
Nature  |  Vol 629  |  9 May 2024  |  317

Article

Observation of Nagaoka polarons in a Fermi–
Hubbard quantum simulator

Martin Lebrat1,6, Muqing Xu1,6, Lev Haldar Kendrick1, Anant Kale1, Youqi Gang1, 
Pranav Seetharaman2, Ivan Morera3,4,5, Ehsan Khatami2, Eugene Demler5 & Markus Greiner1 ✉

Quantum interference can deeply alter the nature of many-body phases of matter1.  
In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant 
charge can transform a paramagnetic insulator into a ferromagnet through path 
interference2–4. However, a microscopic observation of this kinetic magnetism induced 
by individually imaged dopants has been so far elusive. Here we demonstrate the 
emergence of Nagaoka polarons in a Hubbard system realized with strongly interacting 
fermions in a triangular optical lattice5,6. Using quantum gas microscopy, we image 
these polarons as extended ferromagnetic bubbles around particle dopants arising 
from the local interplay of coherent dopant motion and spin exchange. By contrast, 
kinetic frustration due to the triangular geometry promotes antiferromagnetic 
polarons around hole dopants7. Our work augurs the exploration of exotic quantum 
phases driven by charge motion in strongly correlated systems and over sizes that are 
challenging for numerical simulation8–10.

Ferromagnetism is an intrinsically quantum phenomenon with sub-
tle origins. Conventionally, it arises from ferromagnetic exchange 
couplings originating from Coulomb interactions between electrons 
subject to the Pauli exclusion principle1. This mechanism can, however, 
break down in the presence of strong electronic correlations. A prime 
example is provided by the Hubbard model, a minimal model captur-
ing interactions between itinerant electrons on a lattice, relevant for 
a broad range of materials, including doped high-temperature super-
conducting cuprates11. In this model, an antiferromagnetic ground 
state is favoured for experimentally relevant interactions at a filling 
of one particle per site.

Surprisingly, ferromagnetism can be recovered in the limit of 
infinitely strong interactions by adding one particle dopant to this 
half-filled state. As first shown by Nagaoka and Thouless2–4, a ferro-
magnetic ground state arises from minimizing the kinetic energy of the 
dopant in a broad class of lattice geometries. Intuitively, Nagaoka fer-
romagnetism can be understood as the result of constructive interfer-
ence between different paths the dopant may traverse in the presence 
of a ferromagnetic spin background (Fig. 1a). In any other background, 
dopant tunnelling may result in distinguishable spin configurations 
resulting in paramagnetic or antiferromagnetic states being less ener-
getically favourable (Fig. 1b).

Nagaoka’s exact result, however, relies on hypotheses that are chal-
lenging to meet in realistic materials. Its validity at finite interactions 
and beyond the single-dopant limit has been the focus of extensive 
theoretical work5,6,12–20. Experimentally, evidence for Nagaoka ferromag-
netism was shown on a 2 × 2 quantum dot plaquette21. Recent quantum 
simulations of the Hubbard model in moiré heterostructures22,23 and 
in cold-atom experiments24 have mutually supported the existence of 
magnetic phases with kinetic origin. Despite these advances, signatures 

of Nagaoka ferromagnetism due to individual dopants in an extended 
system have so far remained unobserved.

In this work, we experimentally demonstrate the emergence of 
Nagaoka polarons with strongly interacting ultracold fermions in an 
optical lattice that pristinely realize the Hubbard model (Fig. 1c). These 
polarons appear as bubbles of enhanced ferromagnetic correlations 
over areas up to about 30 sites around individual particle dopants, 
which we image through in situ measurements of three-point corre-
lation functions. These bubbles are bounded by antiferromagnetic 
superexchange occurring at finite interactions (Fig. 1a) and represent 
a generalization of Nagaoka’s original arguments6. Key to our obser-
vations is a triangular optical lattice24–29, in which kinetic magnetism 
is strongly enhanced because of the frustration of antiferromag-
netic order and the presence of short-length loops16. As a result, it is 
expected to give rise to a variety of single- or few-dopant polaronic 
states30–32 that can be observed through spectroscopic33,34 or real-space  
measurements35–37.

Furthermore, triangular lattices break particle–hole symmetry, which  
means that Nagaoka’s theorem does not apply in the case of a single hole 
dopant. We, however, observe evidence for kinetic magnetism around 
hole dopants in the form of antiferromagnetic bubbles, in agreement 
with a seminal prediction by Haerter and Shastry7. This asymmetry with 
respect to doping sharply contrasts with magnetic polarons emerging 
from exchange-mediated interactions between the dopant and its 
spin environment38–41, as investigated in previous cold-atom realiza-
tions of the two-dimensional square Hubbard model42–44. Itinerant spin 
polarons exhibiting this particle–hole asymmetry have recently been 
observed with ultracold fermions in a triangular lattice45.

Here we realize a frustrated Hubbard model by preparing a bal-
anced mixture of ultracold fermionic lithium-6 atoms in the two lowest 
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hyperfine states and adiabatically loading it into a triangular optical 
lattice24. The tunnelling energy t and on-site interaction energy U that 
solely parameterize our Hubbard quantum simulator are tuned by 
changing the depth of the optical lattice and by controlling the mag-
netic field close to the broad Feshbach resonance of lithium-6 (see 
section ‘Sample preparation’). This enables us to tune the ratio U/t 
over more than one order of magnitude from the metallic regime, 
U/t = 5.32(21), to the strongly interacting regime U/t = 72(11), in which 
atoms form a large Mott insulator over 300–400 sites (Fig. 1c). Full 
dopant resolution is obtained by dynamically tuning the lattice geom-
etry to a supersampling square lattice before fluorescence imaging 
(see section ‘Imaging procedure and fidelities’).

Nagaoka polarons
We first investigate the regime of small particle doping above half-filling, 
close to the single-dopant limit required by Nagaoka’s theorem. At finite 
interactions U, antiferromagnetic correlations resulting from super-
exchange coupling J = 4t2/U can obscure the kinetic magnetism locally 
induced by dopants. A natural way to quantify this local effect is to 
measure a connected three-point correlator that captures the amount 
of magnetism added by particle dopants to the spin background:

N
C d S S( ; , ) ≡

4
⟨ ⟩ (1)

z z
cdss 0 1 2

dss
+ +0 0 1 0 2

r d d r r d r d
̂ ̂ ̂

where r̂d  is the doublon occupation operator at site r, rS
ẑ  is the projec-

tion of the local spin operator along the quantization axis, dssN  is the 
marginal probability to measure a doublon at site r0 and single spins 
at sites r0 + d1 and r0 + d2 (see section ‘Correlation functions’). Here and 
in the following, we measure Cdss(r0, d1, d2) for pairs of nearest-neighbour 
spins, ∣d2 − d1∣ = 1, and radially average it over all pairs at the same dis-
tance ∣d∣ = ∣(d1 + d2)/2∣ from a particle dopant. Furthermore, it is aver-
aged over a contiguous area of our experimental sample, including all 
sites r0 at or above half-filling.

We show the magnetism induced by a particle dopant on its sur-
rounding spins in spatial maps of the three-point correlator Cdss(∣d∣) 

in Fig. 2a. At interaction strength U/t = 5.5(1.0) for which the system is 
metallic, spin correlations are positive at the shortest distance from the 
particle dopant. These correlations show a damped oscillation between 
positive and negative values at longer distances, reminiscent of Friedel 
oscillations found in Fermi liquids. This behaviour is suppressed and 
finally vanishes as interaction strength increases. We find that cor-
relations farther from the dopant also turn significantly positive up 
to a distance ∣d∣ = 2.5 at the strongest interaction U/t = 72(11) (Fig. 2b). 
These positive correlations form a ferromagnetic bubble covering an 
area of about 30 sites.

We interpret these bubbles of enhanced ferromagnetic correlations 
as Nagaoka polarons, resulting from mobile particle dopants locally 
polarizing the antiferromagnetic spin background. Initially discussed 
in the context of the stability of the long-range ferromagnetic state5, 
these polarons have been found in the ground state of the square t–J 
model in density-matrix renormalization group studies6. On the basis 
of variational arguments1,6, the radius of the polaron is predicted to 
weakly scale with interactions as OR t J~ ( / ) = (1)N

1/4 , which is consistent 
with an increase in the number of positive correlators Cdss with U/t.

