of the
collisionless turbulent dynamo and how it depends on the initial
conditions of the plasma have not been explored in detail by previ-
ous studies. The ICM is expected to have a high magnetic Reynolds
number, Rm ⇠ 1027 � 1029 (Schekochihin & Cowley 2006).

Below the critical value for Rm, magnetic diffusion dominates
and amplification of magnetic fields is not feasible (Haugen et al.
2004; Schober et al. 2012; Federrath et al. 2014; Seta et al. 2020).
For the MHD turbulent dynamo driven by Kolmogorov-like (incom-
pressible) turbulence, Rmcrit ⇠ 220 for a plasma with magnetic
Prandtl number, Pm ⇠ 1 (Seta et al. 2020). This is much lower
than Rmcrit & 1600 obtained by Rincon et al. (2016) for the turbu-
lent dynamo in a collisionless plasma. To first demonstrate and then
understand this significant difference between the two regimes, we
systematically study Rmcrit for the collisionless turbulent dynamo.

In this study, we explore how the growth of magnetic energy by the
collisionless turbulent dynamo depends on Rm and estimate Rmcrit
for the collisionless dynamo in different regimes via numerical ex-
periments. We also study how the properties of the collisionless
turbulent dynamo depend on the initial magnetic-field strength. We
use a hybrid-kinetic PIC module that we have developed within the
FLASH code (Fryxell et al. 2000) to perform numerical simulations
of the collisionless turbulent dynamo in the context of the ICM simi-
lar to St-Onge & Kunz (2018). This approach can also be extended to
understand other collisionless and ‘magnetised’ astrophysical plas-
mas, like the solar wind and the accretion flow onto the supermassive
black hole at the Galactic centre.

The rest of this study is organised as follows. We discuss the
hybrid-kinetic equations and how we solve these equations numeri-
cally in Sec. 2. We describe the components we add to the hybrid-
kinetic equations to simulate the collisionless turbulent dynamo and
the initial conditions of our simulations in Sec. 2.2. We study the
collisionless turbulent dynamo in the kinematic regime and measure
the critical magnetic Reynolds number in Sec. 3. We discuss how the
initial plasma beta affects the growth rate of the collisionless turbu-
lent dynamo in Sec. 4. In Sec. 5, we discuss kinetic instabilities that
can facilitate turbulent dynamo action in a collisionless plasma and
determine the distribution and evolution of the pressure anisotropy.
We compare the properties of the collisionless turbulent dynamo
with the well-studied MHD turbulent dynamo in Sec. 6, and present
our conclusions in Sec. 7.

2 METHODS: HYBRID-KINETICS AND COLLISIONLESS
TURBULENT DYNAMO

To study the turbulent dynamo in collisionless plasma, we have de-
veloped a hybrid-kinetic PIC module within the FLASH code (Fryx-
ell et al. 2000). We numerically solve the hybrid-kinetic equations
on a uniform and triply periodic computational domain and use a
prescribed driving to inject turbulence into the plasma. Below we
describe the equations of hybrid-kinetics and the details of our nu-
merical implementation.

2.1 Hybrid-kinetic equations

In the hybrid-kinetic treatment, the positively charged ions are
evolved as collisionless macro-particles and the electrons are treated

as a massless, neutralizing fluid (Winske et al. 2023). In this work,
we consider protons to be the only positively charged particles of the
plasma. The equations of motion for each particle in the presence
of electromagnetic fields (E and B) and turbulent driving (f) can be
written as

v= =
dr=
dC

, (1)

dv=
dC

=
@

<

(E + v= ⇥B) + f, (2)

where @,<, r=, and v= are the charge, mass, position, and velocity
of the =

th macro-particle, respectively, and = = 1, 2, · · · , # , where
# is the total number of macro-particles. The first term on the right-
hand side of equation (2) denotes the Lorentz force, which captures
the acceleration of charged particles in electromagnetic fields, and
the second term is the turbulent driving term (further described in
Sec. 2.3). We solve equation (1) and equation (2) using the Boris
integration scheme, which is commonly used in PIC simulations as
it is designed to be energy-conserving and stable (Boris 1970; Kunz
et al. 2014b; Zenitani & Umeda 2018).

Next, we consider the evolution of electrons described by the
Vlasov–Landau equation. Expanding the electron distribution func-
tion in powers of the mass ratio of electrons and protons, (<e/<p)1/2,
we can re-write the momentum equation for the electron fluid in the
form of a generalised Ohm’s law (Rosin et al. 2011),

E = � 1
de

(Je ⇥B) + r?e
de

+ `0[J � `0[hr2J, (3)

where Je, J, de and ?e are the electron current, the total current,
electron charge density and the electron pressure, respectively. The
first term on the right-hand side of equation (3) is the magnetic force
exerted on the electrons. The second term is the thermoelectric term,
which can be responsible for generating seed magnetic fields when
electron pressure and density gradients are misaligned, also known
as the Biermann (1950) battery term. The third term is the Ohmic
dissipation arising from ion-electron collisions, where [ is the mag-
netic diffusivity, and is added to the Ohm’s law as a sink for magnetic
energy. `0 is the magnetic permeability constant. The final term on
the right-hand side is the numerical hyper-diffusivity ([h), which is
an additional higher-order dissipative term. This term is primarily
introduced to damp the propagation of grid-scale dispersive waves.

We assume that the electron pressure is isotropic and satisfies an
isothermal equation of state, ?e / de. We can also assume that the
plasma is quasineutral, which implies that the charge densities of ions
and electrons are the same (dI = �de). This assumption is valid for
scales much larger than the Debye length, which is the length scale
below which significant charge separation is possible in a plasma
(e.g., ⇠10�13 pc for the hot ICM with a number density ⇠10�2 cm�3

and a temperature ⇠107 K).
The total current can be written as J = JI + Je, i.e., the sum of

the electron current and the ion current (JI). Using these, the above
Ohm’s law can be re-written as

E =
(J � JI) ⇥B

dI
� r?e

dI
+ `0[J � `0[hr2J. (4)

From Ampere’s law, the total current, J, can be written as

J =
r⇥B
`0

. (5)

The electromagnetic fields are evolved on a 3D computational
grid, while the macro-particles represent the ions, which move in the
spatial 3D computational domain and are coupled to the electric and
magnetic fields through the Lorentz force. The evolution of particles
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and electromagnetic fields are coupled via interpolation operations to
and from the grid. In particular, the quantities dI and JI are the source
terms in the generalised Ohm’s law (equation (4)). As the positions
and velocities of the particles evolve (as described by equation (1)
and equation (2)), the charge density and ion currents change, thereby
changing the electric field. After determining the electric field, the
magnetic field can be calculated from Faraday’s equation,

mB
mC

= �r⇥E. (6)

Finally, the updated electromagnetic fields are interpolated from
the computational grid to the particles to evolve them further in time.
We use the cloud-in-cell algorithm for grid-to-particle and particle-
to-grid interpolations. We use the predictor-predictor-corrector algo-
rithm developed by Kunz et al. (2014b) to evolve the set of equations
presented here.

2.2 Corrections for interpolated electromagnetic fields

If thermoelectric and resistive effects are not included ([ = [h = 0),
the electric and magnetic fields are orthogonal to each other by
construction. This is true for fields calculated on the computational
grid. However, when these fields are interpolated to the particles,
this might no longer hold true. The generation of these un-physical
spurious electric field components parallel to the magnetic field due
to interpolation errors can accelerate particles and lead to unwanted
numerical heating of the plasma. To correct for this anomaly, we
introduce the following corrections to the interpolated electric field
on particle positions (Lehe et al. 2009),

E⇤
int = Eint + [(E ·B)int � Eint ·Bint]

Bint
⌫

2
int

, (7)

where Eint and Bint are the electric and magnetic fields interpo-
lated onto the particles, (E ·B)int is the dot product of E and B
on the grid interpolated to the particles, and E⇤

int is the modified
interpolated electric field on the particles. This correction ensures
that E⇤

int ·Bint = (E ·B)int and guarantees that the electromagnetic
fields are orthogonal after interpolation from the grid to the particle
positions.

