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Quantum interference can deeply alter the nature of many-body phases of matter'.
Inthe case of the Hubbard model, Nagaoka proved that introducing a single itinerant
charge can transform a paramagnetic insulator into a ferromagnet through path

interference**. However, amicroscopic observation of this kinetic magnetism induced
by individually imaged dopants has been so far elusive. Here we demonstrate the
emergence of Nagaoka polarons ina Hubbard system realized with strongly interacting
fermionsina triangular optical lattice>®. Using quantum gas microscopy, we image
these polarons as extended ferromagnetic bubbles around particle dopants arising
from thelocalinterplay of coherent dopant motion and spin exchange. By contrast,
kinetic frustration due to the triangular geometry promotes antiferromagnetic
polarons around hole dopants’. Our work augurs the exploration of exotic quantum
phases driven by charge motionin strongly correlated systems and over sizes that are
challenging for numerical simulation®™°,

Ferromagnetism is an intrinsically quantum phenomenon with sub-
tle origins. Conventionally, it arises from ferromagnetic exchange
couplings originating from Coulomb interactions between electrons
subject to the Pauli exclusion principle. This mechanism can, however,
break downinthe presence of strong electronic correlations. A prime
exampleis provided by the Hubbard model, aminimal model captur-
ing interactions between itinerant electrons on a lattice, relevant for
abroad range of materials, including doped high-temperature super-
conducting cuprates™. In this model, an antiferromagnetic ground
state is favoured for experimentally relevant interactions at a filling
of one particle per site.

Surprisingly, ferromagnetism can be recovered in the limit of
infinitely strong interactions by adding one particle dopant to this
half-filled state. As first shown by Nagaoka and Thouless**, a ferro-
magnetic ground state arises from minimizing the kinetic energy of the
dopantinabroad class of lattice geometries. Intuitively, Nagaoka fer-
romagnetism can be understood as the result of constructive interfer-
ence between different paths the dopant may traverse in the presence
of aferromagnetic spinbackground (Fig.1a).Inany other background,
dopant tunnelling may result in distinguishable spin configurations
resulting in paramagnetic or antiferromagnetic states being less ener-
getically favourable (Fig. 1b).

Nagaoka'’s exact result, however, relies on hypotheses that are chal-
lenging to meet in realistic materials. Its validity at finite interactions
and beyond the single-dopant limit has been the focus of extensive
theoretical work>*'>2°, Experimentally, evidence for Nagaoka ferromag-
netismwas shownona2 x 2 quantum dot plaquette®. Recent quantum
simulations of the Hubbard model in moiré heterostructures®? and
in cold-atom experiments?* have mutually supported the existence of
magnetic phases with kinetic origin. Despite these advances, signatures

of Nagaoka ferromagnetism due to individual dopantsin anextended
system have so far remained unobserved.

In this work, we experimentally demonstrate the emergence of
Nagaoka polarons with strongly interacting ultracold fermions in an
opticallattice that pristinely realize the Hubbard model (Fig. 1c). These
polarons appear as bubbles of enhanced ferromagnetic correlations
over areas up to about 30 sites around individual particle dopants,
which we image through in situ measurements of three-point corre-
lation functions. These bubbles are bounded by antiferromagnetic
superexchange occurring at finite interactions (Fig.1a) and represent
a generalization of Nagaoka’s original arguments®. Key to our obser-
vations is a triangular optical lattice?*’, in which kinetic magnetism
is strongly enhanced because of the frustration of antiferromag-
netic order and the presence of short-length loops™. As a result, it is
expected to give rise to a variety of single- or few-dopant polaronic
states®** that can be observed through spectroscopic®?* or real-space
measurements® >,

Furthermore, triangular lattices break particle-hole symmetry, which
means that Nagaoka’s theorem does not applyinthe case of asingle hole
dopant. We, however, observe evidence for kinetic magnetism around
hole dopantsin the form of antiferromagnetic bubbles, in agreement
withaseminal prediction by Haerter and Shastry’. This asymmetry with
respect to doping sharply contrasts with magnetic polarons emerging
from exchange-mediated interactions between the dopant and its
spin environment®®*, as investigated in previous cold-atom realiza-
tions of the two-dimensional square Hubbard model****, Itinerant spin
polarons exhibiting this particle-hole asymmetry have recently been
observed with ultracold fermions in a triangular lattice®.

Here we realize a frustrated Hubbard model by preparing a bal-
anced mixture of ultracold fermioniclithium-6 atomsin the two lowest
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Fig.1|NagaokapolaronsinaFermi-Hubbard quantumsimulator. a, As it
moves through a half-filled, Mott insulator described by the Hubbard model
(purple spins), anitinerant particle dopant (doubly-occupied site at centre)
favours spinalignmentinits vicinity (pink circle), giving rise to aferromagnetic
polaron. Ferromagnetism of kinetic origin competes with superexchange
coupling (red and blue pairs), which leads to antiferromagnetism away from
the dopant.In the limit of infinite Hubbard interactions, the radius of the
ferromagnetic polaronisexpected to diverge and the ground stateisalong-
range ferromagnet, as shown by Nagaoka. b, Intuition behind kinetic magnetism:
aferromagnetic background enables constructive interference between paths

hyperfine states and adiabatically loading it into a triangular optical
lattice?*. The tunnelling energy t and on-site interaction energy Uthat
solely parameterize our Hubbard quantum simulator are tuned by
changing the depth of the optical lattice and by controlling the mag-
netic field close to the broad Feshbach resonance of lithium-6 (see
section ‘Sample preparation’). This enables us to tune the ratio U/t
over more than one order of magnitude from the metallic regime,
U/t=5.32(21), to the strongly interacting regime U/t = 72(11), in which
atoms form a large Mott insulator over 300-400 sites (Fig. 1c). Full
dopantresolutionis obtained by dynamically tuning the lattice geom-
etry to a supersampling square lattice before fluorescence imaging
(see section ‘Imaging procedure and fidelities’).

Nagaoka polarons

Wefirstinvestigate the regime of small particle doping above half-filling,
closetothesingle-dopant limit required by Nagaoka’s theorem. At finite
interactions U, antiferromagnetic correlations resulting from super-
exchange coupling /= 4£/U can obscure the kinetic magnetismlocally
induced by dopants. A natural way to quantify this local effect is to
measure aconnected three-point correlator that captures theamount
of magnetism added by particle dopants to the spin background:

~Z A

4 z
Cyss(rp; dy, dy) = N (dy,Sryrd Sryrd,)e 1
SS

where c?, isthe doublon occupation operator atsiter, §f isthe projec-
tion of the local spin operator along the quantization axis, Ny is the
marginal probability to measure a doublon at site r, and single spins
atsitesr, +d,andr, +d, (see section ‘Correlation functions’). Here and
inthefollowing, we measure Cy(r,, d, d,) for pairs of nearest-neighbour
spins, |d, - d,| =1, and radially average it over all pairs at the same dis-
tance |d| = |(d, + d,)/2| from a particle dopant. Furthermore, it is aver-
aged over acontiguous area of our experimental sample, including all
sitesr, at or above half-filling.

We show the magnetism induced by a particle dopant on its sur-
rounding spins in spatial maps of the three-point correlator C(|d|)
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taken by the dopant, thereby loweringits kinetic energy. Conversely, different
pathsinanon-polarized background may lead to different spin configurations
andreduce quantuminterference. c, We realize the Hubbard model with tunable
interactionand tunnelling by loading up to about 400 fermionicLiatomsina
triangular opticallattice. Geometric frustrationintroduced by the triangular
geometry facilitates kinetic ferromagnetism by suppressing superexchange
coupling. Particle dopants areimaged at the single-site level (inset) after
adiabatically changingthelattice geometry to asupersampling square lattice
(showninthe experimental fluorescence picture; see section ‘Imaging
procedure and fidelities’).

inFig. 2a. Atinteraction strength U/t = 5.5(1.0) for which the system is
metallic, spin correlations are positive at the shortest distance from the
particle dopant. These correlations show adamped oscillation between
positive and negative values at longer distances, reminiscent of Friedel
oscillations found in Fermi liquids. This behaviour is suppressed and
finally vanishes as interaction strength increases. We find that cor-
relations farther from the dopant also turn significantly positive up
toadistance |d| =2.5at the strongest interaction U/t = 72(11) (Fig. 2b).
These positive correlations form a ferromagnetic bubble covering an
area of about 30 sites.

