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This paper studies mean-square (MS) convergent observers for estimating continuous states of
randomly switched linear systems (RSLSs) with unobservable subsystems that are subject to stochastic
output observation noises. When subsystems are unobservable and switching sequences are random,
the classical Kalman-Bucy filters that are applied to observable sub-states are shown to be potentially
divergent. It is also shown that unless the switching interval T can be selected to be sufficiently small
from the outset, MS convergence may never be achieved, regardless of how the observers for the
subsystems are designed. The critical threshold T,,,x on T is derived for MS convergent observers to
be achievable. Under the condition T < Ty, this paper introduces design algorithms for subsystem
observers to generate a globally MS convergent observer for the entire continuous state. A fundamental
design tradeoff between convergence speeds and steady-state estimation errors is analyzed. This paper
extends our recent new framework and algorithms for strong convergent observer design in RSLSs
by including observation noises, considering multi-output systems, establishing new algorithms for
MS convergence, and developing design tradeoff analysis. Examples and a practical case study are
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1. Introduction

This paper studies continuous state estimation of randomly
switched linear systems (RSLSs) that are subject to stochastic
output observation noises and whose subsystems may not be
observable individually. Hybrid systems cover diversified applica-
tions that consist of interacting continuous dynamics and discrete
events (Ezzine & Haddad, 1989; Lunze & Lamnabhi-Lagarrigue,
2009; Nerode & Kohn, 1992; Sun & Ge, 2005). Existing techni-
cal results on observability and observer designs for continuous
states of hybrid systems are mostly for the class of hybrid systems
called switched linear systems (Babaali & Egerstedt, 2004; Fliess,
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Join, & Perruquetti, 2008; Sellami & Abderrahim, 2015; Wang,
Khargonekar, & Beydoun, 1997; Zhao, Liu, Zhang, & Li, 2013).

In a deterministic framework, a switched linear system can be
treated as a time-varying linear system when the switching se-
quence is known a priori. Extensive research has been conducted
on observability, observer design, and other related properties in
deterministic frameworks, such as observability and controllabil-
ity (Ezzine & Haddad, 1989), various notions of observability and
their testing conditions (Haddadi, Gazzam, & Benalia, 2019; John-
son, 2016; Kiisters & Trenn, 2018), the concepts of distinguisha-
bility (Vidal, Chiuso, Soatto, & Sastry, 2003), geometric subspace
characterization (Gomez-Gutierrez, Ramirez-Trevino, Ruiz-Leon,
& Di Gennaro, 2010), hybrid observability under input prob-
ing (Babaali & Pappas, 2005), almost always observability (Arbib
& De Santis, 2020), and parameter estimation (Farina, Garulli, &
Giannitrapani, 2022). Recent results on observability, detectabil-
ity, attractivity, observer design, and related convergence anal-
ysis (Bernard & Sanfelice, 2020; Goebel, Sanfelice, & Teel, 2012;
Rios, Davila, & Teel, 2019; Rios, Davila, & Teel, 2020; Sanfelice,
Goebel, & Teel, 2007) accommodate hybrid systems with certain
predictable or known jumps.
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On the other hand, when the switching sequence is ran-
dom, the techniques and approaches depart significantly from
deterministic switched linear systems. The RSLSs represent many
real-world hybrid systems due to stochastic natures of diverse
physical systems. RSLSs are exemplified by power line interrup-
tions in power systems, machine breakdowns in manufacturing
systems, physical and cyber attacks in networked systems, ran-
dom communication packet losses in communication networks,
among many others (Li & Zhang, 2010; Yin, Sun and Wang, 2011).
In principle, randomly switched systems can be modeled and
treated as stochastic hybrid systems, stochastic systems with
time-varying parameters (Dragan & Aberkane, 2020), or hybrid
switching diffusions (Cassandras & Lygeros, 2018; Lygeros &
Prandini, 2010; Yin, Wang and Sun, 2011; Yin & Zhu, 2010).

Typical large-scale complex systems involve many sensors for
monitoring their internal states, however any single sensor or a
local sensor cluster often cannot provide sufficient information
for state estimation. The model of unobservable subsystems re-
flects this scenario. Within each time interval, only the observable
subspace of the active subsystem can be estimated. The same
subspace may become unobservable when the system is switched
to another subsystem. As a result, its estimation error may grow
exponentially. This paper introduces new methodologies for de-
signing subsystem observers to achieve a globally mean-square
(MS) convergent state observer for the entire RSLS.

This paper contains the following original contributions: (1)
We formulate observer design problems under MS convergence
for general multi-output RSLSs with unobservable subsystems
and observation noises. (2) We show that for RSLSs, the classical
Kalman-Bucy filters that are applied to observable sub-states do
not guarantee convergence of the resulting RSLS observer. (3) We
prove that there is a critical switching time interval limit, beyond
which subsystem observers may become divergent regardless
of how observer feedback gains are designed. (4) We introduce
new algorithms to design subsystem observers and prove the MS
convergence of the estimator for the entire state. (5) A funda-
mental design tradeoff is studied and demonstrated. To balance
the conflicting objectives of convergence speeds and steady-state
errors, a useful method for parameter selection is proposed.

In comparison to our recent papers (Wang, Yin, Lin, Polis,
& Chen, 2022, 2023), which cover single-output systems under
noise-free observations and target strong convergence, the cur-
rent paper adds stochastic observation noises, leading to two
interacting stochastic processes (observation noises and random
switching), and treats general multi-output systems. By using MS
errors, the switching time interval T can no longer be arbitrary.
An upper bound on T is derived for convergent observers to
be achievable. In Wang et al. (2022, 2023), there were several
technical constraints that confined subsystem interactions. These
constraints have been removed by using a different approach in
this paper.