2.3 Turbulence driving

We model the turbulent driving field, f, in equation (2) by using
the Ornstein–Uhlenbeck process through TurbGen (Federrath et al.
2010, 2022). We drive turbulence on large length scales, i.e., on wave
numbers satisfying :!box/2c = (1, 3), where !box is the side length
of our cubic computational domain. The amplitude of the driving is
controlled by a parabolic function that peaks at :!box/2c = 2 and
goes to zero at :!box/2c = 1, 3.

The nature of the turbulent driving affects the properties of the
MHD turbulent dynamo as shown in previous works (Federrath et al.
2011a; Achikanath Chirakkara et al. 2021; Seta & Federrath 2022).
In this study, to maximise the efficiency of the turbulent dynamo,
we focus on purely solenoidal driving (r · f = 0), which injects
solenoidal acceleration modes into the plasma. The magnitude of
the driving amplitude controls the amount of kinetic energy being
injected by the turbulence and determines the Mach number, M, of
the plasma, which is defined as

M =
+turb
+th

, (8)

where +turb is the turbulent speed and +th is the thermal speed of

the plasma. The eddy-turnover time is defined as C0 = !box/(2+turb),
where !box/2 is the characteristic turbulence driving scale. We note
that+turb is the time-averaged turbulent speed calculated after steady
state turbulence is established in our simulations.

2.4 Plasma cooling

We set up subsonic turbulence with M ⇠ 0.25 in our numerical sim-
ulations, comparable to the Mach number of the ICM, and drive con-
tinuously to maintain a statistically steady Mach number throughout
our runs. The turbulent energy is injected primarily on large scales.
This energy drives large-scale turbulent velocities, and through the
turbulent cascade, the energy is transferred to smaller and smaller
scales, where it ultimately dissipates (Frisch 1995; Federrath et al.
2021) and heats the gas. This leads to a gradual increase in the tem-
perature of the plasma if no cooling is applied. As a consequence,+th
increases, leading to a gradual decrease in the Mach number. Thus,
without cooling, it is impossible to maintain statistically steady tur-
bulence. Previous numerical studies in MHD have shown that the
properties of the MHD dynamo (such as the growth rate and satu-
ration level) are sensitive to the turbulent Mach number (Federrath
et al. 2011a; Seta & Federrath 2021a; Achikanath Chirakkara et al.
2021).

To mitigate the increase in +th and to enable the study of the
collisionless turbulent dynamo in a statistically steady state (with
a statistically stationary Mach number), we implement a cooling
method (Achikanath Chirakkara et al. 2023, in prep.) to remove ex-
cess thermal energy from the plasma. We implement this cooling
by resetting +th to its target (constant) value, on the sound-crossing
timescale (⇠!box/+th), as follows. The diagonal components of the
ion pressure tensor in each cell are used along with that cell’s number
density to compute local thermal speeds in the G, H, and I directions;
these three speeds are then interpolated to each particle position to
form the vector Vp

th. The corresponding three components of each
particle’s velocity, measured relative to the local bulk flow veloc-
ity (interpolated from the grid to the particle position), are then
rescaled using the ratio of the (constant) target thermal speed and
+

p
th = |Vp

th |. This keeps the direction of each particle’s velocity un-
changed, while reducing each particle’s ‘random’ velocity so that the
plasma temperature is held at the target temperature. This procedure
does not change the shape of the velocity-space distribution func-
tion, but rather decreases its standard deviation to cool the plasma
and maintain isothermal conditions locally at each grid cell. As a
result, the plasma also remains globally isothermal throughout the
computational domain.

2.5 Initial conditions and simulation models

2.5.1 Numerical criteria for resolving the Larmor radius

The main parameters of our turbulent dynamo experiments are the
Mach number (M) and the initial ratio of the magnetic energy to the
turbulent kinetic energy ((⇢mag/⇢kin)i). For collisionless plasmas,
there is an additional parameter – the initial Larmor radius of the
particles. We quantify the level of magnetisation of the plasma using
the Larmor ratio defined as the ratio of the Larmor radius (ALarmor)
to the box length (!box),

ALarmor
!box

=
<+

p
th

@⌫!box
, (9)

where +
p
th is the thermal speed interpolated to the particle position

and ⌫ is the magnetic-field strength. Because the probability density
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function of the magnetic-field strength in the kinematic regime of
the MHD turbulent dynamo follows a lognormal distribution (Seta
& Federrath 2021a), we use the average of the logarithmic value of
the Larmor ratio calculated from all the particles to quantify the mean
Larmor radius in our numerical simulations. The initial Larmor ratio
can be written as (ALarmor/!box)i = <+

p
th/(@⌫i!box), where ⌫i is

the initial magnetic-field strength. The ratio of magnetic energy to
kinetic energy can be written as

⇢mag
⇢kin

=
⌫

2/(2`0)
dm+2

turb/2
=

⌫
2

`0dm+2
turb

, (10)

where `0 is the vacuum permeability and dm is the mass density of
ions. Further, the initial magnetic to kinetic energy ratio can be writ-
ten as, (⇢mag/⇢kin)i = ⌫

2
i /(`0dm+2

turb). As magnetic energy grows
due to dynamo action, the Larmor ratio decreases proportionally to
the increase in the magnetic-field strength. To ensure that we re-
solve the average particle Larmor radius throughout our simulations,
up to the saturation stage of the dynamo, we impose the following
constraint on the initial conditions.

⇢mag/⇢kin is the ratio of the magnetic energy to the kinetic energy
of the dynamo and quantifies the efficiency by which the dynamo
converts turbulent kinetic energy to magnetic energy. Assuming a
maximum possible level for this ratio at the saturation stage of the
dynamo, (⇢mag/⇢kin)sat = 1 (it is usually < 1; see Federrath et al.
2011a, 2014; Achikanath Chirakkara et al. 2021, for the MHD dy-
namo), from equation (10) we have

⌫
2
sat

2`0
=

1
2
dm+

2
turb, (11)

or the magnetic-field strength at saturation ⌫sat = (dm`0)1/2+turb.
The Larmor ratio at saturation can therefore be written as✓
ALarmor
!box

◆
sat

=
<+

p
th

@⌫sat!box
>

1
#grid

, (12)

where #grid is the number of grid points along a linear dimension of
the simulation cube. Using the expression for ⌫sat, equation (12) can
be simplified to
<#grid

@`
1/2
0 M

> d
1/2
m !box. (13)

Further from equation (9) and equation (10), we can write

d
1/2
m !box /

h
(⇢mag/⇢kin)i1/2 (ALarmor/!box)i

i�1
, (14)

where the proportionality constant is </(@`1/2
0 M). From the above

expressions, we obtain the following constraint that links the initial
conditions with the grid resolution
⇣
⇢mag
⇢kin

⌘1/2

i

⇣
ALarmor
!box

⌘
i
>

1
#grid

. (15)

Thus, given a value for the grid resolution, #grid, the criterion
derived in equation (15) limits the range of magnetisation regimes
and the initial ratio of magnetic to turbulent energies that we can
explore through our simulations.

2.5.2 Resistivity and hyper-resistivity

We define the magnetic Reynolds number (Rm) as

Rm =
+turb (!box/2)

[

, (16)

where !box/2 is the turbulent driving scale (see Sec. 2.3) and [ is
the Ohmic diffusivity. Similarly, we can define the kinetic Reynolds
number (Re) using the viscosity in place of the Ohmic diffusivity.
However, the viscosity is set by wave-particle interactions in the
collisionless plasma and, unlike the magnetic diffusivity, it is not a
parameter we can control in our simulations. The magnetic Prandtl
number (Pm), defined as the ratio of the magnetic Reynolds number
to the kinetic Reynolds number, is therefore a priori unknown.

We define the hyper-resistive Reynolds number (Rmh) as

Rmh =
+turb (!box/2)3

[h
, (17)

where [h is the hyper-resistivity coefficient, as in equation (4).
We choose the values for the resistivity and hyper-resistivity such

that the dissipation due to these terms is greater than the correspond-
ing numerical dissipation. To estimate the numerical dissipation, we
assume a Kolmogorov spectrum for the velocity field from the driv-
ing scale down to half a grid cell spacing and derive that the magnetic
Reynolds number, which can be resolved well at a given grid resolu-
tion, #grid, scales as Rm ⇠ A#

4/3
grid, where the value of the coefficient

was estimated from MHD simulations to be A = 0.5 � 2 (Feder-
rath et al. 2011b; McKee et al. 2020). We set the hyper-resistivity
similarly, assuming that the appropriately resolvable hyper-resistive
Reynolds number scales as Rmh ⇠ Ah#

10/3
grid . Given a value of #grid

and assuming A = Ah = 1, these expressions constrain the range of
Rm and Rmh that we can explore. We find that for #grid = 120, the
maximum Rm and Rmh are ⇠600 and ⇠8.5 ⇥ 106, respectively.

