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Abstract

Sections

Controlinterventions steer the evolution of molecules, viruses,
microorganisms or other cells towards a desired outcome. Applications
range from engineering biomolecules and synthetic organisms to drug,
therapy and vaccine design against pathogens and cancer. Inall these
instances, a control system alters the eco-evolutionary trajectory of a
target system, inducing new functions or suppressing escape evolution.
Here, we synthesize the objectives, mechanisms and dynamics of
eco-evolutionary control in different biological systems. We discuss
how the control system learns and processes information about the
target system by sensing or measuring, through adaptive evolution or
computational prediction of future trajectories. This information flow
distinguishes pre-emptive control strategies by humans from feedback
control in biotic systems. We establish a cost-benefit calculus to gauge
and optimize control protocols, highlighting the fundamental link
between predictability of evolution and efficacy of pre-emptive control.
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Introduction

For thousands of years, humans have steered the evolution of ani-
mals and plants by selective breeding. Such interventions are a form
of eco-evolutionary control: they alter the ecological or evolutionary
trajectory of a target system towards a predefined objective. Modern
eco-evolutionary control still fits this definition but has broader objec-
tives and a wider range of applications in bioengineering, ecology,
medicine and public health'. In many cases, the targets of control are
fast-evolving systems, such as microbial and viral pathogens or cancer
cell populations.

Control of living systems is challenging because of their inher-
ent complexity. An intended change is inevitably coupled to other
molecular traits and functions. For example, a controlled metabolic
change may increase the output of a target pathway but, at the same
time, decrease the overall fitness of the target organism”*?>. Or an
induced immune response may target cancer cells but also affect
healthy cells*. The interactions between controller and target system
are oftenmodulated by the ecological context of both systems. Hence,
controlisamulti-dimensional problem: desired and collateral changes,
which generate benefits and costs of control, have to be weighed and
managed simultaneously. In particular, evolution of the target system
can be an intended or a collateral effect of control*®. Fast-evolving
pathogens respond rapidly to an intervention; for example, bacteria
acquire resistance to antibiotics and viruses escape from vaccination.
The challenge of controlling such systems is to develop pre-emptive
strategies that factor in the likely evolution of the target.

In this Review, we first present examples of eco-evolutionary
control that highlight recent experimental and modelling advances.
Inthe second part, we distil common aspects and differences between
these systems in the mechanisms of control and in the dynamics of
target and controller. The target system may change by regulation and
by evolution, and the controller may be a biotic system co-evolving
with the target or ahuman applying rational control strategies, often
implemented by computation. These dynamics determine central
issues of control: how does the control system acquire and process
information about the target system? What makes computational
control different from co-evolution? Specifically, we discuss the roles
of target monitoring, adaptive learning and computational prediction’
insuccessful control strategies. In the third part, we outline elements of
anemerging eco-evolutionary control theory and highlight challenges
for future research with a focus on biomedical questions. We argue
that theory-based optimization of control is important for further
development of the field. We close with a discussion of ethical issues
in eco-evolutionary control.

Examples of evolutionary control

Control of biological systems has adiverse set of goals, fromenhancing
productivity and sustainability of biosynthetic processes to controlling
the spread of disease. Here, we introduce several examples of recent
research that shows the extraordinary breadth of evolutionary con-
trol problems. In all these systems, the objective of control includes
inducing or suppressing evolution of the target system.

Directed evolution for molecular design

Directed evolution experiments with artificial selection have been used
toimprove theactivity and selectivity of molecules and enzymes, quali-
ties thatare often desirableinindustrial or pharmaceutical applications
(Fig.1a). Recently developedinvivo directed evolution systems leverage
thereplication machinery of a host organism to performautonomous

hypermutation and selection steps without active external interven-
tion®. In these systems, the artificial selection protocol couples the
desired output of the target gene to the reproductive fitness of a carrier
cell or organism. This happens, for example, when the target gene acts
to increase the metabolism of new resources or the tolerance of new
environmental conditions. Directed evolution experimentsimplement
feedback control mechanisms to monitor fitness and protein functions
of interest and tune the strength of artificial selection accordingly’ .
The resulting protocols can steer the evolutionary trajectories of the
target gene or pathway, subject to constraints imposed by the natural
fitness landscape of the carrier organism.

Directed evolution of microorganisms

In biotechnology, inducing adaptive evolution under controlled lab-
oratory conditions is highly effective in generating organisms with
specific traits, such as heat tolerance or resistance to stressors®
(Fig. 1b). This approach is advantageous when the target organism is
difficult to engineer or the genetic basis of the desired phenotype
iscomplexand poorly understood. However, molecular traits lacking
fitness benefit cannot be directly selected by adaptive evolution. This
limitation canbe circumvented by exploiting environment-dependent
trait correlations. For example, a recent study used environment
switching, guided by metabolic modelling, to evolve fitness-neutral
or costly traits in Saccharomyces cerevisiae’. Controlled evolution
takes place in a transient environment, by adaptive evolution of a
secondary trait that is coupled to the target trait via a metabolic net-
work. After the controlled evolution phase, the target environment
is switched on and the enhanced target trait becomes effective. This
method allows the directed evolution of features such as metabolite
secretion, whichare currently inaccessible to direct adaptive evolution
protocols.

Engineering of microbial communities

A new frontier in synthetic biology is to use genetic engineering in
assembling microbial communities with designed functions. This
allows division of labour and specialization of subpopulations towards
agivenobjective, for example, the secretion of compounds. However,
engineered functions consume resources and put stress on the com-
munity, which can lead to loss-of-function mutations and make these
communities unstable’®". Recent work has achieved the stabilization
of amodel community by adding abacterial strainwithan engineered
toxin production mechanism'®, This strain senses and controls the
population size of competing species. Its toxin production can operate
autonomously or by anexternally set protocol, whichmanipulates the
density of the underlying quorum sensing molecules. Such stabiliza-
tioninvariable environments can be achieved by various mechanisms,
based on insights from engineering control theory'*,

