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Abstract

Control interventions steer the evolution of molecules, viruses, 
microorganisms or other cells towards a desired outcome. Applications 
range from engineering biomolecules and synthetic organisms to drug, 
therapy and vaccine design against pathogens and cancer. In all these 
instances, a control system alters the eco-evolutionary trajectory of a 
target system, inducing new functions or suppressing escape evolution. 
Here, we synthesize the objectives, mechanisms and dynamics of 
eco-evolutionary control in different biological systems. We discuss 
how the control system learns and processes information about the 
target system by sensing or measuring, through adaptive evolution or 
computational prediction of future trajectories. This information flow 
distinguishes pre-emptive control strategies by humans from feedback 
control in biotic systems. We establish a cost–benefit calculus to gauge 
and optimize control protocols, highlighting the fundamental link 
between predictability of evolution and efficacy of pre-emptive control.
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hypermutation and selection steps without active external interven-
tion8. In these systems, the artificial selection protocol couples the 
desired output of the target gene to the reproductive fitness of a carrier 
cell or organism. This happens, for example, when the target gene acts 
to increase the metabolism of new resources or the tolerance of new 
environmental conditions. Directed evolution experiments implement 
feedback control mechanisms to monitor fitness and protein functions 
of interest and tune the strength of artificial selection accordingly9–13. 
The resulting protocols can steer the evolutionary trajectories of the 
target gene or pathway, subject to constraints imposed by the natural 
fitness landscape of the carrier organism.

Directed evolution of microorganisms
In biotechnology, inducing adaptive evolution under controlled lab
oratory conditions is highly effective in generating organisms with 
specific traits, such as heat tolerance14 or resistance to stressors15 
(Fig. 1b). This approach is advantageous when the target organism is  
difficult to engineer or the genetic basis of the desired phenotype  
is complex and poorly understood. However, molecular traits lacking 
fitness benefit cannot be directly selected by adaptive evolution. This 
limitation can be circumvented by exploiting environment-dependent 
trait correlations. For example, a recent study used environment 
switching, guided by metabolic modelling, to evolve fitness-neutral 
or costly traits in Saccharomyces cerevisiae3. Controlled evolution 
takes place in a transient environment, by adaptive evolution of a 
secondary trait that is coupled to the target trait via a metabolic net-
work. After the controlled evolution phase, the target environment 
is switched on and the enhanced target trait becomes effective. This 
method allows the directed evolution of features such as metabolite 
secretion, which are currently inaccessible to direct adaptive evolution 
protocols.

Engineering of microbial communities
A new frontier in synthetic biology is to use genetic engineering in 
assembling microbial communities with designed functions. This 
allows division of labour and specialization of subpopulations towards 
a given objective, for example, the secretion of compounds. However, 
engineered functions consume resources and put stress on the com-
munity, which can lead to loss-of-function mutations and make these 
communities unstable16,17. Recent work has achieved the stabilization 
of a model community by adding a bacterial strain with an engineered 
toxin production mechanism18. This strain senses and controls the 
population size of competing species. Its toxin production can operate 
autonomously or by an externally set protocol, which manipulates the 
density of the underlying quorum sensing molecules. Such stabiliza-
tion in variable environments can be achieved by various mechanisms, 
based on insights from engineering control theory19,20.

Control by gene drive
A gene drive is a genetic engineering technique that allows a specific 
allele of a diploid gene to spread rapidly through a population of sexu-
ally reproducing organisms so that the allele is inherited more than 50% 
of the time, that is, more than expected under Mendelian inheritance. 
Such systematic biasing of inheritance can drive chosen, even deleteri-
ous, alleles to prevalence in a target population. It serves, for example, 
to introduce new traits into a population or to reduce the prevalence 
of harmful traits or diseases21. However, gene drive systems, similar to 
control by drugs, can be affected by resistance evolution22. A showcase 
application of this method will be to combat malaria by introducing a 

Introduction
For thousands of years, humans have steered the evolution of ani-
mals and plants by selective breeding. Such interventions are a form 
of eco-evolutionary control: they alter the ecological or evolutionary 
trajectory of a target system towards a predefined objective. Modern 
eco-evolutionary control still fits this definition but has broader objec-
tives and a wider range of applications in bioengineering, ecology, 
medicine and public health1. In many cases, the targets of control are 
fast-evolving systems, such as microbial and viral pathogens or cancer 
cell populations.

Control of living systems is challenging because of their inher-
ent complexity. An intended change is inevitably coupled to other 
molecular traits and functions. For example, a controlled metabolic 
change may increase the output of a target pathway but, at the same 
time, decrease the overall fitness of the target organism2,3. Or an 
induced immune response may target cancer cells but also affect 
healthy cells4. The interactions between controller and target system 
are often modulated by the ecological context of both systems. Hence, 
control is a multi-dimensional problem: desired and collateral changes, 
which generate benefits and costs of control, have to be weighed and 
managed simultaneously. In particular, evolution of the target system 
can be an intended or a collateral effect of control5,6. Fast-evolving 
pathogens respond rapidly to an intervention; for example, bacteria 
acquire resistance to antibiotics and viruses escape from vaccination. 
The challenge of controlling such systems is to develop pre-emptive 
strategies that factor in the likely evolution of the target.

In this Review, we first present examples of eco-evolutionary 
control that highlight recent experimental and modelling advances. 
In the second part, we distil common aspects and differences between 
these systems in the mechanisms of control and in the dynamics of 
target and controller. The target system may change by regulation and 
by evolution, and the controller may be a biotic system co-evolving 
with the target or a human applying rational control strategies, often 
implemented by computation. These dynamics determine central 
issues of control: how does the control system acquire and process 
information about the target system? What makes computational 
control different from co-evolution? Specifically, we discuss the roles 
of target monitoring, adaptive learning and computational prediction7 
in successful control strategies. In the third part, we outline elements of 
an emerging eco-evolutionary control theory and highlight challenges 
for future research with a focus on biomedical questions. We argue 
that theory-based optimization of control is important for further 
development of the field. We close with a discussion of ethical issues 
in eco-evolutionary control.

Examples of evolutionary control
Control of biological systems has a diverse set of goals, from enhancing 
productivity and sustainability of biosynthetic processes to controlling 
the spread of disease. Here, we introduce several examples of recent 
research that shows the extraordinary breadth of evolutionary con-
trol problems. In all these systems, the objective of control includes 
inducing or suppressing evolution of the target system.

