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Abstract

A framework for reconstruction of optical diffusion and absorption coefficients in quanti-
tative photoacoustic tomography is presented. This framework is based on a Tikhonov-type
functional with a regularization term promoting sparsity of the absorption coefficient and
a prior involving a Kubelka-Munk absorption-diffusion relation that allows to obtain supe-
rior reconstructions. The reconstruction problem is formulated as the minimization of this
functional subject to the differential constraint given by a photon-propagation model. The
solution of this problem is obtained by a fast and robust sequential quadratic hamiltonian
algorithm based on the Pontryagin maximum principle. Results of several numerical experi-
ments demonstrate that the proposed computational strategy is able to obtain reconstructions
of the optical coefficients with high contrast and resolution for a wide variety of objects.
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1 Introduction

Photoacoustic tomography (PAT) is an emerging hybrid imaging technique that combines two
imaging modalities: optical tomography, with a large contrast of optical parameters in an object,
and ultrasound imaging, which provides high resolution images. The PAT technique is based
on the photoacoustic effect where an object is exposed to a short-pulse optical radiation that
propagates through it and is, in part, partially absorbed. This phenomenon leads to heating and
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thermal expansion of the region where the propagation occurs, so that acoustic pulses are emitted
that travel back to the boundary of the object, where they can be measured [61, 63]. From
these measured acoustic pulses, one can obtain the initial pressure distribution and, subsequently,
optical coefficients like the absorption and diffusion, through the formulation of inverse problems.

The reconstruction of the initial pressure distribution denoted with H(x), x ∈ Ω ⊂ Rn, from
the measured acoustic pulses on the boundary of the object ∂Ω, can be formulated as an inverse
source problem for the wave operator as follows: Let p(x, t) and C(x) denote the pressure and the
speed of the acoustic wave, respectively. Then p satisfies the following equation

ptt − C2(x) ∆p = 0, (x, t) ∈ Ω× [0, T ]

p(x, 0) = H(x), x ∈ Ω

∂p

∂t
(x, 0) = 0, x ∈ Ω

(1)

where T represents the time period of propagation of the acoustic waves starting with the initial
pressure field H. Then, the time-dependent acoustic wave signals of the form

p(x, t),
∂p

∂n
(x, t) (x, t) ∈ ∂Ω× [0, T ] (2)

are measured at the acquisition boundary ∂Ω. The inverse problem is to recover H given the data
in (2). This is also known as the classical PAT inverse problem [10, 11, 12, 13, 25, 31]

The aforementioned inverse problem has been very well studied; see, e.g., [25, 31], and the
solution to this problem gives the initial pressure distribution H profile in the entire domain
Ω. However, this procedure does not give information about the more specific properties of the
object like the optical parameters of absorption and diffusion coefficient. Thus, to reconstruct
the optical parameters from the initial pressure distribution, a second inverse problem is solved,
which is known as quantitative photoacoustic tomography (QPAT). One of the major applications
of QPAT is to provide accurate images of the heart for the study of congenital heart diseases
[32]. Other applications of QPAT include detecting cancerous tissues, thus facilitating biomedical
studies [34, 51]. Notice that there are other optical imaging methods that have a structure similar
to QPAT in the sense that these methods make use of the photoacoustic effect to determine specific
internal features in an object. For example, the fluorescence optical diffuse tomography (FDOT),
which is used to detect fluorescing targets in tissues [46, 53].

However, in QPAT and similar modalities, the accurate reconstruction of the optical parame-
ters poses several theoretical and computational challenges that are under investigation by many
research groups. Our purpose is to contribute to this research work with a novel QPAT recon-
struction framework with high resolution and high contrast, which is of paramount importance
especially in the context of biomedical imaging for detection of cancerous tissues.

Mathematically, the initial pressure distribution H(x) is a function of the absorption coefficient
σa(x), of the intensity of radiation u(x), and of the Grüneisen coefficient Γ(x), which measures the
amount of ultrasound generated by the absorbed radiation at the point x. In general, the intensity
of radiation u is a function of space and time and its evolution is governed by the radiative transfer
equation (RTE) (see e.g., [9, Section 3.2], [38, Chapter 7], [51]). However, assuming the use of
short light pulses such that the radiation propagates for a very short time at the scale of small
acoustic wave lengths, we have that the scattering is significantly larger than absorption (see [38,
Chapter 9], [9, Section 3.3]). Thus, the photons are scattered almost uniformly in all directions
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leading to an almost uniform angular distribution. This phenomenon is prevalent inside biological
tissues [30, 51] and blood [38, Chapter 9]. In this case, it has been shown in [9, Sec 3.3] that the
photon current satisfies a steady state assumption, which results in the diffusion approximation
of the RTE equation. Therefore, in this setting, the intensity of radiation u(x) is modelled by the
following diffusion equation [11, 12, 13]:

−∇ ·D(x)∇u(x) + σa(x) u(x) = 0, in Ω,

u(x) = g(x), on ∂Ω,

where g is the known intensity of the radiation that is applied at the boundary of the object. In
this framework, the initial pressure distribution function is given by

H(x) = Γ(x) σa(x) u(x), x ∈ Ω.

The QPAT inverse problem requires to recover the absorption coefficient σa(x) and the diffusion
coefficient D(x), given H and g.

There are several works related to theoretical and computational frameworks for reconstruc-
tions in QPAT; see, e.g.,[11, 15, 33, 36, 64]. In the work [13], it has been shown that, if Γ is given,
then the coefficients (D, σa) can be uniquely and stably reconstructed based on two different sets
of initial pressure distribution data generated by two well-chosen boundary conditions g1 and g2

for two copies of the diffusion equation given above. Also in [13], we find a method for reconstruc-
tion that relies on the solution of a set of transport and elliptic equations. Further, in [11, 12]
it has been shown that all three parameters (D, σa,Γ) cannot be reconstructed simultaneously,
irrespective of the number of illuminations unless one considers the QPAT inversion problem at
different wavelengths. The correspondence between the QPAT inversion problem and parameter
estimation with PDE’s was illustrated in [14]. Other works on QPAT include: the multiple-source
framework in [65], and its analysis [54], a PDE-optimization framework using the radiative transfer
equation [1], the recovery of absorption coefficient of a small absorber [8], the reconstruction of
absorption and scattering coefficients [59], and the analysis of the linearised QPAT problem [36].

In addition to the theoretical investigation of the QPAT problem, there are several numerical
reconstruction algorithms for solving related inversion problems. In [24], the authors develop an
iterative method using the radiation map to reconstruct the optical parameters. A non-linear
model-based inversion scheme was formulated in [43] for determining chromophore concentrations
in 2D. In [52], a gradient-based scheme for QPAT using the radiative transfer equation is discussed.
A new iterative reconstruction algorithm using a different form of the radiation function and
Robin-boundary data was proposed in [47]. It appears from the simulation results in these works
that existing algorithms for QPAT have difficulties in reconstructing accurately both D and σa.
Furthermore, these algorithms do not perform well to reconstruct the optical coefficients with
high contrast, which is an inherent property of tissues, thus limiting their range of applicability
in biomedical problems.