2.5.3 Simulation parameters

Our subsonic collisionless turbulent dynamo simulations use a triply
periodic uniform computational domain with #

3
grid = 1203 grid cells

and #ppc = 100 particles per cell (ppc). In order to test numerical
convergence, we also perform a subset of our simulations with two
other particle (#ppc = 50 and 200) and grid (#grid = 60 and 180)
resolutions. We find our results show convergence with both types of
resolutions (see Appendix D for further details).

We model the magnetic seed field using a parabolic function on
large scales, :/(2c/!box) = [1 . . . 3], with the maximum magnetic
energy at : = 2c/(!box/2). This is identical to how we construct
the turbulence driving acceleration field, using TurbGen (Federrath
et al. 2022), except that for the magnetic field, we only generate the
field once, to be used as an initial condition. We explore a range of
magnetic Reynolds numbers in our numerical experiments, Rm ⇠
30, 60, 120, 240, 480 and 960, up to the resolvable Rm limit with
#grid = 120, and fix the hyper-resistive Reynolds number, Rmh =
8.5 ⇥ 106 for all our simulations. We note that Rm = 960 can be
marginally unresolved for #grid = 120.

For all our simulations, we tabulate the initial conditions, grid
and particle resolution, measured value of the magnetic Reynolds
number, Mach number, and growth rate of the collisionless tur-
bulent dynamo in Table 1. We keep the thermal speed, +th, fixed
across all our simulations. The target Mach number of the plasma
determines the turbulent speed, +turb. To modify the initial Larmor
ratio, (ALarmor/!box)i, while maintaining a constant ratio of initial
magnetic energy to kinetic energy, (⇢mag/⇢kin)i, we adjust the ini-
tial magnetic-field strength, ⌫i. This changes both (ALarmor/!box)i
and (⇢mag/⇢kin)i. We then modify the density to ensure that
(⇢mag/⇢kin)i remains the same as its previous value. To change
(⇢mag/⇢kin)i while keeping (ALarmor/!box)i constant, we solely vary
the number density of the plasma. To vary the Rm of the plasma
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Collisionless turbulent dynamo 5

while fixing the Mach number, (⇢mag/⇢kin)i and (ALarmor/!box)i,
we change the the Ohmic diffusivity, [.

3 CRITICAL MAGNETIC REYNOLDS NUMBER OF THE
COLLISIONLESS TURBULENT DYNAMO

In this section, we explore the effect of the magnetic Reynolds number
on the properties of the turbulent collisionless dynamo. For this study,
we fix the initial magnetic to kinetic energy ratio, (⇢mag/⇢kin)i =
10�8, and vary the magnetic Reynolds number of the plasma. In
addition, we determine how magnetisation affects the growth rate
of the collisionless turbulent dynamo, by varying the initial Larmor
ratio of the plasma, (ALarmor/!box)i = 103

, 102
, 10 and 1, for each

value of Rm.
In Fig. 1, we plot the magnetic energy normalised to its root-

mean-square value (⇢m/⇢m(rms) ; colour) along with magnetic field
streamlines in the interior of the computational box coloured with
the magnetic-field strength normalised to the root mean square value.
The top panels show two initially ‘un-magnetised’ simulations with
(ALarmor/!box)i = 103; the bottom panels show two initially ‘mag-
netised’ simulations with (ALarmor/!box)i = 1. The left panels show
simulations with Rm = 60 (decaying magnetic fields) and the right
panels show simulations with Rm ⇠ 500 (growing magnetic fields).
When Rm ⇠ 500, the magnetic energy has more small-scale struc-
ture due to the dynamo action. We also see that the topology and
strength of magnetic fields vary locally. Therefore, the Larmor ratio
or ‘magnetisation’ can be very different from one spatial region to
another.

Figure 2 depicts the time evolution (time normalised to the large-
scale eddy turn-over time, C0) of the dynamo simulations with
(ALarmor/!box)i = 103 for Rm = 30, 60, 120, 240, 480 and 950.
The four panels (from first to fourth) show the evolution of the Mach
number (M), the magnetic energy normalised to the initial magnetic
energy (⇢m/⇢m0), the ratio of magnetic energy to kinetic energy
(⇢mag/⇢kin), and the Larmor ratio (ALarmor/!box). All these quanti-
ties are averaged over the cubic computational domain.

During the initial phase of the dynamo up to 3C0, the turbulence
develops and reaches a statistically steady state. Following this ini-
tial phase, a statistically steady turbulent speed is established in the
plasma and this leads to an exponential growth of magnetic energy
as shown in the second panel of Fig. 2. This exponential growth
phase is called the kinematic regime of the turbulent dynamo, which
is the primary focus of this study. We note that in this case, the
plasma is ‘un-magnetised’ initially ((ALarmor/!box)i � 1), and as
the magnetic field grows via the dynamo mechanism, the Larmor
radius of the particles decreases, eventually magnetising the plasma
(ALarmor/!box . 1, as shown in the fourth panel). We measure the
growth rate of the magnetic energy, �, by fitting an exponential curve
to the magnetic energy, ⇢m/⇢m0 = e�C/C0 , in the kinematic regime.
The interval over which this fit is performed is non-standardised
and subject to choice, which can introduce systematic errors in the
growth rate measurement. To mitigate this, we perform a systematic
study on how the relative error in the growth rate depends on the fit
interval chosen. This is presented in Appendix C and describes how
we determine the errors in the estimated growth rate.

Before the exponential growth phase begins, we find a rapid ini-
tial growth in the magnetic energy until C . 3C0 for our simulations
with high Rm. We attribute this rapid growth to the turbulent gen-
eration of pressure anisotropy, which can drive kinetic instabilities.
In a low (⇢mag/⇢kin)i or high Vi plasma, these instabilities can be
excited easily if the plasma is ‘magnetised’ (see Sec. 5). Although the

plasma is initially ‘un-magnetised’, there can be local regions where
ALarmor/!box < 1, allowing the mirror and firehose instabilities to
rapidly grow magnetic fields. This finding is consistent with St-Onge
& Kunz (2018), who also find a rapid initial phase of magnetic energy
growth in their numerical simulations for C . 5C0.

For higher values of Rm, we see exponential amplification of the
magnetic energy by the dynamo in the second and third panels of
Fig. 2. However, as Rm decreases, the growth of magnetic energy
by the collisionless turbulent dynamo dwindles and eventually, the
magnetic energy decays for simulations with low Rm. We show the
fitted curves measuring the growth or decay rates of the magnetic
energy as black dashed lines in the second panel of Fig. 2.

The third panel of Fig. 2 shows the evolution of the ratio of mag-
netic energy to kinetic energy in the growth phase of the collisionless
turbulent dynamo. ⇢mag/⇢kin grows with time as the magnetic field
is amplified by the dynamo. Eventually, we reach a regime in which
the magnetic energy is comparable to the kinetic energy of the turbu-
lent eddies at the viscous scale, where the exponential growth turns
into a linear growth regime, finally leading to the saturation regime
of the dynamo (Seta & Federrath 2020).

The range in which we can study the exponential growth of
the collisionless turbulent dynamo becomes limited as we decrease
(ALarmor/!box)i, because of the requirement that we resolve the ion
Larmor radius (see Sec. 2.5.1). As the magnetic field grows, the av-
erage ion Larmor radius decreases, as can be seen in the fourth panel
of Fig. 2. We run all our simulations up to a magnetisation level,
ALarmor/!box ⇠ 0.3, which ensures both that the Larmor radii of
particles are resolved throughout the kinematic regime and that the
Mach number is steady across simulation models (since the magne-
tization level affects the amount of injected energy accepted by the
plasma in the form of bulk flows; see St-Onge 2019). We perform the
same experiment changing the value of the magnetic Reynolds num-
ber with a different initial Larmor ratio, (ALarmor/!box)i = 102

, 10
and 1 and present these simulations in Appendix A. We also report
the measured parameters from these simulations in Table 1.

