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a b s t r a c t

This paper studies mean-square (MS) convergent observers for estimating continuous states of
randomly switched linear systems (RSLSs) with unobservable subsystems that are subject to stochastic
output observation noises. When subsystems are unobservable and switching sequences are random,
the classical Kalman–Bucy filters that are applied to observable sub-states are shown to be potentially
divergent. It is also shown that unless the switching interval T can be selected to be sufficiently small
from the outset, MS convergence may never be achieved, regardless of how the observers for the
subsystems are designed. The critical threshold Tmax on T is derived for MS convergent observers to
be achievable. Under the condition T < Tmax, this paper introduces design algorithms for subsystem
observers to generate a globally MS convergent observer for the entire continuous state. A fundamental
design tradeoff between convergence speeds and steady-state estimation errors is analyzed. This paper
extends our recent new framework and algorithms for strong convergent observer design in RSLSs
by including observation noises, considering multi-output systems, establishing new algorithms for
MS convergence, and developing design tradeoff analysis. Examples and a practical case study are
presented to illustrate the design procedures, main convergence properties, and error analysis.

Published by Elsevier Ltd.
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1. Introduction

This paper studies continuous state estimation of randomly
witched linear systems (RSLSs) that are subject to stochastic
utput observation noises and whose subsystems may not be
bservable individually. Hybrid systems cover diversified applica-
ions that consist of interacting continuous dynamics and discrete
vents (Ezzine & Haddad, 1989; Lunze & Lamnabhi-Lagarrigue,

2009; Nerode & Kohn, 1992; Sun & Ge, 2005). Existing techni-
cal results on observability and observer designs for continuous
states of hybrid systems are mostly for the class of hybrid systems
called switched linear systems (Babaali & Egerstedt, 2004; Fliess,
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oin, & Perruquetti, 2008; Sellami & Abderrahim, 2015; Wang,
hargonekar, & Beydoun, 1997; Zhao, Liu, Zhang, & Li, 2013).
In a deterministic framework, a switched linear system can be

reated as a time-varying linear system when the switching se-
uence is known a priori. Extensive research has been conducted
n observability, observer design, and other related properties in
eterministic frameworks, such as observability and controllabil-
ty (Ezzine & Haddad, 1989), various notions of observability and
heir testing conditions (Haddadi, Gazzam, & Benalia, 2019; John-
on, 2016; Küsters & Trenn, 2018), the concepts of distinguisha-
ility (Vidal, Chiuso, Soatto, & Sastry, 2003), geometric subspace
haracterization (Gomez-Gutierrez, Ramirez-Trevino, Ruiz-Leon,
Di Gennaro, 2010), hybrid observability under input prob-

ng (Babaali & Pappas, 2005), almost always observability (Arbib
De Santis, 2020), and parameter estimation (Farina, Garulli, &
iannitrapani, 2022). Recent results on observability, detectabil-
ty, attractivity, observer design, and related convergence anal-
sis (Bernard & Sanfelice, 2020; Goebel, Sanfelice, & Teel, 2012;
íos, Davila, & Teel, 2019; Ríos, Dávila, & Teel, 2020; Sanfelice,
oebel, & Teel, 2007) accommodate hybrid systems with certain
redictable or known jumps.

https://doi.org/10.1016/j.automatica.2023.111181
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.111181&domain=pdf
mailto:lywang@wayne.edu
mailto:gyin@uconn.edu
mailto:flin@wayne.edu
mailto:polis@oakland.edu
mailto:wchenc@wayne.edu
https://doi.org/10.1016/j.automatica.2023.111181