Owing to the confinement potential inherent to our trapping laser 
beams, our region of interest shows a slow spatial variation of the den-
sity n between 0.95 and about 1.2. We expect these inhomogeneities to 
average out the magnitude of the measured correlations and possibly 
underestimate their range, which makes it difficult to quantitatively 
estimate the polaron radius. Furthermore, numerical simulations show 
an overall decrease in the range of the correlations with doping, which 
is consistent with it being limited by the average distance between 
dopants (see section ‘Numerical methods’ and Extended Data Fig. 3).

As the interaction strength U/t is increased, experimental tempera-
tures T remain smaller than the tunnelling energy t (see section ‘Calibra-
tion of t, U and T’). They, however, exceed the superexchange energy 
J = 4t2/U that determines the magnetic properties of the Hubbard model 
at half-filling (Fig. 2c). The persistence of the observed ferromagnetic 
correlations at large distances in this temperature regime, therefore, 
confirms their kinetic origin.

The positive Cdss(|d| = √3/2) on the lattice bonds closest to the particle 
dopant are robust over a wide experimental range of interactions U/t 
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Fig. 1 | Nagaoka polarons in a Fermi–Hubbard quantum simulator. a, As it 
moves through a half-filled, Mott insulator described by the Hubbard model 
(purple spins), an itinerant particle dopant (doubly-occupied site at centre) 
favours spin alignment in its vicinity (pink circle), giving rise to a ferromagnetic 
polaron. Ferromagnetism of kinetic origin competes with superexchange 
coupling (red and blue pairs), which leads to antiferromagnetism away from  
the dopant. In the limit of infinite Hubbard interactions, the radius of the 
ferromagnetic polaron is expected to diverge and the ground state is a long- 
range ferromagnet, as shown by Nagaoka. b, Intuition behind kinetic magnetism: 
a ferromagnetic background enables constructive interference between paths 

taken by the dopant, thereby lowering its kinetic energy. Conversely, different 
paths in a non-polarized background may lead to different spin configurations 
and reduce quantum interference. c, We realize the Hubbard model with tunable 
interaction and tunnelling by loading up to about 400 fermionic 6Li atoms in a 
triangular optical lattice. Geometric frustration introduced by the triangular 
geometry facilitates kinetic ferromagnetism by suppressing superexchange 
coupling. Particle dopants are imaged at the single-site level (inset) after 
adiabatically changing the lattice geometry to a supersampling square lattice 
(shown in the experimental fluorescence picture; see section ‘Imaging 
procedure and fidelities’).
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from the metallic to the Mott insulating regime (Fig. 2d). This robust-
ness may be attributed to the enhancement of quantum interference 
in the short length-three cycles that compose the triangular lattice. 
Neglecting interference over longer paths, the ground state of the 
Hubbard Hamiltonian on a three-site plaquette with one single particle 
dopant is a triplet state for any interaction strength U > 0 (see section 
‘Toy model on a triangular plaquette’). By contrast, the ground state 
on a square plaquette is antiferromagnetic below a critical U/t ~ 20 
(ref. 46), highlighting the tendency of ferromagnetism in short loops. 
The behaviour of the correlator Cdss both on the closest and next-closest 
bonds is qualitatively reproduced by numerical linked-cluster expan-
sion (NLCE) simulations (Methods).

Kinetic magnetism
Triangular geometries not only give rise to geometric frustration of 
antiferromagnetic Heisenberg order but also to kinetic frustration of 
dopants, with important consequences on dopant-induced magnetism. 
A basic intuition can be gained by considering interference processes 
on a triangular plaquette (Fig. 3a), in which a dopant exchanges the 
position of two neighbouring spins on three consecutive tunnelling 
events. In contrast to a particle dopant, a hole dopant effectively has a 
negative tunnelling amplitude −t, which leads to destructive interfer-
ence in a ferromagnetic background. However, constructive interfer-
ence can be recovered if the neighbouring spin state is antisymmetric 
under exchange. From a kinetic energy perspective, hole dopants, 
therefore, favour singlet states with antiferromagnetic correlations. 
This asymmetry between particle and hole doping even holds in larger 
triangular systems: in the infinite U/t limit, Haerter and Shastry pre-
dicted the existence of 120° antiferromagnetic order around single 

holes in the ground state7 that classically saturates the local magnetic 
moments47, contrary to Heisenberg 120° antiferromagnetism driven 
by superexchange.

Experimentally, we observe antiferromagnetic polarons around 
single holes as shown by the hole–spin–spin correlator Chss, defined 
similarly to Cdss in equation (1) and plotted in Fig. 3b, for interaction 
strength U/t = 11.46(31) and densities 0.95 < n < 1.05. The negative 
shortest-distance correlations are consistent with the results in ref. 7 
and recent studies35,36. We note that our imaging procedure prevents 
the measurement of Chss between nearest-neighbour spins at larger 
distances from the hole analogous to Fig. 2a (see section ‘Correlation 
functions’).

After demonstrating the existence of kinetic magnetism carried by 
polarons close to half-filling, we now explore its evolution as the dop-
ing δ = n − 1 is increased. We focus on correlations at the shortest dis-
tance |d| = √3/2, and first show the total, connected dopant–spin–spin 
correlators Cdss

tot and Chss
tot in Fig. 3c, equal to the correlators Cdss and Chss 

without the uncorrelated normalization factor dssN . At interactions 
U/t = 11.46(31), the non-normalized correlators show a linear doping 
dependence indicative of a regime in which the magnetism induced 
by each dopant is additive. In this regime, the visible antisymmetry 
close to half-filling δ = 0 between Cdss

tot for δ > 0 and Cdss
tot for δ < 0 results 

from the Mott insulating nature of the parent system. Further away 
from half-filling, the non-normalized correlators decrease in magni-
tude because of the suppression of the local moments at large dopings 
but remain positive for doublon dopants and negative for hole dopants. 
We find good agreement between the experimental data and deter-
minant quantum Monte Carlo (DQMC) simulations. We also show 
numerical simulations for the non-interacting and U/t = ∞ case (see 
section ‘Numerical methods’), highlighting the effect of interactions 
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Fig. 2 | Emergence of Nagaoka polarons around particle dopants. a, Quantum 
gas microscopy enables us to directly investigate how a single dopant affects 
its spin environment. We observe the resulting ferromagnetic Nagaoka polaron 
around single doublon dopants by extracting the connected doublon–spin–
spin correlation function Cdss(∣d∣) from quantum snapshots. The radius of the 
ferromagnetic bubble increases when increasing the interaction strength from 
U/t = 5.5(1.0) to 72(11). The three-point correlations are averaged over lattice 
sites with filling larger than 0.95, then bond-averaged according to the spatial 
symmetries of the triangular lattice, which contains the two reflections 
indicated with dashed-dotted lines in the leftmost panel. b, The correlations 
Cdss are significantly positive up to a distance ∣d∣ = 2.5 from the doubly-occupied 
site at U/t = 72(11). Bonds within a radial distance of 0.15 are averaged together. 
Here and in the following, error bars indicate the 1σ confidence interval.  

c, Increasing U suppresses the superexchange energy J = 4t2/U that determines 
the magnetic properties of the Hubbard model at half-filling. Our experimental 
temperatures T in the Mott insulating regime exceed this energy scale while 
remaining smaller than the tunnelling energy t, which strongly points to the 
kinetic origin of the observed magnetic correlations. d, Strong quantum 
interference on triangular plaquettes results in positive correlations Cdss at the 
shortest distance |d| = √3/2 over a wide range of interactions U/t (dark-blue 
circles; see section ‘Toy model on a triangular plaquette’), whereas the sign of 
the correlator averaged on the next-nearest bonds |d| = √7/2 and ∣d∣ = 3/2 reverses 
between the Fermi liquid and the Mott insulating regimes (light-blue circles). 
These experimental data at short range are captured by numerical simulations 
performed at half-filling (squares) and 3% particle doping (crosses), performed 
at temperature T/t = 0.5 with DQMC for U/t ≤ 12 and NLCE for U/t ≥ 15.
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close to half-filling and the emergence of a linear regime at strong 
interactions.

Away from half-filling, the asymmetric particle- and hole-induced 
magnetism is robust to interaction strength, as shown in Fig. 3d with 
connected correlators normalized by Ndss or hssN . We observe consist-
ently negative short-range correlations Chss around holes at all negative 
dopings δ < 0, and positive short-range correlations Cdss around parti-
cle dopants up to δ = +0.5. At dopings ∣δ∣ > 0.2, non-interacting calcu-
lations at a temperature T/t = 0.5 show magnitudes similar to 
experimental data. Numerical simulations of Cdss from all methods also 
show quantitative agreement with each other at large particle doping 
(Extended Data Fig. 5), suggesting that the interaction dependence of 
the dopant–spin–spin correlations is the weakest in the highly doped 
regime.