In Fig. 3, we plot the evolution of the collisionless turbu-
lent dynamo for simulations with varying initial Larmor ratio,
(ALarmor/!box)i, for fixed Rm ⇠ 480 and (⇢mag/⇢kin)i = 10�8.
As we decrease the (ALarmor/!box)i, the growth rate of the dynamo
decreases marginally.

All our simulation models have M ⇠ 0.25 maintained throughout
the numerical simulation by continuous turbulent driving. We note
that the value of the random seed picked to generate the turbulent
driving field also influences the fine details of the evolution of the
Mach number and by extension the magnetic energy. We test this for
three random seed values for the simulation model with Rm = 480,
(⇢mag/⇢kin)i = 10�8 and (ALarmor/!box)i = 102, and report our
findings in Appendix B. We find that local features in Mach num-
ber and magnetic energy growth are sensitive to the random seed
of the turbulence driving. However, averaged over a long time in
the kinematic regime, the growth rates are similar for the simulation
models with different seed values (see Table 1). We also study the
time-averaged magnetic power spectra for our simulations (see Ap-
pendix E) and find that on large scales the power spectra are visually
consistent with the characteristic :

3/2 scaling of the MHD dynamo
(Kazantsev 1968).
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Table 1. List of simulations with the corresponding model name, grid resolution (#3
grid), particles per grid cell (#ppc), Mach number (M), initial magnetic to

kinetic energy ratio ((⇢mag/⇢kin )i), initial plasma beta (Vi), initial Larmor ratio ((ALarmor/!box )i), magnetic Reynolds number (Rm) and the growth/decay rate
of magnetic energy (�).

Ser. No. Model #3
grid #ppc M (⇢mag/⇢kin )i Vi (ALarmor/!box )i Rm � (C�1

0 )
1 Rm30rL1e3 1203 100 0.23±0.02 10�8 109 103 29±2 �1.05 ± 0.19
2 Rm60rL1e3 1203 100 0.23±0.02 10�8 109 103 61±5 �0.26 ± 0.04
3 Rm120rL1e3 1203 100 0.23±0.02 10�8 109 103 121±9 0.06 ± 0.03
4 Rm240rL1e3 1203 100 0.23±0.02 10�8 109 103 243±19 0.25 ± 0.03
5 Rm480rL1e3 1203 100 0.24±0.02 10�8 109 103 482±37 0.40 ± 0.03
6 Rm950rL1e3 1203 100 0.23±0.02 10�8 109 103 952±74 0.52 ± 0.05
7 Rm30rL1e2 1203 100 0.23±0.02 10�8 109 102 29±2 �1.05 ± 0.19
8 Rm60rL1e2 1203 100 0.23±0.02 10�8 109 102 61±5 �0.25 ± 0.04
9 Rm120rL1e2 1203 100 0.23±0.02 10�8 109 102 121±9 0.06 ± 0.03
10 Rm240rL1e2 1203 100 0.24±0.02 10�8 109 102 244±19 0.25 ± 0.03
11 Rm480rL1e2 1203 100 0.24±0.02 10�8 109 102 482±39 0.39 ± 0.06
12 Rm960rL1e2 1203 100 0.24±0.02 10�8 109 102 963±81 0.44 ± 0.07
13 Rm30rL10 1203 100 0.23±0.02 10�8 109 10 29±2 �1.05 ± 0.19
14 Rm60rL10 1203 100 0.23±0.02 10�8 109 10 61±5 �0.26 ± 0.04
15 Rm120rL10 1203 100 0.23±0.02 10�8 109 10 121±9 0.04 ± 0.03
16 Rm250rL10 1203 100 0.24±0.02 10�8 109 10 248±21 0.15 ± 0.03
17 Rm480rL10 1203 100 0.24±0.02 10�8 109 10 483±46 0.32 ± 0.10
18 Rm970rL10 1203 100 0.24±0.02 10�8 109 10 970±95 0.33 ± 0.08
19 Rm30rL1 1203 100 0.23±0.02 10�8 109 1 29±2 �1.04 ± 0.11
20 Rm60rL1 1203 100 0.23±0.02 10�8 109 1 61±5 �0.26 ± 0.04
21 Rm120rL1 1203 100 0.24±0.02 10�8 109 1 124±9 �0.01 ± 0.03
22 Rm250rL1 1203 100 0.24±0.02 10�8 109 1 248±19 0.10 ± 0.16
23 Rm510rL1 1203 100 0.25±0.02 10�8 109 1 514±40 0.21 ± 0.10
24 Rm480rL1e2E1e-6 1203 100 0.24±0.02 10�6 107 102 483±39 0.39 ± 0.06
25 Rm480rL1e2E1e-10 1203 100 0.24±0.02 10�10 1011 102 482±39 0.39 ± 0.06
26 Rm490rL1e2RSII 1203 100 0.24±0.02 10�8 109 102 482±39 0.39 ± 0.06
27 Rm500rL1e2RSIII 1203 100 0.24±0.02 10�8 109 102 493±42 0.36 ± 0.04
28 Rm480rL1e2#grid60 603 100 0.23±0.02 10�8 109 102 476±37 0.38 ± 0.06
29 Rm480rL1e2#grid180 1803 100 0.24±0.02 10�8 109 102 482±39 0.39 ± 0.06
30 Rm480rL1e2#ppc50 1203 50 0.24±0.02 10�8 109 102 481±38 0.38 ± 0.06
31 Rm480rL1e2#ppc200 1203 200 0.24±0.02 10�8 109 102 482±39 0.39 ± 0.06

3.1 Measuring the critical magnetic Reynolds number

For each value of the initial Larmor ratio, we fit the growth rate as a
function of Rm using the model

�(Rm) = �sat


1 �

✓
Rm

Rmcrit

◆U�
, (18)

where Rmcrit, �sat and U are fit parameters. �sat is the saturation
level of the growth rate in the limit of Rm ! 1, motivated by the
fast dynamo argument (which suggests that the growth rate of the
magnetic field amplification becomes independent of Rm at very
high Rm, see Childress & Gilbert 1995), and U is a power-law coeffi-
cient. Rmcrit is the critical magnetic Reynolds number below which
magnetic diffusivity dominates, leading to the decay of magnetic
fields. When Rm > Rmcrit, � > 0 and growth of magnetic energy
by the collisionless turbulent dynamo is possible. Figure 4 shows the
growth rate (�) as a function of Rm for simulations with different
(ALarmor/!box)i. The solid lines show the values of Rmcrit and the
shaded regions show the error in the measured value of Rmcrit for dif-
ferent simulation models obtained from fitting using equation (18).
We also summarise the fit values of Rmcrit, �sat, and U for different
initial Larmor ratio models in Table 2.

For initially ‘un-magnetised’ plasma ((ALarmor/!box)i > 1), we
find that the critical value for Rm is similar for different values of
(ALarmor/!box)i we have investigated. For an initially ‘magnetised’
plasma ((ALarmor/!box)i . 1), we find that the critical Rm for colli-
sionless turbulent dynamo action is marginally higher compared to

Table 2. Critical magnetic Reynolds number (Rmcrit), saturation level of the
growth rate of magnetic energy by the collisionless turbulent dynamo in the
limit of high Rm (�sat) and the power law coefficient (U) for simulation
models with different initial Larmor ratio levels ((ALarmor/!box )i) calculated
from equation (18).

(ALarmor/!box )i Rmcrit �sat U
103 107±6 0.65±0.08 �0.66 ± 0.12
102 103±4 0.51±0.04 �0.84 ± 0.09
10 111±8 0.32±0.06 �1.04 ± 0.19
1 124±8 0.19±0.05 �1.27 ± 0.18

an initially ‘un-magnetised’ plasma ((ALarmor/!box)i > 1). We also
find that �sat increases significantly with (ALarmor/!box)i. While we
control the magnetic Reynolds number of the plasma in our numeri-
cal experiments using Ohmic resistivity, the kinetic Reynolds number
(Re) of the collisionless plasma evolves self consistently, i.e., it is de-
termined by the effective viscosity of the plasma, set by interactions
between particles and the magnetic field (Kunz et al. 2014a; St-Onge
et al. 2020).