Control by gene drive

A genedrive is a genetic engineering technique that allows a specific
allele of adiploid geneto spread rapidly through a population of sexu-
ally reproducing organisms so that the alleleisinherited more than 50%
ofthe time, thatis, more than expected under Mendelianinheritance.
Such systematic biasing of inheritance can drive chosen, even deleteri-
ous, allelesto prevalencein atarget population. It serves, for example,
to introduce new traits into a population or to reduce the prevalence
of harmful traits or diseases”. However, gene drive systems, similar to
control by drugs, can be affected by resistance evolution”. A showcase
application of this method will be to combat malaria by introducing a
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Fig.1|Examples of evolutionary control. a, Directed evolution of an enzyme.
The TmHisA enzyme, which is part of a histidine production pathway, is evolved
to functionin anew species, Saccharomyces cerevisiae. Top: the control
protocol gradually decreases the supply of external histidine, using a feedback
mechanism to maintain an approximately constant growth rate in four replicate
populations (R1-R4 in different colours). By evolution of TmHisA, the yeast cells
gradually adapt to function in environments without external histidine. Bottom:
fitnessin a histidine-free environment for the wild type (black circle) and for
evolved TmHisA variants sampled from each replicate population after 700 h
(-100 generations, R1-R4 in different colours). Successful TmHisA variants
acquired 6-15 mutations. Part aadapted with permission fromref.13. b, Directed
evolution of antibiotic resistance. Top: controlled evolution of tetracycline
resistance in four replicate Escherichia coli populations (R1-R4); resistance

T
Short-term

is measured by the half-inhibitory drug concentration (IC50) relative to the

wild type. Feedback control maintains stable growth by keeping the actual

drug concentration close to the IC50 value. Bottom: collateral trait evolution,
measured against seven other drugs, canincrease or decrease sensitivity;

lines show the drug with maximum and minimum IC50 in each population.
Partbre-plotted using data fromref. 15. ¢, Control of cancers by the immune
system. Evolving cancers accumulate new mutations and new neoantigens. The
resulting change inimmune recognition during the evolution froma primary to
arecurrent tumour is computed from a neoantigen fitness model and compared
between cohorts of long-term (blue) and short-term (orange) survivors. These
dynamics are shaped by immune interactions: recognition increases lessin long-
termsurvivors, indicating the stronger suppression of clones with high-affinity
neoantigens. Part c re-plotted using data fromref. 43.

gene drive in mosquitoes that reduces transmission of the pathogen
Plasmodium falciparum. Although many technological challenges
of gene drives have been mastered, controlling resistance evolution
and collateral effects as well as securing regulatory and community
approval totest these systemsin natural contexts remain major hurdles
for this application®.

Antimicrobial interventions

Antibiotics control bacterial pathogens by interferingin cellular func-
tions and metabolic pathways. Targets of these drugsinclude bacterial
ribosomes, as well as cell wall and DNA synthesis pathways?’. Most clini-
cally relevant antibiotics are derived from natural compounds thatare
part of the inter-microbial weaponry?*. Immune systems mount similar
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antimicrobial forces, including antimicrobial peptides®?¢, which are
alsoinvolved in the immune response to tumours?.

Bacteriaacquire resistance to drugs by physiological adaptation
or by evolution. The failure of antibiotic treatments due to resistance
evolutiongenerates an accelerating global health crisis®®. Under antibi-
otic pressure, bacteriacan mutate the molecules targeted by the drug,
import resistance genes by horizontal gene transfer, activate specific
defence pathways such as efflux pumps or globally re-allocate their
proteome resources®>*, Diverse resistance mechanisms have also been
described for antimicrobial peptides™. In some cases, metabolic fitness
models can predict dosage-dependent trajectories of resistance evolu-
tion*’based on metabolic models of drug action®. Successful control
protocols should limit resistance evolution, for example, by using
judiciously chosen drug combinations®* or by exploiting ecological
interactions®. However, we currently lack ageneral modelling frame-
work to pre-empt resistance evolution and to optimize antimicrobial
interventions.

Immunotherapy

A patient’simmune system can be activated to treat diseases. Such
therapies trigger an adaptive immune response against an antigen,
based onthebinding ofimmune receptorsto antigenic epitopes.Inan
immune response against cancer, T cell receptors recognize so-called
neoantigens, short peptides presented on the surface of cancerous
cells that containinformation on cancer-specific genome mutations®.
Thus, the primary objective ofimmunotherapyis toactivate T cells with
strong binding to a cancer neoantigen.

Collateral effects include autoimmune reactions caused by spu-
rious binding to peptides presented by healthy cells”. Additionally,
tumours can develop resistance to immunotherapy by regulatory
changes or escape evolution®***, The evolutionary feedback of cancers
toimmunotherapy includes immune editing®*, that is, the dynamics
of cancer clones and their associated neoantigens changes towards
reduced immune recognition (Fig. 1c). These dynamics are similar
to the clade turnover of viral pathogens (discussed below). Recently,
tumour-immune interactions have been combined into quantitative
fitness models for cancer and used for computational prediction of
neoantigens and their effects on cancer evolution®®*~*, Such models
canserve as abasis for the optimized selection of cancer vaccines***¢*,

Immunotherapy canalso be used to treat autoimmune diseases by
modulating the overall immune response in a host. Autoimmunity is
caused by dysregulated inflammation against antigens from the host,
so-called self-antigens. Targeted immunotherapy against autoimmune
diseases selectively inhibits inflammatory signals but affects other
immune functions only minimally. A successful control approach is
to induce appropriate combinations of signalling molecules*, while
avoiding toxicity caused by high dosage of these molecules*’. Modu-
lation of signalling molecules can also be used to establish robust
immune responses in cancerimmunotherapy, improving the efficacy
of these treatments*®*.

Vaccination

Active vaccines produce an adaptive immune response against a spe-
cific pathogen to reduce the risk of future infections and to mitigate
their effects. This type of intervention combines multiple aspects of
control: a human intervention triggers directed evolution in a biotic
system, producing a control mechanism to combat the pathogen
and to constrain its escape evolution. Vaccines against influenza or
SARS-CoV-2 are raised against a circulating viral strain; they provide

protection against infection by that strainand by closely related strains.
However, viral populations are often highly heterogeneous, and some
strains are not covered by the vaccine. Subsequent escape evolution of
the virus from existing populationimmunity further degrades vaccine
cross-protection against future strains. Therefore, the selection of
vaccine strains for influenza has a pre-emptive objective: to generate
optimal protection against circulating strains in the next winter sea-
son. Antigenic fitness models have been developed in recent years to
predict viral evolution and to compare the expected performance of
candidate vaccines against future strains*>>*,

Theevolutionary feedback of vaccination on viral evolution seems
to be small for influenza®. By contrast, recent work for SARS-CoV-2
suggests that vaccination can significantly contribute to immune
selection, shaping global evolution®. This is a prerequisite for using
vaccination as evolutionary control, specifically to reduce the rate of
escapeevolutionortoincreasethe collateral cost of escapefor the virus.