One of the major reason for the poor reconstruction of D is due to the fact that the initial
pressure distribution data does not directly contain information on D. On the other hand, it has
been shown that there is a relation between D and σa and the reduced scattering coefficient σs,
which is given by [6, 27]

D =
1

3(σa + σs)
. (3)
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This fact shows a deficiency in the use of the diffusion approximation for reconstructing D, which
would require to employ the radiative transfer (or transport) equation (RTE) [38] as the adequate
model for light transport in tissues. Therefore, although the main point in photo acoustic is a
thermodynamics phenomenon that explains how absorbed energy is transformed in a pressure
wave, also scattering is relevant for a successful reconstruction of the diffusion coefficient, as it is
illustrated by results in, e.g., [59].

However, in some applications a proportionality between σa and σs appears. In particular, the
following relation between σa and σs has for long been described by the Kubelka-Munk theory in
the diffusive regime [41, 37, 62, 28, 48, 29]. We have

σs =
2R∞

(1−R∞)2
σa, (4)

where R∞ is the diffuse reflectance of the biological object. In the near infrared wavelength
region, R∞ has been experimentally found to be lying somewhere in the range of 0.5-1.25 (see
Figure 4 in [29]). Furthermore, a similar linear relation between σa and σs has also been found
to be experimentally true for the tissues of brain, breast, heart, lungs, bone, prostate and tumor;
see, e.g., [26, 51], and Table 1, where we report measured values of the absorption and reduced
scattering coefficients for various human tissues.

Table 1: Values of the absorption and the reduced scattering coefficients for various tissues at the
near-infrared wavelengths [51].

Tissue Wavelength (nm) σa (cm−1) σs (cm−1)

Brain 760 0.11-0.17 4.0-10.5
Breast 760 0.031-0.1 8.3-12.0
Heart 661 0.12-0.18 5.22-90.80
Lungs 661 0.49-0.88 21.14-22.52
Bone 760 0.07-0.09 11.9-14.1

Prostate 732 0.09-0.72 3.37-29.8
Tumor 795 0.068-0.102 12.4-13.1

These results suggest that the reconstruction of the diffusion coefficient in the framework of the
diffusion approximation can be improved if we include our qualitative prior knowledge represented
by (3) and (4) in the formulation of our inverse problem.

For this purpose, based on the results given in Table 1 and supported by the Kubelka-Munk
relation, we construct our prior based on the following tentative relation between the absorption
and the reduced scattering coefficients

σs ≈ c σa. (5)

This choice is based on results of measurements indicating that the value of c varies among different
biological tissues in the approximate range (30, 800). Notice that in our approach we interpret (5)
as a mean approximate relation between σa and σs in the tissues (with the value of c arbitrarily
chosen in a given interval determined by the application) and aim at using this information for
better reconstruction of the QPAT coefficients.
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We demonstrate that the consistent use of (3) and (5) embedded as a prior in our nonsmooth
optimization problem results in a novel reconstruction strategy that allows to obtain reconstruc-
tions of D and σa with high resolution and high contrast. However, it is important to emphasize
that the high-quality reconstructions that we obtain do not necessarily satisfy the relations (3)
and (5). On the other hand, we show that our computational framework is certainly valid for
biomedical applications with near-infrared light illumination of tissues in order to accurately de-
tect the cancerous ones inside the organs mentioned in Table 1, where the Kubelka-Munk relation
(5) holds approximately true.

In our problem formulation, we consider the minimization of a Tikhonov-type least squares
functional with regularization terms including the relation between D and σa mentioned above.
Further, we include terms that promote sparsity in the reconstruction, in order to accommodate the
fact that, in biomedical application, different tissues appear distributed as almost non-overlapping
bounded regions of the domain under consideration. However, while the introduction of nonsmooth
penalization terms in the functional considerably contribute to the ability of our method to provide
sharp reconstructions as in [2, 49], they require the development of sophisticated optimization
techniques that apply in the nonsmooth case. We refer to [56] for a work that pioneered the
use of L1 penalization terms to promote sparsity in PDE optimization and the development of
semi-smooth Newton (SSN) methods to solve the corresponding problems. On the other hand,
the implementation of a SSN scheme requires the application of the Hessian of the optimization
problem and, for this purpose, in addition to solving the model equation and its adjoint, one
needs to solve other two linearized equations. This fact and further implementation issues make
the development of the SSN scheme difficult to practitioners.

To overcome these difficulties, we extend the sequential quadratic hamiltonian (SQH) algo-
rithm, proposed in [18, 19, 20] for nonsmooth PDE optimal control problems, to solve our inverse
problem. This algorithm is based on the Pontryagin maximum principle (PMP), which is well-
known in the theory of optimal control of dynamical systems. Our focus on the SQH algorithm is
motivated by the fact that it is easy to implement, it appears very efficient and robust, and it is
wellposed as an iterative scheme [18, 19]. A specific feature of the iterative SQH method is that
it relies on a pointwise optimization procedure.

Several numerical experiments are performed to demonstrate the computational effectiveness
of our methodology. The results of these experiments show that our QPAT inverse problem, which
includes a prior relation on D and σa, and the SQH algorithm solving this problem, result in a
fast and accurate reconstruction procedure. These are the main novelties of our work.

This paper is organized as follows. In the next section, we discuss our optimization formulation
of the QPAT inverse problem, and illustrate our use of a relation between D and σ. Further, we
discuss L2 and L1 penalization terms. In Section 3, we provide theoretical consideration on
solutions to our minimization problem and discuss their characterization in the PMP framework.
Section 4 is devoted to illustrating all details of our numerical optimization procedure that includes
wellposedness of the SQH algorithm and the numerical approximation of our PDE governing model
and of its optimization adjoint. In Section 5, results of numerical experiments are presented that
successfully validate our QPAT framework. For this purpose, different test cases with synthetic
data are considered that allow to investigate the role of the optimization parameters and the
ability of our computational framework to provide reconstructions of the coefficients D and σ with
high contrast and resolution, also in the case of data affected by noise. A section of conclusions
completes this work.
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2 Formulation of a QPAT optimization problem

We start discussing the governing model of our QPAT inverse problem. For this purpose, we specify
the dimension n = 2, and refer to the set of coordinates (x, y). Let u(x, y) be the total number
of photons at a point (x, y) inside an object represented by the domain Ω. In our discussion, Ω
is either a rectangle or a convex subset of R2 with boundary ∂Ω of class C2. We assume that u
satisfies the following photon-propagation problem

−∇ · (D(x, y)∇u(x, y)) + σa(x, y) u(x, y) = 0, (x, y) ∈ Ω

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,
(6)

where D(x, y) > 0 represents the diffusion coefficient at (x, y). The non-negative absorption
coefficient σa is given by

σa(x, y) = σ(x, y) + σb,

where σb is a known background absorption coefficient and σ represents the deviation from this
value in correspondence of organs and sites of tumor. We remark that even though σ is a signed
function, however later on, we will impose bounds on σ such that σa > 0. Further, the function g
represents the known intensity of radiation at the boundary of the object. For the reconstruction
of D and σa, we require the knowledge, by measurements, of the optical energy given by

H(x, y, σ, ui) = Γ (σ(x, y) + σb) ui(x, y), i = 1, 2, (7)

for two sets of boundary radiation functions gi, where Γ is the known Grüneisen coefficient that
is assumed to be a known constant.