In a ‘magnetised’ plasma, we expect the effective viscosity of the
plasma to decrease due to the scattering of particles from kinetic
instabilities (see Sec. 5), which would lead to an increase in the
effective kinetic Reynolds number. At a fixed magnetic Reynolds
number, for a ‘magnetised’ plasma, the kinetic Reynolds number
is thought to be higher when compared to ‘un-magnetised’ plasma.
This means the magnetic Prandtl number is smaller for ‘magnetised’
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Figure 1. Slices of magnetic energy normalised to the root mean square value (⇢m/⇢m(rms) ) with magnetic field streamlines coloured with magnetic-field
strength normalised to the root mean square value (⌫/⌫rms) in the kinematic regime of the collisionless turbulent dynamo. The top panel shows the initially
‘un-magnetised’ simulation model, (ALarmor/!box )i = 103, for decaying (top left, Rm = 61 ± 5) and growing (top right, Rm = 482 ± 37) magnetic fields. The
bottom panel shows the initially ‘magnetised’ simulation model, (ALarmor/!box )i = 1, for decaying (bottom left, Rm = 61 ± 5) and growing (bottom right,
Rm = 514 ± 40) magnetic fields.

plasma, which can lead to a higher Rmcrit. This effect has been studied
for MHD turbulent dynamos (Haugen et al. 2004; Seta et al. 2020).
Lower magnetic Prandtl numbers for ‘magnetised’ plasma can lead
to a decrease in the growth rate of the collisionless turbulent dynamo
(Schober et al. 2012; Federrath et al. 2014). We further discuss the
effective viscosity of collisionless plasma and the effect of magnetic
Prandtl number on the growth rate and critical magnetic Reynolds
number of the collisionless turbulent dynamo in Sec. 5 and Sec. 6.

4 INITIAL PLASMA BETA DEPENDENCE OF THE
DYNAMO GROWTH RATE

In this section, we investigate how the initial magnetic-field strength
affects the properties of the collisionless turbulent dynamo. For this
study, we fix the initial Larmor ratio of the plasma, (ALarmor/!box)i =
102 and the magnetic Reynolds number, Rm = 480, but vary the
initial magnetic-to-kinetic energy ratio, (⇢mag/⇢kin)i = 10�6

, 10�8

and 10�10.
Figure 5 shows the same as Fig. A1 for collisionless turbulent
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Figure 2. Mach number (first panel), magnetic energy, ⇢m/⇢m0 (second
panel), ratio of magnetic energy to kinetic energy, ⇢mag/⇢kin (third panel)
and Larmor ratio, ALarmor/!box (fourth panel), as a function of time nor-
malised to the turbulent eddy turnover time (C0) for the collisionless turbulent
dynamo simulations on 1203 grid cells with 100 particles per cell, for different
magnetic Reynolds number (Rm); see Table 1. For these simulations, we fix
the initial Larmor ratio, (ALarmor/!box )i = 103, and the initial ratio of mag-
netic to kinetic energy, (⇢mag/⇢kin )i = 10�8. We maintain the Mach number
(first panel) throughout each simulation by continuous driving and cooling
(see Sec. 2.3 and Sec. 2.4). We observe exponential growth of the magnetic
energy (panels 2 and 3) for our simulations with sufficiently high Rm. How-
ever, below a critical value for the magnetic Reynolds number (Rmcrit), we
find the magnetic energy struggles to grow and eventually decays. The fits for
the growth/decay rate of magnetic energy are shown by the black dashed lines
in the second panel. Finally, the fourth panel shows the evolution Larmor ratio.
In the growing field cases, the Larmor radius decreases (see equation (9)) and
is eventually not sufficiently resolved anymore (see equation (15)). For the
present simulations, we do not follow the evolution further when the Larmor
ratio drops below ⇠ 0.3 to ensure we adequately resolve the Larmor gyration
of ions and to maintain a steady state Mach number across simulation models
(as the amount of injected energy accepted in the form of bulk flows depends
on the magnetization level of the collisionless plasma).

dynamo simulations with different initial magnetic to kinetic energy
ratio ((⇢mag/⇢kin)i), which describes the initial plasma beta (Vi) as

Vi =
1

(⇢mag/⇢kin)iM2 , (19)

where the Mach number (M) is fixed for all the above simulations.
The evolution of the Mach number and the magnetic energy is similar
for dynamo simulations with different (⇢mag/⇢kin)i, as shown by the
first and second panels of Fig. 5. We report the measured values of
the Mach number and the growth rate in Table 1. We ensure that the
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Figure 3. Same as Fig. 2, but for fixed magnetic Reynolds number, Rm ⇠
480, initial magnetic energy to kinetic energy ratio, (⇢mag/⇢kin )i = 10�8,
and varying initial Larmor ratio (ALarmor/!box )i = 103, 102, 10 and 1 (see
Table 1). We find that the growth rate of the collisionless turbulent dynamo
decreases marginally with the initial Larmor ratio (see Fig. 4)

average Larmor radius of the charged particles is well resolved for
all our simulations, as can be seen from the fourth panel of Fig. 5.

From the above tests, we conclude that the growth rate of the
collisionless turbulent dynamo does not depend on the initial plasma
beta at a fixed initial Larmor ratio. This is similar to the behaviour
of the MHD turbulent dynamo (Seta & Federrath 2020); we discuss
this further in Sec. 6.

5 KINETIC INSTABILITIES IN COLLISIONLESS PLASMA

In collisionless plasma, the thermal pressure can be anisotropic with
respect to the local magnetic-field direction (Chew et al. 1956). This
can lead to transport coefficients like viscosity being anisotropic
(Braginskii 1965), unlike in MHD for which the pressure is always
isotropic. The parallel thermal pressure of the plasma is defined as
the projection of the pressure tensor (P) onto the magnetic field,
? k = P : b̂b̂, where b̂ = B/⌫ is the unit vector in the direction of
the local magnetic field. The trace of the pressure tensor can be
written as Tr(P) = ? k/3 + 2??/3, where ?? is the thermal pressure
perpendicular to the magnetic field. As the trace of a tensor is basis
invariant, we can obtain the thermal pressure perpendicular to the
magnetic field as ?? = 3/2(Tr(P) � ? k/3). We further define the
pressure anisotropy of the plasma as � = ??/? k � 1 and the parallel
plasma beta as Vk = ? k/?mag. For a collisional system, the parallel
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Figure 4. Growth rate (�) of the magnetic energy as a function of the magnetic Reynolds number (Rm) for our collisionless turbulent dynamo models with
different initial Larmor ratio ((ALarmor/!box )i). The dashed curves are fitted to the simulation data, using equation (18). The solid lines show the values of the
critical magnetic Reynolds number (Rmcrit, also reported in the legend), and the shaded regions show the error in the measured value of Rmcrit, determined by
the fits. The dot-dashed lines on the right-hand corner of the plot depict the saturation level of the growth rate of magnetic energy in the limit of high Rm (�sat)
(see Table 2).

and perpendicular pressure are made isotropic by collisions, therefore
� = 0.

Approximate adiabatic invariance in collisionless plasma cou-
ples the thermal motions of the charged particles to changes in the
magnetic-field strength. As a result, the pressure tensor becomes
anisotropic during the dynamo. In regions with excess perpendicular
or parallel thermal pressure, kinetic instabilities can be triggered,
causing sharp deflections in the orientation of the local magnetic
field. The mirror instability destabilises magnetic mirrors in regions
where ??/? k � 1 & 1/Vk . The firehose instability can be triggered
in the other limit where ??/? k � 1 . �2/Vk , when parallel thermal
pressure dominates (Kulsrud 2005; Kunz et al. 2014a).

Figure 6 shows three-dimensional representations of magnetic
field streamlines, for simulations with different initial Larmor ratios,
(ALarmor/!box)i = 103 and (ALarmor/!box)i = 1, where the colour bar
corresponds to the pressure anisotropy. These snapshots are shown in
the kinematic regime of the collisionless turbulent dynamo and these
simulations have (⇢mag/⇢kin)i = 10�8 and Rm ⇠ 480. Regions
coloured in blue indicate higher perpendicular pressure (?? > ? k ),
suggesting potential locations for the occurrence of the mirror in-
stability. Regions coloured in red represent higher parallel pressure
(? k > ??), indicating areas where the firehose instability can po-
tentially be triggered. These kinetic instabilities distort the magnetic
field on ion-Larmor scales, thereby scattering particles and partially
isotropizing the pressure tensor. Hence, kinetic instabilities can reg-
ulate the pressure anisotropy by decreasing the viscous stress of
collisionless plasma, thereby supplying an effective kinetic Reynolds
number.