L.Y. Wang, G. Yin, F. Lin et al. Automatica 156 (2023) 111181

I
t
t
s

m
l
f
f
s
s
t
e
s
(

W
f
a
K
n
p
w
o
n
c
m
t
e

&
n
r
i
s
e
A
b
t
c
t

s
o
t
t
a
f
g
a
S
v
a

w

m
i

A
p
g

On the other hand, when the switching sequence is ran-
dom, the techniques and approaches depart significantly from
deterministic switched linear systems. The RSLSs represent many
real-world hybrid systems due to stochastic natures of diverse
physical systems. RSLSs are exemplified by power line interrup-
tions in power systems, machine breakdowns in manufacturing
systems, physical and cyber attacks in networked systems, ran-
dom communication packet losses in communication networks,
among many others (Li & Zhang, 2010; Yin, Sun and Wang, 2011).
n principle, randomly switched systems can be modeled and
reated as stochastic hybrid systems, stochastic systems with
ime-varying parameters (Dragan & Aberkane, 2020), or hybrid
witching diffusions (Cassandras & Lygeros, 2018; Lygeros &
Prandini, 2010; Yin, Wang and Sun, 2011; Yin & Zhu, 2010).

Typical large-scale complex systems involve many sensors for
onitoring their internal states, however any single sensor or a

ocal sensor cluster often cannot provide sufficient information
or state estimation. The model of unobservable subsystems re-
lects this scenario. Within each time interval, only the observable
ubspace of the active subsystem can be estimated. The same
ubspace may become unobservable when the system is switched
o another subsystem. As a result, its estimation error may grow
xponentially. This paper introduces new methodologies for de-
igning subsystem observers to achieve a globally mean-square
MS) convergent state observer for the entire RSLS.

This paper contains the following original contributions: (1)
e formulate observer design problems under MS convergence

or general multi-output RSLSs with unobservable subsystems
nd observation noises. (2) We show that for RSLSs, the classical
alman–Bucy filters that are applied to observable sub-states do
ot guarantee convergence of the resulting RSLS observer. (3) We
rove that there is a critical switching time interval limit, beyond
hich subsystem observers may become divergent regardless
f how observer feedback gains are designed. (4) We introduce
ew algorithms to design subsystem observers and prove the MS
onvergence of the estimator for the entire state. (5) A funda-
ental design tradeoff is studied and demonstrated. To balance

he conflicting objectives of convergence speeds and steady-state
rrors, a useful method for parameter selection is proposed.
In comparison to our recent papers (Wang, Yin, Lin, Polis,
Chen, 2022, 2023), which cover single-output systems under

oise-free observations and target strong convergence, the cur-
ent paper adds stochastic observation noises, leading to two
nteracting stochastic processes (observation noises and random
witching), and treats general multi-output systems. By using MS
rrors, the switching time interval T can no longer be arbitrary.
n upper bound on T is derived for convergent observers to
e achievable. In Wang et al. (2022, 2023), there were several
echnical constraints that confined subsystem interactions. These
onstraints have been removed by using a different approach in
his paper.

The rest of the paper is organized as follows. Section 2 de-
cribes notations and basic descriptions of RSLSs. Section 3 devel-
ps observer structures for unobservable subsystems and derives
he overall observation error dynamics for the entire system. Sec-
ion 4 covers the design procedures. To motivate our new design
lgorithms, Section 4.1 first shows that the classical Kalman–Bucy
ilters applied to subsystem observer design may result in diver-
ent observers when switching is random. Then new algorithms
re introduced to design subsystem observers in Section 4.2.
ection 5 discusses a fundamental design tradeoff between con-
ergence speeds and steady-state estimation errors, and proposes
n optimal parameter selection method. Section 6 employs a

commonly used IEEE bus system in power systems to demon-
strate model development of RSLSs in practical systems, observer
design procedures, convergence properties, and design trade-
offs. Finally, the main findings and their potential extensions are
summarized in Section 7.
2

2. Preliminaries

For a column vector v ∈ Rn, ∥v∥ is its Euclidean norm. For a
matrix M ∈ Rn×m, M ′ is its transpose, λ(M) an eigenvalue of M ,
σ (M) =

√
λ(M ′M) a singular value of M , and σmax(M) its largest

singular value. The value σmax(M) is also its operator norm in-
duced by the Euclidean norm σmax(M) = ∥M∥ = sup∥v∥=1 ∥Mv∥.
For a square matrix M = [aij] ∈ Rn×n, Tr(M) =

∑n
i=1 aii is its

trace. The kernel or null space of M ∈ Rn×m is ker(M) = {x ∈

Rm
: Mx = 0} and its range is Range(M) = {y = Mx : x ∈ Rm

}.
In is the n-dimensional identity matrix. For a subspace U ⊆ Rn of
dimension m, a matrix M ∈ Rn×m is said to be a base matrix of U,
written as M = Base(U), if the column vectors of M are linearly
independent, and Range(M) = U.