Directed evolution for molecular design
Directed evolution experiments with artificial selection have been used 
to improve the activity and selectivity of molecules and enzymes, quali-
ties that are often desirable in industrial or pharmaceutical applications 
(Fig. 1a). Recently developed in vivo directed evolution systems leverage 
the replication machinery of a host organism to perform autonomous 

http://www.nature.com/nrg


Nature Reviews Genetics | Volume 24 | December 2023 | 851–867 853

Review article

gene drive in mosquitoes that reduces transmission of the pathogen 
Plasmodium falciparum. Although many technological challenges 
of gene drives have been mastered, controlling resistance evolution 
and collateral effects as well as securing regulatory and community 
approval to test these systems in natural contexts remain major hurdles 
for this application21.

Antimicrobial interventions
Antibiotics control bacterial pathogens by interfering in cellular func-
tions and metabolic pathways. Targets of these drugs include bacterial 
ribosomes, as well as cell wall and DNA synthesis pathways23. Most clini-
cally relevant antibiotics are derived from natural compounds that are 
part of the inter-microbial weaponry24. Immune systems mount similar 
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Fig. 1 | Examples of evolutionary control. a, Directed evolution of an enzyme. 
The TmHisA enzyme, which is part of a histidine production pathway, is evolved 
to function in a new species, Saccharomyces cerevisiae. Top: the control 
protocol gradually decreases the supply of external histidine, using a feedback 
mechanism to maintain an approximately constant growth rate in four replicate 
populations (R1–R4 in different colours). By evolution of TmHisA, the yeast cells 
gradually adapt to function in environments without external histidine. Bottom: 
fitness in a histidine-free environment for the wild type (black circle) and for 
evolved TmHisA variants sampled from each replicate population after 700 h 
(~100 generations, R1–R4 in different colours). Successful TmHisA variants 
acquired 6–15 mutations. Part a adapted with permission from ref. 13. b, Directed 
evolution of antibiotic resistance. Top: controlled evolution of tetracycline 
resistance in four replicate Escherichia coli populations (R1–R4); resistance 

is measured by the half-inhibitory drug concentration (IC50) relative to the 
wild type. Feedback control maintains stable growth by keeping the actual 
drug concentration close to the IC50 value. Bottom: collateral trait evolution, 
measured against seven other drugs, can increase or decrease sensitivity; 
lines show the drug with maximum and minimum IC50 in each population. 
Part b re-plotted using data from ref. 15. c, Control of cancers by the immune 
system. Evolving cancers accumulate new mutations and new neoantigens. The 
resulting change in immune recognition during the evolution from a primary to 
a recurrent tumour is computed from a neoantigen fitness model and compared 
between cohorts of long-term (blue) and short-term (orange) survivors. These 
dynamics are shaped by immune interactions: recognition increases less in long-
term survivors, indicating the stronger suppression of clones with high-affinity 
neoantigens. Part c re-plotted using data from ref. 43.
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antimicrobial forces, including antimicrobial peptides25,26, which are 
also involved in the immune response to tumours27.

Bacteria acquire resistance to drugs by physiological adaptation 
or by evolution. The failure of antibiotic treatments due to resistance 
evolution generates an accelerating global health crisis28. Under antibi-
otic pressure, bacteria can mutate the molecules targeted by the drug, 
import resistance genes by horizontal gene transfer, activate specific 
defence pathways such as efflux pumps or globally re-allocate their 
proteome resources29,30. Diverse resistance mechanisms have also been 
described for antimicrobial peptides31. In some cases, metabolic fitness 
models can predict dosage-dependent trajectories of resistance evolu-
tion32 based on metabolic models of drug action33. Successful control 
protocols should limit resistance evolution, for example, by using 
judiciously chosen drug combinations34 or by exploiting ecological 
interactions35. However, we currently lack a general modelling frame-
work to pre-empt resistance evolution and to optimize antimicrobial 
interventions.

Immunotherapy
A patient’s immune system can be activated to treat diseases. Such 
therapies trigger an adaptive immune response against an antigen, 
based on the binding of immune receptors to antigenic epitopes. In an 
immune response against cancer, T cell receptors recognize so-called 
neoantigens, short peptides presented on the surface of cancerous 
cells that contain information on cancer-specific genome mutations36. 
Thus, the primary objective of immunotherapy is to activate T cells with 
strong binding to a cancer neoantigen.

Collateral effects include autoimmune reactions caused by spu-
rious binding to peptides presented by healthy cells37. Additionally, 
tumours can develop resistance to immunotherapy by regulatory 
changes or escape evolution38–42. The evolutionary feedback of cancers 
to immunotherapy includes immune editing39,43, that is, the dynamics 
of cancer clones and their associated neoantigens changes towards 
reduced immune recognition (Fig. 1c). These dynamics are similar 
to the clade turnover of viral pathogens (discussed below). Recently, 
tumour–immune interactions have been combined into quantitative 
fitness models for cancer and used for computational prediction of 
neoantigens and their effects on cancer evolution38,43–45. Such models 
can serve as a basis for the optimized selection of cancer vaccines40,46,47.

Immunotherapy can also be used to treat autoimmune diseases by 
modulating the overall immune response in a host. Autoimmunity is 
caused by dysregulated inflammation against antigens from the host, 
so-called self-antigens. Targeted immunotherapy against autoimmune 
diseases selectively inhibits inflammatory signals but affects other 
immune functions only minimally. A successful control approach is 
to induce appropriate combinations of signalling molecules48, while 
avoiding toxicity caused by high dosage of these molecules49. Modu-
lation of signalling molecules can also be used to establish robust 
immune responses in cancer immunotherapy, improving the efficacy 
of these treatments50,51.

Vaccination
Active vaccines produce an adaptive immune response against a spe-
cific pathogen to reduce the risk of future infections and to mitigate 
their effects. This type of intervention combines multiple aspects of 
control: a human intervention triggers directed evolution in a biotic 
system, producing a control mechanism to combat the pathogen 
and to constrain its escape evolution. Vaccines against influenza or 
SARS-CoV-2 are raised against a circulating viral strain; they provide 

protection against infection by that strain and by closely related strains. 
However, viral populations are often highly heterogeneous, and some 
strains are not covered by the vaccine. Subsequent escape evolution of 
the virus from existing population immunity further degrades vaccine 
cross-protection against future strains. Therefore, the selection of 
vaccine strains for influenza has a pre-emptive objective: to generate 
optimal protection against circulating strains in the next winter sea-
son. Antigenic fitness models have been developed in recent years to 
predict viral evolution and to compare the expected performance of 
candidate vaccines against future strains52–54.