St-Onge & Kunz (2018) have studied the distribution of the pres-
sure anisotropy in the initial, kinematic, and saturation phase of
the collisionless turbulent dynamo to understand how the mirror
and firehose instabilities regulate the dynamo action in the ‘magne-

tised’ regime. Rincon et al. (2016) also find regions of the plasma
where the pressure anisotropy satisfies ??/? k � 1 & 1/Vk and
??/? k � 1 . �2/Vk , and these two kinetic instabilities can act.
In our study, we focus on collisionless turbulent dynamo simulations
with higher initial plasma beta to study the dynamo in the kine-
matic growth phase for a longer period in the ‘un-magnetised’ and
‘magnetised’ regimes.

In Fig. 7, we plot the distribution of the pressure anisotropy as
a function of the parallel plasma beta for simulations with different
initial Larmor ratios. We present the data in the kinematic regime (at
5C0) for simulations with Rm ⇠ 480 and (⇢mag/⇢kin)i = 10�8. The
median of the data is represented by the blue point, and the error bars
indicate the 16th to 84th percentile in log(Vk ) and�. Additionally, the
black dotted and dashed curves illustrate the thresholds for the mirror
and firehose instability, respectively. We note that these thresholds
are 1/Vk ⇠ 0 for the high-plasma-beta regime explored in these
simulations. The mirror and firehose instabilities enable the dynamo
action by scattering the collisionless plasma, thereby increasing the
effective collisionality of the plasma. In the kinematic regime, the
median of the pressure anisotropy is positive across all simulations
with different initial Larmor ratios. We also plot the time evolution of
the median value of pressure anisotropy for simulations with different
initial Larmor ratios in Fig. F1.

We report the median, 16th, and 84th percentile values of the
pressure anisotropy, time-averaged in the kinematic regime of the
dynamo, for simulations with varying initial Larmor ratios but with
fixed Rm ⇠ 480 and (⇢mag/⇢kin)i = 10�8 in Table 3. Additionally,
we report the time-averaged value of the magnetic field reversal scale
for these numerical simulations, calculated as (Schekochihin et al.
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Figure 5. Same as Fig. 2, but for an initial ratio of magnetic energy to
kinetic energy, (⇢mag/⇢kin )i = 10�10, 10�8 and 10�6. For all the above
simulations, we fix the initial Larmor ratio, (ALarmor/!box )i = 102, and the
magnetic Reynolds number, Rm = 480 (see Table 1). We see that varying the
initial conditions of the plasma does not significantly change the growth rate
of the collisionless turbulent dynamo.

Table 3. Time-averaged value of the median of the pressure anisotropy, � =
??/?k � 1, with the 84th and 16th percentile values, (�median )84th�50th

50th�16th , and
a characteristic magnetic field reversal scale :B⇥J measured in the kinematic
regime of the collisionless turbulent dynamo for simulations with different
initial Larmor ratio with Rm ⇠ 480 and (⇢mag/⇢kin )i = 10�8.

(ALarmor/!box )i �median :B⇥J!box/2c

103 0.19+0.44
�0.32 5.21 ± 0.28

102 0.19+0.44
�0.32 5.36 ± 0.29

10 0.18+0.44
�0.32 5.52 ± 0.36

1 0.20+0.46
�0.33 5.88 ± 0.33

2004; Seta & Federrath 2021b)

:B⇥J = `0

 
h|B⇥ J|2i

h⌫4i

!1/2
(20)

in Table 3. We find that :B⇥J increases marginally as the initial
Larmor ratio of the plasma decreases. As this scale is similar for
collisionless turbulent dynamo experiments with different Larmor
ratios, we expect that the Ohmic resistivity sets the dissipation scale
in our simulations. As a result, we obtain similar values for the

critical magnetic Reynolds number for dynamo action while varying
the initial magnetisation of the plasma.

6 COMPARISON WITH THE MHD DYNAMO

In this section, we compare the properties of the collisionless tur-
bulent dynamo explored in Sec. 3 and Sec. 4 to the MHD turbu-
lent dynamo. The MHD turbulent dynamo is a well-studied mecha-
nism, which can efficiently amplify seed magnetic fields by convert-
ing turbulent kinetic energy into magnetic energy (Kazantsev 1968;
Schekochihin et al. 2004; Federrath et al. 2011a; Seta & Federrath
2020).

6.1 Critical Rm for subsonic MHD turbulent dynamo

The properties of the MHD turbulent dynamo depend on the magnetic
Reynolds number (Rm) and the magnetic Prandtl number (Pm) of the
plasma. Magnetic field growth by the turbulent dynamo can happen
above a certain value of the magnetic Reynolds number known as
the critical magnetic Reynolds number for turbulent dynamo action.
In Sec. 3, we extended this idea to collisionless plasma and found
that a critical Reynolds number exists for the collisionless turbulent
dynamo action as well. Rmcrit for the MHD turbulent dynamo de-
pends on the nature of the turbulence driving, the Mach number,
and the magnetic Prandtl number of the plasma (Haugen et al. 2004;
Federrath et al. 2011a; Schober et al. 2012; Federrath et al. 2014;
Seta et al. 2020; Achikanath Chirakkara et al. 2021).

Numerical studies have shown that Rmcrit of the MHD turbulent
dynamo decreases as Pm increases (Haugen et al. 2004; Seta et al.
2020), because dynamo action is more easily facilitated when the
scales at which the kinetic energy dissipates are larger than the scales
at which the magnetic energy dissipates (Boldyrev & Cattaneo 2004).
Studies have also shown that the MHD turbulent dynamo is feasible
at low magnetic Prandtl numbers (Pm < 1) but for higher values of
Rmcrit (Schekochihin et al. 2005b; Iskakov et al. 2007; Schekochihin
et al. 2007; Brandenburg et al. 2018). Previous studies find that
the properties of the collisionless turbulent dynamo are reminiscent
of the MHD dynamo in the large Prandtl number regime (Rincon
et al. 2016; St-Onge & Kunz 2018; Zhou et al. 2024). The Re of the
plasma evolves self-consistently and we do not ascertain the Re in
our numerical simulations, therefore it is difficult to predict the Pm
regime of our simulations. We will estimate the Re in a dedicated
upcoming study, which will allow us to understand the Pm regime
of the collisionless turbulent dynamo and better compare our results
with the MHD dynamo.

We find that Rmcrit of the collisionless turbulent dynamo in the
‘un-magnetised’ and ‘magnetised’ regime is close to the critical
magnetic Reynolds number of the MHD turbulent dynamo for Kol-
mogorov turbulence (Schober et al. 2012). We note that the magnetic
Reynolds number of the hot ICM is likely to be much higher (� 1,
Schekochihin & Cowley 2006) than the values we estimate for Rmcrit
in this study (see Table 2). Therefore, if seed magnetic fields are
present, it should be easily possible to excite the turbulent dynamo
mechanism in the collisionless ICM plasma.