Ferromagnetic transition at finite doping
The existence of Nagaoka polarons raises questions about their role 
in a possible ferromagnetic phase transition when dopant density is 
increased and polarons start to overlap (Fig. 4a). An analogous mecha-
nism has been pointed out theoretically in disordered magnetic semi-
conductors, in which a ferromagnetic transition occurs through the 
percolation of localized ferromagnetic bubbles as the temperature 
is decreased48.

In our experiment, the sign of the two-point spin correlation function 
between nearest-neighbour sites is suggestive of the ferromagnetic or 
antiferromagnetic nature of the system at equilibrium. In Fig. 4b, we 
plot the normalized two-point correlator

N
̂ ̂r d r r dC S S( ; ) ≡

4
⟨ ⟩ (2)

z z
css

ss
+

The correlator Css is measured as a function of doping at several interac-
tion strengths in the temperature range T/t = 0.40(4)–0.74(13) (Meth-
ods and Extended Data Table 1). At half-filling (δ = 0), superexchange 
interactions lead to an antiferromagnetic state (Css < 0). With particle 
doping (δ > 0), however, this negative correlation is rapidly suppressed 
up to a critical doping δFM, at which it turns positive, consistent with a 

scenario in which the proliferation of Nagaoka polarons drives a ferro-
magnetic transition. Conversely, with hole doping (δ < 0), Css becomes 
even more negative than at half-filling, consistent with Haerter–Shastry 
polarons enhancing antiferromagnetism relative to the local moment47. 
Neither of these trends is present in the equivalent correlator in the 
square lattice at comparable or larger interaction strengths, plotted in 
Fig. 4c. The latter quantity depends only weakly on doping, consistent 
with magnetism controlled mainly by the density of moments (that 
is, ⟨SzSz⟩ ∝ (1−∣δ∣)2), in contrast to the kinetic magnetism evident in the 
triangular lattice.

Decreasing the superexchange energy J = 4t2/U by increasing U/t  
from 5.32(21) to 26.5(2.6) at similar temperatures suppresses super-
exchange magnetism while preserving kinetic magnetism. This 
effect is visible as an upward shift of the Css curve, whereas its slope 
stays roughly constant. The extreme limit of this effect is captured 
in finite-temperature Lanczos method (FTLM) simulations at U/t = ∞, 
T/t = 0.6, where δFM = 0. The net result of this behaviour is a rapid reduc-
tion of the critical doping δFM towards half-filling (Fig. 4d) as inter-
actions are increased. This trend is reminiscent of the existence of a 
ferromagnetic ground state for an infinitesimal positive doping of one 
hole in the Nagaoka limit U/t → ∞, although the experimentally fitted δFM 
asymptotically reaches a small finite value, possibly as a consequence of 
the larger lattice depth and potential gradients associated with the trap 
curvature realized at the strongest interactions. Numerical simulations 
at fixed temperature T/t = 0.6 from the NLCE (U/t = 5–100; Methods) 
and FTLM (U/t = 8 to ∞; Methods) recover qualitatively similar δFM as 
U/t is increased, but with an asymptote approaching zero as U/t → ∞.

Discussion and outlook
In this work, the enhancement of ferromagnetic correlations with 
interaction U around single particle dopants (Fig. 2a,b) and between 
nearest-neighbour spins (Fig. 4d) suggests that our finite-temperature 
system forms a precursor to a Nagaoka state at small, positive doping. 
The robust sign of both dopant–spin–spin (Fig. 3c,d) and spin–spin 
correlations (Fig. 4b) away from half-filling furthermore highlights 
the central role of coherent dopant motion in triangular geometries 
(Figs. 1a,b and  3a) to stabilize a ferromagnetic state at large particle 
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Fig. 3 | Antiferromagnetic polarons around holes and doping dependence 
of correlations. a, In contrast to particle dopants, hole dopants on a triangular 
plaquette favour antiferromagnetic correlations. As a hole dopant effectively 
has a negative tunnelling amplitude, it is kinetically frustrated on a triangular 
lattice with two aligned spins. However, it can delocalize by constructive 
interference if its neighbouring particles are in an antisymmetric spin state 
under exchange, that is, in a singlet state. b, Antiferromagnetic correlations are 
observed around hole dopants Chss(d1, d2), here averaged in a Mott insulator at 
interaction strength U/t = 11.46(31) and temperature T/t = 0.444(19). c, In the 
Mott insulating regime U/t = 11.46(31), the symmetric nature of the ferromagnetic 
and antiferromagnetic polarons close to half-filling is visible as the linear doping 
dependence of the unnormalized connected hole–spin–spin correlator C hss

tot at 
dopings δ < 0 and doublon–spin–spin correlator C dss

tot at dopings δ > 0 between 
nearest neighbours (|d| = √3/2). Away from half-filling, C hss

tot and C dss
tot decrease in 

magnitude because of the decreasing local moments. The experimental data 
quantitatively agree with numerical simulations at U/t = 12 and T/t = 0.5.  
d, Kinetic magnetism at short distances from dopants is robust to doping  
and varying interaction strength after normalizing by the uncorrelated part of 
the correlator, as seen in the negative nearest-neighbour correlators Chss and 
positive nearest-neighbour correlators Cdss. The value of the three-point 
correlators matches qualitatively the non-interacting calculation away from 
half-filling. The U/t = 0, 12 and ∞ numerics are computed at T/t = 0.5 using 
Wick’s contractions, DQMC and FTLM, respectively (see section ‘Numerical 
methods’). Unnorm., unnormalized; Norm., normalized; N.N., nearest 
neighbour; Non-int., non-interacting. In Extended Data Fig. 7, we show 
experimental and numerical data for the unnormalized three-point correlators 
for all three interaction strengths of Fig. 3 as a function of doping.
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doping and an antiferromagnetic state at large hole doping, in a regime 
in which spin-exchange magnetism is weak (Fig. 2d).

In the infinite U limit, long-range ferromagnetic order was previ-
ously shown to persist in the ground state of the triangular lattice up 
to remarkably large positive dopings5,16 compared with the square 
lattice17,19. At finite interactions, the parent Mott insulating state at 
half-filling and zero temperature has been conjectured to show a tran-
sition from a 120° Néel ordered state to a quantum spin liquid below 
U/t ≈ 9–10, followed by an insulator to metal transition on further 
decreasing U/t (ref. 49). Doping the Mott insulator is expected to give 
rise to competing quantum phases, including chiral metals, spin density 
waves and superconducting states20,50,51.

Experimentally, thermal fluctuations associated with our tempera-
tures T/t ≥ 0.3 prevent long-range order, and all measured observables 
are smooth functions of the interaction strength. Our lowest interac-
tions U/t ~ 5 exhibit ferromagnetic nearest-neighbour spin correlations 
at critical dopings δFM > 0.3 much larger than the strong interaction 
regime U/t > 20. In this weaker interaction regime, finite-doping fer-
romagnetism might be influenced by a Stoner instability. This hypoth-
esis is supported by numerical density matrix renormalization group 
(DMRG) simulations shown in Extended Data Fig. 6 at U/t = 20 showing 
the formation of a long-range ferromagnetic ground state around a 
doping of 50%, at which the triangular lattice shows a van Hove sin-
gularity. Ferromagnetism in a triangular lattice could show a smooth 
crossover between the Stoner, mean-field regime at U/t ≈ 0 and the 
Nagaoka, U/t = ∞, regime. Further theoretical and numerical studies 
as a function of lattice geometry and interaction can shed light on 
this crossover52.

Future work can further probe the existence of bound states medi-
ated by kinetic frustration at finite polarization30,32,53,54 through meas-
urements of spin susceptibility. These states have drawn interest from 
condensed-matter experiments with transition metal dichalcogenides, 
in which observations of kinetic magnetism and spin polarons have 
recently been reported22,23,55. Our quantum simulator using ultracold 
atoms may help explain the mechanism of kinetic magnetism by provid-
ing a pristine realization of the triangular lattice Hubbard model and 
precisely tunable interactions. In the large doping regime, our platform 
could also investigate dopant pairing and superconductivity based 
on a ‘spin-bag’ mechanism56. Our lowest experimental temperatures 

T/t ≈ 0.3, would allow the exploration of this phenomenon governed 
by tunnelling energy t, at interactions and dopings for which our 
finite-temperature simulations are challenging over large system sizes.