The rest of the paper is organized as follows. Section 2 de-
scribes notations and basic descriptions of RSLSs. Section 3 devel-
ops observer structures for unobservable subsystems and derives
the overall observation error dynamics for the entire system. Sec-
tion 4 covers the design procedures. To motivate our new design
algorithms, Section 4.1 first shows that the classical Kalman-Bucy
filters applied to subsystem observer design may result in diver-
gent observers when switching is random. Then new algorithms
are introduced to design subsystem observers in Section 4.2.
Section 5 discusses a fundamental design tradeoff between con-
vergence speeds and steady-state estimation errors, and proposes
an optimal parameter selection method. Section 6 employs a
commonly used IEEE bus system in power systems to demon-
strate model development of RSLSs in practical systems, observer
design procedures, convergence properties, and design trade-
offs. Finally, the main findings and their potential extensions are
summarized in Section 7.
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2. Preliminaries

For a column vector v € R", ||v|| is its Euclidean norm. For a
matrix M € R™™ M’ is its transpose, A(M) an eigenvalue of M,
o(M) = /A(M’M) a singular value of M, and op,,x(M) its largest
singular value. The value oy,x(M) is also its operator norm in-
duced by the Euclidean norm omax(M) = [[M|| = sup,—; [[Mv].
For a square matrix M = [a;] € R™", Te(M) = Y I, a; is its
trace. The kernel or null space of M € R™™ is ker(M) = {x €
R™ : Mx = 0} and its range is Range(M) = {y = Mx : x € R™}.
I, is the n-dimensional identity matrix. For a subspace U C R" of
dimension m, a matrix M € R™™ is said to be a base matrix of U,
written as M = Base(U), if the column vectors of M are linearly
independent, and Range(M) = U.

A function y(t) € R in a time interval [0, T) is piecewise
continuously differentiable if [0, T) can be divided into a finite
number of subintervals [t,_q1,t), k = 1,...,¢,to =0, t, =T
such that y(t) is right continuous in [t;_1, t;) and continuously
differentiable, to any order as needed, in (t;_1, t;). The space of
such functions is denoted by C[O, T).

For a random variable q, E(q) is its expectation. For a subset
So € S = {1,...,m}, the indicator function of the set Sy
is lges, = 11if g € Sp; and 145, = O otherwise. Pr{-} is
the probability. N(0, I,) is the standard p-dimensional Gaussian
distribution of mean zero and variance I,.

2.1. Systems

For state observer design, we ignore the input to the system
and consider a continuous-time RSLS with output observation
noises

{X(f) = Ala(t))x(t) (1)
dy(t) = Cla(O)(t)dt + B(a(t))dw

where x(t) € R" is the state, y(t) € R" is the output. The system
matrices A(x(t)) € R™", Ca(t)) € R™" and Z(a(t)) € R™**
depend on the randomly switching process «(t) that takes m
possible values in a finite discrete state space S = {1, ..., m}. The
noise process w € R” is the p-dimensional standard real-valued
Brownian motion with p < r and (Z(i))&(i) > 0,i € S.

Remark 1. The output equation in (1) is a stochastic differential
equation (SDE) that has been ubiquitously used as observation
equations in stochastic systems. However, in the engineering
literature, the output equation y(t) = C(a(t))x(t) + n(t), in
which y(t) is y in (1), is often used with n(t) being a white noise
and viewed as the derivative of the Brownian motion w. Since
a Brownian motion is nowhere differentiable, y(t) is not well
defined in the time domain and hence the expression is symbolic.
This symbolic expression is useful in mean square estimation
problems for linear time invariant (LTI) systems. However, it
lacks the rigorous foundation for more complicated time-domain
analysis. The rigorous SDE forms are now commonly used under
the Ito sense stochastic calculus. Since this paper must treat
two interacting stochastic processes (noise and switching), it is
beneficial to have a mathematically rigorous expression so that
future developments of more sophisticated interacting stochastic
processes will have a solid foundation.

For each i € &, the corresponding LTI system in (1) with
matrices C(i), A(i), Z(i) will be called the ith subsystem of the RSLS
in (1).

Assumption 1. For a given time interval T, (a) the switching
process «(t) can switch only at the instants kT, k = 0,1, 2, ...,
generating a stochastic sequence {«; = «(kT)} (the skeleton
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sequence). (b) The sequence {«;} is independent and identically
distributed (i.i.d.) with probability Pr{ey = i} = p; > 0,i € S,
and ZL pi = 1. (c) ay is independent of x(0) and the Brownian
motion w. (d) «(t) can be directly measured, but it is not known
before its occurrence.

Remark 2. Although T is not a design variable in constructing
observers, it will be shown in Section 4 that there is a critical
threshold Tph.x on T such that if T > T,x, MS convergence of state
observers may not be achievable no matter how the subsystem
observers are designed. For this reason, T will be selected below
Tmax- The critical upper bound T,,x will be derived in Section 4.

As functions of «y, the matrix sequences

m

Ac = Aler) = Y LiamiAlD),
i?"]

G =Clay) = Z L=y C (1),
i=1

m
By = 8(og) = Z Ley—iy Z (1)

i=1

are stochastic. Denote x, = x(kT), k = 0, 1,.... From Xxy41 =
e*Tx,, the state transition mapping from xq to x; is
xp =T eMTxy = Hixg, k=1, . .. (2)

where Hy = 17 ... gfoT
2.2. Stochastic observability

For constant A € R™" and C € R™™", and a finite time interval
[0, T), consider the noise-free output y, defined by the mapping
G : R" — C[0,T), y(t) = Gxo)(t) = CeM'xy, t € [0,T). The
kernel of the time function G is defined as Ker(G) = {xg € R" :
Yy(t)=0,t € [0, T)}. Let W be the observability matrix of (C, A):

C

CA

W — I RT“XH

CA;171

Lemma 1 (Kailath, 1980). Ker(G) = ker(W).

For the ith subsystem in S, the matrices A(i) and C(i) are
constant matrices, and its observability matrix is

Ci)

CHA()
,i=1,...,m (3)

C(i)(A(D))"!
and the combined observability matrix for the set S is

w(1)
W(2)
Ws = .

W(.m)

We note that W(i) and Ws are deterministic matrices.

Remark 3. During system operation, the stochastic switching
process « naturally induces stochastic matrix sequences Ay €
{A(1),...,A(m)}, G, € {C(1),...,C(m)}, and &, € {E(1),...,
Z(m)}. Under the notation of this paper, all quantities involving
time index k are stochastic quantities. On the other hand, the
value sets, such as {A(1), ..., A(m)}, are the finite sets induced by
the space S = {1, ..., m} and hence are not stochastic processes.
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In this paper, we consider RSLSs whose subsystems may be
unobservable.

Assumption 2. (a) Subsystems may be unobservable, namely
Rank(W(i)) = n; < n,i = 1,...,m. (b) The combined observ-
ability matrix W is full rank.