Weinterpret these bubbles of enhanced ferromagnetic correlations
as Nagaoka polarons, resulting from mobile particle dopants locally
polarizing the antiferromagnetic spin background. Initially discussed
in the context of the stability of the long-range ferromagnetic state®,
these polarons have been found in the ground state of the square t-/
modelin density-matrix renormalization group studies®. On the basis
of variational arguments"®, the radius of the polaron is predicted to
weakly scalewithinteractionsas Ry, ~ (t/)H"* = O(1), whichis consistent
with anincrease in the number of positive correlators Cy, with U/t.

Owing to the confinement potential inherent to our trapping laser
beams, our region of interest shows a slow spatial variation of the den-
sity nbetween 0.95and about1.2. We expect these inhomogeneities to
average out the magnitude of the measured correlations and possibly
underestimate their range, which makes it difficult to quantitatively
estimate the polaron radius. Furthermore, numerical simulations show
anoveralldecrease inthe range of the correlations with doping, which
is consistent with it being limited by the average distance between
dopants (see section ‘Numerical methods’ and Extended Data Fig. 3).

Astheinteractionstrength U/tisincreased, experimental tempera-
tures Tremainsmaller than the tunnelling energy ¢ (see section ‘Calibra-
tion of t, Uand T"). They, however, exceed the superexchange energy
J=4t*/Uthat determines the magnetic properties of the Hubbard model
at half-filling (Fig. 2c). The persistence of the observed ferromagnetic
correlations at large distances in this temperature regime, therefore,
confirms their kinetic origin.

The positive C,(Id| =v3/2) on the lattice bonds closest to the particle
dopant are robust over a wide experimental range of interactions U/t
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Fig.2|Emergence of Nagaokapolarons around particle dopants.a, Quantum
gas microscopy enables ustodirectly investigate how a single dopant affects
its spinenvironment. We observe the resulting ferromagnetic Nagaoka polaron
around single doublon dopants by extracting the connected doublon-spin-
spin correlation function Cy(|d|) from quantum snapshots. The radius of the
ferromagneticbubbleincreases whenincreasing the interactionstrength from
U/t=5.5(1.0)to 72(11). The three-point correlations are averaged over lattice
sites withfilling larger than 0.95, then bond-averaged according to the spatial
symmetries of the triangular lattice, which contains the two reflections
indicated with dashed-dotted lines in the leftmost panel. b, The correlations
Cyssaresignificantly positive up toadistance |d| =2.5from the doubly-occupied
siteat U/t=72(11). Bonds withinaradial distance of 0.15are averaged together.
Here andinthe following, error barsindicate the 1o confidence interval.

from the metallic to the Mott insulating regime (Fig. 2d). This robust-
ness may be attributed to the enhancement of quantum interference
in the short length-three cycles that compose the triangular lattice.
Neglecting interference over longer paths, the ground state of the
Hubbard Hamiltonian onathree-site plaquette with one single particle
dopantisatriplet state for any interaction strength U> O (see section
‘Toy model on a triangular plaquette’). By contrast, the ground state
on asquare plaquette is antiferromagnetic below a critical U/t - 20
(ref. 46), highlighting the tendency of ferromagnetismin shortloops.
Thebehaviour of the correlator C,both onthe closest and next-closest
bondsis qualitatively reproduced by numerical linked-cluster expan-
sion (NLCE) simulations (Methods).

Kinetic magnetism

Triangular geometries not only give rise to geometric frustration of
antiferromagnetic Heisenberg order but also to kinetic frustration of
dopants, withimportant consequences on dopant-induced magnetism.
Abasicintuition canbe gained by considering interference processes
on atriangular plaquette (Fig. 3a), in which a dopant exchanges the
position of two neighbouring spins on three consecutive tunnelling
events. In contrast to aparticle dopant, ahole dopant effectively hasa
negative tunnelling amplitude —¢, which leads to destructive interfer-
encein aferromagnetic background. However, constructive interfer-
ence canberecoveredifthe neighbouring spin stateis antisymmetric
under exchange. From a kinetic energy perspective, hole dopants,
therefore, favour singlet states with antiferromagnetic correlations.
Thisasymmetry between particle and hole doping even holdsinlarger
triangular systems: in the infinite U/t limit, Haerter and Shastry pre-
dicted the existence of 120° antiferromagnetic order around single

¢, Increasing Usuppresses the superexchange energy/ = 4t*/Uthat determines
the magnetic properties of the Hubbard model at half-filling. Our experimental
temperatures Tinthe Mottinsulating regime exceed this energy scale while
remaining smaller than the tunnelling energy ¢, which strongly points to the
kinetic origin of the observed magnetic correlations. d, Strong quantum
interference ontriangular plaquettes resultsin positive correlations Cy at the
shortest distance |d| = v3/2 over awide range of interactions U/t (dark-blue
circles; seesection‘Toy model onatriangular plaquette’), whereas the sign of
the correlator averaged onthe next-nearestbonds|d|=v7/2and |d| =3/2reverses
between the Fermiliquid and the Mott insulating regimes (light-blue circles).
These experimental dataatshortrange are captured by numerical simulations
performed at half-filling (squares) and 3% particle doping (crosses), performed
attemperature 7/t=0.5withDQMC for U/t <12 and NLCE for U/t > 15.

holesin the ground state’ that classically saturates the local magnetic
moments*, contrary to Heisenberg 120° antiferromagnetism driven
by superexchange.

Experimentally, we observe antiferromagnetic polarons around
single holes as shown by the hole-spin-spin correlator C,, defined
similarly to C, in equation (1) and plotted in Fig. 3b, for interaction
strength U/t =11.46(31) and densities 0.95 < n <1.05. The negative
shortest-distance correlations are consistent with the results in ref. 7
and recent studies®*. We note that our imaging procedure prevents
the measurement of C,, between nearest-neighbour spins at larger
distances from the hole analogous to Fig. 2a (see section ‘Correlation
functions’).

After demonstrating the existence of kinetic magnetism carried by
polarons close to half-filling, we now explore its evolution as the dop-
ing 6 = n-1lisincreased. We focus on correlations at the shortest dis-
tance |d| =v3/2, andfirst show the total, connected dopant-spin-spin
correlators CRtand Ciot in Fig. 3¢, equal to the correlators Cy and Cpg
without the uncorrelated normalization factor N At interactions
U/t=11.46(31), the non-normalized correlators show a linear doping
dependence indicative of a regime in which the magnetism induced
by each dopant is additive. In this regime, the visible antisymmetry
close to half-filling 6 = 0 between C2s for 6 > 0 and Cips for § < O results
from the Mott insulating nature of the parent system. Further away
from half-filling, the non-normalized correlators decrease in magni-
tudebecause of the suppression of the local moments at large dopings
but remain positive for doublon dopants and negative for hole dopants.
We find good agreement between the experimental data and deter-
minant quantum Monte Carlo (DQMC) simulations. We also show
numerical simulations for the non-interacting and U/t = » case (see
section ‘Numerical methods’), highlighting the effect of interactions

Nature | Vol 629 | 9 May 2024 | 319



Article

a b Antiferromagnetic [ Unnormalized three-point correlators d Normalized three-point correlators
polaron & 27 0.1+ '
—t ¢ 1
I (@) @ ° 2 PN . #3 *
- P o LETY
o @ ° ] g N N T o0 t T
= i — = S - L - ==, =
Singlet fy,) "_f e O \:\—'— ﬂ‘i-l = 5 l
8 . . clot ooty Z i Ches Cuss Ut
° ° z -1 \! ./ hss dss ) ) 2 014 ] - ‘ l e
7 > - [y z Ne on-int. £ o : . 530)
£ -2 N - - 5 :
Y £ S - - e z : ¢ ¢ 1150
O £ 5 oW 11509 02 ! [ I ] 2102
[ e— ] S5 . . . -0. : : ; :
N -02 -01 0 01 02 -06 -03 0 03 06 06 08 0 03 06

C

hss

Fig.3|Antiferromagnetic polarons around holes and doping dependence
of correlations. a, In contrast to particle dopants, hole dopants onatriangular
plaquette favour antiferromagnetic correlations. As ahole dopant effectively
has anegative tunnelling amplitude, itis kinetically frustrated on atriangular
lattice with two aligned spins. However, it can delocalize by constructive
interferenceifits neighbouring particles areinanantisymmetric spin state
under exchange, thatis, in asinglet state. b, Antiferromagnetic correlations are
observed around hole dopants C(d,, d,), here averaged ina Mottinsulator at
interactionstrength U/t =11.46(31) and temperature 7/t = 0.444(19).c, Inthe
Mottinsulating regime U/t =11.46(31), the symmetric nature of the ferromagnetic
and antiferromagnetic polarons close to half-fillingis visible as the linear doping
dependence of the unnormalized connected hole-spin-spin correlator C{% at
dopings 6 < 0 and doublon-spin-spin correlator Cj2 at dopings § > 0 between
nearest neighbours (|d| =v3/2). Away from half-filling, C{°. and C{2 decrease in

hss dss

close to half-filling and the emergence of a linear regime at strong
interactions.