At weaker interactions for which spin exchange becomes dominant, 
multi-point correlation measurements of spin and density could also 
help reveal resonating-bond-solid states1,57. Decreasing the temperature 
further may ultimately explain the nature of quantum spin liquid states 
and intriguing doped phases driven by frustration.
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Methods

Sample preparation
As in ref. 24, we prepare an ultracold, spin-balanced gas of 6Li in 
the lowest two hyperfine states and load it into a triangular optical 
lattice formed by two interfering, actively phase-stabilized beams 
the intensities of which are independently controlled. We refer 
to these beams as X and Y. We tune the s-wave scattering length as  
of the lithium atoms by controlling the magnetic field in the vicinity  
of the broad Feshbach resonance at 832 G. Combining this and vary-
ing the final depth of the lattice allows access to a wide range of U/t 
values (see section ‘Calibration of t, U and T’). In Extended Data Table 1, 
we report the lattice depth and tunnelling rate associated with each 
dataset. The lattices 1–6 are triangular lattices of varying depth, 
and 7 is a square lattice. To ensure the loading remains adiabatic, 
we use a ramp duration for each final lattice depth that is inversely 
proportional to the tunnelling rate t at the end of the loading ramp. 
We verify the adiabaticity of the lattice ramp by varying the ramp 
duration and checking the convergence of the density profile of 
the system as a function of distance from the trap centre. A digital 
micromirror device (DMD) is used to partially compensate for the 
harmonic confinement created by the Gaussian profile of the lattice 
beams. In most datasets a parabolic potential is projected from the 
DMD, although in a few datasets a hyperbolic pattern is projected 
to further compensate the potential. The potential is thus approxi-
mately harmonic in all datasets (see section ‘Trap uniformity and  
compensation’).

The experimental datasets thus produced are enumerated in 
Extended Data Table 1, together with the loading parameters, number 
of shots, interaction strength and temperature of each dataset and the 
figures each dataset appears in. The determination of the interaction 
strength and temperature is described in section ‘Calibration of t, U 
and T’.

Imaging procedure and fidelities
To perform measurements on the system after loading it into the lattice, 
we first freeze the dynamics by quenching the lattice powers in 0.1 ms 
to (VX/ER, VY/ER) ≈ (3.2, 40) (using the notation in ref. 24, where ER is the 
lattice recoil energy) at which tunnelling is negligible. As in ref. 24, 
site-resolved fluorescence imaging is eventually performed on this 
frozen system in a separate, dedicated imaging lattice. In the present 
work, however, we take extra steps before the transfer to the imaging 
lattice to avoid the issue of parity projection, in which doubly-occupied 
sites seem to be empty because of light-assisted collisions during fluo-
rescence imaging58.

We achieve this by transferring the atoms from the triangular lat-
tice to a square lattice with twice the number of sites, which converts 
doubly-occupied sites in the triangular lattice into adjacent pairs of 
singly-occupied sites in the square lattice. The transfer is performed 
by adiabatically ramping up an additional beam, which we call X  
(Extended Data Fig. 1), to about 48ER within 5 ms and ramping off the 
X lattice at a magnetic field at which the interaction between atoms 
is repulsive. X  copropagates with X but is detuned in frequency from 
X and Y by about 1.7 GHz. Owing to this large frequency offset, X  
effectively does not interfere with X and Y, so that the handoff from 
X + Y to X Y+  doubles the number of sites (X Y+  forms a ‘standard’ 
square lattice). The specific frequency of around 1.7 GHz is chosen 
to position the potential minima of X Y+  symmetrically relative  
to those of X + Y in each unit cell of the intermediate X X Y+ +  lattice. 
This choice minimizes differential potential offsets between  
the minima of X Y+  during the handoff, which is necessary to ensure 
that the adiabatic splitting of doubly-occupied sites is robust. The 
choice of 1.7 GHz is then dictated by the wavelength of the lattice 
light (1,064 nm) and the distance to the retroreflection mirror  
(about 4.2 cm).

We obtain spin-resolved imaging by selectively removing atoms in 
one spin state with a resonant laser pulse, as in ref. 59. In the experi-
ment, we use the two lowest hyperfine states of 6Li, namely, the (F = 1/2, 
mF = 1/2) and (F = 1/2, mF = −1/2) as the effective spin states |↑⟩ and |↓⟩. 
To prevent doubly-occupied sites from being affected by this pulse, 
before the splitting procedure we perform a radiofrequency Landau–
Zener sweep to selectively transfer atoms in |↓⟩ on singly-occupied 
sites into the (F = 3/2, mF = −3/2) (|3⟩) state of the electronic state.  
To remove the |↑⟩ state, we perform an extra Landau–Zener sweep 
before transferring that exchanges |↑⟩ and |↓⟩ states on singly-occupied 
sites before transferring |↓⟩ to |3⟩.

Doubly-occupied sites are not affected by these sweeps because of 
the interaction-induced shift of the hyperfine transition, which is typi-
cally about 30 kHz and hence much larger than the Rabi frequencies 
of the two sweeps (390 Hz and 180 Hz for the first and second sweeps, 
respectively). To ensure adiabaticity, we linearly sweep the frequency of 
the radiofrequency signal over a 15-kHz range centred on the resonance 
over a duration of 15 ms for the first sweep and 50 ms for the second 
sweep. This third spin state is then targeted for removal using a 10-μs 
resonant pulse59 after the transfer to the imaging lattice (Extended 
Data Fig. 1).

We calibrate the fidelity of fluorescence imaging of the singly- 
occupied sites Fs = 99% as in ref. 24. To calibrate the fidelity Fd,NR of 
doublons without the Landau–Zener transfer and spin removal, we 
load a cloud of atoms with a filling of n = 2 band insulating state in the 
centre of about 200 sites. We find the doublon detection fidelity to  
be Fd,NR = 98% after reconstruction. To characterize the doublon detec-
tion fidelity Fd,R↑ in the images with spin ↑ removed and Fd,R↓ in the 
images with spin ↓ removed, we apply the same Landau–Zener transfer 
and spin removal pulses used in data taking to the calibration sample 
with a band insulator core and find the fidelity to be Fd,R↑ = Fd,R↓ = 95%.

Calibration of t, U and T
We obtain U/t and T/t in the triangular lattice by comparing experimen-
tal double-occupancy densities and spin correlations with DQMC and 
FTLM simulations. For datasets from the square lattice, we use a similar 
procedure but compare with NLCE simulations from ref. 60. The results 
for U/t and T/t are listed in Extended Data Table 1.

As described in section ‘Determinant quantum Monte Carlo simula-
tion’, we perform DQMC simulations of the triangular lattice Hubbard 
model on a mesh of μ, U and T, with simulation parameters described. 
At each point in the mesh, we compute the particle density n(μ, U, T), 
the double occupancy d(μ, U, T) and the nearest-neighbour spin cor-
relator Css(μ, U, T). As U/t increases, DQMC becomes less stable because 
of the sign problem. However, for U/t > 20, we found the sign problem 
is absent at half-filling n = 1 and can be computed down to a tempera-
ture of T/t = 0.3.

To obtain U/t, we first perform linear interpolation on DQMC data 
using the experimentally measured double occupancy d and the 
nearest-neighbour spin correlator Css at half-filling. As we have a spa-
tially varying atom density (see section ‘Trap uniformity and compen-
sation’), these half-filling observables are determined by averaging 
over lattice sites with average density within [0.97, 1.03], which is the 
most narrow range that includes enough lattice sites to reduce sta-
tistical noise. However, the values of U/t from interpolation still vary 
between datasets with the same lattice parameters due to statistical 
noise, and at U/t > 20, double occupancy d decreases to less than 1% and 
is more susceptible to imaging infidelity. Thus, we correct the inter-
polated value using the linear dependence of U on scattering length  
as (ref. 61).

For datasets with final calibrated U/t < 20, we take several other 
datasets with the same lattice depth and different magnetic fields, 
and we perform a linear fit of interpolated U/t on as, using values 
for as from ref. 62. For datasets with final calibrated U/t > 20, we 
take data at the same lattice depth but at a smaller magnetic field 
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for which U/t is small and the measured double occupancy is still 
a faithful parameter to calibrate U/t, and then scale the interpo-
lated U/t proportionally by as. This method produces the same 
U/t for the same lattice parameters and is robust against imaging  
infidelity.