Remark 4. In our subsequent technical treatment, we will focus
on the more difficult case in which all subsystems are unobserv-
able, including the potential case n; = 0. The case n; = 0 is
a common engineering scenario that represents a total loss of
sensing capability due to sensor failures, channel interruptions,
packet losses, etc. The condition (b) of Assumption 2 ensures
that their collective observable subspaces cover R". The reader
is referred to an example in Wang et al. (2023) that shows this
condition to be a necessary condition for designing convergent
observers for the entire state.

Definition 1 (Wang et al., 2023). For a given finite time interval
[0, £T) and switching sequence {ay,k = O, ..., ¢ — 1}, the RSLS
in (1) is said to be stochastically observable if the kernel of the
mapping G satisfies Ker(G) = {0}.

The mapping G is conditioned on ¢y, and hence it is a random
quantity. Define the matrix sequence

Wo
W;Ho
O, = , £=0,1,..., (5)

W¢Hy_4

where Hy is defined in (2) and H_; = I,. Since W is random, O,
is also a matrix-valued random variable.

The following basic lemma from our recent paper (Wang et al.,
2023) will be used in this paper.

Lemma 2 (Wang et al., 2023). For a given finite time interval [0, £T)
and switching sequence {ay,k = 0,...,¢ — 1}, (a) Ker(g) =
ker(Og). (b) The RSLS in (1) is stochastically observable if and only
if ker(O,) = {0}, or equivalently, O, is full column rank.

3. Observer structures and error dynamics

The observer design procedure involves many factors. The
main ideas of the design procedure can be summarized as follows.

(1) For each subsystem i, which may be unobservable, the state
space is decomposed into its observable and unobservable
subspaces by using the Kalman decomposition. The ob-
server for the ith subsystem only estimates the observable
sub-state z' when oy = i. The observer feedback gain L; for
estimating z' must be designed. This observer structure is
discussed in Section 3.1.

Since the design of L; involves further coordination that
depends on the switching process, it must take into con-
sideration the error analysis for the entire system. As a
result, the overall error dynamics must be derived. This is
presented in Section 3.2.

Section 4 discusses the design procedures for L;. We first
show by a counterexample in Section 4.1 that using Kalman
filter designs for L; can potentially lead to divergent ob-
servers for the entire state. Then our new and convergent
observer design methods and algorithms are introduced in
Section 4.2. This design procedure generates a collection
of subsystem observers for observable sub-states. During
implementation, these observers are used according to o
that occurs randomly. MS convergence of the combined
observer is established for the entire state. Section 4.3
derives a critical threshold Tyax such that when T < Tpax
convergent observers can be designed.

(2

—

3

=
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3.1. Observer structure for subsystems

We first review the subspace decomposition on each sub-
system, developed in Wang et al. (2023). Feedback-based linear
observer design for subsystems is used so that the observers
can be robust against errors, the design step can be simple and
constructive, and convergence analysis can utilize properties of
LTI systems.]

Let W(i) be the observability matrix of the ith subsystem de-
fined in (3). If the ith subsystem is unobservable, then Rank(W(i))
= n; < n. We construct the base of its kernel as M; =
Base(ker(W(i))) € R™( ") and select any N; € R™™ such that
T; = [M;, N;] is invertible. The inverse of T; is decomposed into

T ' = [g’} where G; € R"")*" and F; € R™*",
1

1
) i .
T 'x = [Glx:| = [vi]' where z' € R
Fix Z

represents the observable sub-state of the ith subsystem. We

focus on constructing a subsystem observer for estimating the

sub-state z' when o = i. Denote A' = TflA(i)T,-, C' = C()T;,

which have the structure

Ai — [A,‘l‘l Al'IZ
0 A,

Define Z; =

}, Cc'=10,Cl]

with A5, € R"M, C; € R™™, and (C}, A},) is observable with
respect to the sub-state z'.

The observable part z' of the ith subsystem can be estimated
when o = i, but in general it may belong to the unobservable
subspace of the jth subsystem if oy = j # i. As a result, estimation
errors on z' are fundamentally different. Consequently, the error
dynamics on z' estimation are divided into the following two
cases.

Case 1: oy = i. When «y = i, the open-loop dynamics of z' are
Zi = A7

i [ (6)
CZZ dt + Epdw

dy =

and (Cé', Aéz) is observable. The observer for the ith subsystem in
[KT, (k 4+ 1)T) for estimating the sub-state z' is

dz' = AL Z'dt + Li(dy — CiZ'dt) (7)

where L; € R%*" is the constant observer feedback gain. Denote
AL = A, — LiC} and e =Z' — Z'. Then

de' = Ale'dt + L; 5y dw (8)

where L; is designed such that AL = A}, — L,C} is stable in the
continuous-time domain, i.e. all eigenvalues of Ai are in the open
left half plane.

For convergence analysis and error variance computation, we
need to obtain E(ei(e!)). Note that e’ € R", AL € R ", L;5 €
R™*P and w(-) is the p-dimensional standard Brownian motion.
Consider the stochastic differential equation (8) for t € [kT, kT +
T) with initial data e}. Obviously e'(t) is normally distributed
and its distribution is completely specified by its mean mi(t) =
E(ei(t)) and covariance Ri(t,s) = E(el(t) — mi(t))(ei(s) — mi(s)).
Denote m}, = m'(kT) and V| = E((e} — m})(e}, — m})’).

Let €'(t) be a solution of the stochastic differential equation
given by (8) together with initial data el.

1 For more details on feedback-based linear observer design such as pole
placement design of full-order observers and Luenberger observers, the Kalman
decomposition, and observer stability analysis, the reader is referred to control
engineering textbooks (Kailath, 1980; Kuo & Golnaraghi, 1994).
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Proposition 1. Suppose thatAi is Hurwitz, i.e., all of its eigenvalues
are in the open left half plane of the complex plane. Then the mean
vector mi(t) and covariance matrix Ri(t,s) of €'(t) are given by
mi(t) = eAt=*Dmi and

Ri(t s) = eAé(t—kT)Vke(Ai)’(s—kT)
SAt i iy

+ | AT gLy e O de,
kT

where s A t = min(s, t).