6.2 Growth rate of the dynamo

We find from our numerical simulations that the growth rate of the
collisionless turbulent dynamo does not depend on the strength of the
initial seed magnetic field at a fixed initial Larmor ratio. This is also
consistent with the behaviour of the MHD turbulent dynamo, where
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Figure 6. 3-dimensional rendering of magnetic field streamlines coloured according to the pressure anisotropy (⇠ 0.45 !box). The left panel shows the
collisionless turbulent dynamo simulation in the kinematic regime (at 19.5C0) with (ALarmor/!box )i = 103, (⇢mag/⇢kin )i = 10�8, and Rm = 482 ± 37, while
the right panel depicts a simulation in the same regime (at 4.5C0) with (ALarmor/!box )i = 1, (⇢mag/⇢kin )i = 10�8, and Rm = 514 ± 40. Regions coloured in
blue have higher perpendicular pressure (?? > ?k ) and are possible sites for the mirror instability to act. Regions coloured in red have higher parallel pressure
(?k > ??) and are sites where the firehose instability can be triggered.
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Figure 7. Distribution of the pressure anisotropy (� = ??/?k � 1) as a function of the parallel plasma beta (Vk = ?k/?mag), for simulations with different initial
Larmor ratio (ALarmor/!box )i = 103 (left) and (ALarmor/!box )i = 1 (right) in the kinematic regime of the collisionless dynamo (C = 5 C0). The above simulations
have Rm ⇠ 480 and (⇢mag/⇢kin )i = 10�8. The blue point is the median of the data with the error bars denoting the 16th to 84th percentile of the data in log(Vk )
and ??/?k � 1. The black dotted and dashed curves show the thresholds for the mirror and firehose instability, respectively. For all the above simulations, the
median of the pressure anisotropy is greater than zero in the kinematic regime. This indicates that on average in the simulation box, the plasma pressure (or
temperature) is anisotropic.

the growth rate is independent of the strength and nature of the seed
field (Seta & Federrath 2020). We conclude that the mechanism that
converts small-scale turbulent kinetic energy into magnetic energy is
independent of the initial plasma beta when the initial Larmor ratio
is fixed. In the context of the hot ICM, if magnetic fields with small
strengths from astrophysical or cosmological origins are present, the
turbulent plasma can efficiently amplify these magnetic fields via the
turbulent dynamo mechanism.

The magnetic Prandtl number determines the scales where the
small-scale action of the turbulent dynamo can take place, and studies
have shown that the growth rate of the MHD turbulent dynamo
increases with Pm (Schober et al. 2012; Federrath et al. 2014). For our

collisionless turbulent dynamo simulations at varying Rm and fixed
(ALarmor/!box)i, we expect the effective kinetic Reynolds number of
the collisionless plasma to be the same. In this case, the magnetic
Prandtl number of the collisionless plasma increases as the value of
Rm increases. For each simulation set at fixed (ALarmor/!box)i, we
find that the growth rate increases with Rm. This is consistent with
what Federrath et al. (2014) find for the MHD turbulent dynamo in
the supersonic regime. The properties of the MHD turbulent dynamo
depend on the Mach number and the nature of the turbulent forcing
(Federrath et al. 2011a). In the supersonic regime, the presence of
shocks can destroy vorticity modes required to drive the dynamo and
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decrease the growth rate and saturation efficiency of the turbulent
dynamo (Seta & Federrath 2022).

Rincon et al. (2016) show that the growth rate of the magnetic
energy from the turbulent dynamo in collisionless plasma depends on
the initial plasma beta, contrary to what we find. We note that in this
study by Rincon et al. (2016), the initial magnetisation of the plasma
is changed along with the initial plasma beta, while here, we fix
the initial magnetisation of the plasma in our numerical experiments
and then vary the initial ratio of magnetic to kinetic energy. When
the magnetisation level is fixed, we do not find the growth rate of
the dynamo to depend on the initial plasma beta (Sec. 2.5). The
magnetisation level can affect the growth rate of the dynamo (see
Fig. 4) as we have discussed earlier and it is important to consider
this as an independent parameter for collisionless turbulent dynamo
studies.

Zhou et al. (2024) use fully kinetic simulations to show that,
without the presence of initial magnetic fields in a turbulent ‘un-
magnetised’ plasma, the Weibel instability can seed magnetic fields
and the turbulent dynamo action can grow these fields up to the sat-
uration stage. In the exponential growth phase of the dynamo, where
our results may overlap, the growth rate we measure is comparable
to what is reported by Zhou et al. (2024). St-Onge & Kunz (2018) re-
port the growth rate of the collisionless dynamo in the ‘magnetised’
regime ⇡ 0.15+turb/! in the exponential growth phase. This is simi-
lar to the growth rate we find in the ‘magnetised’ case, ⇠ 0.21C�1

0 for
Rm ⇠ 510 and (⇢mag/⇢kin)i = 10�8. Rincon et al. (2016) find the
growth rate of the dynamo ⇡ 0.16+turb/! in their ‘un-magnetised’
and high-beta simulations which is lower than what we find in the
‘un-magnetised’ regime. We note that there are caveats to this com-
parison as the Rm differs greatly across these studies.

7 CONCLUSIONS

We study the properties of the collisionless turbulent dynamo in the
kinematic growth phase using hybrid-kinetic particle-in-cell simula-
tions with the FLASH code. We solve the hybrid-kinetic equations
with a turbulent driving field modelled by an Ornstein–Uhlenbeck
process. We use a novel cooling method to cool the collisionless
plasma, in order to maintain a constant temperature and to allow
for steady-state turbulence at any target sonic Mach number. We
change the magnetic Reynolds number (Rm ⇡ 30 � 960) of the col-
lisionless plasma for four different values of initial magnetisation
((ALarmor/!box)i) in the ‘magnetised’ and ‘un-magnetised’ regime
and find that a critical value for the magnetic Reynolds number exists
in both regimes and is comparable to that for the Pm & 1 MHD tur-
bulent dynamo. We also find that the growth rate of the collisionless
turbulent dynamo increases with the magnetic Reynolds number, irre-
spective of the initial magnetisation. In the ‘un-magnetised’ regime,
we find that the critical value of the magnetic Reynolds number,
Rmcrit = 107 ± 6 for (ALarmor/!box)i = 103, Rmcrit = 103 ± 4 for
(ALarmor/!box)i = 102 and Rmcrit = 111 ± 8 for (ALarmor/!box)i =
10. In the ‘magnetised’ regime with (ALarmor/!box)i = 1, we find
that Rmcrit = 124 ± 8.

We also examine how the strength of the seed magnetic field affects
the growth rate of the collisionless turbulent dynamo by varying the
initial magnetic energy to kinetic energy ratio, (⇢mag/⇢kin)i, while
fixing the initial Larmor ratio of the plasma (ALarmor/!box)i = 102.
We find that the growth rate does not depend on (⇢mag/⇢kin)i, similar
to the MHD turbulent dynamo.

We study the distribution and evolution of the pressure anisotropy
of the collisionless plasma (� = ??/? k � 1) for different values of

initial magnetisation during the kinematic regime of the dynamo.
We find that the evolution of the pressure anisotropy is similar for all
our simulation models. The median pressure anisotropy, �, remains
approximately 0.2 throughout the kinematic regime in all the simu-
lations we study. Additionally, we visualise regions where the mirror
and firehose instabilities, which increase the effective collisionality
of the plasma, can be present during the growth phase of the dynamo.
We also compare the critical Reynolds number and growth rate of
the collisionless dynamo with those of the MHD turbulent dynamo.
We will investigate the effective collisionality to understand the ki-
netic Reynolds number and behaviour of the collisionless turbulent
dynamo in the saturation regime in future studies.
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APPENDIX A: SIMULATIONS WITH DIFFERENT
INITIAL LARMOR RATIO

We perform the same experiment changing the value of the
magnetic Reynolds number with a different initial Larmor ratio,
(ALarmor/!box)i = 102

, 10 and 1 and present the time evolution
of these simulations in Fig. A1, A2 and A3 respectively. The re-
sults are qualitatively similar to what we find for the study with
(ALarmor/!box)i = 103. For sufficiently high values of Rm, there is a
clear exponential growth phase, while for values of Rm below a crit-
ical value (Rmcrit determined in Sec. 3), the magnetic field decays.
We note that, as we decrease the initial Larmor ratio, the range within
which the Larmor radius of particles can be resolved also decreases,
resulting in a smaller range for the simulation.

APPENDIX B: EFFECT OF RANDOM SEED FIELD ON
THE EVOLUTION OF THE DYNAMO

The turbulent forcing sequence, f, is initialised with a random num-
ber generator seed. This seed value determines the evolution of the
turbulence driving field. The amplification of the magnetic energy
is somewhat sensitive to fluctuations in the turbulent speed, +turb, as
a result of this random driving sequence, and this can affect the lo-
cally measured growth rates of the dynamo, in particular when only
a relatively short time interval is available for averaging (see Ap-
pendix C). To test this, we run the simulation model with Rm = 480,
(⇢mag/⇢kin)i = 10�8 and (ALarmor/!box)i = 102 with three different
random seed values, and present the results in Fig. B1.