Away from half-filling, the asymmetric particle- and hole-induced
magnetism is robust to interaction strength, as shown in Fig. 3d with
connected correlators normalized by N, 0r A,i.. We observe consist-
ently negative short-range correlations C,, around holes at all negative
dopings 6 < 0,and positive short-range correlations C4, around parti-
cledopantsup to 6 =+0.5. At dopings |6| > 0.2, non-interacting calcu-
lations at a temperature 7/t = 0.5 show magnitudes similar to
experimental data. Numerical simulations of C, from all methods also
show quantitative agreement with each other atlarge particle doping
(Extended DataFig. 5), suggesting that the interaction dependence of
the dopant-spin-spin correlations is the weakest in the highly doped
regime.

Ferromagnetic transition at finite doping

The existence of Nagaoka polarons raises questions about their role
in a possible ferromagnetic phase transition when dopant density is
increased and polarons start to overlap (Fig.4a). An analogous mecha-
nism has been pointed out theoretically in disordered magnetic semi-
conductors, in which a ferromagnetic transition occurs through the
percolation of localized ferromagnetic bubbles as the temperature
is decreased*s.

Inour experiment, the sign of the two-point spin correlation function
between nearest-neighbour sites is suggestive of the ferromagnetic or
antiferromagnetic nature of the system at equilibrium. In Fig. 4b, we
plot the normalized two-point correlator

4  azaz
Cy(r;d) = F(S,Smpc (2)
SS

The correlator Cis measured as afunction of doping at several interac-
tionstrengthsinthe temperaturerange 7/t = 0.40(4)-0.74(13) (Meth-
ods and Extended Data Table 1). At half-filling (6 = 0), superexchange
interactions lead to an antiferromagnetic state (C, < 0). With particle
doping (6> 0), however, this negative correlation s rapidly suppressed
up toa critical doping &gy, at which it turns positive, consistent with a
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magnitude because of the decreasing local moments. The experimental data
quantitatively agree with numerical simulations at U/t =12 and T/t = 0.5.

d, Kinetic magnetism at short distances from dopants is robust to doping
andvaryinginteraction strength after normalizing by the uncorrelated part of
the correlator, asseenin the negative nearest-neighbour correlators C,,and
positive nearest-neighbour correlators C4,. The value of the three-point
correlators matches qualitatively the non-interacting calculation away from
half-filling. The U/t = 0,12 and « numerics are computed at 7/t = 0.5 using
Wick’s contractions, DQMC and FTLM, respectively (see section ‘Numerical
methods’). Unnorm., unnormalized; Norm., normalized; N.N., nearest
neighbour; Non-int., non-interacting. In Extended DataFig. 7, we show
experimentaland numerical data for the unnormalized three-point correlators
forallthreeinteractionstrengths of Fig.3 as afunction of doping.

scenarioinwhich the proliferation of Nagaoka polarons drives aferro-
magnetic transition. Conversely, with hole doping (6 < 0), C,becomes
even more negative than at half-filling, consistent with Haerter-Shastry
polarons enhancing antiferromagnetismrelative to the localmoment*.
Neither of these trends is present in the equivalent correlator in the
square lattice at comparable or larger interaction strengths, plottedin
Fig.4c. Thelatter quantity depends only weakly on doping, consistent
with magnetism controlled mainly by the density of moments (that
is, (§°5%) = (1-]6])%), in contrast to the kinetic magnetism evident in the
triangular lattice.

Decreasing the superexchange energy /= 4*/U by increasing U/t
from 5.32(21) to0 26.5(2.6) at similar temperatures suppresses super-
exchange magnetism while preserving kinetic magnetism. This
effect is visible as an upward shift of the C, curve, whereas its slope
stays roughly constant. The extreme limit of this effect is captured
infinite-temperature Lanczos method (FTLM) simulations at U/t =«
T/t=0.6, where 6, = 0. The netresult of this behaviouris arapid reduc-
tion of the critical doping 6y, towards half-filling (Fig. 4d) as inter-
actions are increased. This trend is reminiscent of the existence of a
ferromagnetic ground state for aninfinitesimal positive doping of one
holeinthe Nagaoka limit U/t > «, although the experimentally fitted &,
asymptotically reaches a small finite value, possibly as aconsequence of
thelarger lattice depth and potential gradients associated with the trap
curvaturerealized at the strongest interactions. Numerical simulations
at fixed temperature 7/t = 0.6 from the NLCE (U/t = 5-100; Methods)
and FTLM (U/t = 8 to «; Methods) recover qualitatively similar & as
U/tisincreased, but with an asymptote approaching zero as U/t > .

Discussion and outlook

In this work, the enhancement of ferromagnetic correlations with
interaction U around single particle dopants (Fig. 2a,b) and between
nearest-neighbour spins (Fig. 4d) suggests that our finite-temperature
system forms a precursor to aNagaoka state at small, positive doping.
The robust sign of both dopant-spin-spin (Fig. 3c¢,d) and spin-spin
correlations (Fig. 4b) away from half-filling furthermore highlights
the central role of coherent dopant motion in triangular geometries
(Figs.1a,b and 3a) to stabilize a ferromagnetic state at large particle
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Fig. 4| Critical doping for ferromagnetic correlations. a, Ferromagnetic
tendenciesincrease with particle doping as ferromagnetic polarons startto
overlap.b, A transition from an antiferromagnetic to aferromagnetic short-
range spin background is visible as achange of sign of the normalized nearest-
neighbour spin-spin correlations C,in the triangular lattice at a critical doping
6pm- Numerical simulationsat U=~ and 7/t= 0.6 by FTLM (Methods) exhibita
transition at half-filling consistent with Nagaoka’s and Haerter-Shastry’s
pictures, inwhichmagnetismis driven by a single dopant. ¢, No such transition
occursinexperimental correlations from the square lattice at comparable U/t,

doping and anantiferromagnetic state atlarge hole doping,inaregime
in which spin-exchange magnetism is weak (Fig. 2d).

In the infinite U limit, long-range ferromagnetic order was previ-
ously shown to persist in the ground state of the triangular lattice up
to remarkably large positive dopings>'® compared with the square
lattice™". At finite interactions, the parent Mott insulating state at
half-filling and zero temperature hasbeen conjectured to showatran-
sition from a120° Néel ordered state to a quantum spin liquid below
U/t =9-10, followed by an insulator to metal transition on further
decreasing U/t (ref. 49). Doping the Mott insulator is expected to give
rise to competing quantum phases, including chiral metals, spin density
waves and superconducting states®*%,

Experimentally, thermal fluctuations associated with our tempera-
tures T/t > 0.3 prevent long-range order, and all measured observables
are smooth functions of the interaction strength. Our lowest interac-
tions U/t - 5 exhibit ferromagnetic nearest-neighbour spin correlations
at critical dopings 6y > 0.3 much larger than the strong interaction
regime U/t > 20. In this weaker interaction regime, finite-doping fer-
romagnetism might be influenced by aStoner instability. This hypoth-
esisis supported by numerical density matrix renormalization group
(DMRG) simulations shownin Extended Data Fig. 6 at U/t = 20 showing
the formation of along-range ferromagnetic ground state around a
doping of 50%, at which the triangular lattice shows a van Hove sin-
gularity. Ferromagnetismin a triangular lattice could show a smooth
crossover between the Stoner, mean-field regime at U/t = 0 and the
Nagaoka, U/t =, regime. Further theoretical and numerical studies
as a function of lattice geometry and interaction can shed light on
this crossover®.