To obtain T/t, we perform similar linear interpolation on DQMC 
data, but using the calibrated U/t and the experimentally measured 
nearest-neighbour spin correlator Css at half-filling. However, for 
U/t > 35, the sign problem of DQMC becomes severe even at half-filling, 
so we perform similar interpolation based on FTLM simulation of the 
t–J model, as described in section ‘Finite-temperature Lanczos method 
simulation’.

In datasets from the square lattice, we obtain the experimental Css 
and d at half-filling as above. We then determine both U/t and T/t by 
linear interpolation on NLCE data from ref. 60.

We obtain the absolute value of the tunnelling t in Hz as described 
in ref. 24. We report the resulting tunnelling rates in Extended Data 
Table 1. Note that lattice 7 is a square lattice, whereas lattices 1–6 are  
triangular.

Correlation functions
Definition. The normalized, connected doublon–spin–spin correlator 
used in the main text is defined as

̂ ̂ ̂
N

C d S S( ; , ) ≡
4

⟨ ⟩ (3)
z z

dss 0 1 2
dss

+ + c0 0 1 0 2
r d d r r d r d

Here and in the following, the factor of 4 is used to normalize  
the ̂ ̂S S

z z
 part of the correlator to one. The denominator is defined  

as d p= ⟨ ⟩⟨ ⟩dss
2N , where ⟨d⟩ (⟨p⟩) is the average probability for a site to 

be doubly (singly) occupied, and provides an upper bound for  
the three-point correlator. ⟨…⟩c denotes the connected part of the 
three-point correlation function, that is the difference between the 
doublon–spin–spin correlator and its disconnected parts. Under  
the assumption of a spin-balanced atomic mixture with total spin  
projection along z ⟨Sz⟩ = 0, this connected correlator simplifies to

̂ ̂ ̂C d S S C( ; , ) =
4

⟨ ⟩ − ( + , + ). (4)
z z
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+ + ss 0 1 0 20 0 1 0 2N
r d d r d r dr r d r d

It can be interpreted the amount of spin correlations added by  
doublons to the normalized spin correlation background:

r r r rC S S( , ) =
4

⟨ ⟩ (5)
z z

ss 1 2
ss

1 2N
̂ ̂

with normalization factor p= ⟨ ⟩ss
2N . Similarly, the normalized, con-

nected hole–spin–spin correlator is defined as

r d d r r d r d
̂ ̂ ̂

N
C h S S( ; , ) ≡

4
⟨ ⟩ , (6)

z z
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hss
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where h p= ⟨ ⟩⟨ ⟩hss
2N , and ⟨h⟩ is the average probability for a site to be 

empty (hole).
In Fig. 3d, we show the nearest neighbour three-point correlator 

Cdss defined as

r e e r e e r e e
r
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where Ωδ is a region with average doping level δ, Ωδ
N  is the number of 

lattice sites in this region, and e1, e2 and e3 are the three unit vectors 
along the triangular lattice bonds. We similarly define the nearest 
neighbour hole–spin–spin correlator Chss. In Fig. 3c, we also show the 

non-normalized three-point correlators Cdss
tot and Chss

tot, which are defined 
without the normalization factors Ndss and Nhss :
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In Fig.  4, we show the nearest-neighbour spin correlation Css  
defined as
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where we average the correlator over the three equivalent lattice bonds 
and over a region of constant doping level.

Computation from experimental snapshots. As described in the 
previous section, we experimentally obtain three types of snapshot: 
(1) with no spin removal (NR); (2) after removing spin ↑ (R↑); and (3) 
after removing spin ↓ (R↓). Furthermore, in all three sets of images we 
can distinguish 0, 1 and 2 atoms per site, which we label as h, p and d, 
respectively. Extended Data Table 2 lists the site-resolved observed 
outcomes and the possible site occupations that map to the same  
measured outcome. With these three sets of images (even with parity- 
projected imaging), we can obtain connected two-point spin correla-
tors S S⟨ ⟩i

z
j
z

c for arbitrary sites i and j as demonstrated in our previous 
work59. We repeat the formula below for clarity:

∑S S p p p p4⟨ ⟩ = 2 ⟨ ⟩ − ⟨ ⟩ , (10)i
z

j
z

σ
i j

σ
i jc

∈{↑,↓} c

(R )

c

(NR)

where ⟨⟩(NR) refers to the expectation value over multiple images in which 
neither spin is removed, and ⟨⟩(Rσ) refers to the expectation value over 
images in which atoms in spin σ are removed.

With the addition of full-density resolution, we can also obtain con-
nected three-point correlator doublon–spin–spin d S S⟨ ⟩i j

z
k
z

c for arbi-
trary sites i, j and k using the formula:

∑d S S d p p d p p4⟨ ⟩ = 2 4⟨ ⟩ − 4⟨ ⟩ . (11)i j
z

k
z

σ
i j k

σ
i j kc

∈{↑,↓}
c
(R )

c
(NR)

This formula is a simple modification of equation (10), as we can 
uniquely identify doublons in each of the three sets of images as seen 
in Extended Data Table 2.

By contrast, because holes cannot be uniquely identified in our 
imaging scheme (a hole observed in a spin-removal image could be a 
hole or the spin that was removed), we cannot construct the hole–
spin–spin correlator h S S⟨ ⟩i j

z
k
z

c for arbitrary sites i, j and k. However, 
we can still obtain a permutation-symmetrized combination of  
correlators ∑C i j k h S S( , , ) = ⟨ ⟩i j k i j k i j

z
k
z

hss ( , , )∈( , , ) c  using the following  
formula:
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We can see how this formula works by writing out the first term of 
the connected correlator in the occupation basis. For convenience, 
we drop the site labels and imply averaging over cyclic permutation 
of the three sites.

hS S h h h h4⟨ ⟩ = ⟨ ↑↑⟩ + ⟨ ↓↓⟩ − ⟨ ↑↓⟩ − ⟨ ↓↑⟩. (13)z z



Similarly writing out the three body terms from equation (12),

∑ hpp hhp

hpp hhp

h h

hh h h

hh h h

h h h h

hh hh

h h

h h h h

h h h h

h h h h

2
3
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+
1
3
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−
2
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(⟨ ↓⟩ + ⟨ ↑↓⟩ + ⟨↑ ↓⟩ + ⟨↑↑↓⟩

+ ⟨ ↑⟩ + ⟨ ↓↑⟩ + ⟨↓ ↑⟩ + ⟨↓↓↑⟩)

+
1
3

(⟨ ↑↑⟩ + ⟨ ↑↓⟩ + ⟨ ↓↑⟩ + ⟨ ↓↓⟩)

+
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(⟨ ↑⟩ + ⟨ ↓⟩)

=
2
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(⟨ ↓↓⟩ + ⟨ ↑↑⟩)

−
2
3

(⟨ ↑↓⟩ + ⟨↑ ↓⟩ + ⟨ ↓↑⟩ + ⟨↓ ↑⟩)

+
1
3

(⟨ ↑↑⟩ + ⟨ ↑↓⟩ + ⟨ ↓↑⟩ + ⟨ ↓↓⟩)

= ⟨ ↑↑⟩ + ⟨ ↓↓⟩ − ⟨ ↑↓⟩ − ⟨ ↓↑⟩,

(14)

σ

σ σ(R ) (R )

(NR) (NR)

where we used the cyclic permutation to cancel the terms in the last 
step. Similarly, in the two-body and on-site terms, appropriate terms 
get cancelled after cyclic permutation to give equation (12).

Trap uniformity and compensation
Trap curvature. Owing to the Gaussian envelope of the lattice beams 
and the additional light projected from the DMD, the atoms experience 
a spatially varying chemical potential. In a given dataset, we may esti-
mate the resulting potential gradients by measuring the average  
experimental density ⟨nr⟩ on each site, and using the equation of  
state computed in DQMC to extract the local chemical potential as 
μ(r) = μDQMC(⟨nr⟩, U, T) within the local density approximation. Here U 
and T are obtained as in section ‘Calibration of t, U and T’, and the equa-
tion of state is inverted by linear interpolation on DQMC data from a 
range of μ values. We quantify the potential gradients by fitting parab-
olae to cuts of the local potential along the major and minor axes of the 
cloud, μ r μ κr( ) = −0

1
2

2 . We report the fitted trap curvatures κmaj and 
κmin in Extended Data Table 3 for a representative subset of datasets. 
The uncertainties on these numbers account both for uncertainties on 
the site-resolved density ⟨n(r)⟩ and on U and T. Typically κmaj ranges 
from 0.03t/sites2 to 0.09t/sites2, whereas κmin ranges from 0.3t/sites2 
to 0.6t/sites2.