Induced evolution of broadly neutralizing antibodies
Whereas antibodies generated by standard vaccines generate limited
cross-protection against other strains, broadly neutralizing antibodies
(bNADbs) bind to conserved protein regions and cover a diverse set of
viruses. Vaccines that direct the immune system to evolve bNAbs can
substantially improve the breadth and duration of protection against
rapidly evolving viral pathogens. This topic has been extensively stud-
ied in HIV'""% and influenza®*. Previous computational work shows
that bNAbs against HIV may be induced by successive vaccination in
a healthy individual”® 7% However, directing the immune system to
evolve bNAbs against HIV has proved difficult. The main reasonis that
bNAbs require many mutations to acquire breadth, making their somatic
evolutionary trajectories long and difficult to drive®>’>, Moreover,
under any given antigen challenge, bNAbs compete with many avail-
able target-specific antibodies of higher affinity’* 727”7, For influenza,
bNAbs targeting conserved regions of viral proteins have been elicited
inanimal systems®*°“%, Broad neutralization has also been achieved by
simultaneous application of multiple antigens®. Theimmuneinterac-
tions of conserved protein regions are often weak, but presentation on
nanoparticles and repeated applications have improved the immune
response to these vaccines®*. A population-level broadening of neu-
tralization has also been observed against SARS-CoV-2, where repeat
(booster) vaccinations are cross-protective against more viral variants
thaninitial vaccinations”®*and can even elicit bNAbs against the virus®.
The evolutionary feedback of broadly protective vaccinesis cur-
rently unknown. Broader protection can be argued to decrease escape
evolution. On the other hand, larger vaccination coverage and long-
lived vaccine-induced immunity in the human population canincrease
selection pressure for viral escape compared with current vaccinations.

Key concepts of evolutionary control

The examples above show a common structure of eco-evolutionary
control problems: a control system defines a control objective and
sets up acontrolmechanismtointeract with an evolving target system,
following a control protocol (Fig. 2). Such interactions couple the
eco-evolutionary dynamics of both systems and generate multiple
feedback loops. We now discuss these building blocks and their role
insuccessful control of evolving systems.

Objectives and collateral effects
Directed evolution. A new biological feature in a target system can
be elicited by a controlled evolution process. The control force is
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Fig.2| Concepts and key steps of evolutionary control. All instances of
evolutionary control discussed involve a fast-evolving target system and a
biotic or computational control system. The controller establishes a control
objective and sets up a mechanism and protocol for control interaction
with the target system. Control mechanisms include directed evolution
experiments® %> gene drive?, genetic engineering'’ ", vaccination
and immunotherapy****?°°2°!_and metabolic perturbations, for example by
antibiotics®. The mechanisms of control determine the control protocols that
canberealized, for example, in therapies™**?°*2% and vaccination®’0 727498207210
Red frame and arrows highlight the key feedback loop of control and the
underlying interactions. Control alters fitness and evolution of the target
system towards the control objective; evolution under control includes
microbial escape***?"?2 tumour escape in cancer®*****"?53 immune-pathogen

o Limited by diminishing return
(saturation, evolution of resistance)

* Monitoring: phenotyping and sequencing viruses,
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co-evolution”?**¢2* and mutation-selection cycles in directed evolution
experiments®>3189215221 The controlled dynamics generates benefit and costs
of control, which determine the net payoff for the controller. Control

costis system specific and includes the cost associated with the emergence

of resistance?*?**??, cross-resistance®***?*’ or tolerance?***" in microbes
targeted by a therapy (for example, antibiotics), off-target disturbance of other
microbes in the same ecological environment***2*¢, resistance to pesticides in
agriculture””?*?, latency and formation of pathogenic reservoirs®*>¥, treatment
side effects****°and disturbance of ecosystems>"*2, Monitoring™>~2%, adaptive
learning'*"” and prediction of the target dynamics based, for example,ona
catalogue of resistance mutations®®, evolutionary models®*****%3, metabolic
models*?***2% or statistical inference of sequence-function maps!¢%!7176:177267.268
serve to evaluate the net payoff and to update and improve control protocols.

artificial selection superimposed onto the natural selection govern-
ing the unperturbed system. Directed evolution is often synergistic:
controlinduces positive selection, increasing the controller’s payoff
as well as the absolute fitness, or growth rate, of the target system
in the presence of control (Fig. 3a). In parallel, the controlled target
system often deviates from its intrinsic fitness peak, which defines
the evolutionary optimum under natural selection. This marks a key
problem of control: the gain of target features is coupled to deleteri-
ous changes of other functions™** (Fig. 1b). In other words, control is
likely to come with collateral effects on the target and the control
system®. A ubiquitous source of collateral effects are co-varying sec-
ondary traits. An example is the directed evolution of PbrR, a multi-
target transcription factor, toimprove its affinity to a primary target.
This process canreduce binding to other functional targets orinduce
spurious binding to off-target locations in the genome® (Fig. 3a).
Collateral effects will often reduce the payoff for the controller, but
they can also be neutral or reinforce the primary objective (Fig. 1b).

Hence, successful control requires navigating a multi-dimensional
space, by monitoring and processing of multiple target interactions
to optimize their combined payoffs>%,

Pathogen escape control. Ininfection or cancer therapy, interven-
tions are aimed at containing, weakening or eradicating the disease
agent. In this case, the primary objective is antagonistic: the con-
troller’s payoff increase is coupled to a decline in absolute fitness
and population size of the target system. Again, successful control
navigates a complex space of primary and collateral effects, which
requires a careful choice of the control objective®®®, In pathogen
control, a detrimental collateral effect is the evolution of resistant
variants that escape control and carry a rebound of the pathogen
population. In some cases, the target system can even hijack the con-
trol mechanism for its own benefit (as discussed below)®. Escape
evolution is common in antibiotic treatment, immune therapy and
vaccination. Many successful protocols suppress or delay the rise of
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Fig.3 | Directed evolution versus escape control. Control dynamics on target
fitness (left) and control payofflandscapes (right) for two modes of evolutionary
control. a, Directed evolution. Control is to elicit a primary trait of the target
system, here molecular binding. The evolution of this trait is driven by a fitness
increase of the target system, which goes along with a payoffincrease for the
control system (dashed arrows). The simultaneous evolution of collateral traits,

here spurious binding, can reduce the payoff gain (solid arrows). b, Escape
control. Control is to suppress the target pathogen by neutralization, that is,
functional binding to control molecules of the host system. Binding increases
by updates of a control trait (red arrows) and decreases by escape evolution that
affects a cognate pathogen trait (cyan arrows). Target fitness and control payoff
evolve in opposite ways.