Future work can further probe the existence of bound states medi-
ated by kinetic frustration at finite polarization®**>**>* through meas-
urements of spin susceptibility. These states have drawn interest from
condensed-matter experiments with transition metal dichalcogenides,
in which observations of kinetic magnetism and spin polarons have
recently been reported??**, Qur quantum simulator using ultracold
atoms may help explain the mechanism of kinetic magnetism by provid-
ing a pristine realization of the triangular lattice Hubbard model and
precisely tunableinteractions. Inthe large doping regime, our platform
could also investigate dopant pairing and superconductivity based
on a‘spin-bag’ mechanism®®. Our lowest experimental temperatures

norevenatU/t=72in correlations computed by NLCE at 7/t =0.6.d, The critical
doping 6 decreases withincreasing U/t, bothin experimental data (blue), and
innumerical simulations by FTLM (dashed line) and NLCE (dash-dotted line).
Thisis consistent with the Nagaoka prediction of aferromagnetic ground state
forinfinitesimal positive doping in the infinite limit U/t > «.Red shading
indicates regions of ferromagnetic correlations and blue shading indicates
regions of antiferromagnetic correlationsin the doping-¢/U phase diagram.
FM, ferromagnetic; AFM, antiferromagnetic.

T/t= 0.3, would allow the exploration of this phenomenon governed
by tunnelling energy ¢, at interactions and dopings for which our
finite-temperature simulations are challenging over large system sizes.

Atweaker interactions for which spin exchange becomes dominant,
multi-point correlation measurements of spin and density could also
help reveal resonating-bond-solid states**’. Decreasing the temperature
further may ultimately explain the nature of quantum spin liquid states
and intriguing doped phases driven by frustration.
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Methods

Sample preparation

As in ref. 24, we prepare an ultracold, spin-balanced gas of °Li in
the lowest two hyperfine states and load it into a triangular optical
lattice formed by two interfering, actively phase-stabilized beams
the intensities of which are independently controlled. We refer
to these beams as Xand Y. We tune the s-wave scattering length a;
of the lithium atoms by controlling the magnetic field in the vicinity
of the broad Feshbach resonance at 832 G. Combining this and vary-
ing the final depth of the lattice allows access to a wide range of U/t
values (see section ‘Calibration of t, Uand T"). In Extended Data Table1,
we report the lattice depth and tunnelling rate associated with each
dataset. The lattices 1-6 are triangular lattices of varying depth,
and 7 is a square lattice. To ensure the loading remains adiabatic,
we use a ramp duration for each final lattice depth that is inversely
proportional to the tunnelling rate ¢ at the end of the loading ramp.
We verify the adiabaticity of the lattice ramp by varying the ramp
duration and checking the convergence of the density profile of
the system as a function of distance from the trap centre. A digital
micromirror device (DMD) is used to partially compensate for the
harmonic confinement created by the Gaussian profile of the lattice
beams. In most datasets a parabolic potential is projected from the
DMD, although in a few datasets a hyperbolic pattern is projected
to further compensate the potential. The potential is thus approxi-
mately harmonic in all datasets (see section ‘Trap uniformity and
compensation’).

The experimental datasets thus produced are enumerated in
Extended Data Tablel, together with the loading parameters, number
of shots, interaction strength and temperature of each dataset and the
figures each dataset appears in. The determination of the interaction
strength and temperature is described in section ‘Calibration of ¢, U
andT.

Imaging procedure and fidelities

To perform measurements onthe system after loadingitinto the lattice,
we first freeze the dynamics by quenching the lattice powersin 0.1 ms
to (V/Eg, V\/ER) = (3.2, 40) (using the notationinref. 24, where Ezis the
lattice recoil energy) at which tunnelling is negligible. As in ref. 24,
site-resolved fluorescence imaging is eventually performed on this
frozen systemin a separate, dedicated imaging lattice. In the present
work, however, we take extra steps before the transfer to the imaging
lattice to avoid theissue of parity projection, in which doubly-occupied
sites seem to be empty because of light-assisted collisions during fluo-
rescence imaging®®.

We achieve this by transferring the atoms from the triangular lat-
ticetoasquare lattice with twice the number of sites, which converts
doubly-occupiedsitesinthe triangular lattice into adjacent pairs of
singly-occupied sitesin the square lattice. The transfer is performed
by adiabatically ramping up an additional beam, which we call X
(Extended DataFig.1), to about 48F; within 5 ms and ramping off the
Xlattice at amagnetic field at which the interaction between atoms
isrepulsive. X copropagates with Xbutis detuned in frequency from
Xand Yby about 1.7 GHz. Owing to this large frequency offset, X
effectively does not interfere with Xand Y, so that the handoff from
X+YtoX +Y doubles the number of sites (X +Y forms a ‘standard’
square lattice). The specific frequency of around 1.7 GHz is chosen
to position the potential minima of X +Y symmetrically relative
tothose of X + Yin each unit cell of the intermediate X + X + Y lattice.
This choice minimizes differential potential offsets between
the minima of X + Y during the handoff, which is necessary to ensure
that the adiabatic splitting of doubly-occupied sites is robust. The
choice of 1.7 GHz is then dictated by the wavelength of the lattice
light (1,064 nm) and the distance to the retroreflection mirror
(about 4.2 cm).

We obtain spin-resolved imaging by selectively removing atoms in
one spin state with a resonant laser pulse, as in ref. 59. In the experi-
ment, we use the two lowest hyperfine states of °Li, namely, the (F=1/2,
mg=1/2) and (F=1/2, m.=-1/2) as the effective spin states |*) and |{).
To prevent doubly-occupied sites from being affected by this pulse,
before the splitting procedure we perform aradiofrequency Landau-
Zener sweep to selectively transfer atoms in [V) on singly-occupied
sites into the (F=3/2, m=-3/2) (|3)) state of the electronic state.
To remove the | 1) state, we perform an extra Landau-Zener sweep
before transferring thatexchanges|*)and V) states onsingly-occupied
sites before transferring |[¥) to |3).

Doubly-occupied sites are not affected by these sweeps because of
theinteraction-induced shift of the hyperfine transition, whichis typi-
cally about 30 kHz and hence much larger than the Rabi frequencies
ofthe two sweeps (390 Hzand 180 Hz for the first and second sweeps,
respectively). To ensure adiabaticity, we linearly sweep the frequency of
theradiofrequency signal over a15-kHzrange centred on the resonance
over a duration of 15 ms for the first sweep and 50 ms for the second
sweep. This third spin state is then targeted for removal using a 10-ps
resonant pulse® after the transfer to the imaging lattice (Extended
DataFig.1).

We calibrate the fidelity of fluorescence imaging of the singly-
occupied sites F,=99% as in ref. 24. To calibrate the fidelity Fy \z Of
doublons without the Landau-Zener transfer and spin removal, we
load a cloud of atoms with afilling of n = 2 band insulating state in the
centre of about 200 sites. We find the doublon detection fidelity to
be F, nr = 98% after reconstruction. To characterize the doublon detec-
tion fidelity F,, in the images with spin * removed and F,, in the
imageswith spin ¢ removed, we apply the same Landau-Zener transfer
and spin removal pulses used in data taking to the calibration sample
with aband insulator core and find the fidelity to be Fy g, = F4 2, = 95%.

Calibrationoft,Uand T

We obtain U/tand T/tinthe triangular lattice by comparing experimen-
tal double-occupancy densities and spin correlations with DQMC and
FTLMsimulations. For datasets fromthe square lattice, we use asimilar
procedure but compare with NLCE simulations fromref. 60. The results
for U/tand T/t are listed in Extended Data Table 1.

Asdescribedinsection ‘Determinant quantum Monte Carlo simula-
tion’, we perform DQMC simulations of the triangular lattice Hubbard
model onamesh of u, Uand T, with simulation parameters described.
At each pointin the mesh, we compute the particle density n(u, U, T),
the double occupancy d(u, U, T) and the nearest-neighbour spin cor-
relator C(u, U, T). As U/tincreases, DQMCbecomes less stable because
ofthe sign problem. However, for U/t > 20, we found the sign problem
is absent at half-filling n =1and can be computed down to a tempera-
tureof 7/t=0.3.

To obtain U/t, we first perform linear interpolation on DQMC data
using the experimentally measured double occupancy d and the
nearest-neighbour spin correlator C at half-filling. As we have a spa-
tially varying atom density (see section ‘Trap uniformity and compen-
sation’), these half-filling observables are determined by averaging
over lattice sites with average density within [0.97,1.03], which is the
most narrow range that includes enough lattice sites to reduce sta-
tistical noise. However, the values of U/t from interpolation still vary
between datasets with the same lattice parameters due to statistical
noise, and at U/t > 20, double occupancy d decreases to less than 1% and
is more susceptible to imaging infidelity. Thus, we correct the inter-
polated value using the linear dependence of U on scattering length
a, (ref. 61).