In datasets DS6, DS8 and DS10, in which we report (Fig. 3) three-point 
correlators at finite hole doping, we project a hyperbolic potential from 
the DMD to partially compensate for the minor axis confinement. The 
values of κmin are thus correspondingly lower, for example, in DS10 and 
DS6 than in DS11 and DS7 (the analogous datasets for doublon doping 
in Fig. 3). This is done to reduce the local gradient in the hole-doped 
region of the trap, which can alter the value of correlation functions if it 
is too strong, as is discussed below. This compensation is unnecessary 
in the doublon-doped datasets because the doublon-doped region 
naturally occurs close to the trap centre.

Sensitivity to potential gradients. To estimate the sensitivity of the 
correlations reported in this paper to the potential gradients produced 
by the harmonic confinement, we perform FTLM simulations (see sec-
tion ‘Finite-temperature Lanczos method simulation’), which we expect 
to qualitatively capture the relative effects of a potential gradient.

An example of the results of these calculations is shown in Extended 
Data Fig. 2, obtained from a 4 × 3 t–J cluster at fixed U/t = 30 and T/t = 0.5. 
The left column plots the nearest-neighbour Css and smallest-triangle 
Chss,dss correlators (see section ‘Correlation functions’) as a function of 

density at selected values of the gradient Δ (measured in t/site). The 
right column plots the same quantities as a function of the gradient 
strength at three example densities, chosen to be below, above or at 
half-filling. In this regime, we find the spin–spin correlations close to a 
Mott insulator remain robust even in the presence of gradients of about 
10t/site. The spin–spin correlations at finite doping and three-point 
correlations, however, are more strongly affected by gradients.

This difference in sensitivity to gradients in doped and undoped 
systems reflects the kinetic nature of the magnetism at finite doping. 
Dopant mobility is reduced in the presence of gradients because of the 
suppression of resonant tunnelling by site-to-site potential offsets. 
Potential gradients thus suppress kinetic magnetism, which results 
from the motion of dopants. By contrast, the virtual tunnelling respon-
sible for superexchange interactions at half-filling in a Mott insula-
tor is relatively unaffected by potential gradients (see, for example, 
refs. 63,64). As a result, magnetism at half-filling is much more robust 
to potential gradients than it is at finite doping.

Qualitatively, the most notable consequence of potential gradients 
is a strong reduction and even reversal of the hole–spin–spin correla-
tor Chss on the hole-doped side, which we address by specifically using 
trap compensation in the related dataset of Fig. 3. Quantitatively, we 
expect gradients to overall decrease the doublon–spin–spin correlators 
on the particle-doped side (Figs. 2 and 3), to decrease the magnitude 
of the spin–spin correlator Css on the hole-doped side and to increase 
the critical particle doping δFM at which the spin–spin correlator Css 
becomes ferromagnetic (Fig. 4).

Doping and interaction dependence of the doublon–spin–spin 
correlations
As described in the main text and in the section ‘Trap uniformity and 
compensation’, the region of interest used to compute the doublon– 
spin–spin correlation maps shown in Fig.  2 shows small spatial  
variations of the atom density. This leads to an averaging of the corre-
lations Cdss over different doping values. To evaluate the exact doping 
dependence of the correlations, we perform numerical simulations at 
a reference temperature T/t ≈ 0.5 (Extended Data Fig. 3). Overall, the 
magnitude of Cdss at large distances from the dopant is suppressed for 
dopings δ > 5%, which is generally expected to reduce the magnitude 
and range of the experimental correlations after averaging.

At small to moderate interactions U/t = 5 and 12, we perform DQMC 
to obtain all dopant–spin–spin correlators on a 8 × 8 system size and for 
a large range of dopings. At U/t = 5, a Friedel-type oscillatory behaviour 
is visible as a function of distance from the doublon dopant or all the 
doping values shown in Extended Data Fig. 3a. The magnitude of the 
correlation is reduced for dopings δ > 20%. At U/t = 12, Cdss(∣d∣) values 
for ∣d∣ > 1 start to be positive close to half-filling but turn negative at 
dopings δ ~ 2% (Extended Data Fig. 3b). Notably, the second and third 
nearest neighbours turn negative at smaller doping than the fourth.

At larger interactions, we turn to NLCE simulations as the sign prob-
lem of DQMC becomes pronounced. We implemented Cdss(∣d∣) up to the 
fifth nearest neighbour from the doublon, with all further neighbours 
set to be 0 in the plot. At half-filling, all correlations are vanishing with 
interaction, in strong contrast with the particle-doped case (Extended 
Data Fig. 3c–e).

In Extended Data Fig. 4, we highlight the evolution of the first 
nearest neighbour Cdss and the average of the second and third 
nearest-neighbour correlations (as defined in Fig. 2), computed with 
NLCE across all interactions at doping values δ = 0 and δ = 0.05. At 
half-filling, the Hubbard model effectively maps to a Heisenberg model 
in the limit of large U/t and because the simulation is performed at con-
stant temperature T/t, the effective increase in the temperature relative 
to superexchange T/J leads to a decrease in correlations. By contrast, 
at finite doping, the first nearest-neighbour correlator shows a very 
weak dependence on interaction strength, and the second turns from 
negative to positive at U/t ~ 30. This provides another confirmation that 
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magnetism away from half-filling is not governed by superexchange J 
but by the presence of mobile particle dopants with kinetic energy t.

At the largest interactions, doublon–spin–spin correlations also 
show a non-monotonic behaviour as doping is increased: both the 
range and the absolute value of the correlations increase at all five 
distances up to δ ~ 1% doping and then start to decrease (up 8% at which 
NLCE starts to become unstable at U/t = 100), with a notably weak third 
nearest-neighbour correlator.

A difference between Fig. 2d and Extended Data Fig. 4 is the more 
abrupt decrease of the experimentally measured first nearest-neighbour 
at U/t = 72(11). We attribute it to the experimental increase of the size of 
the Mott insulator region with interactions, which leads to a stronger 
weighting of weak correlations close to half-filling when performing 
a spatially uniform average.

Data analysis
In Fig. 2, three-point correlation functions are computed over all triplets 
of sites for which the average density is above 0.95. This corresponds to 
a spatial average over 123 sites at U/t = 5.5(1.0) in the metallic regime and 
over 271–330 sites at the four other interactions in the Mott insulating 
regime. To eliminate slow shot-to-shot variations of the atom number 
that may introduce systematic shifts in the computed correlations, 
experimental images are post-selected within a window of ±15 atoms 
away from the mean atom number for fully density-resolved images 
and ±10 atoms for spin-resolved images (corresponding to relative 
fluctuations of about ±5% in both cases).

The data in Figs. 3 and 4 are post-selected with a window of ±30 atoms 
in fully density-resolved images and ±20 atoms in spin-resolved images. 
Experimental curves for doping are obtained by binning the sites of the 
lattice according to their measured density and averaging correlation 
functions in each bin, with typically 50 sites per bin. The experimental 
value of δFM in Fig. 4d is obtained from the zero of a linear fit to the curve 
thus obtained for Css in each dataset.

All error bars indicate the 1σ confidence interval obtained by using 
bootstrap sampling across all experimental snapshots of a given dataset 
with 100 randomly generated samples.

Comparison between numerical methods
We show the numerically computed normalized doublon–spin–spin 
and hole–spin–spin correlators in Extended Data Fig. 5a–d for finite 
temperature T/t = 1 as well as in the ground state. Surprisingly, we find 
an almost universal behaviour of the normalized doublon–spin–spin 
correlator above half-filling with very weak U/t dependence above dop-
ing δ > 0.1. Similarly, we find weak U/t dependence of the normalized 
hole–spin–spin correlator below doping δ < −0.1. However, as seen 
in Fig. 2 and Extended Data Fig. 3, the three-point correlators beyond 
the nearest neighbour vary significantly with interaction strength and 
show the range of the Nagaoka polaron increasing with interactions.