Our QPAT inverse problem consists in obtaining the unknown pair (D, σ), given H and g. For
this purpose, we formulate a minimization problem with the following cost functional

J(D, σ, u1, u2) =
α

2

2∑
i=1

∫
Ω

(H(x, y, σ, ui)−Gδ
i (x, y))2 dxdy +

ξ1

2

∫
Ω

σ2(x, y) dxdy

+
ξ2

2

∫
Ω

(
D(x, y)− 1

3c (σ(x, y) + σb)

)2

dxdy + γ

∫
Ω

|σ(x, y)| dxdy,

(8)

where Gδ
i ∈ L∞(Ω) is a given noisy measurement function of the initial pressure distribution corre-

sponding to the boundary radiation functions gi, i = 1, 2. Therefore the first term in the objective
functional J represents a least-squares data fit of the initial pressure distribution measurements.
We assume that the background value of the absorption coefficient σb is known and therefore σ
equals zero in the background. In this setting, it is reasonable to introduce a L2 and L1 regular-
ization of σ, which result in the second and last terms in (8). In particular, the L1 term promotes
sparsity of σ, thus enhancing contrast.

One novelty of our work is the prior given by the third term in (8). To explain this term, we
recall (3) and the related discussion. Hence, by assuming c ∈ [30, 800], we can make the following
approximation

3 (σa + σs) ≈ 3 (σa + cσa) ≈ 3cσa.

We remark that even though we will be choosing c ∈ [30, 800] in our numerical experiments,
the choice of c is not essential. Thus, we employ the following function as prior for the diffusion
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coefficient D

D(x, y) ≈ D̄ :=
1

3c (σ(x, y) + σb)
. (9)

Therefore the third term in J measures the deviation of D in the tissues and tumors from D̄.
Our QPAT optimization problem is stated as follows

min
D,σ∈Dad×Σad

J(D, σ, u1, u2)

s.t. L(u1, D, σ, g1) = 0,

L(u2, D, σ, g2) = 0,

(10)

(‘s.t.’ means ‘subject to’) where L(ui, D, σ, gi) = 0, i = 1, 2, denote (6) for the boundary radiation
functions gi, i = 1, 2, respectively, and our aim is to recover D and σ in the following admissible
sets

Dad = {D ∈ L2(Ω) : 0 < Dl ≤ D(x, y) ≤ Dr, a.e. in Ω},
Σad = {σ ∈ L2(Ω) : σl ≤ σ(x, y) ≤ σr, a.e. in Ω, },

(11)

where σl is chosen such that the total absorption coefficient σa = σ + σb > 0, e.g., one can choose
σl = −σb + σε, with σε a small positive number.

3 Analysis of the QPAT inverse problem

We remark that our diffusion model (6), with the given bounds on the coefficients and Dirichlet
boundary conditions, is a well-studied problem and we refer to [35, 42] for two classical references.
Specifically, one can verify that with D ∈ Dad and σ ∈ Σad our operator is uniformly elliptic and
the boundedness conditions on the coefficients required in, e.g., [35] are satisfied. Then, assuming
that the Dirichlet data g corresponds to the trace of a H1(Ω) function, the following proposition
holds whose proof can be found e.g., in [42].

Proposition 1. Let D ∈ Dad, σ ∈ Σad. Then there exists a unique solution u ∈ H1(Ω) to (6).

Additional regularity of the solution, that is, u ∈ H1(Ω)∩H2(Ω), is attained at the interior of
Ω if D is assumed Lipschitz continuous, and this regularity holds globally if ∂Ω is of class C2; see
[35]. Further results can be found in, e.g., [3]. In particular, we refer to [22, 45] for the problem
of establishing boundedness of the gradient of solutions to the diffusion model.

With Proposition 1, we have that the map (D, σ) 7→ u = u(D, σ), where u is the solution to
(6) for given (D, σ) ∈ Dad × Σad ⊂ L∞(Ω) × L∞(Ω), is well defined. Furthermore, this map is
continuous as shown below; see also [40].

Lemma 3.1. Let Ω ⊂ R2 and consider any two pairs (u1, D1, σ1), (u2, D2, σ2) ∈ H1(Ω)×Dad×Σad

that satisfy (6) with g the trace of a H1(Ω) function. Then the following estimate holds

‖u1 − u2‖H1(Ω) ≤ C1

(
‖D1 −D2‖L∞(Ω) + ‖σ1 − σ2‖L∞(Ω)

)
.

Furthermore, if for the given pairs the gradient of u1 (respectively u2), is essentially bounded,
then the following estimate holds

‖u1 − u2‖H1(Ω) ≤ C2

(
‖D1 −D2‖L2(Ω) + ‖σ1 − σ2‖L2(Ω)

)
.

7



Proof. The two pairs satisfy both the diffusion equation in weak form. We have

(Di∇ui,∇v) + (σ̃i ui, v) = 0, v ∈ H1
0 (Ω),

where σ̃i = σi + σb and ui = g on the boundary, i = 1, 2.
Therefore we have

(D1∇u1,∇v) + (σ̃1 u1, v) = (D2∇u2,∇v) + (σ̃2 u2, v) .

Thus, by algebraic manipulation, we obtain

(D1 [∇u1 −∇u2] ,∇v) + (σ̃1 [u1 − u2] , v) = ([D2 −D1] ∇u2,∇v) + ([σ2 − σ1] u2, v) .

In particular, taking v = u1 − u2, we have

(D1∇ [u1 − u2] ,∇ [u1 − u2]) + (σ̃1 [u1 − u2] , [u1 − u2])

= ([D2 −D1] ∇u2,∇ [u1 − u2]) + ([σ2 − σ1] u2, [u1 − u2]) .

Since Di ∈ Dad and σi ∈ Σad, we have

c1 ‖u1 − u2‖2
H1(Ω) ≤ ([D2 −D1] ∇u2,∇ [u1 − u2]) + ([σ2 − σ1] u2, [u1 − u2]) .

where c1 = min{Dl, σl + σb}. Hence, considering that both D and σ are bounded, we have the
estimate

c1 ‖u1 − u2‖H1(Ω) ≤ c2

(
‖D1 −D2‖L∞(Ω) + ‖σ1 − σ2‖L∞(Ω)

)
,

where c2 = max{‖u2‖L2(Ω), ‖∇u2‖L2(Ω)}. Hence, the first statement of the lemma is proved with
C1 = c2/c1.