For datasets with final calibrated U/t < 20, we take several other
datasets with the same lattice depth and different magnetic fields,
and we perform a linear fit of interpolated U/t on a,, using values
for a, from ref. 62. For datasets with final calibrated U/t > 20, we
take data at the same lattice depth but at a smaller magnetic field
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for which U/t is small and the measured double occupancy is still
a faithful parameter to calibrate U/t, and then scale the interpo-
lated U/t proportionally by a,. This method produces the same
U/t for the same lattice parameters and is robust against imaging
infidelity.

To obtain 7/t, we perform similar linear interpolation on DQMC
data, but using the calibrated U/t and the experimentally measured
nearest-neighbour spin correlator Cg at half-filling. However, for
U/t > 35, the sign problem of DQMC becomes severe even at half-filling,
sowe perform similar interpolation based on FTLM simulation of the
t-Jmodel, as described insection ‘Finite-temperature Lanczos method
simulation’.

In datasets from the square lattice, we obtain the experimental C
and d at half-filling as above. We then determine both U/t and T/t by
linear interpolation on NLCE data from ref. 60.

We obtain the absolute value of the tunnelling ¢ in Hz as described
inref. 24. We report the resulting tunnelling rates in Extended Data
Table 1. Note that lattice 7 is a square lattice, whereas lattices 1-6 are
triangular.

Correlation functions

Definition. The normalized, connected doublon-spin-spin correlator
used in the main text is defined as

~Z AZ

4 ~
CdSS(rO’. dl’ dz) = Nd (drosro+d1sl’o+dz>c (3)
SS

qu;gzand in the following, the factor of 4 is used to normalize
the S S partofthe correlator to one. The denominator is defined
as Ny = (d)Xp)*, where (d) ({p)) is the average probability for a site to
be doubly (singly) occupied, and provides an upper bound for
the three-point correlator. {...). denotes the connected part of the
three-point correlation function, that is the difference between the
doublon-spin-spin correlator and its disconnected parts. Under
the assumption of a spin-balanced atomic mixture with total spin
projection along z(S§? = 0, this connected correlator simplifies to

4 . R
Caslt; oo ) = 1, S0, Sv0) = Cllo Ty o+ ). (4)
SS

It can be interpreted the amount of spin correlations added by
doublons to the normalized spin correlation background:

AZ AZ

Asish )

Css(rlf n)= N
ss

with normalization factor N = {p)2. Similarly, the normalized, con-
nected hole-spin-spin correlator is defined as

4 A AZ AZ
Cheslto; dy, dy) = N, <hr05ro+dlsru+dz>c' (6)
SS

where N = (h){p)?, and (h) is the average probability for a site to be
empty (hole).

In Fig. 3d, we show the nearest neighbour three-point correlator
Cys defined as

1 1
T 2 5 (Calrge, e+ Cu(Kp €, €3 + Cue(Kp €5, €))), (7)

Cyss(6) =
ds NQ; r0€0s 3

where Q;is a region with average doping level §, Na,is the number of
lattice sites in this region, and e,, e, and e, are the three unit vectors
along the triangular lattice bonds. We similarly define the nearest
neighbour hole-spin-spin correlator C,. In Fig. 3c, we also show the

non-normalized three-point correlators C{xsand C{o;, which are defined
without the normalization factors Ny, and MV:

CiRi(to; dy, d) = 4(d, Sy a Sryva)e ®)

In Fig. 4, we show the nearest-neighbour spin correlation C
defined as

1 1
Ci(6)= N > E(Css(rO'r0+e1)+Css(rO'r0+e2) +C(fy 1o +e3),  (9)
Q5 r9<0s

where we average the correlator over the three equivalent lattice bonds
and over aregion of constant doping level.

Computation from experimental snapshots. As described in the
previous section, we experimentally obtain three types of snapshot:
(1) with no spin removal (NR); (2) after removing spin 1 (R*); and (3)
after removingspin ¥ (RV).Furthermore, inall three sets ofimages we
can distinguish 0, 1and 2 atoms per site, which we label as h, pand d,
respectively. Extended Data Table 2 lists the site-resolved observed
outcomes and the possible site occupations that map to the same
measured outcome. With these three sets of images (even with parity-
projected imaging), we can obtain connected two-point spin correla-
tors(§7S%). for arbitrary sites i andj as demonstrated in our previous
work>®, We repeat the formulabelow for clarity:

— (Ro) _ (NR)
HKS7S5D =2 Y <p[_pj>cRo <pipj>CNR ) 10)

oe{MV}

where O™ refers to the expectation value over multiple images in which
neither spinis removed, and ()®” refers to the expectation value over
images in which atomsin spin o are removed.

With the addition of full-density resolution, we can also obtain con-
nected three-point correlator doublon-spin-spin{(d;S35), for arbi-
trary sitesi,jand k using the formula:

HASISPR=2 Y 4dpp )t - 4dppt®.

os{n,}

(11)

This formulais a simple modification of equation (10), as we can
uniquely identify doublons in each of the three sets of images as seen
in Extended Data Table 2.

By contrast, because holes cannot be uniquely identified in our
imaging scheme (a hole observedin aspin-removalimage could bea
hole or the spin that was removed), we cannot construct the hole-
spin-spin correlator (h;5757). for arbitrary sites i, j and k. However,
we can still obtain a permutation-symmetrized combination of
correlators Cy,(i,/, k) = Z(i,],l?)eu,j,k) (h;S%S%). using the following
formula:

L 4
Grslii )= Y [2 Y Chippp = hihp )
(ij freljh | oeir,v} ¢

(12)
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We can see how this formula works by writing out the first term of
the connected correlator in the occupation basis. For convenience,
we drop the site labels and imply averaging over cyclic permutation
of the three sites.

AhS*S*y=Ch t M)+ Iv)—<h ML)y —<h o). 13)



Similarly writing out the three body terms from equation (12),
2 3 Chop)™ - (hipy™)
g
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where we used the cyclic permutation to cancel the terms in the last
step. Similarly, in the two-body and on-site terms, appropriate terms
get cancelled after cyclic permutation to give equation (12).

Trap uniformity and compensation

Trap curvature. Owing to the Gaussian envelope of the lattice beams
and the additional light projected from the DMD, the atoms experience
aspatially varying chemical potential. In a given dataset, we may esti-
mate the resulting potential gradients by measuring the average
experimental density {n,) on each site, and using the equation of
state computed in DQMC to extract the local chemical potential as
u(r) = ppouc{ny, U, T) within the local density approximation. Here U
and Tare obtained asinsection ‘Calibration of t, Uand T’,and the equa-
tion of state is inverted by linear interpolation on DQMC data from a
range of i values. We quantify the potential gradients by fitting parab-
olaeto cuts of the local potential along the major and minor axes of the
cloud, u(r)=p, - %Krz. We report the fitted trap curvatures k,,,; and
Kmin in Extended Data Table 3 for a representative subset of datasets.
The uncertainties onthese numbers accountboth for uncertainties on
the site-resolved density <n(r)) and on Uand T. Typically ,,,; ranges
from 0.03t/sites” to 0.09¢/sites?, whereas k., ranges from 0.3t/sites?
to 0.6t/sites’.

Indatasets DS6, DS8 and DS10, in which we report (Fig. 3) three-point
correlators at finite hole doping, we project ahyperbolic potential from
the DMD to partially compensate for the minor axis confinement. The
values of k,,;, are thus correspondingly lower, for example, in DS10 and
DS6 thanin DS11and DS7 (the analogous datasets for doublon doping
in Fig. 3). This is done to reduce the local gradient in the hole-doped
region of the trap, which can alter the value of correlation functions if it
istoostrong, asis discussed below. This compensationis unnecessary
in the doublon-doped datasets because the doublon-doped region
naturally occurs close to the trap centre.