The evolutionary feedback of vaccination on viral evolution seems 
to be small for influenza55. By contrast, recent work for SARS-CoV-2 
suggests that vaccination can significantly contribute to immune 
selection, shaping global evolution56. This is a prerequisite for using 
vaccination as evolutionary control, specifically to reduce the rate of 
escape evolution or to increase the collateral cost of escape for the virus.

Induced evolution of broadly neutralizing antibodies
Whereas antibodies generated by standard vaccines generate limited 
cross-protection against other strains, broadly neutralizing antibodies 
(bNAbs) bind to conserved protein regions and cover a diverse set of 
viruses. Vaccines that direct the immune system to evolve bNAbs can 
substantially improve the breadth and duration of protection against 
rapidly evolving viral pathogens. This topic has been extensively stud-
ied in HIV57–63 and influenza64–69. Previous computational work shows 
that bNAbs against HIV may be induced by successive vaccination in 
a healthy individual70–72. However, directing the immune system to 
evolve bNAbs against HIV has proved difficult. The main reason is that 
bNAbs require many mutations to acquire breadth, making their somatic 
evolutionary trajectories long and difficult to drive63,73–75. Moreover, 
under any given antigen challenge, bNAbs compete with many avail-
able target-specific antibodies of higher affinity70–72,76,77. For influenza, 
bNAbs targeting conserved regions of viral proteins have been elicited 
in animal systems64,66,68. Broad neutralization has also been achieved by 
simultaneous application of multiple antigens69. The immune interac-
tions of conserved protein regions are often weak, but presentation on 
nanoparticles and repeated applications have improved the immune 
response to these vaccines65,67. A population-level broadening of neu-
tralization has also been observed against SARS-CoV-2, where repeat 
(booster) vaccinations are cross-protective against more viral variants 
than initial vaccinations78–82 and can even elicit bNAbs against the virus83.

The evolutionary feedback of broadly protective vaccines is cur-
rently unknown. Broader protection can be argued to decrease escape 
evolution. On the other hand, larger vaccination coverage and long-
lived vaccine-induced immunity in the human population can increase 
selection pressure for viral escape compared with current vaccinations.

Key concepts of evolutionary control
The examples above show a common structure of eco-evolutionary 
control problems: a control system defines a control objective and 
sets up a control mechanism to interact with an evolving target system, 
following a control protocol (Fig. 2). Such interactions couple the 
eco-evolutionary dynamics of both systems and generate multiple 
feedback loops. We now discuss these building blocks and their role 
in successful control of evolving systems.

Objectives and collateral effects
Directed evolution. A new biological feature in a target system can 
be elicited by a controlled evolution process. The control force is 
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artificial selection superimposed onto the natural selection govern-
ing the unperturbed system. Directed evolution is often synergistic: 
control induces positive selection, increasing the controller’s payoff 
as well as the absolute fitness, or growth rate, of the target system 
in the presence of control (Fig. 3a). In parallel, the controlled target 
system often deviates from its intrinsic fitness peak, which defines 
the evolutionary optimum under natural selection. This marks a key 
problem of control: the gain of target features is coupled to deleteri-
ous changes of other functions15,84 (Fig. 1b). In other words, control is  
likely to come with collateral effects on the target and the control 
system6. A ubiquitous source of collateral effects are co-varying sec-
ondary traits. An example is the directed evolution of PbrR, a multi-
target transcription factor, to improve its affinity to a primary target. 
This process can reduce binding to other functional targets or induce 
spurious binding to off-target locations in the genome85 (Fig. 3a). 
Collateral effects will often reduce the payoff for the controller, but 
they can also be neutral or reinforce the primary objective (Fig. 1b). 

Hence, successful control requires navigating a multi-dimensional 
space, by monitoring and processing of multiple target interactions 
to optimize their combined payoff85,86.

Pathogen escape control. In infection or cancer therapy, interven-
tions are aimed at containing, weakening or eradicating the disease 
agent. In this case, the primary objective is antagonistic: the con-
troller’s payoff increase is coupled to a decline in absolute fitness 
and population size of the target system. Again, successful control 
navigates a complex space of primary and collateral effects, which 
requires a careful choice of the control objective87,88. In pathogen 
control, a detrimental collateral effect is the evolution of resistant 
variants that escape control and carry a rebound of the pathogen 
population. In some cases, the target system can even hijack the con-
trol mechanism for its own benefit (as discussed below)89. Escape 
evolution is common in antibiotic treatment, immune therapy and 
vaccination. Many successful protocols suppress or delay the rise of 
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Fig. 2 | Concepts and key steps of evolutionary control. All instances of 
evolutionary control discussed involve a fast-evolving target system and a 
biotic or computational control system. The controller establishes a control 
objective and sets up a mechanism and protocol for control interaction 
with the target system. Control mechanisms include directed evolution 
experiments8–10,12,192–196, gene drive21, genetic engineering197–199, vaccination 
and immunotherapy4,40,46,200,201, and metabolic perturbations, for example by 
antibiotics33. The mechanisms of control determine the control protocols that 
can be realized, for example, in therapies158,202–206 and vaccination58,70–72,74,98,207–210. 
Red frame and arrows highlight the key feedback loop of control and the 
underlying interactions. Control alters fitness and evolution of the target 
system towards the control objective; evolution under control includes 
microbial escape158,159,211,212, tumour escape in cancer38,39,41,213, immune–pathogen 

co-evolution77,122,146,214 and mutation-selection cycles in directed evolution 
experiments9,12,13,189,215–221. The controlled dynamics generates benefit and costs 
of control, which determine the net payoff for the controller. Control 
cost is system specific and includes the cost associated with the emergence 
of resistance213,222–227, cross-resistance39,228,229 or tolerance230,231 in microbes 
targeted by a therapy (for example, antibiotics), off-target disturbance of other 
microbes in the same ecological environment232–236, resistance to pesticides in 
agriculture237–242, latency and formation of pathogenic reservoirs243–247, treatment 
side effects248–250 and disturbance of ecosystems251,252. Monitoring253–262, adaptive 
learning176,177 and prediction of the target dynamics based, for example, on a 
catalogue of resistance mutations263, evolutionary models38,43,52,53, metabolic 
models32,264–266 or statistical inference of sequence–function maps168,171,176,177,267,268 
serve to evaluate the net payoff and to update and improve control protocols.
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escape variants by reducing positive selection for escape (Fig. 3b). For 
example, evolutionarily informed adaptive cancer therapy90, which 
aims to contain rather than eradicate the cancer cell population, has 
shown success in patients with prostate cancer by limiting escape 
evolution91. In other cases, a decline in absolute fitness of the target 
system can be achieved by inducing positive selection for a costly 
trait92. Escape evolution can also generate collateral effects in the 
target system that act to strengthen control. For example, immune 
escape mutations of the influenza virus are often coupled to a loss in 
protein fold stability, which reduces the available evolutionary paths 
and the speed of escape evolution93–95.