Further, by the assumption that ‖∇u2‖L∞(Ω) ≤M (resp. ‖∇u1‖L∞(Ω) ≤M), for some positive
constant M , we have

c1 ‖u1 − u2‖2
H1(Ω) ≤ ‖∇u2‖L∞(Ω) ‖D2 −D1‖L2(Ω) ‖∇ [u1 − u2] ‖L2(Ω)

+ ‖u2‖L∞(Ω) ‖σ2 − σ1‖L2(Ω) ‖u1 − u2‖L2(Ω)

≤
(
‖∇u2‖L∞(Ω) ‖D2 −D1‖L2(Ω) + ‖u2‖L∞(Ω) ‖σ2 − σ1‖L2(Ω)

)
‖u1 − u2‖H1(Ω)

Therefore the claim of the lemma follows from the following result

c1 ‖u1 − u2‖H1(Ω) ≤ c3

(
‖D1 −D2‖L2(Ω) + ‖σ1 − σ2‖L2(Ω)

)
,

where c3 = max{‖u2‖L∞(Ω), ‖∇u2‖L∞(Ω)}. Thus, the second statement is proved with C2 = c3/c1.

With this preparation, we can introduce the following reduced cost functional

Ĵ(D, σ) = J(D, σ, u1(D, σ), u2(D, σ)). (12)

Notice that, with this functional, our QPAT optimization problem can be equivalently formulated
as the following unconstrained minimization problem

min
(D,σ)∈Dad×Σad

Ĵ(D, σ). (13)
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The proof of existence of a minimizer for (13) by using the classical direct method is a delicate
issue since for the minimizing sequences {Dk} ⊂ L∞(Ω) we do not have the strong convergence
required to prove fulfilment of the differential constraint (6) in the limit of the minimizing process;
see, e.g., Chapter VI of [16] for a related framework. However, this would be possible assuming a
compact set of admissible controls, e.g., D̃ad = Dad ∩ Vl where Vl := {v ∈ H1(Ω) | ‖v‖H1(Ω) ≤ l}
where l is a given positive constant; see, e.g., [44] for a discussion on this setting. Nevertheless,
since these are sufficient and not necessary conditions for existence of an optimal pair (D∗, σ∗),
we prefer to work with the admissible sets defined in (11) that appear convenient in applications,
and assume existence of the optimal optical coefficients (D∗, σ∗). Our focus is the construction of
a method that efficiently computes these coefficients.

Now, concerning the characterization of solutions to our QPAT optimization problem, we
can use subdifferential calculus to derive first-order necessary optimality conditions [23, 60]. In
particular, if Ĵ(D, σ) is Fréchet differentiable, then the optimal pair (D∗, σ∗) must satisfy〈

∇Ĵ(D∗, σ∗), (D, σ)− (D∗, σ∗)
〉
≥ 0, (D, σ) ∈ Dad × Σad,

where 〈·, ·〉 denotes the duality product in L2.
Alternatively, we can use the Pontryagin maximum principle that can be proven in our case

provided that the gradient of the adjoint variable is essentially bounded. However, we can also
apply a linearized version of the PMP as discussed in [58]. In both cases, the starting point of
the PMP approach is the construction of the Hamiltonian-Pontryagin (HP) function H : R2 ×
[Dl, Dr]× [σl, σr]× R4 that is defined as follows (see [18, 19, 20])

H(x, y,D(x, y), σ(x), u1(x, y), u2(x, y), q1(x, y), q2(x, y))

=
α

2

2∑
i=1

(H(x, y,D(x, y), σ(x, y), ui(x, y))−Gδ
i (x, y))2 +

ξ1

2
σ2(x, y)

+
ξ2

2

(
D(x, y)− D̄(x, y)

)2
+ γ|σ(x)|

+
2∑
i=1

D(x, y)∇ui(x, y) · ∇qi(x, y) +
2∑
i=1

(σ(x, y) + σb) ui(x, y) qi(x, y),

(14)

where qi, i = 1, 2 solve the following adjoint equations, which are derived from the Lagrangian
and Hamiltonian framework [4]

−∇ · (D(x, y)∇qi(x, y))) + (σ(x, y) + σb) qi(x, y) = −αΓ (σ(x, y) + σb) [H(x, y, σ, ui)−Gδ
i ], in Ω

qi(x, y) = 0, on ∂Ω,
(15)

Notice that similar consideration, as for the diffusion model, concerning existence and regularity
of solutions apply to these elliptic problems.

Then subject to appropriate conditions the PMP characterization of a minimum of the min-
imization problem (10) is given by the following theorem (expressed in the equivalent form of a
minimum principle)
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Theorem 3.1. Let (D∗, σ∗, u∗1, u
∗
2) be a solution to (10). Then

H(x, y,D∗(x, y), σ∗(x, y), u∗1(x, y), u∗2(x, y), q∗1(x, y), q∗2(x, y))

= min
(v1,v2) ∈[Dl,Dr]×[σl,σr]

H(x, y, v1, v2, u
∗
1(x, y), u∗2(x, y), q∗1(x, y), q∗2(x, y)), (16)

for almost all (x, y) ∈ Ω, and u∗i , i = 1, 2 and q∗i , i = 1, 2 solve (6) and (15), respectively, with
D = D∗ and σ = σ∗.

We can rewrite condition (16) as follows

(D∗(x, y), σ∗(x, y)) = arg min
(v1,v2) ∈[Dl,Dr]×[σl,σr]

H(x, y, v1, v2, u
∗
1(x, y), u∗2(x, y), q∗1(x, y), q∗2(x, y)). (17)

We note that (17) represents a pointwise optimality criteria at each (x, y) and does not involve
any derivatives with respect to the optimization variables D and σ. In the next section, we discuss
an efficient and robust numerical scheme based on (17) that solves (10) (resp. (13)) to obtain D∗

and σ∗.

4 The SQH algorithm for solving the QPAT inverse prob-

lem

The sequential quadratic hamiltonian (SQH) algorithm has been proposed in [18, 20], as a new
variant of the successive approximations methods; see [21] for an early review. It includes an
adaptive quadratic penalty of the updates that results in an augmented Hamiltonian as first
proposed in [50]. In this way, an efficient and robust iterative procedure is obtained that is able
to solve nonsmooth optimization problems governed by PDEs.