We find that across different turbulent realisations, the local vari-
ations in turbulence, such as the crests and troughs in Mach number,
vary to some degree, and this leads to variations in the magnetic field
amplification as well. As expected, if averaged over long periods
in the kinematic regime of the dynamo, the average Mach number
and the measured growth rate of the dynamo are independent of the
seed (see Table 1), but these variations can be important for short
periods, as can be seen from Fig. B1. We note that it is important to
consider the effect of the random seed used in the turbulent forcing
field for numerical studies of driven turbulence and turbulent dynamo
experiments.

APPENDIX C: ACCOUNTING FOR SYSTEMATIC ERROR
IN GROWTH RATE MEASUREMENTS

We measure the growth rate of the collisionless turbulent dynamo
by fitting an exponential curve to the magnetic energy growth in the
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Figure A1. Same as Fig. 2, but for an initial Larmor ratio of (ALarmor/!box )i =
102 (see Table 1).

kinematic regime of the dynamo. However, the interval over which
the fit is performed is non-standardised (different for different param-
eters) and this can lead to a systematic error in the measured value
of the growth rate. To understand and mitigate this, we devise a new
method that automatically finds the appropriate error of the growth
rate based on the available data (length of time evolution). We develop
this method by measuring the growth rate of the collisionless dynamo
model in one of our models: Rm = 240, (⇢mag/⇢kin)i = 10�8 and
(ALarmor/!box)i = 103, for varying time intervals. However, the re-
sults of this are transferable to all of our models and may be more
generally applied when measuring turbulent dynamo growth rates.
Development of steady-state turbulence takes . 3 C0 in our simula-
tions and thus we generally do not include this initial phase in the
growth rate measurement.

We start by dividing the kinematic regime of this particular sim-
ulation (the time interval 3 � 39 C0) of total length ⇡C = 36 C0 into
two sub-intervals of �C = 18 C0 (⇡C/2) each, three sub-intervals of
�C = 12 C0 each, etc., up to 36 sub-intervals each, with �C = 1 C0, and
fit an exponential curve to each sub-interval. The growth rate, �, we
report for all our simulations is the mean of the sub-intervals with
�C = 1 C0. We compute the standard deviation of the growth rates
measured for each set of sub-intervals (�error (�C)). Figure C1 shows
that the error in the growth rate increases as�C decreases because, for
small sub-intervals, the growth rate measurement is strongly influ-
enced by local features of the turbulence, leading to higher variation
across sub-intervals and larger errors. Over larger �C, the response
of the magnetic energy growth to local turbulent features is averaged
out, naturally leading to smaller errors.
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Figure A2. Same as Fig. 2, but for an initial Larmor ratio, (ALarmor/!box )i =
10 (see Table 1).

Using this information, we fit a decaying power law to the rel-
ative error in the growth rate (�error (�C)/�) as a function of the
time interval used for averaging (�C), and obtain the fitted function
5 (�C) / 10�0.05�C for the relative error in the dynamo growth rate
as a function of �C. For each simulation, we measure the error in the
growth rate at �C = 1 C0, i.e., �error (�C = 1 C0), and use the following
function to calculate the error in the growth rate, such that the final
result for the error is independent of �C,

�error =
5 (�C = ⇡C/2)
5 (�C = 1 C0)

�error (�C = 1 C0), (C1)

where 5 (�C = ⇡C/2) is the value of the function evaluated when
the total kinematic regime is divided into two sub-intervals. This
method mitigates the systematic error in choosing the time interval
over which fitting for the growth rate is done. We use this functional
form to estimate errors for all our runs with varying fit intervals.

APPENDIX D: EFFECT OF RESOLUTION ON
NUMERICAL EXPERIMENTS

To illustrate the convergence of our collisionless dynamo solutions
with both grid and particle resolution, we repeat our numerical exper-
iments with different grid resolutions and number of particles per cell
for the simulation model with Rm = 480 and (⇢mag/⇢kin)i = 10�8.

Figure D1 shows the time evolution of the dynamo for simulations
with a grid resolution of 603, 1203, and 1803, with a fixed number
of particles-per-cell (#ppc = 100). We do not find any significant
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Figure A3. Same as Fig. 2, but for an initial Larmor ratio, (ALarmor/!box )i = 1
(see Table 1).

difference in the Mach number and growth rate of the dynamo as we
change the numerical grid resolution.

Next, we fix the grid resolution to 1203 and vary the number of
particles-per-cell to #ppc = 50, 100 and 200. The time evolution of
these simulations is shown in Fig. D2. We do not find any significant
variation in the Mach number and growth rate of the dynamo for
different particle resolutions with the current physical parameters of
the plasma.

APPENDIX E: MAGNETIC POWER SPECTRA

We plot the time-averaged magnetic power spectra for our collision-
less turbulent dynamo simulations in the exponential growth regime
with fixed magnetic Reynolds number, Rm = 480, initial Larmor
ratio, (ALarmor/!box)i = 102, initial magnetic to kinetic energy ratio,
(⇢mag/⇢kin)i = 10�8, and #ppc = 100 for different grid resolutions,
#

3
grid = 603

, 1203 and 1803 in Fig. E1. We find that the magnetic
power spectra on larger scales converge for different grid resolutions
and are visually consistent with the :

3/2 scaling characteristic of the
MHD dynamo for all the grid resolutions (Kazantsev 1968).

APPENDIX F: EVOLUTION OF PRESSURE ANISOTROPY

In Fig. F1, we plot the time evolution of the median value of pressure
anisotropy for simulations with varying initial Larmor ratios. The
lower and upper error bars represent the 16th to the 84th percentile
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Figure B1. Same as Fig. 2, but for different random number seeds. The above
simulations have magnetic Reynolds number, Rm = 480 and (⇢mag/⇢kin )i =
10�8 (see Table 1, Ser. No. 11, 26 and 27). The value of the random turbulent
seed has some effect on the evolution of the Mach number and also affects
the growth of magnetic energy, which is quantified here. For the growth rate,
the variation is ⇠ 10% for models with different random seeds.
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Figure C1. Relative error in the dynamo growth rate as a function of the
sub-interval time measured for a representative model from the main part of
the study. We see that the error decreases as the time interval for averaging
is increased. Using the fitted function, shown in the dotted black line (see
legend), we provide a standardised error for the dynamo growth rate, given
by equation (C1)).
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Figure D1. Same as Fig. A1, but for different grid resolution (#3
grid) of 603,

1203 and 1803 cells. We find that the evolution of the Mach number and the
growth rate of the dynamo is converged at a grid resolution of 1203 cells, given
the Rm (resistivity) chosen in this experiment. Thus, we generally capture the
grid resolution requirements for convergence given a target resistivity (see
Sec 2.5.2).

values of the pressure anisotropy respectively. The median of the
pressure anisotropy is � ⇠ 0.2 throughout the kinematic regime for
all the simulations we study and is similar across simulations with
different initial magnetisations. We report the time-averaged value of
the pressure anisotropy in the kinematic regime of the collisionless
turbulent dynamo for simulations with different initial Larmor ratios
in Table 3.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure D2. Same as Fig. A1, but for particles-per-cell counts of #ppc =
50, 100 and 200. We do not find any significant dependence on #ppc for the
plasma parameters studied here.
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Figure E1. Time-averaged magnetic power spectra of the collisionless tur-
bulent dynamo in the kinematic regime with magnetic Reynolds number,
Rm = 480, initial magnetic to kinetic energy ratio, (⇢mag/⇢kin )i = 10�8,
initial Larmor ratio, (ALarmor/!box )i = 102, and #ppc = 100 for different grid
resolutions #3

grid = 603, 1203 and 1803. The :3/2 scaling, characteristic of
the MHD dynamo (Kazantsev 1968), is shown for comparison.
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Figure F1. Evolution of the median of the pressure anisotropy (� = ??/?k � 1) as a function of time, normalised to the turbulent turnover time (C0), for
simulations with different initial Larmor ratio (ALarmor/!box )i = 103 (left) and (ALarmor/!box )i = 1 (right). The above simulations have Rm ⇠ 480 and
(⇢mag/⇢kin )i = 10�8. The lower and upper errors on each point show the 16th to 84th percentile range of the pressure anisotropy. In all the above simulations
with varying initial Larmor ratios, the median of the pressure anisotropy ⇠ 0.2 during the kinematic regime.
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