The ecology of control
Primary and collateral interactions and their synergistic or antagonistic 
effects define what can be called the ecosystem of control and target 
systems (Fig. 2). As in any ecosystem, the strength of these interactions 
is modulated by feedback mechanisms in both components. Unlike in 
many ecological models, control interactions are not constants but 
can rapidly change by target evolution and control updates; we discuss 
these eco-evolutionary dynamics below. Control and target systems 
are often embedded in larger ecosystems, such as microbial commu-
nities. These ecological conditions can shape the efficacy of control. 
For example, the microenvironment of a cancer affects immunotherapy 
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by modulating the density of T cells available for neoantigen recogni-
tion in a specific tissue96. In some cases, control protocols can exploit 
ecological complexity by steering the target system along environment-
dependent fitness landscapes. An example is the directed evolution 
protocol discussed above, which bridges a fitness valley by switching 
environments3. Similarly, switching antigen environments may be a 
promising avenue to elicit bNAbs70–72,97–99.

Mechanisms and leverage of control
How are control interactions realized in biological systems? The biotic 
and computational control mechanisms discussed here are ultimately 
based on molecular interactions, including specific binding and bio-
chemical reactions of host and target molecules. Understanding control 
interactions at the molecular level is often a prerequisite for tuning 
them towards a specific system-level objective. A prominent example 
is antibiotics that bind to specific proteins in a bacterial target system, 
thereby interfering in its metabolism or regulation. Many biotic control 
mechanisms are based on molecular interactions as well. For exam-
ple, bacteria living in communities have co-evolved a broad control 
weaponry, including phages and tailocins24, as well as cognate response 
mechanisms. These interactions serve to control other microorgan-
isms100–103 and to stabilize ecosystems against invasions104. Immune 
interactions involve an array of molecular mechanisms, including anti-
microbial peptides produced by the innate immune system31,105,106, as well 
as T cells, B cells and antibodies of the adaptive immune system. These 
immune mechanisms have co-evolved with pathogens over millions of 
years, resulting in a biotic control machinery that can mount specific 
and effective responses against a multitude of infecting pathogens.

By modifying the balance of births and deaths, all of these mecha-
nisms can alter selection in the target system. This is the most common 
form of evolutionary control. The selective force specified by a control 
protocol is often time dependent: control induces a fitness seascape 
for the target system (Fig. 4). Time-dependent selection can be tuned 
by real-time feedback from the growth of the target population10,13,15 
(Fig. 1a,b). Similarly, spatial selection gradients induce effectively 
time-dependent selection on moving populations107.

Besides selection, mechanisms that facilitate exploration of the 
trait space and the associated fitness landscape can be leveraged 
for control. In directed evolution, these mechanisms include chang-
ing the rate and types of mutations108, as well as the population size  
of the target population. Control protocols for microbial communities 
can broadly manipulate species interactions, for example, through 
resource competition, species density manipulation or predation18,109.

Regardless of the precise mechanism, successful control depends 
on sufficient leverage to change the target system’s evolutionary tra-
jectory. Limitations of control leverage observed ubiquitously across 
biology are a diminishing return and time-dependent degradation. For 
example, in control by molecular interactions, saturation of binding 
leads to a diminishing return per control molecule; thus, an interme-
diate level of control molecules often yields an optimal cost–benefit 
ratio110. Similarly, evolution of the target or the control system can curb 
control leverage over time. Both factors are present in the controlled 
microbial community discussed above18. First, the bacteria targeted by 
toxins can evolve resistance and overcome control. Second, in a micro-
bial species performing autonomous control, the control mechanism 
of toxin production reduces growth, and adaptive evolution can lead 
to loss of this function.

These examples underscore that efficient control requires under-
standing the action pathway and the specific limitations of a given 

control mechanism. As it stands, such knowledge is often incomplete. 
For instance, many cancer drugs undergoing clinical trials do not act 
via the mechanism that was originally proposed. Instead, the reported 
preclinical efficacy results from off-target toxicity as a mechanism of 
action111. Off-target toxicity can lead to dangerous adverse effects and 
is a major cause of clinical trial failure112,113.

Dynamics of control
The eco-evolutionary dynamics of control can be described as a 
sequence of actions by the control system, which mounts and updates 
control pressure, and responses to such pressure by the target system. 
The fastest response takes place at the physiological level, by gene regu-
lation and metabolic changes. For example, bacteria rearrange their cell 
metabolism in response to antibiotic pressure33. Control also changes 
the population dynamics of the target system, as well as the frequency 
of genetically or phenotypically distinct variants, thereby affecting its 
ecological interactions. Finally, de novo mutations lead to evolutionary 
adaptation of the target population. The speed of evolution depends 
on the strength of selection and on the mutational target generated by 
the control interaction. In rapidly evolving bacterial and viral systems, 
ecological and evolutionary changes are often linked and take place on 
overlapping timescales114,115. A prominent example is the dynamics of 
the SARS-CoV-2 pandemic, where most of the recent epidemic waves 
coincided with genetic turnover, leading to the rise of new variants 
with partial escape from population immunity within time intervals 
of a few months. Successful control protocols have to be tuned to the 
speed of the target system. Thus, many of the systems discussed in this 
Review show tightly coupled target dynamics and control updates on a 
common timescale — a hallmark of eco-evolutionary control.

Information flow and modes of control
The control system continuously gathers information about the target 
system and processes that information into a control force acting on 
the target. This feedback loop is central to control dynamics (Fig. 2). We 
can distinguish different modes of information gain and processing. 
First, all evolutionary control protocols require repeated monitoring 
of the target system in its instantaneous state. This information is then 
processed into control updates, resulting in a fitness seascape for the 
target system (Fig. 4). In biotic systems, control updates based on moni-
toring can be realized by regulation or by co-evolution with the target 
system. For example, bacteria in communities ubiquitously update 
their ecological interactions based on monitoring of environmental 
parameters and of other species24,116. The adaptive immune system in 
vertebrates has a copious reservoir of naïve immune cells that enable 
monitoring and primary responses to novel pathogens117. Importantly, 
control dynamics based on monitoring alone can act against the current 
state of the target system but cannot pre-empt its future evolutionary 
changes (Fig. 4a).