A function y(t) ∈ R in a time interval [0, T ) is piecewise
continuously differentiable if [0, T ) can be divided into a finite
number of subintervals [tk−1, tk), k = 1, . . . , ℓ, t0 = 0, tℓ = T
such that y(t) is right continuous in [tk−1, tk) and continuously
differentiable, to any order as needed, in (tk−1, tk). The space of
such functions is denoted by C[0, T ).

For a random variable q, E(q) is its expectation. For a subset
S0 ⊆ S = {1, . . . ,m}, the indicator function of the set S0
is 1q∈S0 = 1 if q ∈ S0; and 1q∈S0 = 0 otherwise. Pr{·} is
the probability. N (0, Iρ) is the standard ρ-dimensional Gaussian
distribution of mean zero and variance Iρ .

2.1. Systems

For state observer design, we ignore the input to the system
and consider a continuous-time RSLS with output observation
noises{

ẋ(t) = A(α(t))x(t)
dy(t) = C(α(t))x(t)dt + Ξ (α(t))dw

(1)

where x(t) ∈ Rn is the state, y(t) ∈ Rr is the output. The system
matrices A(α(t)) ∈ Rn×n, C(α(t)) ∈ Rr×n, and Ξ (α(t)) ∈ Rr×ρ

depend on the randomly switching process α(t) that takes m
possible values in a finite discrete state space S = {1, . . . ,m}. The
noise process w ∈ Rρ is the ρ-dimensional standard real-valued
Brownian motion with ρ ≤ r and (Ξ (i))′Ξ (i) > 0, i ∈ S .

Remark 1. The output equation in (1) is a stochastic differential
equation (SDE) that has been ubiquitously used as observation
equations in stochastic systems. However, in the engineering
literature, the output equation y(t) = C(α(t))x(t) + n(t), in
hich y(t) is ẏ in (1), is often used with n(t) being a white noise

and viewed as the derivative of the Brownian motion w. Since
a Brownian motion is nowhere differentiable, y(t) is not well
defined in the time domain and hence the expression is symbolic.
This symbolic expression is useful in mean square estimation
problems for linear time invariant (LTI) systems. However, it
lacks the rigorous foundation for more complicated time-domain
analysis. The rigorous SDE forms are now commonly used under
the Ito sense stochastic calculus. Since this paper must treat
two interacting stochastic processes (noise and switching), it is
beneficial to have a mathematically rigorous expression so that
future developments of more sophisticated interacting stochastic
processes will have a solid foundation.

For each i ∈ S , the corresponding LTI system in (1) with
atrices C(i), A(i), Ξ (i) will be called the ith subsystem of the RSLS

n (1).

ssumption 1. For a given time interval T , (a) the switching
rocess α(t) can switch only at the instants kT , k = 0, 1, 2, . . .,
enerating a stochastic sequence {α = α(kT )} (the skeleton
k
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equence). (b) The sequence {αk} is independent and identically
istributed (i.i.d.) with probability Pr{αk = i} = pi > 0, i ∈ S ,
nd

∑m
i=1 pi = 1. (c) αk is independent of x(0) and the Brownian

otion w. (d) α(t) can be directly measured, but it is not known
efore its occurrence.

emark 2. Although T is not a design variable in constructing
observers, it will be shown in Section 4 that there is a critical
threshold Tmax on T such that if T > Tmax, MS convergence of state
observers may not be achievable no matter how the subsystem
observers are designed. For this reason, T will be selected below
Tmax. The critical upper bound Tmax will be derived in Section 4.

As functions of αk, the matrix sequences

Ak = A(αk) =

m∑
i=1

1{αk=i}A(i),

Ck = C(αk) =

m∑
i=1

1{αk=i}C(i),

Ξk = Ξ (αk) =

m∑
i=1

1{αk=i}Ξ (i)

re stochastic. Denote xk = x(kT ), k = 0, 1, . . .. From xk+1 =
AkT xk, the state transition mapping from x0 to xk is

xk = eAk−1T · · · eA0T x0 = Hkx0, k = 1, . . . (2)

where Hk = eAk−1T · · · eA0T .