(9)

Proof. It is easily seen that ei(t) = e"‘i“"‘”eﬁ'< + fo AL
dw(t). By taking the expectation, mi(t) is obtained. Furthermore,

Ri(t, s)

= E([e* (el —mi) + [ e ILEdw (o))
kT

. , ) s )
x [ (e —mp) + | L Edw(v)] (10)
kT
_ [eAE(tfkT)Vk e(A"E)’(sfkT)]

t s /
—H:"[ eA’r“f)L,»Ekdw(r)] [ / e(Alf)(S”)L,-Ekdw(v)] .
kT K

T
For kT <t <s,

E [ eAi(ff>LiEkdw(z)] [

kT

s . /
eA'f(S")LiEkdw(v)}

kT

t . . (]1)
= | HOLE(LEY e T dr.
kT
Likewise, for kT <s <'t,
t . s 4
E [ eAlf(“”L,-Ekdw(r)] [ eAC(S’“)LiEkdw(v):|
kT kT (12)

= se’*i“*”L,-Ek(L,-Ek)/e“*?)’“*f)alr.
kT
Combining the above two expressions and using (10), we obtain
the last expression in (9). O

By Proposition 1, for t = s = (k+1)T, we have mi, , = e/,
and Vi, = MKy, (@)K [T AT 2 (1,5, el T dr. De-
note Q; = (V{,,)"2 Since e\, is Gaussian, which is completely
determined by m;_ , and Q, €, can be expressed as

el 1 = &Te, + Qldy (13)

where {di} is a sequence of i.i.d. random variables, and d;, ~
N(O, 1,).

Case 2: oy = j # i. When oy = j # i, in general z' may
not be observable in the jth subsystem, namely the observed
output y may not contain any information on the sub-state z'.
Since the observer is feedback-based by using y, in this case, the
subsystem observer for z' runs open-loop, using only the system
model without feedback correction. To derive the dynamics, we
need the mapping from the estimate for the entire state, which
is presented next.
Fi

Definen, =) ;" mjand F = | : | € R™*".

Fin

Lemma 3 (Wang et al., 2023). (a) ker(F;) = ker(W(i)). (b) ker(F) =
ker(Ws).
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z
From subsystem observers, define z = : e R™, and
Zrn
21
its estimate Z = € R™. Then, z = Fx and Z = Fx.
’Em

Under Assumption 2, F is of (column) rank n. As a result, @ =
(F'F)~'F’ € R™"s is of (row) rank n, and x = ®z. Consequently,
their sampled values are x, = @z, Xy = PZ.

Remark 5. Assumption 2 means that although each subsystem
may be unobservable individually, the span of all observable sub-
spaces covers the whole state space collectively. This is reflected
by the rank of F, resulting in the bounded mapping x;, = ®z. As
a result, convergence of Z;, implies that of X.

Since the true system is x,; = e*Tx; and Ay is known at kT,
the true sampled value of the subsystem state is z,i( 11 = FiXer1 =
Fie™Tx,. Consequently, the subsystem observer runs open-loop
with Z,; = FXip1 = Fe™Ry if o = j # i. The observer for
estimating x is X, = @Z. Denote the estimation errors e, = X, —X
and e, =7 — zx. We have ¢, = ®e; and when o =j # i

GLJH = FieA"Tek = F,-eA"Tdﬁek. (14)
3.2. Observer error analysis
Since these errors are related by the bounded mappings ¢, =

®e, and e, = Fey, the following analysis on state estimation
errors and their convergence will concentrate on ey.

Theorem 1. The observation error dynamics can be expressed as
err1 = Agey + Ledy (15)
where A, = A' + A2FeMTd, A' = diag[1j—eT], A2 =
Lioy=1}Qy
diag[1e, £y ], and I = :
]1{ak=m1ka

Proof. For the ith subsystem, by (13) and (14),

iTl' i . _
i {eAc e, + Qide, ifoy =i
k1 =

FeMT dey, if a # i
and
€1
€k+1 = .
ek

1
L=y (€T ey + Qldi) + Ly 21 Fre™T De

Lygyemm) (€4 T + Qi) + Ligy em) Fm€T Deye

= Alek + AZFBA"T@ek + Ndy = Avex + Td. O

This section has established the observer structure for estimat-
ing observable sub-states of subsystems, the combined observer
for z (and hence for x = &z), and estimation error dynamics.
To achieve convergence, the error dynamics must be stable in
the MS sense. This stability condition depends on the design
of L;. The next section will discuss design methods and present
convergence results.
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4. Convergent observer design
4.1. Kalman-Bucy filters and instability

For the ith subsystem, when a; = i, the dynamics of the
sub-state z' are governed by (6) and (C;, A},) is observable. One
possible approach is to design the observer gain L; in (7) by
using the Kalman-Bucy filters. The classical Kalman-Bucy filters,
see Anderson and Moore (1979), Kalman (1963) and Zarchan and
Musof (2005) for detail, deal with systems with both state and
output stochastic noises,

{dx(t) = Ax(t)dt + Q%dv
dy(t) = Cx(t)dt +R?dw

where Q /2 and R'/? satisfy Q /2(Q /2y = Q > 0and RV2(R"/?) =
R > 0, and v and w are mutually independent standard Brownian
motions. The initial value x(0) is independent of v and w, and
Gaussian distributed x(0) ~ N(xq, Pp) with Py > 0. The Kalman-
Bucy filters start with the initial variance P(0) = Py and initial
estimate X(0) =X, and is represented by

P(t) = AP(t) + P(t)A' + Q — K(t)RK'(t)

K(t) = P(t)C’'R™!

dx(t) = AX(t)dt + K(t)(dy(t) — CX(t)dt),

with the related limiting Algebraic Riccati Equation (ARE)
AP +PA' +Q —PC'R'CP = 0.

Since switched unobservable linear systems involve multiple
subsystems and stochastic switching, the switching process will
have critical impact on MS convergence of observers. We now
show by a counterexample that the Kalman-Bucy filters designed
to estimate the observable sub-state at each subsystem by using
the ARE may lead to a divergent observer for the entire state of
the RSLS.

(16)

Example 1. Consider a second-order system without state noise

xi(t) = ax(t)
x(t) = ax(t)
dy = (Lam=1X1(t) + L=z %2(t))dt + /Tdw

a0~y = [1,0], C2) =

0 a

where a; > 0, a; > 0, (t) € {1,2} and w is the standard
Brownian motion. Since A = s

[0, 1], the observability matrices are W(1) = |:al 8] W(2) =
1
8 M As a result, both subsystems (C(1), A) and (C(2), A) are
unobservable.