escape variants by reducing positive selection for escape (Fig. 3b). For
example, evolutionarily informed adaptive cancer therapy®, which
aims to contain rather than eradicate the cancer cell population, has
shown success in patients with prostate cancer by limiting escape
evolution®. In other cases, a decline in absolute fitness of the target
system can be achieved by inducing positive selection for a costly
trait”. Escape evolution can also generate collateral effects in the
target system that act to strengthen control. For example, immune
escape mutations of the influenza virus are often coupled toaloss in
protein fold stability, which reduces the available evolutionary paths
and the speed of escape evolution”™ %,

The ecology of control

Primary and collateral interactions and their synergistic or antagonistic
effects define what can be called the ecosystem of control and target
systems (Fig.2). Asin any ecosystem, the strength of these interactions
ismodulated by feedback mechanisms in both components. Unlike in
many ecological models, control interactions are not constants but
canrapidly change by target evolution and control updates; we discuss
these eco-evolutionary dynamics below. Control and target systems
are often embedded in larger ecosystems, such as microbial commu-
nities. These ecological conditions can shape the efficacy of control.
Forexample, the microenvironment of a cancer affectsimmunotherapy
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by modulating the density of T cells available for neoantigen recogni-
tionin aspecific tissue’. In some cases, control protocols can exploit
ecological complexity by steering the target system along environment-
dependent fitness landscapes. An example is the directed evolution
protocol discussed above, which bridges a fitness valley by switching
environments’. Similarly, switching antigen environments may be a
promising avenue to elicit bNAbs”*72%7-%,

Mechanisms and leverage of control

How are controlinteractions realized in biological systems? The biotic
and computational control mechanisms discussed here are ultimately
based on molecular interactions, including specific binding and bio-
chemicalreactions of host and target molecules. Understanding control
interactions at the molecular level is often a prerequisite for tuning
them towards a specific system-level objective. A prominent example
isantibiotics that bind to specific proteinsin abacterial target system,
thereby interferinginits metabolism or regulation. Many biotic control
mechanisms are based on molecular interactions as well. For exam-
ple, bacteria living in communities have co-evolved a broad control
weaponry, including phages and tailocins®, as well as cognate response
mechanisms. These interactions serve to control other microorgan-
isms'°°719 and to stabilize ecosystems against invasions'**. Immune
interactionsinvolve anarray of molecular mechanisms, including anti-
microbial peptides produced by the innateimmune system®-'%>1% as well
as T cells, B cellsand antibodies of the adaptiveimmune system. These
immune mechanisms have co-evolved with pathogens over millions of
years, resulting in a biotic control machinery that can mount specific
and effective responses against a multitude of infecting pathogens.

By modifying the balance of births and deaths, all of these mecha-
nisms can alter selectionin the target system. This is the most common
form of evolutionary control. The selective force specified by a control
protocol is often time dependent: control induces a fitness seascape
for the target system (Fig. 4). Time-dependent selection can be tuned
by real-time feedback from the growth of the target population'*>"
(Fig. 1a,b). Similarly, spatial selection gradients induce effectively
time-dependent selection on moving populations'”’.

Besides selection, mechanisms that facilitate exploration of the
trait space and the associated fitness landscape can be leveraged
for control. In directed evolution, these mechanisms include chang-
ing the rate and types of mutations'®®, as well as the population size
ofthetarget population. Control protocols for microbial communities
can broadly manipulate species interactions, for example, through
resource competition, species density manipulation or predation’®'%’,

Regardless of the precise mechanism, successful control depends
on sufficient leverage to change the target system’s evolutionary tra-
jectory. Limitations of control leverage observed ubiquitously across
biology are adiminishing returnand time-dependent degradation. For
example, in control by molecular interactions, saturation of binding
leads to a diminishing return per control molecule; thus, aninterme-
diate level of control molecules often yields an optimal cost-benefit
ratio". Similarly, evolution of the target or the control system can curb
control leverage over time. Both factors are present in the controlled
microbial community discussed above'®. First, the bacteria targeted by
toxins can evolve resistance and overcome control. Second, inamicro-
bial species performing autonomous control, the control mechanism
of toxin production reduces growth, and adaptive evolution can lead
to loss of this function.

These examples underscore that efficient control requires under-
standing the action pathway and the specific limitations of a given

control mechanism. Asit stands, such knowledge is oftenincomplete.
For instance, many cancer drugs undergoing clinical trials do not act
viathe mechanism that was originally proposed. Instead, the reported
preclinical efficacy results from off-target toxicity as amechanism of
action™, Off-target toxicity can lead to dangerous adverse effects and
is a major cause of clinical trial failure>',

Dynamics of control

The eco-evolutionary dynamics of control can be described as a
sequence of actions by the control system, which mounts and updates
control pressure, and responses to such pressure by the target system.
Thefastest response takes place at the physiological level, by gene regu-
lationand metabolic changes. For example, bacteriarearrange their cell
metabolismin response to antibiotic pressure®. Control also changes
the population dynamics of the target system, as well as the frequency
of genetically or phenotypically distinct variants, thereby affecting its
ecologicalinteractions. Finally, de novo mutations lead to evolutionary
adaptation of the target population. The speed of evolution depends
onthestrength of selection and on the mutational target generated by
the controlinteraction. Inrapidly evolving bacterial and viral systems,
ecological and evolutionary changes are often linked and take place on
overlapping timescales"*'”. A prominent example is the dynamics of
the SARS-CoV-2 pandemic, where most of the recent epidemic waves
coincided with genetic turnover, leading to the rise of new variants
with partial escape from population immunity within time intervals
of afew months. Successful control protocols have to be tuned to the
speed of the target system. Thus, many of the systems discussed in this
Review show tightly coupled target dynamics and controlupdatesona
common timescale — a hallmark of eco-evolutionary control.

Information flow and modes of control

The control system continuously gathers information about the target
system and processes that information into a control force acting on
thetarget. Thisfeedbackloopis central to control dynamics (Fig. 2). We
can distinguish different modes of information gain and processing.
First, all evolutionary control protocols require repeated monitoring
ofthetarget systeminitsinstantaneous state. This informationisthen
processed into control updates, resulting in a fitness seascape for the
target system (Fig. 4).Inbiotic systems, control updates based on moni-
toring can be realized by regulation or by co-evolution with the target
system. For example, bacteria in communities ubiquitously update
their ecological interactions based on monitoring of environmental
parameters and of other species®"'®. The adaptive immune system in
vertebrates has a copious reservoir of naive immune cells that enable
monitoring and primary responses to novel pathogens®’. Importantly,
control dynamics based onmonitoring alone can act against the current
state of the target system but cannot pre-empt its future evolutionary
changes (Fig. 4a).