In a second mode, the control system can gain leverage by learning 
broad features of the target’s evolutionary dynamics. Computational 
and biotic controllers can learn sufficiently simple and repeatable 
dynamical patterns by adaptive evolution of their control machinery — 
we refer to such processes as adaptive learning (Fig. 4b). For example, 
the human immune system reduces the prevalence of memory B cells 
with high-affinity receptors by negative feedback regulation, introduc-
ing a bias towards moderate-affinity, more cross-reactive memory118,119. 
As shown by recent theoretical work, this bias can reflect a response of 
the immune system to the speed of evolution of typical antigens120–124. 
A high-affinity and highly specific memory repertoire is optimal against 
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slowly evolving antigens, where a subsequent infection is likely to 
involve a strain similar to the primary infection. By contrast, a more 
diverse and cross-reactive repertoire can protect against a secondary 
infection by an evolved strain at some evolutionary distance from the 
primary strain. For example, our B cell defence against influenza is 

cross-protective over periods of 3–5 years, curbing the number and 
burden of infections over a human’s lifetime.

Human controllers can employ a third, rational control mode 
based on computational prediction of specific evolutionary trajec-
tories in the target system38,43–45,52–54. This method processes not only 
broad features of the target dynamics but also real-time information 
about the target trajectory up to the starting point of predictions 
(Fig. 4c). In some systems and over limited periods, predictions cap-
ture a priori unlikely trajectories and previously unseen mutations32, 
provided the underlying evolutionary rules are sufficiently simple to 
be learned from the available training data. Most importantly, control 
protocols based on computational predictions can factor in the evo-
lutionary response of the target system to the control pressure56 — we 
refer to this mode as pre-emptive control. Mathematical definitions of 
predictive information and pre-emptive control are given in Box 1. In 
the following sections, we describe how to construct such protocols.

Towards quantitative control of evolving systems
As the discussion so far shows, eco-evolutionary control contains the 
full complexity of living systems, including regulation, metabolism, 
ecology and evolution. This challenge is epitomized by the collateral 
effects of control, which can couple the target trait to a vast number of 
a priori unrelated biological functions. Biological insight is required 
to compress this complexity into a manageable set of key phenotypes, 
mechanisms and dynamical modes relevant for the problem at hand. 
Quantitative control can then build on high-throughput evolutionary 
monitoring of target systems and on computational models for the 
control dynamics. Such models establish a quantitative cost–benefit 
tally of control, which serves two main purposes. First, it allows a judi-
cious decision on when to apply control: a given protocol should be 
used only when its benefit exceeds its cost. Second, computation can 
rapidly screen large numbers of alternative control protocols and filter 
out candidates for in-depth comparison. In particular, control models 
rationalize how the information gathered by monitoring, adaptive 
learning and predictions shape control protocols (Fig. 5 and Box 1). 
These are key elements of a developing eco-evolutionary control theory 
that will provide overarching principles for a diverse set of applications.

We now give a perspective on modelling and data input that will 
become important for the control of complex evolutionary systems.

Biological interactions of control
Cell metabolism. Successful control often relies on a quantitative 
understanding of metabolic processes, including their response to 
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Fig. 4 | Monitoring, adaptive learning and prediction shape control 
protocols. In the control of a pathogen, control is a moving fitness trough for the 
target population (red, darker shading indicates lower fitness). Control partially 
suppresses growth in the target system and induces escape evolution away from 
the fitness trough (cyan arrows). In response, the control seascape is updated 
(red arrows); control updated at time t  acts on the target system in the next time 
interval t t( , + 1). The update dynamics of control protocols are shown for a given 
evolutionary trajectory of the pathogen in three different control modes. 
a, Control based on monitoring. Protocols are informed only by monitoring  
of past and present states and lag behind the evolution of the target system. 
b, Control based on adaptive learning. Protocols can adapt to broad dynamical 
features of target evolution (here, the breadth of the fitness trough is tuned to 
the speed of target evolution). c, Computational control leverages short-term 
predictions of target evolutionary trajectories to generate pre-emptive protocols.
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Box 1

Optimizing control by monitoring, learning and predictions
Here we describe the dynamics of information gathering by the 
controller and the resulting optimization of protocols in a minimal 
model for the control of escape evolution (Fig. 4). The maximum-
impact protocol xxmax closely follows a moving target yy, which 
requires full, posterior knowledge of its stochastic evolutionary 
path in the presence of the control force. In any practical applica
tion, the best available (forward) protocol *xx  follows a projection 
of the target path informed only by data from the past (Fig. 5). 
To compare and optimize forward protocols, we use a payoff function 

= − −Ψ t Ψ t ∆Ψ t C( ) ( ) ( )max , where Ψ t Ψ x t( ) ( ( ))max max=  is the direct 
benefit at the maximum-impact point, = −*∆Ψ t c x t x t( ) ( ( ) ( ))max

2 is 
the payoff cost generated by the mismatch *x t x t( ) ( )max−  and C is the 
sum of control costs.

Monitoring
Measurements provide information about the instantaneous state  
of the target. In between measurements, *xx  deviates from xxmax, 
reflecting the increase of uncertainty on the target’s evolutionary 
path (cones in Fig. 5). In the minimal model, the time-dependent 
mismatch *x t x t( ) ( )max−  follows a random walk with diffusion  
constant D0. Each control update by measurement resets the 
mismatch to a small value determined by the measurement error 
and generates a measurement cost Cm, caused by the physio
logical process of signal processing. Over a time interval +t t τ( , ) 
between consecutive updates, the optimal monitoring-based 
forward protocol maintains the action coordinate x t( )max  set by 
the last measurement (Fig. 5a). This produces an expected average 
payoff *ψ ψ ∆ψ c cmax m 0= − − −  with mismatch cost =∆ψ cD τ/20 , 
a measurement cost c C τ/m m= , and other costs c0. More frequent 
updates reduce the mismatch but increase the measurement cost 
per unit of time6 (Fig. 5a,b). Hence, there is an optimal time interval 
between updates, *τ C cD[2 /( )]m 0

1/2= . We can express the information 
gain, or loss of uncertainty, by measurements as a Kullback–Leibler 
divergence (DKL):

∣I t t τ D Q Q( , ) ( , , ).t t τ t t τm KL , ,
0+ = + +

Here Qt t τ,
0

+  is the prior distribution generated by the diffusion 
of the target’s evolutionary path up to time +t τ, following a 
measurement at time t, and Q̂t t τ, +  is the posterior distribution of 
paths after the measurement at time +t τ. The Kullback–Leibler 
divergence between these probability distributions indicates how 
likely random draws from the prior distribution look as if drawn 
from the posterior distribution; this probability decreases exponen
tially with increasing DKL. Intuitively, Im counts the (inverse, log) 
fraction of paths in the uncertainty cone that are compatible with 
the next measurement (Fig. 5a).