Within [kT, (k+ 1)T), if &, = 1, only x; is observed with noise.
The filter takes the form

{d?l(t) = axi(t)dt + Li(dy —x;(t)dt)
X)) = aR(t).
If @, = 2, only x, is observed with noise. The filter takes the form
{ ) = ax()
ﬁz(f) = azl)?z(f)dt + Ly(dy —’)?z(f)df).

To calculate the Kalman gains L; and L,, we use the ARE. If
ar = 1, the Kalman gain is Ly = P;/¢, and P; satisfies 2a;P; —
%Plz = 0, resulting in P; = 2a,¢ and L; = 2a,. Similarly, if o = 2,
L, = 2a,. The estimation error dynamics for e! = X; — x; and
e =%, — x, are
{de1 = (Lao)=1)(—01) + Lia()=2a1)e1(t)dt + L1/Tdw,

de? =

(17)
(Lia)=1)02 + Lia()=2y(—a2))e2(t)dt + L/Tdw.
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Fig. 1. Observer error dynamics under Kalman-Bucy design.

Suppose that Pr{ay = 1} = p > 0 and Pr{oxy = 2} = 1 — p. For
stability analysis, we may consider only the noise-free part for e,
whose sampled values are

911+1 = Ve (18)
where y! = e 11, 1y + €M7 14, 0).

To evaluate the MS errors, denote o] = E((e})?), i = 1,2. By
Assumption 1, {a} is a sequence of i.i.d. random variables and
independent of x(0). This implies that y, and o, are independent,
and oy, = Ey,(0)*(€,)?) = 7'oy, where p' = Eq, (%)%
pe—Za,-T + (1 _ p)eZa,-T'

Ify' > 1,0/ — o0, as k — oo, namely, the filter's error
dynamics are divergent in MS. For a numerical example, let a,
2,a, = 4, T = 0.03, p = 0.2. Then, we can calculate that j'
pe~24T 1 (1—p)e?tT =1.0794 > 1, y? = (1—p)e2%T 4 pe2eT
0.8836 < 1. These imply that when we use MS errors, the error
dynamics for e,} are unstable although the error dynamics for eﬁ
are stable. Fig. 1 verifies this conclusion.

This example demonstrates that in general the Kalman-Bucy
filters designed on a given sample path of {«} and applied
to the observable sub-states are not convergent in RSLSs with
unobservable subsystems. This is mainly due to excluding the
stochastic information of the switching process «y in design.

We now introduce new algorithms to overcome the diver-
gence issues of Kalman-Bucy filters, develop MS convergent ob-
servers, and derive their main convergence properties.

4.2. Design of the observer feedback gain L;

The design of L; aims to achieve the MS convergence of ey. The
following theorem provides a design criterion.

Theorem 2. If the feedback gains L;, i = 1, ..., m, are designed
such that y, = E(|| A¢||?) < y < 1, then ey is MS convergent.

Proof. From the error dynamics ey = Ayey + I'dy, the solution
is

k=1

— k=1 4\ o d:

ex = (5 Aj) ey + ) Awylid;.

i=0
For convergence analysis of the error dynamics, we first focus
on the noise-free dynamics e,.; = Ager. From |legq|> <
| AxlI?llex]l? and independence of Ay and ey, we have

E(llex11*) < E(IAI®)E(llexl?)

= veE(llexll?)
< yE(llexll?).

Since y < 1, the noise-free system is MS exponentially stable.
Furthermore, since Ay, ey, and d;, are mutually independent,
and I} and d; are independent,

E(llexs111?) = E(ep A Axer) + E(di Iy Tiedy)
< vE(llecll®) + S

for some Z} > 0. Since y < 1, this is a stable system. It follows
that E(||ex||?) is convergent. O

To achieve the design criterion E(|| A¢[|?) < y < 1, there is a
constraint on T. We first establish a sufficient condition showing
the existence of design algorithms for L;, i = 1, ..., m, that can
satisfy this condition. Then we use a counterexample to explain
why this constraint on T is necessary in general.

Theorem 3. Under Assumption 2, there exists Tax > 0 such that
forany T < Tpax, L, i = 1,...,m, can be designed to satisfy

w=<y<Ll

Proof. By the definitions of A! and A2, we have (AlYA? = 0,
and as a result,

A Ay = (A" + A’ F @) (A + A’FMT )
=AY A + (A2FMT oY A2FeMT .

By Singular Value Decomposition, ||Ag|? (ALY Akl <
(AT AM|+1I(A*FeT @) A2FeT @ || = || AT||? + || A*FeMT ||, 1t
follows that E(|| Axl|?) < E(IIA']1?) + E(]| A2Fe T @ ||?). ,

Since the poles of e4” can be arbitrarily placed, y! = ||e
can be made arbitrarily small. As a result, ymax = Maxi—1,__n ¥’
can be made arbitrarily small. Denote

)R

Pmax = MaX Pj, max = Max (] _pi)-
i=1,....m i=1,...m

By Assumption 1, 0 < pmax < 1 and 0 < gmax < 1. Then, we
have ||A']|?> < ymax. Consequently, subsystem observers can be

designed to satisfy
E(IlAlllz) = PmaxVmax = Y1 < &, (19)

for any ¢ > 0.
On the other hand,

h(T) = max ||[Fe"VT & |2 = max ||F"VT (F'F)~1F||2
ieS ieS



LY. Wang, G. Yin, F. Lin et al.

is a continuous function of T and for T =0
h(0) = m«?SX ”FeA(i)O(F/F)qF/”z
1€

F'’F)"'F'F) by Jacobson’s Lemma

—

(

= )\max(F(F/F)_lF,)
(
(

where A is the largest eigenvalue. Since gmax < 1, by continu-
ity of h(T), there exists Ty > 0 such that

¥, = max E(| A%FMT o|12)
T <Tmax (20)
GmaxN(Tmax) < 1—¢

for some ¢ > 0.