Inasecond mode, the control system can gain leverage by learning
broad features of the target’s evolutionary dynamics. Computational
and biotic controllers can learn sufficiently simple and repeatable
dynamical patterns by adaptive evolution of their control machinery —
we refer to such processes as adaptive learning (Fig. 4b). For example,
the humanimmune system reduces the prevalence of memory B cells
with high-affinity receptors by negative feedback regulation, introduc-
ing abias towards moderate-affinity, more cross-reactive memory"",
Asshownby recent theoretical work, this bias can reflect aresponse of
theimmune system to the speed of evolution of typical antigens'° ",
Ahigh-affinity and highly specific memory repertoire is optimal against
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slowly evolving antigens, where a subsequent infection is likely to
involve a strain similar to the primary infection. By contrast, a more
diverse and cross-reactive repertoire can protect against asecondary
infection by an evolved strain at some evolutionary distance from the
primary strain. For example, our B cell defence against influenza is

Fig.4 | Monitoring, adaptive learning and prediction shape control
protocols. Inthe control of a pathogen, control is amoving fitness trough for the
target population (red, darker shading indicates lower fitness). Control partially
suppresses growth in the target system and induces escape evolution away from
thefitness trough (cyanarrows). Inresponse, the control seascape is updated
(red arrows); control updated at time ¢ acts on the target system in the next time
interval (¢, t +1). The update dynamics of control protocols are shown for a given
evolutionary trajectory of the pathogen in three different control modes.

a, Control based on monitoring. Protocols are informed only by monitoring

of pastand present states and lag behind the evolution of the target system.

b, Control based on adaptive learning. Protocols can adapt to broad dynamical
features of target evolution (here, the breadth of the fitness troughis tuned to
the speed of target evolution). ¢, Computational control leverages short-term
predictions of target evolutionary trajectories to generate pre-emptive protocols.

cross-protective over periods of 3-5 years, curbing the number and
burden of infections over ahuman’s lifetime.

Human controllers can employ a third, rational control mode
based on computational prediction of specific evolutionary trajec-
tories in the target system®***-*>525* This method processes not only
broad features of the target dynamics but also real-time information
about the target trajectory up to the starting point of predictions
(Fig. 4¢). In some systems and over limited periods, predictions cap-
ture a priori unlikely trajectories and previously unseen mutations®,
provided the underlying evolutionary rules are sufficiently simple to
belearned fromthe available training data. Most importantly, control
protocols based on computational predictions can factor in the evo-
lutionary response of the target system to the control pressure® —we
refer to this mode as pre-emptive control. Mathematical definitions of
predictive information and pre-emptive control are given in Box 1. In
the following sections, we describe how to construct such protocols.

Towards quantitative control of evolving systems
As the discussion so far shows, eco-evolutionary control contains the
full complexity of living systems, including regulation, metabolism,
ecology and evolution. This challenge is epitomized by the collateral
effects of control, which can couple the target trait to a vast number of
a priori unrelated biological functions. Biological insight is required
to compress this complexity into amanageable set of key phenotypes,
mechanisms and dynamical modes relevant for the problem at hand.
Quantitative control can then build on high-throughput evolutionary
monitoring of target systems and on computational models for the
control dynamics. Such models establish a quantitative cost-benefit
tally of control, which serves two main purposes. First, it allows ajudi-
cious decision on when to apply control: a given protocol should be
used only whenits benefit exceeds its cost. Second, computation can
rapidly screen large numbers of alternative control protocols and filter
out candidates forin-depth comparison. In particular, control models
rationalize how the information gathered by monitoring, adaptive
learning and predictions shape control protocols (Fig. 5 and Box 1).
These are key elements of adeveloping eco-evolutionary control theory
thatwill provide overarching principles for a diverse set of applications.
We now give a perspective on modelling and data input that will
become important for the control of complex evolutionary systems.

Biological interactions of control
Cell metabolism. Successful control often relies on a quantitative
understanding of metabolic processes, including their response to
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Box 1

Optimizing control by monitoring, learning and predictions

Here we describe the dynamics of information gathering by the
controller and the resulting optimization of protocols in a minimal
model for the control of escape evolution (Fig. 4). The maximum-
impact protocol x ,,, closely follows a moving target y, which
requires full, posterior knowledge of its stochastic evolutionary

path in the presence of the control force. In any practical applica-
tion, the best available (forward) protocol x* follows a projection

of the target path informed only by data from the past (Fig. 5).

To compare and optimize forward protocols, we use a payoff function
Y(t) = W, () — AY(t) - C, where W, . (t) = W(xax(t)) is the direct
benefit at the maximum-impact point, AY(t) = c(x*(t) - xmax(t))2 is
the payoff cost generated by the mismatch x*(t) — x,«(t) and Cis the
sum of control costs.

Monitoring

Measurements provide information about the instantaneous state
of the target. In between measurements, x* deviates from X,
reflecting the increase of uncertainty on the target’s evolutionary
path (cones in Fig. 5). In the minimal model, the time-dependent
mismatch x*(t) — Xax(t) follows a random walk with diffusion
constant Dy. Each control update by measurement resets the
mismatch to a small value determined by the measurement error
and generates a measurement cost C,,,, caused by the physio-
logical process of signal processing. Over a time interval (t, t + T)
between consecutive updates, the optimal monitoring-based
forward protocol maintains the action coordinate X;,,(t) set by

the last measurement (Fig. 5a). This produces an expected average
payoff y* =y, —Aw-c,, —cqowith mismatch cost Ay =cDyt/2,
ameasurement cost ¢, = C,,/t, and other costs c,. More frequent
updates reduce the mismatch but increase the measurement cost
per unit of time® (Fig. 5a,b). Hence, there is an optimal time interval
between updates, T* = [2Cm/(cDO)]1/2. We can express the information
gain, or loss of uncertainty, by measurements as a Kullback-Leibler
divergence (Dy,):

Im(t' t+ T) = DKL(ér,Hrl |, th,)t+1’)'

Here Q7. is the prior distribution generated by the diffusion
of the target’s evolutionary path up to time t + 7, following a
measurement at time t, and Q, . is the posterior distribution of
paths after the measurement at time t + 1. The Kullback-Leibler
divergence between these probability distributions indicates how
likely random draws from the prior distribution look as if drawn
from the posterior distribution; this probability decreases exponen-
tially with increasing Dy, . Intuitively, I, counts the (inverse, log)
fraction of paths in the uncertainty cone that are compatible with
the next measurement (Fig. 5a).