Sensitivity to potential gradients. To estimate the sensitivity of the
correlations reported in this paper to the potential gradients produced
by the harmonic confinement, we perform FTLM simulations (see sec-
tion ‘Finite-temperature Lanczos method simulation’), which we expect
to qualitatively capture the relative effects of a potential gradient.
Anexample of the results of these calculations is shownin Extended
DataFig.2, obtained froma4 x 3 ¢-/clusteratfixed U/t =30and T/t = 0.5.
Theleft column plots the nearest-neighbour C, and smallest-triangle
Chss ass cOrrelators (see section ‘Correlation functions’) as a function of

density at selected values of the gradient 4 (measured in ¢/site). The
right column plots the same quantities as a function of the gradient
strength at three example densities, chosen to be below, above or at
half-filling. In this regime, we find the spin-spin correlations close toa
Mottinsulator remainrobustevenin the presence of gradients of about
10¢/site. The spin-spin correlations at finite doping and three-point
correlations, however, are more strongly affected by gradients.

This difference in sensitivity to gradients in doped and undoped
systems reflects the kinetic nature of the magnetism at finite doping.
Dopant mobility is reduced in the presence of gradients because of the
suppression of resonant tunnelling by site-to-site potential offsets.
Potential gradients thus suppress kinetic magnetism, which results
from the motion of dopants. By contrast, the virtual tunnelling respon-
sible for superexchange interactions at half-filling in a Mott insula-
tor is relatively unaffected by potential gradients (see, for example,
refs. 63,64). As aresult, magnetism at half-filling is much more robust
to potential gradients thanit is at finite doping.

Qualitatively, the most notable consequence of potential gradients
isastrongreduction and even reversal of the hole-spin-spin correla-
tor G, onthe hole-dopedside, which we address by specifically using
trap compensation in the related dataset of Fig. 3. Quantitatively, we
expectgradientsto overall decrease the doublon-spin-spincorrelators
on the particle-doped side (Figs. 2 and 3), to decrease the magnitude
of the spin-spin correlator C, on the hole-doped side and to increase
the critical particle doping &;y at which the spin-spin correlator C
becomes ferromagnetic (Fig. 4).

Doping and interaction dependence of the doublon-spin-spin
correlations

As described in the main text and in the section ‘Trap uniformity and
compensation’, the region of interest used to compute the doublon-
spin-spin correlation maps shown in Fig. 2 shows small spatial
variations of the atom density. This leads to an averaging of the corre-
lations Cy, over different doping values. To evaluate the exact doping
dependence of the correlations, we perform numerical simulations at
areference temperature 7/t = 0.5 (Extended Data Fig. 3). Overall, the
magnitude of C, at large distances from the dopant is suppressed for
dopings 6 > 5%, which is generally expected to reduce the magnitude
and range of the experimental correlations after averaging.

Atsmallto moderate interactions U/t = 5and 12, we perform DQMC
toobtainall dopant-spin-spin correlators ona8 x 8 system size and for
alarge range of dopings. At U/t =5, aFriedel-type oscillatory behaviour
is visible as a function of distance from the doublon dopant or all the
doping values shown in Extended Data Fig. 3a. The magnitude of the
correlation is reduced for dopings 6 > 20%. At U/t =12, C,,(|d|) values
for |d| > 1start to be positive close to half-filling but turn negative at
dopings 6 ~ 2% (Extended Data Fig. 3b). Notably, the second and third
nearest neighbours turn negative at smaller doping than the fourth.

Atlargerinteractions, we turn to NLCE simulations as the sign prob-
lem of DQMC becomes pronounced. We implemented Cy(|/d|) up tothe
fifth nearest neighbour from the doublon, with all further neighbours
settobe Ointhe plot. At half-filling, all correlations are vanishing with
interaction, in strong contrast with the particle-doped case (Extended
DataFig.3c-e).

In Extended Data Fig. 4, we highlight the evolution of the first
nearest neighbour C, and the average of the second and third
nearest-neighbour correlations (as defined in Fig. 2), computed with
NLCE across all interactions at doping values 6 = 0 and § = 0.05. At
half-filling, the Hubbard model effectively maps to aHeisenberg model
inthelimit of large U/t and because the simulationis performed at con-
stanttemperature 7/t, the effectiveincrease inthe temperature relative
to superexchange 7//leads to a decrease in correlations. By contrast,
atfinite doping, the first nearest-neighbour correlator shows a very
weak dependence oninteractionstrength, and the second turns from
negative to positive at U/t - 30. This provides another confirmation that
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magnetism away from half-filling is not governed by superexchange /
but by the presence of mobile particle dopants with kinetic energy ¢.

At the largest interactions, doublon-spin-spin correlations also
show a non-monotonic behaviour as doping is increased: both the
range and the absolute value of the correlations increase at all five
distances up to 6 - 1% doping and then start to decrease (up 8% at which
NLCE starts to become unstable at U/t = 100), with anotably weak third
nearest-neighbour correlator.

A difference between Fig. 2d and Extended Data Fig. 4 is the more
abruptdecrease of theexperimentally measured first nearest-neighbour
atU/t=72(11). We attribute it to the experimental increase of the size of
the Mott insulator region with interactions, which leads to a stronger
weighting of weak correlations close to half-filling when performing
aspatially uniform average.

Data analysis

InFig.2, three-point correlation functions are computed over all triplets
of sites for which the average density isabove 0.95. This corresponds to
aspatial average over 123 sites at U/t = 5.5(1.0) in the metallicregime and
over 271-330ssites at the four other interactions in the Mott insulating
regime. To eliminate slow shot-to-shot variations of the atom number
that may introduce systematic shifts in the computed correlations,
experimental images are post-selected within a window of +15 atoms
away from the mean atom number for fully density-resolved images
and +10 atoms for spin-resolved images (corresponding to relative
fluctuations of about +5% in both cases).

ThedatainFigs.3 and 4 are post-selected with awindow of +£30 atoms
infully density-resolved images and +20 atoms in spin-resolved images.
Experimental curves for doping are obtained by binning the sites of the
lattice according to their measured density and averaging correlation
functionsin eachbin, with typically 50 sites per bin. The experimental
value of 8 in Fig. 4d is obtained from the zero of alinear fit to the curve
thus obtained for C,in each dataset.

Allerror bars indicate the 1o confidence interval obtained by using
bootstrap samplingacross all experimental snapshots of a given dataset
with100 randomly generated samples.

Comparison between numerical methods
We show the numerically computed normalized doublon-spin-spin
and hole-spin-spin correlators in Extended Data Fig. 5a—-d for finite
temperature 7/t =1aswell asinthe ground state. Surprisingly, we find
an almost universal behaviour of the normalized doublon-spin-spin
correlator above half-filling with very weak U/t dependence above dop-
ing 6 > 0.1. Similarly, we find weak U/t dependence of the normalized
hole-spin-spin correlator below doping § < -0.1. However, as seen
inFig. 2 and Extended Data Fig. 3, the three-point correlators beyond
the nearest neighbour vary significantly with interaction strength and
show the range of the Nagaoka polaronincreasing with interactions.
For completeness, we also show in Extended Data Fig. 5 the numeri-
cally computed bare doublon-spin-spin and hole-spin-spin corre-
lator for nearest neighbours (Extended Data Fig. 5e,f) as well as the
non-normalized, connected correlators (Extended Data Fig. 5g,h).
The bare correlator doublon-spin-spin is defined as the first termin
equation (4) without subtracting out the disconnected terms (simi-
larly for the bare hole-spin-spin correlator). We note that the bare
doublon-spin-spin correlator shows asign change on going from low
U/ttolarge U/t (similar to the spin-spin correlator), whereas the con-
nected correlator is positive for all dopings and interaction strengths,
indicating that the local spin correlations added by doublons is always
ferromagnetic for all U/t > 0.

Doping-induced long-range ferromagnetism

The experimental observation of the Nagaoka polaron paves the way
towards the detection of kinetic-energy-induced long-range ferro-
magnetism. Each doublon induces around it a small ferromagnetic

region, forming the Nagaoka polaron. When multiple doublons are
injected into the system and the corresponding Nagaoka polarons start
to overlap, a transition towards a long-range ferromagnet occurs. To
show the formation oflong-range ferromagnetism on doublon doping,
we numerically compute the total spin squared at zero temperature,
(§%)=2 (S 15)
i

Then, weassociateanettotal spin(S)using therelation(S?) = (S) ({S) +1).
Along-range SU(2) ferromagnet is characterized by exhibiting a
maximum total spin{S)= (N;— Np)/2, where N; s the number of sites
and N, is the number of dopants N, = |6|N,. In Extended Data Fig. 6a,
we show the dependence of the total spin as a function of the doping
forastrongon-siteinteraction U/t = 20. We observe a transition towards
along-range ferromagnetata critical doublon doping 6, - 0.45.More-
over, the ferromagnetic state becomes unstable at a larger doublon
doping 6.,~0.6>6..0ur numerical results supportascenario in which
the overlap of multiple Nagaoka’s polarons gives rise to the emergence
of along-range ferromagnetic statein the strongly interacting regime
at zero temperature. Its interplay with other mechanisms (such as
Stoner or flat-band ferromagnetism) as a function of the interaction

U/t and geometry of the system s investigated in ref. 52.