In our SQH implementation, the augmented HP function is given by

Hε(x, y,D, σ, D̃, σ̃, u1, u2, q1, q2) = H(x, y,D, σ, u1, u2, q1, q2) + ε [(D − D̃)2 + (σ − σ̃)2], (18)

where ε > 0 is a penalization parameter that is chosen adaptively at each step of the SQH iteration
process: a larger value of ε is chosen if a sufficient decrease of the functional J is not observed
while a smaller value of ε is chosen if J decreases sufficiently. Specifically, if D̃ and σ̃ denote a
previous approximation to the diffusion and absorption coefficients sought, then the purpose of
quadratic term ε [(D − D̃)2 + (σ − σ̃)2] is to have the pointwise minimizer of Hε, and thus an
update to D and σ, that is close to the previous values D̃ and σ̃ as much as ε is large. We also
remark that during a step of the optimization problem, that is, for a minimization sweep on all
grid points of the (x, y) mesh and, during this process, the values of u and q are those obtained
in the previous iteration. The SQH algorithm is given as a pseudocode as follows.

Algorithm 4.1 (SQH algorithm).

1. Choose ε > 0, κ > 0, λ > 1, ζ ∈ (0, 1), ρ ∈ (0,∞), (D0, σ0) ∈ Dad × Σad

2. Compute u0
i (D

0, σ0) and q0
i (D

0, σ0, u0
i ) for i = 1, 2. Set k = 0.
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3. Find (D, σ) ∈ Dad × Σad such that

Hε(x, y,D, σ,D
k, σk, uk1, u

k
2, q

k
1 , q

k
2) = min

w∈[Dl,Dr]

z∈[σl,σr]

Hε(x, y, w, z,D
k, σk, uk1, u

k
2, q

k
1 , q

k
2)

for all (x, y) ∈ Ω.

4. Calculate ui(D, σ) , i = 1, 2, and set τ = ‖D −Dk‖2
L2(Ω) + ‖σ − σk‖2

L2(Ω).

5. If J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
2) > −ρ τ , choose ε = λ ε,

else choose ε = ζ ε, uk+1
i = ui, D

k+1 = D, σk+1 = σ, and calculate the adjoint variables qk+1
i ,

i = 1, 2, corresponding to Dk+1, σk+1, uk+1
i , i = 1, 2.

6. Set k = k + 1

7. If τ < κ, STOP and return optimal (Dk, σk) else go to Step 3.

8. end

The pointwise minimization in Step 3 of this algorithm is carried out by a direct search process,
i.e., we divide the domain [Dl, Dr] × [σl, σr] into a two-dimensional discrete grid, evaluate Hε on
this grid, and then choose a grid point (w, z) at which Hε is minimum. We remark that in Step
5 of this algorithm, if the inequality J(D, σ, u1, u2) − J(Dk, σk, uk1, u

k
2) > −ρ τ is true this means

that no sufficient decrease of the value of the objective functional J as been achieved. In this case,
a larger value of ε is taken (since λ > 1) and the optimization procedure in Step 3. is repeated
with the corresponding new augmented HP function. On the other hand, if the inequality above
is false, the decrease has met the required criteria for reduction of the value of J , and the new
values Dk+1 = D, σk+1 = σ are obtained. Correspondingly, the updates uk+1

i and qk+1
i , i = 1, 2,

are computed. In this case, the value of ε is reduced by a factor ζ < 1.
The fundamental result required to guarantee wellposedness of the SQH algorithm applied to

our QPAT inverse problem is to prove that, if not already at the optimal point, it is always possible
to find a value of ε > 0 such that the minimization of the corresponding Hε results in new values
of D and σ for which the value of the functional J is reduced. We present this result in Theorem
4.1 below and refer to [18, 19] for the use of this theorem for further results on the convergence of
the SQH algorithm in a finite number of steps.

Theorem 4.1. Let (u1, u2, D, σ) and (uk1, u
k
2, D

k, σk) be as in Algorithm 4.1, k ∈ N0, and denote
δD := D − Dk, δσ := σ − σk, δui := ui − uki , i = 1, 2. If the assumptions of Lemma 3.1 are
satisfied, then there is a θ > 0, independent of ε, k, and Dk, σk, such that for the ε currently
chosen by the SQH Algorithm 4.1, it holds that

J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
2) < − (ε− θ)

(
‖D −Dk‖2

L2(Ω) + ‖σ − σk‖2
L2(Ω)

)
.

Proof. See the Appendix.

For implementing Algorithm 4.1, we need to solve the photon propagation equation (6) for
different boundary conditions gi, i = 1, 2, and the corresponding adjoint equations (15). We
use a cell-nodal finite-difference scheme, proposed in [7], to discretize (6) and (15). To illustrate
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this scheme, we consider the generic form of the equations (6) and (15) defined in the domain
Ω = (a, b)2 ⊂ R2 as follows

−∇ · (D(x, y)∇u(x, y)) + (σ(x, y) + σb) u(x, y) = f in Ω,

u(x, y) = fD(x, y) on ∂Ω,
(19)

where f and fD are assumed continuous in Ω and on ∂Ω, respectively. Consider a sequence of
uniform grids {Ωh}h>0 given by

Ωh = {(xi1, x
j
2) ∈ R2 : (xi1, x

j
2) = (a+ ih, a+ jh), (i, j) ∈ {0, . . . , N}2} ∩ Ω, (20)

where N represents the number of cells in each direction and h =
(b− a)

N
is the mesh size. Then

the corresponding cell-nodal discretization places the unknowns u,D, σ at the nodal points (xi, yj)
of the grid that results in the following approximation of (19) at (xi, yj)

1

h2

{
(Di+1/2,j +Di−1/2,j +Di,j+1/2 +Di,j−1/2)ui,j

−Di+1/2,jui+1,j −Di−1/2,jui−1,j −Di,j+1/2ui,j+1 −Di,j−1/2ui,j−1

}
+ (σi,j + σb)ui,j = fi,j, 1 ≤ i, j ≤ N − 1.

(21)

We denote Di±1,j = D(xi ± h, yj), Di,j±1 = D(xj, yj ± h), and fi,j = f(xi, yj). The required
intermediate values of D are computed as follows

Di±1/2,j =
1

2

(
Di±1,j +Di,j

)
and Di,j±1/2 =

1

2

(
Di,j±1 +Di,j

)
.

The Dirichlet boundary data fD is included in the standard way in the right-hand side of the
algebraic equation. We use one-sided finite difference discretizations to evaluate the right-hand
sides of the adjoint equations. With this discretization scheme in (21), we solve a matrix-vector
equation to obtain the unknowns ui,j.

5 Numerical results

We present results of numerical experiments to validate the ability of our QPAT optimization
framework in the reconstruction of the diffusion coefficient D and the absorption coefficient σ
profiles with high accuracy. These also demonstrate the efficiency and robustness of our SQH-
QPAT methodology. We consider a widely varying set of phantoms for D, σ. In Test Case
1, we consider a disk phantom with different intensities for D, σ and investigate reconstruction
with the different regularization terms considered in our cost functional J . Next, we discuss two
experiments with the heart lung phantom: one in which the relation (9) is satisfied between D and
σ, and the other in which (9) is not satisfied, making it a very generic set of phantoms for D, σ.
We demonstrate that in both cases, by incorporating the aprior assumption (9) in the functional
J , we can obtain high quality reconstructions. We conclude our set of experiments with the
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more challenging set of two Shepp-Logan phantoms: the standard one, and another augmented
with tumor structures. In the test cases with the heart and lung phantom and the Shepp-Logan
phantom, we also implement our method on data containing additive Gaussian noise in order to
demonstrate the robustness of our framework.