Adaptive learning
Long-term evolution of the control machinery can increase its
efficacy. For example, a larger control range increases the payoff and

reduces the target fitness at a given mismatch x* - x,,,. This reduces
the mismatch cost (c decreases) and can slow down target evolution
(Do decreases). Hence, adaptive learning increases the net payoff
gain of monitoring-based protocols, but the more complex control
machinery generates an additional control cost (Fig. 5¢).

Evolutionary predictions

Computational predictions use dynamical rules inferred from past

data to reduce the uncertainty about future path segments®®. Here
we define the predictive information”? of evolutionary models as a
difference between Kullback-Leibler divergences:

Io(t, t+7) = Dy (Q ves | Qt0) = Dt (Qt i | QPesd).

where QP is the predicted distribution of the target evolutionary
path up to time t + T based on data up to time t. Intuitively, |, counts
the density of paths compatible with the next measurement in the
prediction-informed uncertainty cone (Fig. 5d), relative to the
corresponding density in the naive cone (Fig. 5a). The information
measures I, and I, show the complementary roles of monitoring and
computational predictions: measurements constrain the starting
point of future evolutionary paths at time t, and predictions explain
a part of the evolutionary change fromt to t + t. The power of
predictions is limited by incomplete knowledge of the past and by
the intrinsic stochasticity of the future dynamics.

Pre-emptive control protocols, by definition, generate predictive
information (I, > 0) and harvest it to increase payoff. In the minimal
model, pre-emptive control results in a reduced diffusion constant of
the control path, D < D, for time intervals of order 7, after each update
(Fig. 5d). This timescale, called the prediction horizon, determines
the added value of prediction for computational control®’. Given
limited measurement information (t, < 1), successful pre-emptive
protocols follow the predicted path after each update and are phased
out to a constant action coordinate after a characteristic time t,,

(Fig. 5d). This crossover sets the pre-emptive control horizon, the
period for which we bank on computational predictions for control.

In protocols with 7, < T, the control path undershoots the prediction
horizon (at a time At after the last update, its mismatch cost

increases with diffusion constant D for At < t, and with D, for At > 7).
Conversely, in protocols with 7, > 7,,, the path overshoots into a wrong
direction (the cost increases with diffusion constant D for At < 1,
and with D" > D, for At > 1,). This suggests a general relationship:
pre-emptive control becomes optimal if the control horizon matches
the prediction horizon (z, = 7). That is, pre-emptive control is effective
for as long as the target evolution can be successfully predicted®.
Beyond this scale, control relies again on monitoring. Notably, control
itself can generate or reduce predictive information, for example,

by restricting the accessible trajectories or by accelerating escape
evolution.
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Fig. 5| Computing and optimizing control. Upper panels: optimal control
protocols available for different modes of information processing, x*(¢)

(red lines), compared with the maximum-impact protocol, x,,,,(¢) (cyan lines),
and the no-control protocol, x, (grey lines). Each protocol is characterized by
atime-dependent action coordinate embedded in a high-dimensional space of a
priori possible protocols (this space is indicated by planes). For control of

escape evolution, the maximum-impact protocol closely follows the evolutionary
trajectory of the target system (cf. Fig. 4). In all forward protocols x*(¢), the action
coordinate is periodically updated to the instantaneous maximum-impact point,
whichisinferred by monitoring the target system (updating times are marked by
planes). In between updates, uncertainty about the target’s future trajectory
generates amismatch x*(t) — x ., (t) (expected uncertainty range indicated by
cones). Lower panels: average payoff of conditionally optimal protocols, ¢*
(redlines), and of the no-control protocol, ¢, (grey lines), depending on the

maximum-impact action coordinate x,,, at the end of the displayed time
interval (top planes). These payoffs include amismatch cost, as well as costs for
monitoring and mounting control (red dashed lines), that differ between control
modes (see Box 1 for aminimal payoff model). a,b, Monitoring-based control.
The action coordinate of each update is maintained for the subsequent time
interval. A large mismatch cost can reduce the payoffbelow the action threshold
(grey dashed line), that is, below the payoff of the no-control protocol (panel a).
More frequent measurements of the target system reduce the mismatch, albeit
atan additional monitoring cost (panel b). ¢, Adaptive learning. Here, adaptive
increase of the control range reduces the mismatch cost and slows down target
evolution (indicated by a narrower uncertainty cone), but generates an additional
cost of the control machinery. d, Pre-emptive control. Using computational
prediction of target evolutionary paths reduces the mismatch over limited
periods (indicated by a tilted, narrower cone).

control pressure. Coarse-grained dataon metabolic pathways and rates
can be used to quantify the metabolic fluxes inside a cell’”. Metabolic
modelsrelate external parameters, including concentrations of nutri-
ents and growth-limiting factors, to intracellular resource allocation
and growth™*'”, providing acomputable link between environment and
eco-evolutionary dynamics. Recent models include explicit biochemi-
cal enzyme-substrate relationships'*®. Metabolic models have been
used to compute growthinhibition under antibiotic stress®, to predict
antibiotic resistance mutations®” and to design control protocols for
adaptive evolution®. More broadly, suchmodels can serve to rationalize
metabolic shiftsin target systems and biotic hosts under controland to
computetheresulting fitness and payoffeffects. These dynamics canbe
monitored by proteomics, metabolomics and fitness assays.

Ecological interactions. Developing a quantitative understanding of
ecological feedback on controlisimportant for successful strategiesin
complex environments. Abundance changes and emergent properties
inmulti-species communities can, in principle, be computed from basic
reproductive rates of individual species and cross-species interaction
parameters. Inthe context of control, ecological models can show how

pressure on atarget species propagates through an ecosystemand gen-
erates collateral effects onthe other species. Recent work has started to
link ecological interactions to the metabolism of the constituent spe-
cies™” and to explore the implications for intra-species evolution'**"*°,
Such integrative models may have the power to capture the complex
interactions of cancers and their microenvironment and of intracellular
host-pathogensystems. For example, human cells remodel their mito-
chondriainresponse to pathogens, whereas theintracellular pathogen
Toxoplasmagondii can highjack this metabolic shift for its own growth®.
Models of multi-species communities containalarge number of param-
eters. This challenge can be addressed by combining scalable high-
throughput experimentation and computation™ and by choosing an
appropriatelevel of modelling, for example, generalized Lotka-Volterra
orresource—-consumer dynamics* Clearly, the optimal model choice
depends onwhich parameters can be measured; for example, nutrient
levels and uptake rates are the key input for resource-consumer models.