For completeness, we also show in Extended Data Fig. 5 the numeri-
cally computed bare doublon–spin–spin and hole–spin–spin corre-
lator for nearest neighbours (Extended Data Fig. 5e,f) as well as the 
non-normalized, connected correlators (Extended Data Fig. 5g,h). 
The bare correlator doublon–spin–spin is defined as the first term in 
equation (4) without subtracting out the disconnected terms (simi-
larly for the bare hole–spin–spin correlator). We note that the bare 
doublon–spin–spin correlator shows a sign change on going from low 
U/t to large U/t (similar to the spin–spin correlator), whereas the con-
nected correlator is positive for all dopings and interaction strengths, 
indicating that the local spin correlations added by doublons is always 
ferromagnetic for all U/t > 0.

Doping-induced long-range ferromagnetism
The experimental observation of the Nagaoka polaron paves the way 
towards the detection of kinetic-energy-induced long-range ferro-
magnetism. Each doublon induces around it a small ferromagnetic 

region, forming the Nagaoka polaron. When multiple doublons are 
injected into the system and the corresponding Nagaoka polarons start 
to overlap, a transition towards a long-range ferromagnet occurs. To 
show the formation of long-range ferromagnetism on doublon doping, 
we numerically compute the total spin squared at zero temperature,

∑⟨ ⟩ = ⟨ ⟩. (15)
ij

i j
2S S S

Then, we associate a net total spin ⟨S⟩ using the relation ⟨ ⟩ = ⟨ ⟩(⟨ ⟩ + 1)2S S S .
A long-range SU(2) ferromagnet is characterized by exhibiting a 

maximum total spin S N N⟨ ⟩ = ( − )/2s D , where Ns is the number of sites 
and ND is the number of dopants ND = ∣δ∣Ns. In Extended Data Fig. 6a, 
we show the dependence of the total spin as a function of the doping 
for a strong on-site interaction U/t = 20. We observe a transition towards 
a long-range ferromagnet at a critical doublon doping δ ~ 0.45c 1

. More-
over, the ferromagnetic state becomes unstable at a larger doublon 
doping δ δ~ 0.6 >c c2 1

. Our numerical results support a scenario in which 
the overlap of multiple Nagaoka’s polarons gives rise to the emergence 
of a long-range ferromagnetic state in the strongly interacting regime 
at zero temperature. Its interplay with other mechanisms (such as 
Stoner or flat-band ferromagnetism) as a function of the interaction 
U/t and geometry of the system is investigated in ref. 52.

Numerical methods
In the main text and the following, we define the Hubbard Hamiltonian 
as follows:

∑ ∑ ∑t c c U n n μ n= − ( + h.c.) + −
i j σ

i σ j σ
i

i i
i σ

i i σ
⟨ , ⟩,

,
†

, ,↑ ,↓
,

,    

H

where ̂ci σ,
(†) denotes the fermionic annihilation (creation) operator for 

spin σ = ↑, ↓ on lattice site i and h.c. denotes the Hermitian conjugate. 
The first sum is performed over pairs of nearest-neighbour sites ⟨i, j⟩. 
We chose the convention t > 0, leading to a negative tunnelling ampli-
tude for particles and a positive tunnelling amplitude for holes.

Toy model on a triangular plaquette. Insights on the microscopic 
processes behind kinetic magnetism can be obtained by considering the 
previous Hamiltonian over a triangle formed by three sites i = 0, 1 and 2.

The case of a single hole dopant on a half-filled plaquette restricts 
the Hilbert space to Fock states consisting of two single spins or one 
doublon (|0⟩ is the vacuum state with no particle):

̂ ̂

̂ ̂

σσ c c

D c c

′ ⟩ = 0⟩

⟩ = 0⟩.

′i i σ i σ

i i i

+1,
†

+2,
†

,↑
†

,↓
†

Rewriting the two-spin states as triplet and singlet eigenstates of 
the total spin operator,

T

S

⟩ = ( ↑↓ ⟩ + ↓↑⟩)/ 2

⟩ = ( ↑↓ ⟩ − ↓↑⟩)/ 2 ,
i i i

i i i

and furthermore transforming the Fock states into eigenstates of the 
translation operator, labelled by the normalized angular momentum 
ℓ = 0, ±1:

x x x x⟩ = ( ⟩ + e ⟩ + e ⟩)/ 3i

π

i

π

i=0
i 2

3 =1
i 4

3 =2∣ ∣ ∣ ∣ℓ
ℓ ℓ

simplify the single-hole ground state and the first excited states to
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The eigenstates and eigenenergies of the single-particle-doped  
plaquette can be obtained through a particle–hole transformation 
c c↔ †̂ ̂ , h ↔ d, and with |0⟩ the unit-filled state acting as a vacuum state 
for holes:
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The associated spectrum is shown in Extended Data Fig. 6b. For all 
positive interactions U, the ground state for one particle dopant is one 
of the three triplet states with angular momentum ℓ = 0. By contrast, 
the ground state of a non-frustrated, square plaquette is ferromag-
netic only past a critical U > UC ≈ 18.6 (ref. 46). For one hole dopant, the 
ground state is a superposition between a singlet and a doublon state 
with ℓ = 0. In both cases, the lowest energy gap is equal to the kinetic 
energy t for U = +∞. The energy of the predominantly singlet states 
is lowered at finite U by an energy proportional to the spin exchange 
coupling J = 4t2/U, whereas triplet states are unaffected.

Finite-temperature Lanczos method simulation. We can compute 
the thermal expectation value ⟨A⟩β = Tr(e−βHA)/Tr(e−βH) of arbitrary  
operators A at inverse temperature β = 1/T and with Hamiltonian H 
on finite-sized clusters using FTLM65,66. The Lanczos method involves 
starting from a random state |r⟩ and finding a set of M basis vectors in 
which the Hamiltonian can be efficiently diagonalized yielding Lanc-
zos approximate eigenvectors |ψi⟩ and eigenvalues ϵi, for i = 1, …, M, 
allowing us to evaluate matrix elements of the form ⟨r∣HmA∣r⟩ as long 
as m < M. Thermal expectation values can be constructed from these 
matrix elements as

∑

∑ ∑

A
β

m
H A

β
m

H
R

r H A r

Tr(e ) ≈
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!
Tr( )

≈
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!
dim( )

⟨ ⟩,

βH

m

M m
m

m

M m

r

R
m

−

=0

=0
∣ ∣

where the first approximation comes from truncating the Taylor expan-
sion in β to order M leading to error on the order O(βM+1), whereas the 
second approximation comes from using R < dim(H) states to evaluate 
the trace that leads to a relative statistical error of the order O RZ(1/ ) 
(ref. 66), which can be decreased by increased sampling (Z is the parti-
tion function, Z = Tr(e−βH)). In all the simulations, we use an order M = 75 
Lanczos decomposition, which is typically enough to converge the 
ground state energy, and use R = 200 samples in each of the Ntotal and 
S z

total symmetry sectors.
We write the Hamiltonian and operators in the Fock basis and work 

in the S z
total conserving sectors as described in ref. 67. In Figs. 3d and 4b, 

we use the t–J Hamiltonian (including the three-site terms)68 with 
J = 4t2/U to simulate the effects of large interaction strength, including 

U/t = ∞. The restricted Hilbert space of the t–J model allows us to reach 
a system size of 4 × 4 sites with dim(H)max ~ 2 × 106. The limited system 
size introduces some finite-size effects that can be seen when compar-
ing simulations on 3 × 3, 4 × 3 and 4 × 4 sites, and also when comparing 
against other numerical methods such as DQMC on 8 × 8 sites and NLCE 
simulations.

Non-interacting calculations. In a non-interacting Hubbard system, 
by Wick’s theorem, the thermal expectation of any operator writ-
ten as a product of the fermionic creation and annihilation opera-
tors can be evaluated by taking an appropriate sum over all possible 
contractions of these operators69. This sum may be efficiently com-
puted as the determinant of a matrix in which the entries are set from 
the non-interacting Green’s function (as discussed, for example, in 
ref. 70). We use this technique to compute the correlation functions 
discussed in the section ‘Correlation functions’ for arbitrary μ and 
T values. For each μ and T, we compute the non-interacting Green’s 
function for the triangular Hubbard model on a 200 × 200 mesh in 
momentum space, using standard formulae69, which we convert to 
real space through a fast Fourier transform. In the parameter regimes 
we access, this choice of mesh is large enough that finite-size effects 
are negligible. As we compute only equal-time correlators, we need 
to store only the equal-time Green’s function. This Green’s function 
is then used to fill the matrices whose determinants yield the Wick  
contractions.