2.2. Stochastic observability

For constant A ∈ Rn×n and C ∈ Rr×n, and a finite time interval
[0, T ), consider the noise-free output ỹ, defined by the mapping
G : Rn

→ C[0, T ), ỹ(t) = G(x0)(t) = CeAtx0, t ∈ [0, T ). The
kernel of the time function G is defined as Ker(G) = {x0 ∈ Rn

:

y(t) ≡ 0, t ∈ [0, T )}. Let W be the observability matrix of (C, A):

W =

⎡⎢⎢⎣
C
CA
...

CAn−1

⎤⎥⎥⎦ ∈ Rrn×n.

Lemma 1 (Kailath, 1980). Ker(G) = ker(W ).

For the ith subsystem in S , the matrices A(i) and C(i) are
constant matrices, and its observability matrix is

W (i) =

⎡⎢⎢⎢⎣
C(i)

C(i)A(i)
...

C(i)(A(i))n−1

⎤⎥⎥⎥⎦ , i = 1, . . . ,m (3)

and the combined observability matrix for the set S is

WS =

⎡⎢⎢⎣
W (1)
W (2)

...

W (m)

⎤⎥⎥⎦ . (4)

We note that W (i) and WS are deterministic matrices.

Remark 3. During system operation, the stochastic switching
process αk naturally induces stochastic matrix sequences Ak ∈

{A(1), . . . , A(m)}, Ck ∈ {C(1), . . . , C(m)}, and Ξk ∈ {Ξ (1), . . . ,
Ξ (m)}. Under the notation of this paper, all quantities involving
time index k are stochastic quantities. On the other hand, the
value sets, such as {A(1), . . . , A(m)}, are the finite sets induced by
the space S = {1, . . . ,m} and hence are not stochastic processes.
3

In this paper, we consider RSLSs whose subsystems may be
unobservable.

Assumption 2. (a) Subsystems may be unobservable, namely
Rank(W (i)) = ni ≤ n, i = 1, . . . ,m. (b) The combined observ-
ability matrix WS is full rank.

Remark 4. In our subsequent technical treatment, we will focus
on the more difficult case in which all subsystems are unobserv-
able, including the potential case ni = 0. The case ni = 0 is
a common engineering scenario that represents a total loss of
sensing capability due to sensor failures, channel interruptions,
packet losses, etc. The condition (b) of Assumption 2 ensures
that their collective observable subspaces cover Rn. The reader
is referred to an example in Wang et al. (2023) that shows this
condition to be a necessary condition for designing convergent
observers for the entire state.

Definition 1 (Wang et al., 2023). For a given finite time interval
[0, ℓT ) and switching sequence {αk, k = 0, . . . , ℓ − 1}, the RSLS
in (1) is said to be stochastically observable if the kernel of the
apping G satisfies Ker(G) = {0}.

The mapping G is conditioned on αk, and hence it is a random
uantity. Define the matrix sequence

ℓ =

⎡⎢⎢⎣
W0

W1H0
...

WℓHℓ−1

⎤⎥⎥⎦ , ℓ = 0, 1, . . . , (5)

here Hk is defined in (2) and H−1 = In. Since Wk is random, Oℓ

s also a matrix-valued random variable.
The following basic lemma from our recent paper (Wang et al.,

023) will be used in this paper.

emma 2 (Wang et al., 2023). For a given finite time interval [0, ℓT )
nd switching sequence {αk, k = 0, . . . , ℓ − 1}, (a) Ker(G) =

er(Oℓ). (b) The RSLS in (1) is stochastically observable if and only
f ker(Oℓ) = {0}, or equivalently, Oℓ is full column rank.

. Observer structures and error dynamics

The observer design procedure involves many factors. The
ain ideas of the design procedure can be summarized as follows.

(1) For each subsystem i, which may be unobservable, the state
space is decomposed into its observable and unobservable
subspaces by using the Kalman decomposition. The ob-
server for the ith subsystem only estimates the observable
sub-state z i when αk = i. The observer feedback gain Li for
estimating z i must be designed. This observer structure is
discussed in Section 3.1.