Immune interactions. Human immunity is a stunningly complex
defence system, where biotic and planned control of pathogens play
inconcert. Inrecentyears, the quantitative understanding ofimmune
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systems has increased rapidly. Massively parallel sequencing ofimmune
repertoires, combined with model-based analysis, has revealed patterns
of global organization'*** and molecular codes of antigen-receptor
interactions™ ', In parallel, statistical models have characterized how
evolutionarily optimized repertoires should be organized"*'*, respond
to pathogens'*® and store memory of past responses for cross-protec-
tionagainst re-infections by similar antigens'>*'?>?*, These advances will
likely contribute to better vaccines and immunotherapies. Currently,
however, itis still difficult to predict an individual’simmune response
toagivenpathogen. Another challenge is to predict how the combined
adaptive immunity of the human population constrains the evolution
of globally circulating pathogens, such as influenza and Sars-CoV-2.
Progress on these questions is paramount for the central goal of evo-
lutionary control inbiomedicine: to devise pre-emptive interventions
that factor in and curb the future escape evolution of the pathogen.

Fitness and payoff components

Metabolic, ecological andimmune models are examples of system inter-
actionmodels that provide akey input of control: to quantify the relevant
benefit and cost components for the target system and the control sys-
tem (Fig. 2). The fitness of the target system under control includes the
direct effect of control caused by the interaction with the control system,
aswellasintrinsicfitness costs of defence traits or escape from control.
In many cases, such fitness functions contain a trade-off: systems that
maximize fitness under control are suboptimalin the absence of control,
andvice versa'*”*%, The net payofffor the controller is the direct benefit of
control, whichis generated by theintended impact on the target system,
discounted by the control costs. As shown by the preceding examples,
evolutionary control often has a diminishing return of benefit relative to
the control effort. This is for two main reasons: the saturation of control
leverage (for example, through binding interaction), and resistance or
escape evolution of the target population. Importantly, escape evolu-
tionintroduces a decline of benefit over time, which has tobe included
appropriately into the payofftally (Box 1).

Direct costs of mounting control include external resources,
establishment and maintenance of a control repertoire (for example,
the immune system), and protocol-dependent costs (for example, the
immuneresponse to aspecific pathogen). Other costs arise from adverse
interactions with the target system, such as collateral binding and off-
targettoxicity (Fig. 3) or thereduction of diversity inamicrobial commu-
nity'”’. These cost factors, in particular collateral costs, arise from quite
heterogeneous sources and may be difficult to quantify and compare
inagivenapplication. Nevertheless, plausible forms of all relevant cost
terms should beincluded into the fitness and payofftally, to test robust-
ness and assess risks of control under variation of the corresponding
model coefficients.

By accounting for cost and benefit factors, we can evaluate the
total payoff for agiven control protocol, . Maximizing the total payoff
defines the optimal protocol in a set of available protocols. In most
cases, the optimal protocol differs substantially from the maximum-
impact protocol, which maximizes only the direct benefit of control.
Moreover, the payoff maximum, ¢*, is often difficult to attain; realistic
protocols have stochastically distributed payoffs ¢ < ¢*. We can also
compare protocols with the payoff in the absence of control, ¢,.. This
sets anaction threshold: control should be applied only if g > ¢ .

Modelling control dynamics
Fitness and payoffterms enter the coupled dynamics of the controlled
and the control systems. We can describe the control protocol by a

time-dependentaction coordinate, x(t), whichmaps the actual control
inahigh-dimensional space of possible protocols. Similarly, the target
system is described by a time-dependent state variable, y(¢), which
containsall traits that are affected by control and contribute to fitness.
Recording these host and target variables over the entire period of
control defines a specific control path (x, y) (Fig. 4).

Asdescribed above, biotic systems update action coordinates and
target variables by regulation or evolution. In the simplest case of a
so-called greedy control dynamics, sequential updates of x(¢)and y(t)
follow the uphill gradient of the instantaneous payoff and fitness func-
tion, W(x(¢), y(t)) and F(x(t), y(t)), respectively. The structure of the
fitness seascape and the supply of fitness-changing mutations deter-
mine the target’s evolutionary dynamics and, hence, the outcome of
control. Inthe case of directed evolution, successful control requires
sufficient mutational supply and a navigable fitness seascape, where
evolution along adaptive paths can generate new target features over
realistic control periods. Mutational bottlenecks and intermediate
fitness valleys, which are a characteristic of rugged fitness land-
scapes™’™? slow down directed evolution and compromise the control
objective. Escape control often works against a large number of poten-
tial escape mutations, because the loss of molecular binding interac-
tions is favoured by entropy™*7*°, However, co-varying traits can
introduce intermediate fitness valleys and restrict the number of
escape paths”*; building such constraints by control selection can
be aviable strategy for escape control*®.

Mathematically, the evolutionarily stable fixed points of deter-
ministicgradient dynamicsin atime-independent landscape are Nash
equilibria, which express a classic link between evolution and game
theory™°. With additional stochastic terms generated by system-
specific noise, this type of dynamics captures many cases of Darwin-
ian evolution, as well as regulatory mechanisms evolved to maintain
high fitness under recurrent stress. By contrast, computational pro-
tocols follow a long-term objective, for example, to maximize the
average payoff over the entire control period. Importantly, the fixed
points of computational protocols can be at higher payoffthan Nash
equilibria, by giving up short-term gain for long-term optimization>",
This mathematical framework quantifies a frequent characteristic
of biomedical interventions: a drop in short-term payoff to ensure
long-term success.

Learning and prediction

Pre-emptive controlis based on predicting the evolution of the target
system from fitness and payoff models and dynamical rules for the
resulting evolutionary change. Specifically, fitness models informed
by host-pathogeninteraction data canbe fed into population-genetic
evolution equations to forecast specific evolutionary trajectories
of pathogen populations over limited periods into the future. This
approach has been applied successfully to the global evolution
of influenza®*>* (with a prediction horizon of about 1year’) and
to the clonal evolution of cancer®***3, Similar methods can predict
the escape evolution of HIV from bNAbs"*"° and inform the design
of combination therapies™®. Importantly, predictions for globally
circulating pathogens depend onaworldwide concerted surveillance
of genomic and antigenic evolution®**°. Moreover, deep mutational
scanning'*®'**and laboratory evolution experiments with bar-coded
strains'®>'° can replay, and to some degree pre-play, evolutionary
trajectoriesunder controlled conditions. This may enable mechanistic
fitness models to tackle a major challenge: to predict likely future
mutations not yet seen in the wild.
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Glossary

Action threshold

A boundary between parameter
regimes of control protocols with
higher/lower payoff than in the absence
of control.