For the experiments below, we first remark that the units of the spatial variable x is cm
and of the absorption coefficient is cm−1. Starting with an experimental square domain of side
length 5 cm, we first scale and translate the diffusion equation (6), such that the domain Ω =
(−1, 1) × (−1, 1), is discretized into 100 equally spaced points in both the coordinate directions.
The corresponding scaling is 1 experimental unit corresponds to 2.5 cm. Thus, based on Table
1, an experimental range of 0-1 for σa corresponds to 0-0.4 cm−1. The two boundary radiation
functions are g1(x, y) = ex, g2(x, y) = ey. The weights of the functional J given in (8) are chosen
as α = 1, ξ1 = 0.01, ξ2 = 20, γ = 0.01 and Γ = 1.0. The large value of ξ2 is chosen to emphasize
the need to satisfy the relation between the diffusion and the absorption coefficient, given by (9),
in the numerical experiments. The value of c in the Kubelka-Munk relation (9) is chosen to be
100/3, though as we have mentioned earlier, this choice is not essential. The initial value of ε = 10
and the value of the stopping criteria for convergence is chosen as κ = 10−6. To generate the data
Gδ
i , i = 1, 2, we first solve for ui in (6) with given test values of D, σ and boundary illumination

data gi on a finer mesh with N = 400 using the cell-nodal finite difference model described in
Section 4. We next compute Gδ

i on the finer mesh using the values of σ, σb, ui from (7). We finally
restrict the resulting Gδ

i onto the coarser mesh with N = 100 and take this as our given data.
To quantify the comparisons of the reconstructions obtained in terms of their contrast (function

values) and resolution (discontinuities or edges), with and without noise in the data, we use the
following quantitative figures of merit [39]

Relative mean square error (RMSE) percentage =
‖frec − fex‖2

‖fex‖2

∗ 100%,

Peak signal-to-noise ratio (PSNR) = 10 log10

(
max fex

‖frec − fex‖2
2

)
,

(22)

where fex is the exact phantom and frec is the reconstructed phantom.

Test Case 1: we consider a phantom represented by a disk centered at (0.25, 0.25) and having
radius 0.25. The value of σ inside the disk is 1 and outside is 0. The background value σb is chosen
to be 0.16. The corresponding value of D is chosen as 0.003 inside the disk and 0.02 outside. The
plots of the actual phantoms for D and the total absorption coefficient σa are shown in Figure 1.
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(a) Exact D (b) Exact σa

Figure 1: Test Case 1: Exact D and σ represented by disk phantoms.

In Figure 2, we present the reconstruction of D and σa using various choices of the regularization
terms in J . The first column of images depicts reconstructions of D and σa by setting the weight

ξ2 = 0 of the regularization term
∥∥D − D̄∥∥2

2
, which is the term that measures the deviation of D

from the Kubelka-Munk approximation D̄, given in (9). We see that the reconstruction of D has a
very poor resolution and contrast and in turn, this causes loss of contrast in the reconstruction of

σa. In the second column, we use our regularization term
∥∥D − D̄∥∥2

2
but setting the weight γ = 0

of the sparsity that promotes the L1 regularization of σ. We now see a reconstructed σa with a
poor contrast with respect to the background σb. The reconstructed D is now far more superior
than in the previous cases, but there is still a significant loss of contrast.
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(a) Reconstruction of D with α = 1, ξ1 =
0.01, ξ2 = 0, γ = 0.01

(b) Reconstruction of D with α =
1, ξ1 = 0.01, ξ2 = 20, γ = 0

(c) Reconstruction of σa with α =
1, ξ1 = 0.01, ξ2 = 0, γ = 0.01

(d) Reconstruction of σa with α =
1, ξ1 = 0.01, ξ2 = 20, γ = 0

Figure 2: Test Case 1: The reconstructed disk phantoms with different choices of the values of
the regularization weights.

Next, we show that in order to enhance contrast and resolution in the reconstruction, we need

to have the L2 regularization term
∥∥D − D̄∥∥2

2
for D and the sparsity promoting L1 regularization

term for σ. In this setting, Figure 3 shows the reconstructions of D and σa with our framework
using the SQH algorithm. We see that the reconstructed functions are of high resolution and
high contrast when compared to the actual phantoms in Figure 1. We also compute the RMSE
percentages and PSNR values for the reconstructions in Table 2. We observe that without the
Kubelka-Munk regularization term for D and without the L1 regularization term for σ, we have
very high values of RMSE % and low values of PSNR values. With those regularization terms,
using the SQH algorithm, we obtain RMSE % of around 1 and high PSNR values, reaffirming the
superiority of the reconstructions.

15



(a) Reconstruction of D with α = 1, ξ1 =
0.01, ξ2 = 20, γ = 0.01

(b) Reconstruction of σa with α =
1, ξ1 = 0.01, ξ2 = 20, γ = 0.01

Figure 3: Test Case 1: The reconstructed disk phantoms using the weights α = 1, ξ1 = 0.01, ξ2 =
20, γ = 0.01.

Method RMSE % (D) RMSE % (σa) PSNR (D) PSNR (σa)

Without Kubelka-Munk (ξ2 = 0) 225.7 9.24 25.09 32.37
Without L1 (γ = 0) 218 30.47 27.06 23.51

With Kubelka-Munk
(ξ2 = 20) and L1 (γ = 0.01)

0.08 1.41 94.33 50.29

Table 2: Test Case 1: RMSE % and PSNR values for reconstructions of the disk phantom with
different regularization weights

Test Case 2: we demonstrate the robustness of our framework for reconstructing multiple
objects. In this test case, we consider a heart lung phantom for σ. The underlying value of the
phantom is 0 that is perturbed into two ellipses that represent the lungs with value 1, and a disk
representing the heart with value 0.5. The value of σb is chosen to be 0.03. The value of D is
chosen as 0.003 inside the ellipses, 0.006 inside the disk and 0.1 elsewhere. The plots of the exact
and the reconstructed phantoms are shown in Figure 4.
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(a) Exact D (b) Exact σa

(c) Reconstructed D (d) Reconstructed D with 5% noise (e) Reconstructed D with 10% noise

(f) Reconstructed σa (g) Reconstructed σa with 5% noise (h) Reconstructed σa with 10% noise