Together, by selecting T first to satisfy T < Tpax in (20), and
then designing subsystem observers to satisfy (19), we obtain
y<vi+wm<ed+l—e=1 0O

IA

4.3. Fundamental limitations

In Wang et al. (2023), without observation noises, we showed
that for any given T > 0, L; could be designed by using pole
placement such that the observer for the entire state x converges
strongly. This paper deals with MS observation errors and con-
vergence. Intriguingly, the same design as in Wang et al. (2023)
may not converge in MS. In fact, a fundamental limitation exists
for MS convergence. We will use an example to demonstrate this
property.

Example 2. Consider the system in Example 1. To illustrate this
property, we note that by Theorem 3, for stability we need to
choose feedback gains such that peX@—1)7T 4 (1 — p)e?aT < 1
and pe’®@T + (1 — p)eX@~1T < 1, Since a; > 0, for any given
0 < p < 1, there exists Tmax such that (1 — p)e*®T > 1 when
T > Tmax. This results in the scenario

nzin(pez(‘”_L1 T+(1—pye?a’) > 1,
1

implying a divergent state observer, regardless of how L; is se-
lected. It is similar for L, design.

Due to unobservable subsystems, there is always a time in-
terval in which the observer must run open-loop. When this
open-loop system is unstable, if T is too big, it will become
apparent that the average value y will always be greater than
1, resulting in an unstable observer, no matter how the observer
gain is designed. This fundamental limitation indicates that T
must be selected first to be small. Then L; can be designed to
achieve MS convergent observers.

For the system in Example 1, if a; = 2, a = 4, p = 0.2, then
the thresholds are Tr},ax = In(1/(1 — p))/(2a;) = 0.0558 for the
error dynamics of e} and T2,, = In(1/p)/(2a;) = 0.2012 for the
error dynamics of e2. As a result, T must be selected to be smaller
than min{0.0558, 0.2012} = 0.0558.

Suppose that we select T = 0.03 < 0.0558 as in Example 1.
Instead of using the Kalman-Bucy filter design, we select pole
positions such that pe?@—1)T 4 (1 — p)e?T < 1 and (1 —
ple? @12 4 pe2e2T ~ 1. This leads to the bounds on selection
of Ly and L, as

Ly > 25.7775, L, > 6.3407.

By choosing Ly = 40 and L, = 15, we have y = max{0.9225,
0.6677} = 0.9225 < 1, resulting in a convergent observer design.
This is demonstrated in Fig. 2, showing that both e} and e} are
now convergent.
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To demonstrate the critical importance of selecting T correctly
first, we now select T = 0.25 > 0.0558. Under the same design
of L1 = 40 and L, = 15, Fig. 3 shows that observers for both e,l
and e} are now unstable.

5. Steady state error and design tradeoff

We now study the steady-state estimation error of the error
dynamics (15), exr1 = Agex + Iydy, and discuss some de-
sign tradeoffs that are inherent between convergence speeds and
steady-state error variances.

5.1. Steady-state error variance

Denote Vi, = Ey (exey), mr = Eq (e ex) = Tr(Vy). Select T <
Tmax and design L; so that the matrix M = E(A; Ay) is stable,
namely all of its eigenvalues are inside the open unit circle. Write
M = P'P and denote ¥ = E(I/I}). Since Ay is induced by oy, it
is i.i.d. and M is a constant matrix. By Assumption 1, A, ey, and
dy are mutually independent. Consequently, noting that Tr and E
commute,

M1 = TrViy
= Tr(E(Arexe, Ay)) + Te(E(Nidid, I3,))
= E(Tr(Axexer Ay)) + E(Tr(Iidd, 1))
= Tr(E(ALAkekeL)) + Tl'(E(Fk/dekd;())
= Tr(MVy + %)
=Tr(P'ViP + +%).

Let ¥ = limy_ o ¥. The steady-state variance is V., satisfying
Moo = TrVy = Tr(P'VooP 4+ ). As a result, w, can be obtained
by first solving the Lyapunov equation

PVoP — Vo + ¥ =0 (21)

and then compute po, = TrV.

There is an inherent tradeoff in designing L;. Intuitively, from
the expression of I, it is clear that the larger the feedback
gains, the larger the steady-state error .. On the other hand,
to increase convergence speed, it is desirable to place poles with
larger absolute values of their negative real parts. In other words,
fast convergence and small steady-state errors are in conflict. We
use an example to explain the tradeoff and discuss some potential
approaches for choosing suitable design parameters.

5.2. Discussion on design tradeoff

We now use the system in Example 1 to illustrate a tradeoff
in filter design.

Example 3. Let the parameters in Example 1 bec; = ¢; = 1,
a; = a; = 10, Pr{iey = 1} = 0.5, ¢ = 1. When o = 1, we
observe x; only, and ag = a; — L. For stability, it is required
that 0.5e?MT + 0.5e%@ 10T = 0.5¢207 4 0.5¢20Te2hT < 1,

which implies T < “21—02. Under this condition, L; must satisfy
—204T _ 1-0.5¢20T —20T 1 —20T
el < S = 2e —1,0rL; > —5:In(2e —1).

From the viewpoint of convergence speed, the larger the gain
L, is, the smaller the factor j; is, and in turn the faster the conver-
gence of e,l. On the other hand, from (15), a larger L; contributes
to a larger equivalent variance on the diffusion term, which leads
to a larger steady-state variance of the state estimation error.

Because of the constraints on T and L;, the transient conver-
gence speed and the steady-state error variance form a funda-
mental tradeoff in the design consideration.
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Fig. 2. Observer error dynamics under small T and new observer gain design.

x10'°

Observer Error e:(

MS Error

Observer Error e

15 20 25

[
o

2
k

4000

MS Error
N
(=]
(=]
o
T

—r I I

15 20 25 30

Time Step

Fig. 3. Observer error dynamics under large T.

This tradeoff indicates that some optimization may be used
for parameter selection. While a comprehensive treatment of
this problem is beyond the scope of this paper, we now use an
example to illustrate the main aspects of parameter selection.

Example 4. Consider the system in Example 1, with a; = 2,
a,=4,T=0.03,p=0.2,¢ =0.01.