Adaptive evolution

The accumulation of heritable genetic
changes that increase fitness in a given
environment.

Adaptive learning
Evolutionary processes where the
increase of information is coupled
to afitness benefit.

Artificial selection

Fitness effects in a target population
induced by human intervention

(in contrast to natural selection).

Co-evolution

The coupled evolution of two or
more species interacting by natural
selection, biological interactions
and dependencies.

Fitness seascape

A moving fitness landscape, generating
selective forces that explicitly depend
ontime.

Greedy control
Algorithms with update rules that
increase the instantaneous payoff.

Immunotherapy

The prevention or treatment of disease
with substances that invoke immune
responses.

Microbial communities

Multiple species of microorganisms that
live together in a shared environment
and interact with each other.

Molecular traits

Components of the molecular
machinery of the cell relevant for a
specific function. Examples include
gene expression levels, binding affinities
and activities of enzymes.

Directed evolution
experiments

Laboratory protocols where organisms
or biomolecules with desired traits

are generated and ampilified through
iterative rounds of mutation and
selection.

Nash equilibria

States of a game where no player can
increase their payoff by unilaterally
changing their strategy.

Eco-evolutionary dynamics
The coupled dynamics of population
sizes, genetic changes and interactions
between multiple species in an
ecosystem.

Prediction horizon

The timescale over which a
computational model provides
significant information about future
evolutionary trajectories.

Pre-emptive control
Algorithms with update rules that
increase payoff over future time periods.

Asanalternative to mechanisticmodels, machine learning and arti-
ficial intelligence algorithms can learn evolutionary rules and inform
control protocols. Recent work used machine learning-based selection
of features to predict the success of emerging mutants'®’. Artificial
intelligence algorithms have been developed to infer sequence-to-

function or structure-to-function maps for proteins
, which can enter fitness models for evolution.

latory sequences'™

165173 and regu-

Similar methods have been developed for evolutionary control of
microbial co-cultures in bioreactors'” and for directed evolution
experiments”®"’, Specifically, artificial intelligence-trained genotype-
phenotype maps from prior rounds of the experiment canimprove the
nextselection cycle. Combining artificial intelligence techniques with
emerging symbolic regression methods can guide theinterpretation of

the results and serve as abasis for follow-up mechanistic modelling'”®.

Selecting control protocols

Successful predictions serve to rank the available control protocols by
specific criteria, for example, maximizing the total expected payoff or
the expected speed of target evolution. Importantly, this step requires
probabilistic models that describe not only the observed target dynam-
ics but alsoits likely perturbations under different control protocols
tobe compared. Forexample, predictiveimmune interaction models
of viral evolution can directly integrate the effect of vaccinations on
the subsequent dynamics™.

The computation of optimal protocols can build onsophisticated
mathematical methods developed in the engineering and physical
sciences'”’, as well as in finance'*™®!, As in evolutionary control, the
controller biases the stochastic process of atarget system by applying
acontrolforce. Stochastic control theory provides powerful dynamic
programming'®” and path-integral techniques' to compute the time-
dependent value of the control force that maximizes the future payoff
forthe controller. These methods have proven valuable for the solution
of eco-evolutionary control problems in cases where a known model
describes the underlying dynamics>*'**'%, However, multiple salient
features of biological systems are beyond the focus of established con-
troltheory. These include strongly non-linear fitness and (diminishing
return) payoff functions, limited information gathering and forecast-
ing capabilities, and high-dimensional spaces of evolutionary and
control force trajectories®. Hence, the broader application to complex
eco-evolutionary systems calls for major innovations in control theory.

Ethics of control

Eco-evolutionary control introduces genetic changes in pathogen
systems outside laboratory environments, whether or not the evolu-
tion of the target system is the primary objective or a collateral effect
of control. Development and application of control require stringent
oversight by independent review panels following common ethical
guidelines, in accordance with standard practice in the life sciences
and medicine'. This should ensure atransparent analysis of benefits,
costs and risks for affected individuals, for communities and ecosys-
tems, and at the global scale. Two broad classes of issues canariseinthe
application of control. First, self-replicating re-engineered cells may
cause harmifthey escape or overwhelm their intended environment'.
Similarissues arise in synthetic biology, where a bioethics framework
already exists (for example, for the approval of novel gene therapies'®).
When gene driveis used as a control mechanism, the drive machinery
and driven traits can spread to populations beyond the target popu-
lation or evento off-target species. Several safeguard systems have been
engineered, including metabolic dependence on non-standard amino
acidsinsynthetic cells™®’ and kill switches'*°. Second, ethical considera-
tionsarisein public health policies of control. For example, in the case
of malaria or bacterial infections, pathogen-targeting drugs beneficial
for aninfected individual may have detrimental long-term effects at
the population level, such as the emergence of resistance'’. Hence,
setting an appropriate objective for sustained control is challenging.
Bothkinds of issues call for cross-disciplinary studies in collaboration
with bioethicists. Quantitative modelling, including an assessment
of evolutionary predictability, can play animportant rolein pre-playing
evolutionary scenarios of control.

Conclusions

In this Review, we have outlined the key concepts of eco-evolutionary
controland discussed severalimportant applications ranging frombio-
technology to infection therapy. Inthis framework, control objectives,
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mechanisms and leverages as well as the dynamics of target and con-
trol systems are intimately coupled (Fig. 2). All these determinants
inform a calculus of eco-evolutionary control based on a quantitative
cost-benefittally. This provides anaction threshold to decide whether
control should be undertaken and allows systematic optimization of
strategies and protocols.

Insummary, evolutionary control approaches have shown remark-
able success in numerous systems to date. At the same time, broader
applications of evolutionary control face experimental challenges in
monitoring target systems and delivering targeted control interac-
tions, as well as theoretical questions of learning, prediction and opti-
mization of control. Together, this field holds the promise of successful
eco-evolutionary controlinterventions, guided by common principles,
in multiple biomedicine and bioengineering systems.

Published online: 3 July 2023
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