Adaptive learning
Long-term evolution of the control machinery can increase its 
efficacy. For example, a larger control range increases the payoff and 

reduces the target fitness at a given mismatch −∗x xmax. This reduces 
the mismatch cost (c decreases) and can slow down target evolution 
(D0 decreases). Hence, adaptive learning increases the net payoff 
gain of monitoring-based protocols, but the more complex control 
machinery generates an additional control cost (Fig. 5c).

Evolutionary predictions
Computational predictions use dynamical rules inferred from past 
data to reduce the uncertainty about future path segments269. Here 
we define the predictive information7,52 of evolutionary models as a 
difference between Kullback–Leibler divergences:

∣ ∣ + = −+ + + +I t t τ D Q Q D Q Q( , ) ( , , ) ( , , ),t t τ t t τ t t τ t t τp KL , ,
0

KL , ,
p

where +Qt t τ,
p  is the predicted distribution of the target evolutionary 

path up to time +t τ based on data up to time t. Intuitively, Ip counts 
the density of paths compatible with the next measurement in the 
prediction-informed uncertainty cone (Fig. 5d), relative to the 
corresponding density in the naïve cone (Fig. 5a). The information 
measures Im and Ip show the complementary roles of monitoring and 
computational predictions: measurements constrain the starting 
point of future evolutionary paths at time t, and predictions explain  
a part of the evolutionary change from t to +t τ. The power of 
predictions is limited by incomplete knowledge of the past and by 
the intrinsic stochasticity of the future dynamics.

Pre-emptive control protocols, by definition, generate predictive 
information ( >I 0p ) and harvest it to increase payoff. In the minimal 
model, pre-emptive control results in a reduced diffusion constant of 
the control path, <D D0 for time intervals of order τp after each update 
(Fig. 5d). This timescale, called the prediction horizon, determines 
the added value of prediction for computational control6,7. Given 
limited measurement information (τ τp < ), successful pre-emptive 
protocols follow the predicted path after each update and are phased 
out to a constant action coordinate after a characteristic time τc 
(Fig. 5d). This crossover sets the pre-emptive control horizon, the 
period for which we bank on computational predictions for control. 
In protocols with <τ τc p, the control path undershoots the prediction 
horizon (at a time ∆t after the last update, its mismatch cost 
increases with diffusion constant D for <∆t τc and with D0 for >∆t τc). 
Conversely, in protocols with τ τc p> , the path overshoots into a wrong 
direction (the cost increases with diffusion constant D for ∆t τp<  
and with ′ >D D0 for ∆t τp> ). This suggests a general relationship: 
pre-emptive control becomes optimal if the control horizon matches 
the prediction horizon ( ≈τ τc p). That is, pre-emptive control is effective 
for as long as the target evolution can be successfully predicted6. 
Beyond this scale, control relies again on monitoring. Notably, control 
itself can generate or reduce predictive information, for example,  
by restricting the accessible trajectories or by accelerating escape 
evolution.
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control pressure. Coarse-grained data on metabolic pathways and rates 
can be used to quantify the metabolic fluxes inside a cell125. Metabolic 
models relate external parameters, including concentrations of nutri-
ents and growth-limiting factors, to intracellular resource allocation 
and growth126,127, providing a computable link between environment and 
eco-evolutionary dynamics. Recent models include explicit biochemi-
cal enzyme–substrate relationships128. Metabolic models have been 
used to compute growth inhibition under antibiotic stress33, to predict 
antibiotic resistance mutations32 and to design control protocols for 
adaptive evolution3. More broadly, such models can serve to rationalize 
metabolic shifts in target systems and biotic hosts under control and to 
compute the resulting fitness and payoff effects. These dynamics can be 
monitored by proteomics, metabolomics and fitness assays.

Ecological interactions. Developing a quantitative understanding of 
ecological feedback on control is important for successful strategies in 
complex environments. Abundance changes and emergent properties 
in multi-species communities can, in principle, be computed from basic 
reproductive rates of individual species and cross-species interaction 
parameters. In the context of control, ecological models can show how 

pressure on a target species propagates through an ecosystem and gen-
erates collateral effects on the other species. Recent work has started to 
link ecological interactions to the metabolism of the constituent spe-
cies129 and to explore the implications for intra-species evolution104,130. 
Such integrative models may have the power to capture the complex 
interactions of cancers and their microenvironment and of intracellular 
host–pathogen systems. For example, human cells remodel their mito-
chondria in response to pathogens, whereas the intracellular pathogen 
Toxoplasma gondii can highjack this metabolic shift for its own growth89. 
Models of multi-species communities contain a large number of param-
eters. This challenge can be addressed by combining scalable high-
throughput experimentation and computation131 and by choosing an 
appropriate level of modelling, for example, generalized Lotka–Volterra 
or resource–consumer dynamics132. Clearly, the optimal model choice 
depends on which parameters can be measured; for example, nutrient 
levels and uptake rates are the key input for resource–consumer models.

Immune interactions. Human immunity is a stunningly complex 
defence system, where biotic and planned control of pathogens play 
in concert. In recent years, the quantitative understanding of immune 
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Fig. 5 | Computing and optimizing control. Upper panels: optimal control 
protocols available for different modes of information processing, x t*( ) 
(red lines), compared with the maximum-impact protocol, x t( )max  (cyan lines), 
and the no-control protocol, x0 (grey lines). Each protocol is characterized by 
a time-dependent action coordinate embedded in a high-dimensional space of a 
priori possible protocols (this space is indicated by planes). For control of 
escape evolution, the maximum-impact protocol closely follows the evolutionary 
trajectory of the target system (cf. Fig. 4). In all forward protocols x t*( ), the action 
coordinate is periodically updated to the instantaneous maximum-impact point, 
which is inferred by monitoring the target system (updating times are marked by 
planes). In between updates, uncertainty about the target’s future trajectory 
generates a mismatch x t x t*( ) − ( )max  (expected uncertainty range indicated by 
cones). Lower panels: average payoff of conditionally optimal protocols, ψ* 
(red lines), and of the no-control protocol, ψ0 (grey lines), depending on the 