(2) Since the design of Li involves further coordination that
depends on the switching process, it must take into con-
sideration the error analysis for the entire system. As a
result, the overall error dynamics must be derived. This is
presented in Section 3.2.

(3) Section 4 discusses the design procedures for Li. We first
show by a counterexample in Section 4.1 that using Kalman
filter designs for Li can potentially lead to divergent ob-
servers for the entire state. Then our new and convergent
observer design methods and algorithms are introduced in
Section 4.2. This design procedure generates a collection
of subsystem observers for observable sub-states. During
implementation, these observers are used according to αk
that occurs randomly. MS convergence of the combined
observer is established for the entire state. Section 4.3
derives a critical threshold Tmax such that when T < Tmax
convergent observers can be designed.
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.1. Observer structure for subsystems

We first review the subspace decomposition on each sub-
ystem, developed in Wang et al. (2023). Feedback-based linear
bserver design for subsystems is used so that the observers
an be robust against errors, the design step can be simple and
onstructive, and convergence analysis can utilize properties of
TI systems.1
Let W (i) be the observability matrix of the ith subsystem de-

ined in (3). If the ith subsystem is unobservable, then Rank(W (i))
ni < n. We construct the base of its kernel as Mi =

ase(ker(W (i))) ∈ Rn×(n−ni), and select any Ni ∈ Rn×ni such that
Ti = [Mi,Ni] is invertible. The inverse of Ti is decomposed into

T−1
i =

[
Gi
Fi

]
, where Gi ∈ R(n−ni)×n and Fi ∈ Rni×n.

Define z̃i = T−1
i x =

[
Gix
Fix

]
=

[
vi

z i

]
, where z i ∈ Rni

represents the observable sub-state of the ith subsystem. We
focus on constructing a subsystem observer for estimating the
sub-state z i when αk = i. Denote Ai

= T−1
i A(i)Ti, C i

= C(i)Ti,
which have the structure

Ai
=

[
Ai
11 Ai

12

0 Ai
22

]
, C i

= [0, C i
2]

with Ai
22 ∈ Rni×ni , C i

2 ∈ Rr×ni , and (C i
2, A

i
22) is observable with

espect to the sub-state z i.
The observable part z i of the ith subsystem can be estimated

when αk = i, but in general it may belong to the unobservable
subspace of the jth subsystem if αk = j ̸= i. As a result, estimation
errors on z i are fundamentally different. Consequently, the error
dynamics on z i estimation are divided into the following two
cases.
Case 1: αk = i. When αk = i, the open-loop dynamics of z i are{

ż i = Ai
22z

i

dy = C i
2z

idt + Ξkdw
(6)

and (C i
2, A

i
22) is observable. The observer for the ith subsystem in

[kT , (k + 1)T ) for estimating the sub-state z i is

d̂z i = Ai
22̂z

idt + Li(dy − C i
2̂z

idt) (7)

where Li ∈ Rni×r is the constant observer feedback gain. Denote
Ai
c = Ai

22 − LiC i
2 and ei = ẑ i − z i. Then

dei = Ai
ce

idt + LiΞkdw (8)

where Li is designed such that Ai
c = Ai

22 − LiC i
2 is stable in the

continuous-time domain, i.e. all eigenvalues of Ai
c are in the open

left half plane.
For convergence analysis and error variance computation, we

need to obtain E(eik(e
i
k)

′). Note that ei ∈ Rni , Ai
c ∈ Rni×ni , LiΞk ∈

Rni×ρ , and w(·) is the ρ-dimensional standard Brownian motion.
Consider the stochastic differential equation (8) for t ∈ [kT , kT +

T ) with initial data eik. Obviously ei(t) is normally distributed
and its distribution is completely specified by its mean mi(t) =

(ei(t)) and covariance Ri(t, s) = E(ei(t) − mi(t))(ei(s) − mi(s))′.
Denote mi

k = mi(kT ) and V i
k = E((eik − mi

k)(e
i
k − mi

k)
′).