Numerical methods
Inthe main text and the following, we define the Hubbard Hamiltonian
as follows:

H=-t Z (AiT,oej,o'+ h.c)+ UZ O Z ﬂlﬁi.o
Cij),o i i,o

where é,(T; denotes the fermionic annihilation (creation) operator for

spino= 1, Vonlatticesiteiand h.c. denotes the Hermitian conjugate.

The first sumis performed over pairs of nearest-neighbour sites (i, /).

We chose the convention ¢ > 0, leading to a negative tunnelling ampli-

tude for particles and a positive tunnelling amplitude for holes.

Toy model on a triangular plaquette. Insights on the microscopic
processes behind kinetic magnetism canbe obtained by considering the
previous Hamiltonian over atriangle formed by three sitesi=0,1and 2.
The case of a single hole dopant on a half-filled plaquette restricts
the Hilbert space to Fock states consisting of two single spins or one
doublon (|0) is the vacuum state with no particle):
loo’» = ézjr+1,aéiT+2,a’|o>

AT At
D= €; 1€ 410).
Rewriting the two-spin states as triplet and singlet eigenstates of
the total spin operator,

I =)+ NV /2

|5,'>: (l'T\‘L,')_ |‘1’T,>)/\/§,
and furthermore transforming the Fock states into eigenstates of the
translation operator, labelled by the normalized angular momentum
=0, l:

2 4
) = (o) + €73 P +€3 )3

simplify the single-hole ground state and the first excited states to

1 Elh
|¢i§h> < |Sp0) = ﬁ[l + ;J |d,-o)

195 =X, X=4, £, M



with eigenenergies:
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The eigenstates and eigenenergies of the single-particle-doped
plaquette can be obtained through a particle-hole transformation
¢o¢' h o d andwith|0) the unit-filled state acting as a vacuum state
for holes:

|§E) = Ix,_g), x=44, ¢, M

1  E®
@5 < IS,—0) — ﬁ[l + TEJ lhe-o

with eigenenergies:

d_ _
E¥=-2¢

2
E}f=%(—t+u— 9t2+tU+U2/4)~—t—% when Ut

The associated spectrum is shown in Extended Data Fig. 6b. For all
positive interactions U, the ground state for one particle dopant is one
of the three triplet states with angular momentum € = 0. By contrast,
the ground state of a non-frustrated, square plaquette is ferromag-
neticonly pasta critical U > U= 18.6 (ref. 46). For one hole dopant, the
ground state is asuperposition between asinglet and adoublon state
with £=0.In both cases, the lowest energy gap is equal to the kinetic
energy t for U=+, The energy of the predominantly singlet states
is lowered at finite Uby an energy proportional to the spin exchange
coupling /= 4£/U, whereas triplet states are unaffected.

Finite-temperature Lanczos method simulation. We can compute
the thermal expectation value (4);= Tr(e *4)/Tr(e ™) of arbitrary
operators A at inverse temperature § =1/T and with Hamiltonian H
on finite-sized clusters using FTLM®**¢, The Lanczos method involves
starting from arandom state |r) and finding a set of M basis vectorsin
which the Hamiltonian can be efficiently diagonalized yielding Lanc-
zos approximate eigenvectors |¢;) and eigenvalues ¢, fori=1, ..., M,
allowing us to evaluate matrix elements of the form {r|[H™A|r) as long
as m <M. Thermal expectation values can be constructed from these
matrix elements as

m

—~
~

-B
m!

-p)"™ dim(H)
m! R

Mz

Tr(e?"4) = Tr(H™A)

0

m

—~

Mz

R
Y <riH™A|r),

m=0

where thefirst approximation comes from truncating the Taylor expan-
sionin Bto order Mleading to error on the order O(8"*"), whereas the
second approximation comes from using R < dim(H) states to evaluate
the trace that leads to arelative statistical error of the order O(1/~/RZ)
(ref. 66), which canbe decreased by increased sampling (Zis the parti-
tion function, Z=Tr(e)). Inall the simulations, we use an order M =75
Lanczos decomposition, which is typically enough to converge the
ground state energy, and use R =200 samples in each of the N, and
Si i Symmetry sectors.

We write the Hamiltonian and operators in the Fock basis and work
inthe S7, ., conserving sectors as describedinref. 67.In Figs.3d and 4b,
we use the t-/ Hamiltonian (including the three-site terms)® with
J=4¢/Utosimulate the effects of large interaction strength, including

U/t=.Therestricted Hilbert space of the £-/model allows us toreach
asystem size of 4 x 4 sites with dim(H),,, ~ 2 x 10%. The limited system
sizeintroduces some finite-size effects that can be seen when compar-
ing simulationson3 x 3,4 x 3and 4 x 4 sites, and also when comparing
against other numerical methods suchas DQMC on 8 x 8sitesand NLCE
simulations.

Non-interacting calculations. In anon-interacting Hubbard system,
by Wick’s theorem, the thermal expectation of any operator writ-
ten as a product of the fermionic creation and annihilation opera-
tors can be evaluated by taking an appropriate sum over all possible
contractions of these operators®. This sum may be efficiently com-
puted as the determinant of a matrix in which the entries are set from
the non-interacting Green’s function (as discussed, for example, in
ref. 70). We use this technique to compute the correlation functions
discussed in the section ‘Correlation functions’ for arbitrary z and
Tvalues. For each g and T, we compute the non-interacting Green’s
function for the triangular Hubbard model on a 200 x 200 mesh in
momentum space, using standard formulae®®, which we convert to
real space through a fast Fourier transform. In the parameter regimes
we access, this choice of mesh is large enough that finite-size effects
are negligible. As we compute only equal-time correlators, we need
to store only the equal-time Green'’s function. This Green’s function
is then used to fill the matrices whose determinants yield the Wick
contractions.

Determinant quantum Monte Carlo simulation. We use the QUEST
package” to perform unbiased simulations of the Fermi-Hubbard
model on a8 x 8 triangular lattice using the DQMC algorithm. DQMC
introduces a Hubbard-Stratonovich transformation to transform
the interacting Hamiltonian to a non-interacting Hamiltonian only
quadraticinfermionic operators, butinvolving asummation over the
Hubbard-Stratonovichfield. For anon-interacting systemwith U/t =0,
DQMC becomes exact and computes the non-interacting equal-time
Green’s function, similar to the previous section. For aninteracting sys-
tem, thesummation over Hubbard-Stratonovichfield isexpressed as a
classical Monte Carlo problemand can be computed. Thus the opera-
torssuchasdensity and correlation functions canbe decomposed again
using Wick’s theorem into the same expressions as non-interacting
equal-time Green'’s functions and computed after performing the
Hubbard-Stratonovich transformation.

We added the expression of three-point doublon-spin-spin and
hole-spin-spin correlation functions into the QUEST package, which
allows us to compute all combinations of (i,j, k) for (d;S%5%) and
(h;S3S%), respectively. The original QUEST package already calculates
the doublon density d, density n and two-point spin-spin correlation
function (§°S%). We can combine these observables to compute the
connected correlators. Asinref. 24, we use 5,000 warmup passes and
30,000 measurement passes for each run. Atlarge Uor low tempera-
tures, the sign problem gets worse as we average over 10 runs initial-
ized with arandom seed. Trotterization error also will get worse at
large Uand we decrease the Trotter step size tdr = 0.02 for U/t <15to
tdr=0.01for U/t =15-25 and tdt = 0.005 for U/t = 25-40. The values
are chosento make sure the Trotter erroris smaller than the statistical
error.