maximum-impact action coordinate xmax at the end of the displayed time 
interval (top planes). These payoffs include a mismatch cost, as well as costs for 
monitoring and mounting control (red dashed lines), that differ between control 
modes (see Box 1 for a minimal payoff model). a,b, Monitoring-based control. 
The action coordinate of each update is maintained for the subsequent time 
interval. A large mismatch cost can reduce the payoff below the action threshold 
(grey dashed line), that is, below the payoff of the no-control protocol (panel a). 
More frequent measurements of the target system reduce the mismatch, albeit 
at an additional monitoring cost (panel b). c, Adaptive learning. Here, adaptive 
increase of the control range reduces the mismatch cost and slows down target 
evolution (indicated by a narrower uncertainty cone), but generates an additional 
cost of the control machinery. d, Pre-emptive control. Using computational 
prediction of target evolutionary paths reduces the mismatch over limited 
periods (indicated by a tilted, narrower cone).
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systems has increased rapidly. Massively parallel sequencing of immune 
repertoires, combined with model-based analysis, has revealed patterns 
of global organization133,134 and molecular codes of antigen–receptor 
interactions135–143. In parallel, statistical models have characterized how 
evolutionarily optimized repertoires should be organized144,145, respond 
to pathogens146 and store memory of past responses for cross-protec-
tion against re-infections by similar antigens120,122–124. These advances will 
likely contribute to better vaccines and immunotherapies. Currently, 
however, it is still difficult to predict an individual’s immune response 
to a given pathogen. Another challenge is to predict how the combined 
adaptive immunity of the human population constrains the evolution 
of globally circulating pathogens, such as influenza and Sars-CoV-2. 
Progress on these questions is paramount for the central goal of evo-
lutionary control in biomedicine: to devise pre-emptive interventions 
that factor in and curb the future escape evolution of the pathogen.

Fitness and payoff components
Metabolic, ecological and immune models are examples of system inter-
action models that provide a key input of control: to quantify the relevant 
benefit and cost components for the target system and the control sys-
tem (Fig. 2). The fitness of the target system under control includes the 
direct effect of control caused by the interaction with the control system, 
as well as intrinsic fitness costs of defence traits or escape from control. 
In many cases, such fitness functions contain a trade-off: systems that 
maximize fitness under control are suboptimal in the absence of control, 
and vice versa147,148. The net payoff for the controller is the direct benefit of 
control, which is generated by the intended impact on the target system, 
discounted by the control costs. As shown by the preceding examples, 
evolutionary control often has a diminishing return of benefit relative to 
the control effort. This is for two main reasons: the saturation of control 
leverage (for example, through binding interaction), and resistance or 
escape evolution of the target population. Importantly, escape evolu-
tion introduces a decline of benefit over time, which has to be included 
appropriately into the payoff tally (Box 1).

Direct costs of mounting control include external resources, 
establishment and maintenance of a control repertoire (for example, 
the immune system), and protocol-dependent costs (for example, the 
immune response to a specific pathogen). Other costs arise from adverse 
interactions with the target system, such as collateral binding and off-
target toxicity (Fig. 3) or the reduction of diversity in a microbial commu-
nity149. These cost factors, in particular collateral costs, arise from quite 
heterogeneous sources and may be difficult to quantify and compare 
in a given application. Nevertheless, plausible forms of all relevant cost 
terms should be included into the fitness and payoff tally, to test robust-
ness and assess risks of control under variation of the corresponding 
model coefficients.

By accounting for cost and benefit factors, we can evaluate the 
total payoff for a given control protocol, ψ. Maximizing the total payoff 
defines the optimal protocol in a set of available protocols. In most 
cases, the optimal protocol differs substantially from the maximum-
impact protocol, which maximizes only the direct benefit of control. 
Moreover, the payoff maximum, ψ*, is often difficult to attain; realistic 
protocols have stochastically distributed payoffs ψ ψ< *. We can also 
compare protocols with the payoff in the absence of control, ψ0. This 
sets an action threshold: control should be applied only if ψ ψ> 0.

Modelling control dynamics
Fitness and payoff terms enter the coupled dynamics of the controlled 
and the control systems. We can describe the control protocol by a 

time-dependent action coordinate, x t( ), which maps the actual control 
in a high-dimensional space of possible protocols. Similarly, the target 
system is described by a time-dependent state variable, y t( ), which 
contains all traits that are affected by control and contribute to fitness. 
Recording these host and target variables over the entire period of 
control defines a specific control path xx yy( , ) (Fig. 4).

As described above, biotic systems update action coordinates and 
target variables by regulation or evolution. In the simplest case of a 
so-called greedy control dynamics, sequential updates of x t( ) and y t( ) 
follow the uphill gradient of the instantaneous payoff and fitness func-
tion, Ψ x t y t( ( ), ( )) and F x t y t( ( ), ( )), respectively. The structure of the 
fitness seascape and the supply of fitness-changing mutations deter-
mine the target’s evolutionary dynamics and, hence, the outcome of 
control. In the case of directed evolution, successful control requires 
sufficient mutational supply and a navigable fitness seascape, where 
evolution along adaptive paths can generate new target features over 
realistic control periods. Mutational bottlenecks and intermediate 
fitness valleys, which are a characteristic of rugged fitness land-
scapes150–152, slow down directed evolution and compromise the control 
objective. Escape control often works against a large number of poten-
tial escape mutations, because the loss of molecular binding interac-
tions is favoured by entropy153–155. However, co-varying traits can 
introduce intermediate fitness valleys and restrict the number of 
escape paths93–95; building such constraints by control selection can 
be a viable strategy for escape control5,6.

Mathematically, the evolutionarily stable fixed points of deter-
ministic gradient dynamics in a time-independent landscape are Nash 
equilibria, which express a classic link between evolution and game 
theory156. With additional stochastic terms generated by system-
specific noise, this type of dynamics captures many cases of Darwin-
ian evolution, as well as regulatory mechanisms evolved to maintain 
high fitness under recurrent stress. By contrast, computational pro-
tocols follow a long-term objective, for example, to maximize the 
average payoff over the entire control period. Importantly, the fixed 
points of computational protocols can be at higher payoff than Nash 
equilibria, by giving up short-term gain for long-term optimization5,157. 
This mathematical framework quantifies a frequent characteristic 
of biomedical interventions: a drop in short-term payoff to ensure 
long-term success.