Figure 4: Test Case 2: The actual and the reconstructed phantoms

We see from the reconstructed images of D and σa in Figures 4c and 4f that they are of high
contrast and resolution. Now, in order to test the robustness of our method with noisy data, we
introduce 5% and 10% multiplicative Gaussian noise to the interior data H. We also modify the
L2 and L1 regularization weights for σ, ξ1 = 0.1 and γ = 0.1. This ensures removal of artifacts
from the reconstruction of σ due to the noisy data, which in turn helps to remove some artifacts
in the reconstruction of D. Figures 4d, 4e, 4g and 4h show the corresponding reconstructions. We
see that the reconstructions of D and σa involve a few artifacts near the bottom, more pronounced
in the case of 10% noise. But overall, both reconstructions still preserve obtain high contrast and
resolution near and at the regions of the heart and lungs. This is also validated analytically from
the low RMSE % and high PSNR values of the reconstructions presented in Table 3.
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Noise % RMSE % (D) RMSE % (σa) PSNR (D) PSNR (σa)

0 2.32 3.42 59.96 34.55
5 2.94 3.46 57.08 33.89
10 2.86 7.56 56.24 28.05

Table 3: Test Case 2: RMSE % and PSNR values for reconstructions of the heart and lung
phantom with different noise levels in the data

Test Case 3: we investigate the robustness of our SQH-QPAT algorithm in reconstructing
D in the case where the Kubelka-Munk relation (9) is by far not satisfied; i.e. we have factors
different from 100. For this test case, in regard to σ, we again consider the setting for heart and
lung phantom as described in test Case 2. However, for the value of D, we choose D = 0.0006
inside the right ellipse, D = 0.003 inside the left ellipse, D = 0.009 inside the disk and D = 0.1
for the background. The value of σb is again chosen to be 0.03.
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(a) Exact D (b) Exact σa

(c) Reconstructed D (d) Reconstructed D with 5% noise (e) Reconstructed D with 10% noise

(f) Reconstructed σa (g) Reconstructed σa with 5% noise (h) Reconstructed σa with 10% noise

Figure 5: Test Case 3: The actual and the reconstructed phantoms

With this challenging setting, we perform our reconstructions of D and σa and depict the
results in Figure 5 with and without noise in the data. We again observe high contrast and
resolution reconstructions of D and σa, even in the presence of 5% and 10% noise in the data.
The corresponding RMSE % and PSNR values are presented in Table 4, which are similar to the
previous test case.
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Noise % RMSE % (D) RMSE % (σa) PSNR (D) PSNR (σa)

0 1.47 3.25 56.69 35.88
5 1.43 3.57 54.18 34.57
10 2.13 4.61 47.70 30.05

Table 4: Test Case 3: RMSE % and PSNR values for reconstructions of the second heart and lung
phantom with different noise levels in the data

Test Case 4: we perform another challenging test using the Shepp-Logan phantom that
represents the structure of a human head, which comprises ellipses, disks of varying radii, and
an elliptical annulus. In this case, σ has the structure of Shepp-Logan phantom as given in [55].
The phantom is described as follows: The values of σ and D, respectively, inside two big ellipses
centered at (0.22,0) and (-0.22,0) are -0.3 and 0.02, inside the big disk centered at (0,0.35) are 0.5
and 0.003, inside the 2 small disks centered at (0,0.1) and (0,-0.1) are 0.5 and 0.003, inside the
small ellipses centered at (-0.08,-0.605), (0,-0.606) and (0.06, -0.605) are 0.5 and 0.003, inside the
elliptical annulus are 1 and 0.002, and elsewhere 0 and 0.006. The background σb is chosen to be
0.5 in this case.
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(a) Exact D (b) Exact σa

(c) Reconstructed D (d) Reconstructed D with 5% noise (e) Reconstructed D with 10% noise

(f) Reconstructed σa (g) Reconstructed σa with 5% noise (h) Reconstructed σa with 10% noise

Figure 6: Test Case 4: The actual and the reconstructed phantoms

For test Case 4, Figure 6 shows the exact and the reconstructed values of D and σa with
high resolution and contrast. Figures 6d, 6e and 6g, 6h depict the reconstruction with 5% and
10% multiplicative Gaussian noise in the interior data, respectively. We obtain high quality
reconstruction with our SQH-QPAT framework also in the case of objects with holes and inclusions.
The corresponding RMSE % and PSNR values are presented in Table 5. We do observe that the
RMSE % is higher than in the case of the heart and lung phantom, which is expected since there
are far more finer features in the Shepp-Logan phantom. However, the PSNR values are still at a
comparable level to the previous test cases that indicate that the reconstructions have high quality.
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Noise % RMSE % (D) RMSE % (σa) PSNR (D) PSNR (σa)

0 16.21 6.54 55.89 38.57
5 16.36 6.68 55.80 38.02
10 16.58 6.71 55.47 36.31

Table 5: Test Case 4: RMSE % and PSNR values for reconstructions of the Shepp-Logan phantom
with different noise levels in the data

Test Case 5: while in the previous test cases the phantoms to be reconstructed represented
organs in a human being, in this test case, we present results of detecting a tumor along with
organs using our SQH-QPAT framework. We consider σ that represents the organs as the same
Shepp-Logan phantom of test Case 4. The σ for the tumors are represented by two disks: one of
them having a large contrast with value 1.5 and the other having a contrast similar to the some
of the organs with value 0.2. The corresponding value of D is 0.001 and 0.004, respectively. The
background value σb = 0.5.

22



(a) Exact D (b) Exact σa

1 2 3 4 5 6 7 8

Iteration Number

0

0.1

0.2

0.3

0.4

0.5

0.6

J

Convergence of SQH-QPAT

(c) Convergence history of SQH-QPAT
iteration

(d) Reconstructed D (e) Reconstructed D with 5% noise (f) Reconstructed D with 10% noise

(g) Reconstructed σa (h) Reconstructed σa with 5% noise (i) Reconstructed σa with 10% noise

Figure 7: Test Case 5: The actual and the reconstructed phantoms

For test Case 5, Figure 7 shows the exact and the reconstructed values of D and σa with and
without noise in the interior data. We see that our SQH-QPAT framework is able to reconstruct
very well the tumors alongside the organs, which further demonstrates the wide applicability of
our reconstruction framework. Figure 7c shows the convergence history of the SQH-QPAT scheme.
Notice the strict monotonic decrease in the functional values, with stopping criteria fulfilled in 8
iterations. From Table 6, we also observe similar RMSE % and PSNR values, as in the previous
test case, demonstrating high quality reconstructions.
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Noise % RMSE % (D) RMSE % (σa) PSNR (D) PSNR (σa)

0 16.50 7.19 55.89 36.62
5 16.69 7.40 55.79 36.25
10 16.90 7.40 55.45 35.12

Table 6: Test Case 5: RMSE % and PSNR values for reconstructions of the Shepp-Logan phantom
with different noise levels in the data