Numerical linked-cluster expansion. In the NLCE’?, an extensive
property of the lattice modelin the thermodynamic limitis expressed
in terms of contributions from all distinct connected (linked) finite
clusters, up to a certain size, that can be embedded in the lattice. The
method canbe summarized as the following series for P, the extensive
property per site in the thermodynamic limit,

P=2 W), (16)
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where W,(c) is the contribution of cluster c to the property, calculated
recursively starting from c = a single site, according to the inclusion-
exclusion principle:

Wp(c)=p(c)— Y. Wy(s).

scc

17)

Here, p(c) is the property calculated for cluster c using full diagonali-
zation of the Hamiltonian matrix, and s runs over all subclusters of ¢
(clusters obtained by removing different numbers of sites from ¢). In
practice, clusters that arerelated by point group symmetry operations
of the underlying lattice are grouped together in the above sums. For
details of the algorithm, including how to generate clusters and their
subclusters for the series on acomputer, see ref. 73.

We carry out this expansion for both the square lattice®® and the tri-
angular lattice Hubbard model to the ninth order, which means we work
with clusters of a maximum of nine sites. We use the Wynn numerical
resummation algorithm” with three and four cycles ofimprovement to
extend theregion of convergence of the series to lower temperatures,
typically to 7/t = 0.6 for the triangular lattice around half-filling and
use their agreement as an indicator of convergence.

Density-matrix renormalization group. The ground state DMRG simu-
lations are performed using TeNPy™ with maximum bond dimension
x=2,0000ncylinders of width 4 (Fig.4 and Extended Data Fig. 6a) and 6
(Extended Data Fig. 5). We perform two-site updates until we reach typi-
cal energy convergence of 10°and 10™*in the entanglement entropy,
followed by one-site updates to further improve the convergence.
Observables are averaged over the systemsize, leading to larger error
bars for a few points in the six-width simulations, in which our finite
bond dimensionx - 2,000 leads to artificialinhomogeneities.

Data availability

The datasets generated and analysed during this study are available
from the corresponding author on reasonable request. Source data
are provided with this paper.

Code availability

The codes used for the analysis are available from the corresponding
author on reasonable request.
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Extended DataFig.1|Schematic of experimental sequence. A degenerate
Fermigasisloadedintoalattice formed by beams Xand Ywithalinear ramp
ofthelattice power. The lattice power is quenched to freeze tunneling.
Radiofrequency Landau-Zener transfers are used in some shots to change the
spinstates onsingly-occupiedsites. Handing of ffrom X + Yto X + Y adiabatically
doubles the unit cell, converting doubly-occupied sites to pairs of singly-
occupiedsites. Atoms are handed offto aseparate imaging lattice, wherea
resonantlaseris used in some shots to selectively remove one spin state.
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Extended DataFig. 2| Effect of potential gradients. Numerical simulation
(FTLM) of the nearest-neighbour non-normalized spin-spin and hole-spin-spin
(doublon-spin-spin) correlation functionsina4 x 3¢ - Jcluster as afunction of

doping 6 and gradient strength A, at fixed U/t=30and 7/t =0.5.
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Extended DataFig. 3 |Numerical simulation of doublon-spin-spin
correlation map at different densities. We compute the connected doublon-
spin-spin correlation functiona, withDQMC at U/t =5and T/t = 0.5; b, with
DQMCatU/t=12and T/t=0.5;c,withNLCE at U/t =38 and T/t = 0.5;d, with NLCE

atU/t=72and T/t=0.52729; e, with NLCE at U/t =100 and 7/t = 0.52729.
f, Definition of bonds averaged together in NLCE simulations. Bonds beyond
fifth nearest-neighbor are not computed and set to zero in the plot.
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Extended DataFig.4 |NLCE closest and second-closest doublon-spin-spin
correlations. Connected doublon-spin-spin correlator as a function of
interaction strength, obtained from NLCE simulations at 7/¢=0.7; a, at
half-fillingandb, at particle doping § = 0.05. See Fig. 2 for a definition of the
correlators.
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correlators as afunction ofdopingandinteractionstrength.atod,
Comparisonbetween e, f, bare correlators C5%,  and g, h, non-normalized

Comparisonbetweena, b, finite-temperature, 7/t =1correlatorsand ¢, d,

ground-state correlators between nearest neighbors, normalized according correlators Ci ., (as defined in Eq. (8) and Fig. 3c). The U/t = O numerics are
toEgs. (3), 4), (6) and (7) (see Fig. 3d).a, ¢, doublon-spin-spin correlators C{2,, computed using Wick’s contraction, U/t = 6,12 usingDQMCat 7/t= 0.5, and

showing an almost universal behavior above half-filling (§ > 0) for the various U/t>20using FTLM. The errorsin FTLM and DQMC are statistical whilein DMRG

interaction strengths.b, d, hole-spin-spin correlators C{).. The U/t=0numerics  theyindicate the spatial variation of the correlators over the simulated system.
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Extended DataFig. 6 | Ferromagneticstatein ground-state simulations.
a,DMRG simulation of the net total spin (S) normalized by maximal spinasa
function of doping 6, at U/t = 20 and zero temperature, showing the emergence
oflong-range ferromagnetism with doublon doping. b, Spectrum of the
Hubbard Hamiltonian onatriangular plaquette. Eigenenergies are shownasa
function ofinteractionstrength U/t for one particle dopant (left) and one hole
dopant (right). Labels show the nature of the state atinfinite interaction
U/t =+ (S:singlet; T: triplet; H: one hole; D: one doublon) and its angular
momentum £ =0, +1(see text for definitions). Colors indicate the signand
magnitude of the spin correlations.
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Extended Data Table 1| Summary of experimental datasets

Dataset Lattice t (Hz) t (Hz) t’' (Hz) Ramp time (ms) Field (G) U/t T/t Shots  Figures
DS1 1 380(20) 360(20) 370(6) 160 585 6(1) 0.5(2) 389 2
DS2 2 283(17) 267(16)  283(6) 210 610 11.5) 0.409(7) 682 2
DS3 3 183(12) 172(11)  173(5) 330 610 27(3) 0.302(5) 582 2
DS4 4 138(10)  129(9)  134(4) 412 610 39(2) 0.306(2) 1074 2
DS5 5 86(7) 79(6) 83(3) 660 610 72(11) 0.30(8) 1876 2
DS6 2 283(17) 267(16)  283(6) 210 610 11.5(3) 0.44(2) 381 3
DS7 2 283(17) 267(16)  283(6) 210 610 11.5(3) 0.65(2) 259 3,4
DS8 6 216(14) 203(13) 214(6) 250 610 21(2) 0.31(2) 199 3
DS9 6 216(14) 203(13) 214(6) 250 610 21(2) 0.50(6) 175 3,4

DS10 2 283(17) 267(16) 283(6) 210 565 5.3(2) 0.58(8) 333 3
DS11 2 283(17) 267(16) 283(6) 210 565 5.3(2) 0.7(1) 309 3,4
DS12 2 283(17) 267(16) 283(6) 210 600 9.9(3) 0.62(4) 267 4
DS13 3 183(12) 172(11)  173(5) 330 610 27(3) 0.40(4) 243 4
DS14 1 380(20) 360(20) 370(6) 160 607.5 8(1) 0.58(7) 200 4
DS15 6 216(14) 203(13)  214(6) 250 595 16(1) 0.40(2) 298 4
DS16 5 86(7) 79(6) 83(3) 660 610 72(11) 0.28(8) 1158 4
DS17 7 192(7) 175(7) 3.7(2) 400 570 9.2(2) 0.277(7) 199 4
DS18 7 192(7) 175(7) 3.7(2) 400 610 21.9(4) 0.6(1) 195 4

Note that DS6 is used in both Fig. 3b,d. For each value of U/t in Fig. 3d, the hole- and particle-doped curves are obtained from separate datasets (DS6, DS8, and DS10 are hole-doped). Datasets
DS11, DS12, and DS13 appear in Fig. 4b.



Extended Data Table 2 | Summary of the density resolved
and spin-removal imaging technique
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The left column lists all the site-resolved measured outcomes and the right column lists the
possible site occupations that map to the same measured outcome.
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Extended Data Table 3 | Trap curvature in a representative
subset of datasets

Dataset Kpnaj (t/site?) K . (t/site?)
DS1 0.036(3) 0.35(4)
DS6 0.085(4) 0.35(7)
DS7 0.060(5) 0.62(7)
DS10 0.068(3) 0.39(4)
DS11 0.053(3) 0.55(4)
DS12 0.043(3) 0.47(4)

DS14 0.036(7) 0.38(9)
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