Learning and prediction
Pre-emptive control is based on predicting the evolution of the target 
system from fitness and payoff models and dynamical rules for the 
resulting evolutionary change. Specifically, fitness models informed 
by host–pathogen interaction data can be fed into population-genetic 
evolution equations to forecast specific evolutionary trajectories 
of pathogen populations over limited periods into the future. This 
approach has been applied successfully to the global evolution 
of influenza52–54 (with a prediction horizon of about 1 year7) and 
to the clonal evolution of cancer38,41,43. Similar methods can predict 
the escape evolution of HIV from bNAbs158,159 and inform the design 
of combination therapies158. Importantly, predictions for globally 
circulating pathogens depend on a worldwide concerted surveillance 
of genomic and antigenic evolution53,56. Moreover, deep mutational 
scanning160–164 and laboratory evolution experiments with bar-coded 
strains165,166 can replay, and to some degree pre-play, evolutionary 
trajectories under controlled conditions. This may enable mechanistic 
fitness models to tackle a major challenge: to predict likely future 
mutations not yet seen in the wild.

http://www.nature.com/nrg


Nature Reviews Genetics | Volume 24 | December 2023 | 851–867 862

Review article

As an alternative to mechanistic models, machine learning and arti-
ficial intelligence algorithms can learn evolutionary rules and inform 
control protocols. Recent work used machine learning-based selection 
of features to predict the success of emerging mutants167. Artificial 
intelligence algorithms have been developed to infer sequence-to-
function or structure-to-function maps for proteins168–173 and regu-
latory sequences174, which can enter fitness models for evolution. 
Similar methods have been developed for evolutionary control of 
microbial co-cultures in bioreactors175 and for directed evolution 
experiments176,177. Specifically, artificial intelligence-trained genotype–
phenotype maps from prior rounds of the experiment can improve the 
next selection cycle. Combining artificial intelligence techniques with 
emerging symbolic regression methods can guide the interpretation of 
the results and serve as a basis for follow-up mechanistic modelling178.

Selecting control protocols
Successful predictions serve to rank the available control protocols by 
specific criteria, for example, maximizing the total expected payoff or 
the expected speed of target evolution. Importantly, this step requires 
probabilistic models that describe not only the observed target dynam-
ics but also its likely perturbations under different control protocols 
to be compared. For example, predictive immune interaction models 
of viral evolution can directly integrate the effect of vaccinations on 
the subsequent dynamics56.

The computation of optimal protocols can build on sophisticated 
mathematical methods developed in the engineering and physical 
sciences179, as well as in finance180,181. As in evolutionary control, the 
controller biases the stochastic process of a target system by applying 
a control force. Stochastic control theory provides powerful dynamic 
programming182 and path-integral techniques183 to compute the time-
dependent value of the control force that maximizes the future payoff 
for the controller. These methods have proven valuable for the solution 
of eco-evolutionary control problems in cases where a known model 
describes the underlying dynamics5,6,184,185. However, multiple salient 
features of biological systems are beyond the focus of established con-
trol theory. These include strongly non-linear fitness and (diminishing 
return) payoff functions, limited information gathering and forecast-
ing capabilities, and high-dimensional spaces of evolutionary and 
control force trajectories5,6. Hence, the broader application to complex 
eco-evolutionary systems calls for major innovations in control theory.

Ethics of control
Eco-evolutionary control introduces genetic changes in pathogen 
systems outside laboratory environments, whether or not the evolu-
tion of the target system is the primary objective or a collateral effect 
of control. Development and application of control require stringent 
oversight by independent review panels following common ethical 
guidelines, in accordance with standard practice in the life sciences 
and medicine186. This should ensure a transparent analysis of benefits, 
costs and risks for affected individuals, for communities and ecosys-
tems, and at the global scale. Two broad classes of issues can arise in the 
application of control. First, self-replicating re-engineered cells may 
cause harm if they escape or overwhelm their intended environment187. 
Similar issues arise in synthetic biology, where a bioethics framework 
already exists (for example, for the approval of novel gene therapies188). 
When gene drive is used as a control mechanism, the drive machinery 
and driven traits can spread to populations beyond the target popu
lation or even to off-target species. Several safeguard systems have been 
engineered, including metabolic dependence on non-standard amino 
acids in synthetic cells189 and kill switches190. Second, ethical considera-
tions arise in public health policies of control. For example, in the case 
of malaria or bacterial infections, pathogen-targeting drugs beneficial 
for an infected individual may have detrimental long-term effects at 
the population level, such as the emergence of resistance191. Hence, 
setting an appropriate objective for sustained control is challenging. 
Both kinds of issues call for cross-disciplinary studies in collaboration  
with bioethicists. Quantitative modelling, including an assessment  
of evolutionary predictability, can play an important role in pre-playing 
evolutionary scenarios of control.

Conclusions
In this Review, we have outlined the key concepts of eco-evolutionary 
control and discussed several important applications ranging from bio-
technology to infection therapy. In this framework, control objectives, 

Glossary

Action threshold
A boundary between parameter 
regimes of control protocols with 
higher/lower payoff than in the absence 
of control.

Adaptive evolution
The accumulation of heritable genetic 
changes that increase fitness in a given 
environment.

Adaptive learning
Evolutionary processes where the 
increase of information is coupled 
to a fitness benefit.

Artificial selection
Fitness effects in a target population 
induced by human intervention 
(in contrast to natural selection).

Co-evolution
The coupled evolution of two or 
more species interacting by natural 
selection, biological interactions 
and dependencies.

Directed evolution 
experiments
Laboratory protocols where organisms 
or biomolecules with desired traits 
are generated and amplified through 
iterative rounds of mutation and 
selection.

Eco-evolutionary dynamics
The coupled dynamics of population 
sizes, genetic changes and interactions 
between multiple species in an 
ecosystem.

Fitness seascape
A moving fitness landscape, generating 
selective forces that explicitly depend 
on time.

Greedy control
Algorithms with update rules that 
increase the instantaneous payoff.

Immunotherapy
The prevention or treatment of disease 
with substances that invoke immune 
responses.

Microbial communities
Multiple species of microorganisms that 
live together in a shared environment 
and interact with each other.

Molecular traits
Components of the molecular 
machinery of the cell relevant for a 
specific function. Examples include 
gene expression levels, binding affinities 
and activities of enzymes.

Nash equilibria
States of a game where no player can 
increase their payoff by unilaterally 
changing their strategy.

Prediction horizon
The timescale over which a 
computational model provides 
significant information about future 
evolutionary trajectories.

Pre-emptive control
Algorithms with update rules that 
increase payoff over future time periods.
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mechanisms and leverages as well as the dynamics of target and con-
trol systems are intimately coupled (Fig. 2). All these determinants 
inform a calculus of eco-evolutionary control based on a quantitative 
cost–benefit tally. This provides an action threshold to decide whether 
control should be undertaken and allows systematic optimization of 
strategies and protocols.

In summary, evolutionary control approaches have shown remark-
able success in numerous systems to date. At the same time, broader 
applications of evolutionary control face experimental challenges in 
monitoring target systems and delivering targeted control interac-
tions, as well as theoretical questions of learning, prediction and opti-
mization of control. Together, this field holds the promise of successful 
eco-evolutionary control interventions, guided by common principles, 
in multiple biomedicine and bioengineering systems.
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