6 Conclusion

A new optimization framework for reconstruction with high contrast and resolution of optical
diffusion and absorption coefficients in quantitative photoacoustic tomography (QPAT) was pre-
sented. The resulting QPAT inverse problem was formulated as the minimization of a best-fit
functional with a tentative prior relating the diffusion and absorption coefficients and L2 and L1

regularization terms, and subject to the constraint of the steady photon-propagation equation.
For the solution of this problem, a robust and fast sequential quadratic hamiltonian algorithm

based on the Pontryagin maximum principle was developed and analysed. Results of numerical
experiments were presented that demonstrate the ability of the proposed framework to efficiently
compute reconstructions of the optical coefficients with high contrast and resolution.
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A Proof of Theorem 4.1

We have
Hε(x, y,D, σ,D

k, σk, uk1, u
k
2, q

k
1 , q

k
2) ≤ Hε(x, y, w, z,D

k, σk, uk1, u
k
2, q

k
1 , q

k
2)

for all w ∈ [Dl, Dr], z ∈ [σl, σr]. Hence, it follows that

Hε(x, y,D, σ,D
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k
2, q

k
1 , q

k
2) ≤Hε(x, y,D
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2, q

k
1 , q

k
2)

=H(x, y,Dk, σk, uk1, u
k
2, q

k
1 , q

k
2)

(23)

for all (x, y) ∈ Ω. Let

L(x, y,D, σ, u1, u2) =
α

2

2∑
i=1

(H(x, y, σ, ui)−Gδ
i (x, y))2 +

ξ1

2
σ2(x, y)

+
ξ2

2

(
D(x, y)− 1

100 (σ(x, y) + σb)

)2

+ γ|σ(x, y)|.
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Then, we have

J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
2) =

∫
Ω

L(x, y,D, σ, u1, u2)− L(x, y,Dk, σk, uk1, u
k
2) dxdy. (24)

Adding and subtracting Dk ∇qki · ∇ui + (σk + σb) q
k
i ui and Dk ∇qki · ∇uki + (σk + σb) q

k
i u

k
i to the

right-hand side of (24), we obtain

J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
2)

=

∫
Ω
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i=1

(
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k
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)
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−
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dxdy
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2) dxdy −
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i u
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dxdy

+

∫
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2∑
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(
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i u
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)
dxdy.

This gives us

J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
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=

∫
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H(x, y,D, σ, uk1, u
k
2, q

k
1 , q

k
2) + Γα

2∑
i=1

[
−(σk + σb)[H(x, y, σk, uki )−Gδ

i ]δui +
1

2
(σk + σb)(δui)

2

]

−H(x, y,Dk, σk, uk1, u
k
2, q

k
1 , q

k
2)−

2∑
i=1

(
Dk ∇qki · ∇ui + (σk + σb) q

k
i ui
)

+
2∑
i=1

(
Dk ∇qki · ∇uki + (σk + σb) q

k
i u

k
i

)
dxdy
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=

∫
Ω

H(x, y,D, σ, uk1, u
k
2, q

k
1 , q

k
2) + ε[(δD)2 + (δσ)2]−H(x, y,Dk, σk, uk1, u

k
2, q

k
1 , q

k
2) dxdy

+

∫
Ω

2∑
i=1

{
Γα(σk + σb)[H(x, y, σk, uki )−Gδ

i ]ui +
(
Dk ∇qki · ∇ui + (σk + σb) q

k
i ui
)}

dxdy

−
∫

Ω

2∑
i=1

{
Γα(σk + σb)[H(x, y, σk, uki )−Gδ

i ]u
k
i +

(
Dk ∇qki · ∇uki + (σk + σb) q

k
i u

k
i

)}
dxdy

+
2∑
i=1

∫
Ω

1

2
(σk + σb)(δui)

2 − ε [(δD)2 + (δσ)2] dxdy

=

∫
Ω

Hε(x, y,D, σ,D
k, σk, uk1, u

k
2, q

k
1 , q

k
2)−H(x, y,Dk, σk, uk1, u

k
2, q

k
1 , q

k
2) dxdy

+
2∑
i=1

∫
Ω

1

2
(σk + σb)(δui)

2 dxdy −
∫

Ω

ε [(δD)2 + (δσ)2] dxdy, (using (15))

≤
2∑
i=1

∫
Ω

1

2
(σk + σb)(δui)

2 dxdy −
∫

Ω

ε [(δD)2 + (δσ)2] dxdy, (using (23))

Now, we recall the result of Lemma 3.1 that gives the following

‖δui‖2
L2(Ω) ≤ C̄1

(
‖δD‖2

L2(Ω) + ‖δσ‖2
L2(Ω)

)
,

where C̄1 = 2 c2
3/c

2
1. Hence, we proceed as follows

J(D, σ, u1, u2)− J(Dk, σk, uk1, u
k
2) ≤

∫
Ω

−ε
[
(δD)2 + (δσ)2

]
dxdy +

2∑
i=1

∫
Ω

1

2
(σk + σb)(δui)

2 dx

≤− ε
[
‖δD‖2

L2(Ω) + ‖δσ‖2
L2(Ω)

]
+

2∑
i=1

σ̄

2
‖δui‖2

L2(Ω)

≤− ε
[
‖δD‖2

L2(Ω) + ‖δσ‖2
L2(Ω)

]
+ C̄1 σ̄

[
‖δD‖2

L2(Ω) + ‖δσ‖2
L2(Ω)

]
=−

(
ε− C̄1 σ̄

) [
‖δD‖2

L2(Ω) + ‖δσ‖2
L2(Ω)

]
,

where σ̄ = σr + σb. Thus, the theorem is proved with θ = C̄1 σ̄.

References

[1] G. S. Abdoulaev, K. Ren and A. H. Hielscher. Optical tomography as a PDE-constrained
optimization problem, Inverse Problems, 21:1507-1530, 2005.

[2] B. Adesokan, K. Knudsen, V. P. Krishnan and S. Roy. A fully non-linear optimization
approach to acousto-electric tomography. Inverse Problems, 34:104004, 2018.

[3] G. S. Alberti and Y. Capdeboscq. Lectures on Elliptic Methods for Hybrid Inverse Problems,
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[24] B. T. Cox, S. R. Arrdige, P. Köstli and P. C. Beard. Two-dimensional quantitative pho-
toacoustic image reconstruction of absorption distributions in scattering media by use of a
simple iterative method, Applied Optics, 45:1866-1875, 2006.

[25] B. T. Cox, S. R. Arrdige and P. C. Beard. Estimating chromophore distributions from
multiwavelength phtoacoustic images, Journal of Optical Society of America, 26:443-455,
2009.

[26] A. Dimofte, J. Finlay and T. Zhu. A method for determination of the absorption and scat-
tering properties interstitially in turbid media, Physics in Medicine and Biology, 50(10):
2291–2311, 2005.

[27] D. J. Durian. The diffusion coefficient depends on absorption, Optics Letters, 23(19):1502-
1504, 1998.

[28] V. Dzimbeg-Malcic, Zeljka Barbaric-Mikocevic and Katarina Itric. Kubelka-Munk theory in
describing optical properties of paper (I), Tehnicki Vjesnik, 19(1):191-196, 2012.
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