State Estimation Error Dynamics: The state estimation error
dynamics are

1 1,1 1
€1 = Vil T La=1Q di (22)
1 = Vil + Lw=2Qldk.
where

—L)T T
vi =T e + e gm0,
e =e 22, o+ e 1),

and by (15) for i = 1,2, the limiting values of Q! and Q? (only
these values are used in steady-state error calculations) are

T 12
Q = ([ ez(“i’Lf)TL,-z;dT>
0

— LV (1 — e~ ALi—aTy.
2(Li — a;)

—e

To analyze the dynamics of error variances, define ‘713 =
E((e})*), o = E((et)*), and oy = o,! + 0. Under Pr{ay = 1} = p

with0 <p <1,

O = Vo FPA (23)
Oy = Yoo +(1-p)Q

with

y! = E(p ) = pe @ + (1 —p)e?@T,

y? = E(12Y) = (1= p)e? 21T 4 peel

T is selected such that

max{(1 — p)e*“7, pe?2T} < 1. (24)

For an illustration, we consider only okl. To show the impact of
L, on convergence rates and steady-state error variances, we se-
lect three different values in the permissible range L, > 25.7775,
see Example 2. For Ly = 30, y! = 0.9883; for L; = 60,
y! =0.9371; for L; = 100, y! = 0.9126. Fig. 4 shows the error
variance trajectories under these three different L; values. When
Ly is small (L; = 30), the error trajectories converge slowly to
a relative high value. After increasing L; to 60, we see a faster
convergence and smaller steady state variance. However, if L,
is further increased to 200, the steady-state variance becomes
bigger. These curves indicate that there is potentially an optimal
L; value.

As a demonstration, for Ly = 60, one sample-path error
trajectory for e,} from (22) is shown in Fig. 5.

Selection of Design Parameters: For stability, L; and L, must be
designed to satisfy the condition

max{y', y?} < 1. (25)
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Fig. 4. Observer error variances under different L; for design tradeoff.
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Fig. 5. Estimation error trajectories for e} under L; = 60.

1—-p)02
a-p )%, and the total
1-y

1 _ pQ12 2 _
Then, ol (L;,T) = T oL, T) =

steady-state MS error is
Ooo(Lis L2, T) = 0o (L1, T) + 05 (L2, T).
Optimal design of T, Ly, L, is a constrained optimization problem

min ol (L, T) + o2 (Ly, T),
L1,L,T
Subject to: (1 —p)e®T < 1,pe?®T < 1,p' < 1,92 < 1.

For a fixed T that satisfies (24), both o (L1, T) and o2 (L,, T)
are strictly convex functions of L; and L,, respectively, and can be
individually optimized with the unique solutions L(T) and L3(T).
Then T is optimized under the constraint (24). Since exponential
functions are involved in this optimization problem, in general it
is a highly nonlinear problem that can be solved numerically. For
T = 0.03, Fig. 6 shows o;O(Ll, T) as a function of Ly. The optimal
value is L] = 61.3 with the corresponding minimum variance
ol (L%, T) = 0.9864.

In conclusion, in practical applications of the design method
introduced in this paper, design of the observer feedback gains
should be carefully evaluated to achieve a balance between con-
vergence speeds and steady-state errors.

6. A case study

In this section, we use a practical case of power systems to
illustrate the design process, performance evaluation, and related
issues. We use a common IEEE 5-Bus system that has been

widely used in performing power system optimization, power
flow analysis, and contingency detection.

Example 5. Consider the IEEE 5-Bus system shown in Fig. 7.
The bus structure and data are from the open-source information
in Tan (2023). Bus 1 and Bus 2 are generator buses and Buses 3-5
are load buses.

Buses 1 and 2 are PV buses (generator buses) with bus voltage
magnitudes controlled to its rated values by Var condensers or
compensators.? Similarly, in light of rapid advancement in Var
compensation technology such as flexible AC transmission sys-
tems (FACTS), we assume that all load buses have their voltage
magnitudes maintained near the rated values.

Dynamic Systems. The two generator buses are dynamic buses
with synchronous generators (Kundur, 1994). Denote w; = &y,
z1 = [81, w1], wy = 83, 2 = [83, wy]'. The dynamic systems are

Mo + g1(w1) = Pi]n -p +le1 ‘|'P331
Maar + ga(wp) = Pp — Pl + P} + P, + P, + P2

where the real power flow from Bus i into Bus j on Bus j is
2

. : ViVi
Pilj — _J COS(Qij) — # COS(@U + SU)’
ij

26
Zl; X (26)

2 power systems, a PQ bus has its real power (P) and reactive power
(Q) specified, often by loads; a PV bus has its real power (P) and the voltage
magnitude (V) specified, often for generators; and a slack bus has its voltage

phasor specified (as a reference point) and its real and reactive powers are
used to balance powers in a grid.
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Fig. 7. IEEE 5-Bus system.

and é; = & — §;. The damping term g;(w;) has the linear part

33
)
[5;} & = |:§;1i|

and their perturbations from the nominal values as x; = A&,
Xnd = A&nq. The dynamic systems can be expressed as a nonlinear
state equation

£q = F(£4, £na) + B1v + Bae

bjwy with b; > 0,i = 1,2. Denote &

- pL3 0 0
where v = [P‘:”],ez P}|, By = 1/(1)\/11 g , By =
" P; 0 1/M,
0 0
_16M1 8 . The dynamic systems can be linearized near
0 —1/M,

the nominal operating points as Xy = A1Xg + AxXng.

The three load buses have real-power equations P} = P}; +
P}, + P2, P} = P}, + P, + P2, P? = P, + P5., where Plg is given
n (26). These nonlinear equations can be linearized near the
nominal operating points as 0 = Hyx,qy + H,X4 where H; and H,
are the corresponding Jacobian matrices. In power systems under
permitted operating ranges, H; is invertible, leading to x,q = Hx4
with H = —H; 'H,. It follows that

X4 = (A1 + AH)xg = Axqg

with A = A; 4+ AyH. The bus line parameters are defined in Tan
(2023) and listed in Table 1, with R = Resistance, X = Reactance,
Z = |Z|/6 = Impedance.

10

Table 1
IEEE 5-Bus system line parameters.