Determinant quantum Monte Carlo simulation. We use the QUEST 
package71 to perform unbiased simulations of the Fermi–Hubbard 
model on a 8 × 8 triangular lattice using the DQMC algorithm. DQMC 
introduces a Hubbard–Stratonovich transformation to transform 
the interacting Hamiltonian to a non-interacting Hamiltonian only 
quadratic in fermionic operators, but involving a summation over the 
Hubbard–Stratonovich field. For a non-interacting system with U/t = 0, 
DQMC becomes exact and computes the non-interacting equal-time 
Green’s function, similar to the previous section. For an interacting sys-
tem, the summation over Hubbard–Stratonovich field is expressed as a 
classical Monte Carlo problem and can be computed. Thus the opera-
tors such as density and correlation functions can be decomposed again 
using Wick’s theorem into the same expressions as non-interacting 
equal-time Green’s functions and computed after performing the  
Hubbard–Stratonovich transformation.

We added the expression of three-point doublon–spin–spin and 
hole–spin–spin correlation functions into the QUEST package, which 
allows us to compute all combinations of (i, j, k) for d S S⟨ ⟩i j

z
k
z  and 

h S S⟨ ⟩i j
z

k
z , respectively. The original QUEST package already calculates 

the doublon density d, density n and two-point spin–spin correlation 
function ⟨SzSz⟩. We can combine these observables to compute the 
connected correlators. As in ref. 24, we use 5,000 warmup passes and 
30,000 measurement passes for each run. At large U or low tempera-
tures, the sign problem gets worse as we average over 10 runs initial-
ized with a random seed. Trotterization error also will get worse at 
large U and we decrease the Trotter step size tdτ = 0.02 for U/t ≤ 15 to 
tdτ = 0.01 for U/t ≈ 15–25 and tdτ = 0.005 for U/t ≈ 25–40. The values 
are chosen to make sure the Trotter error is smaller than the statistical  
error.

Numerical linked-cluster expansion. In the NLCE72, an extensive 
property of the lattice model in the thermodynamic limit is expressed 
in terms of contributions from all distinct connected (linked) finite 
clusters, up to a certain size, that can be embedded in the lattice. The 
method can be summarized as the following series for P, the extensive 
property per site in the thermodynamic limit,

∑P W c= ( ), (16)
c

P
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where WP(c) is the contribution of cluster c to the property, calculated 
recursively starting from c ≡ a single site, according to the inclusion–
exclusion principle:

∑W c p c W s( ) = ( ) − ( ). (17)P
s c

P
⊂

Here, p(c) is the property calculated for cluster c using full diagonali-
zation of the Hamiltonian matrix, and s runs over all subclusters of c 
(clusters obtained by removing different numbers of sites from c). In 
practice, clusters that are related by point group symmetry operations 
of the underlying lattice are grouped together in the above sums. For 
details of the algorithm, including how to generate clusters and their 
subclusters for the series on a computer, see ref. 73.

We carry out this expansion for both the square lattice60 and the tri-
angular lattice Hubbard model to the ninth order, which means we work 
with clusters of a maximum of nine sites. We use the Wynn numerical 
resummation algorithm73 with three and four cycles of improvement to 
extend the region of convergence of the series to lower temperatures, 
typically to T/t = 0.6 for the triangular lattice around half-filling and 
use their agreement as an indicator of convergence.

Density-matrix renormalization group. The ground state DMRG simu-
lations are performed using TeNPy74 with maximum bond dimension 
χ = 2,000 on cylinders of width 4 (Fig. 4 and Extended Data Fig. 6a) and 6 
(Extended Data Fig. 5). We perform two-site updates until we reach typi-
cal energy convergence of 10−6 and 10−4 in the entanglement entropy, 
followed by one-site updates to further improve the convergence. 
Observables are averaged over the system size, leading to larger error 
bars for a few points in the six-width simulations, in which our finite 
bond dimension χ ~ 2,000 leads to artificial inhomogeneities.
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Extended Data Fig. 1 | Schematic of experimental sequence. A degenerate 
Fermi gas is loaded into a lattice formed by beams X and Y with a linear ramp  
of the lattice power. The lattice power is quenched to freeze tunneling. 
Radiofrequency Landau-Zener transfers are used in some shots to change the 
spin states on singly-occupied sites. Handing off from X + Y to X Y+  adiabatically 
doubles the unit cell, converting doubly-occupied sites to pairs of singly- 
occupied sites. Atoms are handed off to a separate imaging lattice, where a 
resonant laser is used in some shots to selectively remove one spin state.
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Extended Data Fig. 2 | Effect of potential gradients. Numerical simulation 
(FTLM) of the nearest-neighbour non-normalized spin-spin and hole-spin-spin 
(doublon-spin-spin) correlation functions in a 4 × 3t − J cluster as a function of 
doping δ and gradient strength Δ, at fixed U/t = 30 and T/t = 0.5.



Extended Data Fig. 3 | Numerical simulation of doublon-spin-spin 
correlation map at different densities. We compute the connected doublon- 
spin-spin correlation function a, with DQMC at U/t = 5 and T/t = 0.5; b, with 
DQMC at U/t = 12 and T/t = 0.5; c, with NLCE at U/t = 38 and T/t = 0.5; d, with NLCE 

at U/t = 72 and T/t = 0.52729; e, with NLCE at U/t = 100 and T/t = 0.52729.  
f, Definition of bonds averaged together in NLCE simulations. Bonds beyond 
fifth nearest-neighbor are not computed and set to zero in the plot.
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Extended Data Fig. 4 | NLCE closest and second-closest doublon-spin-spin 
correlations. Connected doublon-spin-spin correlator as a function of 
interaction strength, obtained from NLCE simulations at T/t = 0.7; a, at 
half-filling and b, at particle doping δ = 0.05. See Fig. 2 for a definition of the 
correlators.



Extended Data Fig. 5 | Comparison of numerically computed three-point 
correlators as a function of doping and interaction strength. a to d, 
Comparison between a, b, finite-temperature, T/t = 1 correlators and c, d, 
ground-state correlators between nearest neighbors, normalized according  
to Eqs. (3), (4), (6) and (7) (see Fig. 3d). a, c, doublon-spin-spin correlators C dss

(1) , 
showing an almost universal behavior above half-filling (δ > 0) for the various 
interaction strengths. b, d, hole-spin-spin correlators C hss

(1) . The U/t = 0 numerics 

are computed using Wick’s contraction, U/t = 12 using DQMC, U/t = 11, 38,  
100 using NLCE, U/t = ∞ using FTLM, and U/t = 5, 10, 20 using DMRG. e to h, 
Comparison between e, f, bare correlators C dss,hss

bare  and g, h, non-normalized 
correlators C dss,hss

tot  (as defined in Eq. (8) and Fig. 3c). The U/t = 0 numerics are 
computed using Wick’s contraction, U/t = 6, 12 using DQMC at T/t = 0.5, and 
U/t > 20 using FTLM. The errors in FTLM and DQMC are statistical while in DMRG 
they indicate the spatial variation of the correlators over the simulated system.
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Extended Data Fig. 6 | Ferromagnetic state in ground-state simulations.  
a, DMRG simulation of the net total spin 〈S〉 normalized by maximal spin as a 
function of doping δ, at U/t = 20 and zero temperature, showing the emergence 
of long-range ferromagnetism with doublon doping. b, Spectrum of the 
Hubbard Hamiltonian on a triangular plaquette. Eigenenergies are shown as a 
function of interaction strength U/t for one particle dopant (left) and one hole 
dopant (right). Labels show the nature of the state at infinite interaction 
U/t = ±∞ (S: singlet; T: triplet; H: one hole; D: one doublon) and its angular 
momentum ℓ = 0, ±1 (see text for definitions). Colors indicate the sign and 
magnitude of the spin correlations.



Extended Data Fig. 7 | Extended data on doping dependence of three-point 
correlators. a, Doublon-spin-spin and b, hole-spin-spin correlation function 
on a triangular plaquette without normalization factor, see Eq. (8) for definition 
and Fig. 3 for details.
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Extended Data Table 1 | Summary of experimental datasets

Note that DS6 is used in both Fig. 3b,d. For each value of U/t in Fig. 3d, the hole- and particle-doped curves are obtained from separate datasets (DS6, DS8, and DS10 are hole-doped). Datasets 
DS11, DS12, and DS13 appear in Fig. 4b.



Extended Data Table 2 | Summary of the density resolved 
and spin-removal imaging technique

The left column lists all the site-resolved measured outcomes and the right column lists the 
possible site occupations that map to the same measured outcome.
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Extended Data Table 3 | Trap curvature in a representative 
subset of datasets

.
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