Line R (p.u.) X (p.u.) Z (p.u |Z|46 rad)
1-2 0.02 0.06 0.06£1.25
1-3 0.08 0.24 0.25/1.25
2-3 0.06 0.25 0.26£1.33
2-4 0.06 0.18 0.19£1.25
2-5 0.04 0.12 0.13£1.25
3-4 0.01 0.03 0.03/1.25
4-5 0.08 0.24 0.25£1.25

Table 2

IEEE 5-Bus system bus data.
Bus V (p.u. £ rad) P Q Py QL
1 1.06£0 129 —7.42 0 0
2 1.0474/ — 2.8063 40 30 20 10
3 1.0242/ — 4.997 0 0 45 15
4 1.0236/ — 5.3291 0 0 40 5
5 1.0179/ — 6.1503 0 0 60 10

The nominal operating condition defined in Bhandakkar and
Mathew (2018) and Tan (2023) is used here with the nominal
bus voltages, generation powers and load powers listed in Table 2
with real power P (MW) and reactive power Q (MVar). The base
MVA is Sg = 100 MVA and base voltage is Vg = 230 kV.

Under the per unit system, the normalized generator param-
eters are M; = 1.9 and b; = 0.2 with equivalent time constant
T; = M;/b; = 9.5 s for Generator 1, and M, = 0.9, b; = 0.16
with equivalent time constant T, = M, /b, = 5.625 s for Genera-
tor 2, see Bhandakkar and Mathew (2018) for the computational
results.

Under these operating conditions, we obtain

0 1 0 0

A= 7.7926 —0.1053 —7.7926 0

- 0 0 0 1
—20.3866 0 20.3866 —0.1778

Since eigenvalues of A are {—5.3880, 5.2302, 0, —0.1253}, it is an
unstable system.

Sensor Systems. In energy management systems (EMS), frequen-
cies and voltage phasors on some buses are measured by fre-
quency sensors and synchrophasor measurement units (PMUs).
Each sensor represents an output equation. For cost reduction and
maintenance simplification, it is highly desirable to reduce sensor
complexity. Table 3 lists some common sensor systems and their
observability under normal and contingency conditions. S; = the
ith sensor, i 1, 2. Yes = Observable; No = Unobservable.
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Sensor systems and observability.
Sq S, Normal S fails S, fails Both fail
&1 52 Yes Yes Yes No
81 w1 Yes No Yes No
w1 wy No No No No
81 wy Yes No Yes No

Since the sensor system with (81, d,) has better observability
properties, we will use this as an example here.

Contingency and Stochastic Hybrid Systems. In modern micro-
grids, the measured signals are communicated to the supervisory
control and data acquisition (SCADA) and EMS via wireless com-
munication networks. Due to communication packet loss, the
packet delivery ratio for each channel is given by & > 0 for
successful data transfer on channel j.

Suppose that §; and 8, are measured. By adding measurement
and communication noises in PMU measurement errors (Castello,
Muscas, & Pegoraro, 2022; Salls, Torres, Varghese, Patterson, &

Pal, 2021), we have C(1) = (1) 8 (1)

C(2) =[1, 0,0, 0] for failure of Sensor 2 (§; measurement only),
C(3) = [0, 0, 1, 0] for failure of Sensor 1 (8, measurement only),
and C(4) = [0, 0, 0, 0] for failure on both sensors. Suppose that
the packet delivery ratio for Sensor 1 is & = 0.99 and for Sensor
2 is & = 0.995. This data acquisition scheme can be modeled
by an i.i.d. stochastic process oy € S = {1,...,4} with p; =
£1& = 0.985, p; = &1(1 — &) = 0.005, p3 = (1 — &1)& = 0.01,
Pa=(1-&)1-&)=5-10",

Observer Design. The pole placement design is used for de-
signing observer feedback gains for oy 1and ap = 2.
Since C(4) = [0, 0, 0, 0], the observer can only run open-loop.
For example, if we choose the desired closed-loop poles to be
A = [-6,—4.5,—5 — 5.5], then the Matlab function L;
place(A’, C'(i), 1), i = 1, 2, 3, 4, yields the suitable feedback gains
and the closed-loop error dynamics with AL = A — LiC(i), i =
1,2,3,4.

For this example, the upper bound on T can be computed
as Tmax = 0.7365, which is a sufficient condition for feasible
observer design. Select T = 0.6997. Denote A(i) = At i =
1, 2, 3, 4. The closed-loop error dynamics of e, are a stochastic
system with noise-free dynamics e,,1 = Agex, where Ay =
Z;l:] L, —j) A(i). For MS stability of the combined observer, we

g] for normal operation,

11

verify that the eigenvalues of p(A(1)Y A(1) + p2(A(2))Y A(2) +
p3(AQ3)Y A(3) + pa(A(4)) A(4) are {0.9904, 0.54, 0.0032, 0.0356}
that are stable.

The initial estimation error is selected to be e(0) = [2, 0, 1, 0]’
with error norm 2.2361. Suppose that the standard deviations are
Z(1) =0.01-[1,1]; &(2) = 0.011; Z(3) = 0.012. To simulate
the MS errors, the simulations for error trajectories are repeated
400 times, and the sample MS value at each k is computed as an
approximation of E(e,ey). Fig. 8 shows estimation error variance
trajectories.

Design Tradeoff. We now illustrate the design tradeoff discussed
in Section 5. Suppose that we now select the designed pole
positions to be more negative at [—12, —9, —10, —11] which
represents a more aggressive observer design. It can be com-
puted that the eigenvalues of p{(A(1)) A(1) + pa(A(2)) A(2) +
p3(A(3))Y A(3) + pa(A(4)) A(4) become {0.6891, 0.0046, 0.0015,
0.0001}. Since the eigenvalues are smaller than before, it con-
verges faster. However, the steady-state errors become bigger
due to much larger feedback gains. For example, L; is increased
from L = [20.7170, 187.0468, —123.7698, —568.3264]  to L; =
[41.7,675.4, —681.6, —3181.7]. Fig. 9 shows estimation error
variance trajectories, showing larger persistent errors.

7. Conclusions

This paper has shown that continuous state estimation of
RSLSs with unobservable subsystems and observation noises must
jointly consider features of continuous subsystems and stochastic
switching sequences in order to achieve MS convergence of
the observers. Due to a tradeoff between convergence speeds
and steady-state estimation errors, a constrained optimization
problem may be used to minimize estimation errors.

There are some open issues and potential extensions for the
problems treated in this paper. More sophisticated switching
processes such as Markov chains can be studied to accommodate
broader classes of RSLSs. Modeling errors that are of practical
importance are not considered in this paper. Applications of
the methodologies and algorithms to emerging technology areas,
such as autonomous systems, modern power systems, cyber-
physical systems will be highly valuable.
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