Let ei(t) be a solution of the stochastic differential equation
given by (8) together with initial data eik.

1 For more details on feedback-based linear observer design such as pole
lacement design of full-order observers and Luenberger observers, the Kalman
ecomposition, and observer stability analysis, the reader is referred to control
ngineering textbooks (Kailath, 1980; Kuo & Golnaraghi, 1994).
 k

4

Proposition 1. Suppose that Ai
c is Hurwitz, i.e., all of its eigenvalues

are in the open left half plane of the complex plane. Then the mean
vector mi(t) and covariance matrix Ri(t, s) of ei(t) are given by
mi(t) = eA

i
c (t−kT )mi

k and

Ri(t, s) = eA
i
c (t−kT )Vke(A

i
c )

′(s−kT )

+

∫ s∧t

kT
eA

i
c ((s∧t)−τ )(LiΞk)(LiΞk)′e(A

i
c )

′((s∧t)−τ )dτ ,
(9)

where s ∧ t = min(s, t).

Proof. It is easily seen that ei(t) = eA
i
c (t−kT )eik +

∫ t
kT e

Aic (t−τ )LiΞk

w(τ ). By taking the expectation, mi(t) is obtained. Furthermore,

Ri(t, s)

= E([eA
i
c (t−kT )(eik − mi

k) +

∫ t

kT
eA

i
c (t−τ )LiΞkdw(τ )])

×[eA
i
c (s−kT )(eik − mi

k) +

∫ s

kT
eA

i
c (s−ν)LiΞkdw(ν)]′

= [eA
i
c (t−kT )Vke(A

i
c )

′(s−kT )
]

+E
[∫ t

kT
eA

i
c (t−τ )LiΞkdw(τ )

][∫ s

kT
e(A

i
c )

′(s−ν)LiΞkdw(ν)
]′

.

(10)

For kT < t ≤ s,

E
[∫ t

kT
eA

i
c (t−τ )LiΞkdw(τ )

][∫ s

kT
eA

i
c (s−ν)LiΞkdw(ν)

]′

=

∫ t

kT
eA

i
c (t−τ )LiΞk(LiΞk)′e(A

i
c )

′(t−τ )dτ .

(11)

ikewise, for kT < s ≤ t ,

E
[∫ t

kT
eA

i
c (t−τ )LiΞkdw(τ )

][∫ s

kT
eA

i
c (s−ν)LiΞkdw(ν)

]′

=

∫ s

kT
eA

i
c (s−τ )LiΞk(LiΞk)′e(A

i
c )

′(s−τ )dτ .

(12)

Combining the above two expressions and using (10), we obtain
the last expression in (9). □

By Proposition 1, for t = s = (k+1)T , we have mi
k+1 = eA

i
cTmi

k,
and V i

k+1 = eA
i
c (t−kT )Vke(A

i
c )

′(s−kT )
+

∫ T
0 eA

i
cτ LiΞk(LiΞk)′e(A

i
c )

′τdτ . De-
note Q i

k = (V i
k+1)

1/2. Since eik+1 is Gaussian, which is completely
determined by mi

k+1 and Q i
k, e

i
k+1 can be expressed as

eik+1 = eA
i
cT ek + Q i

kdk (13)

where {dk} is a sequence of i.i.d. random variables, and dk ∼

N(0, Iρ).

Case 2: αk = j ̸= i. When αk = j ̸= i, in general z i may
not be observable in the jth subsystem, namely the observed
output y may not contain any information on the sub-state z i.
Since the observer is feedback-based by using y, in this case, the
subsystem observer for z i runs open-loop, using only the system
model without feedback correction. To derive the dynamics, we
need the mapping from the estimate for the entire state, which
is presented next.

Define ns =
∑m

i=1 ni and F =

⎡⎢⎣F1
...

Fm

⎤⎥⎦ ∈ Rns×n.

Lemma 3 (Wang et al., 2023). (a) ker(Fi) = ker(W (i)). (b) ker(F ) =
er(WS ).
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From subsystem observers, define z =

⎡⎢⎣z1
...

zm

⎤⎥⎦ ∈ Rns , and

ts estimate ẑ =

⎡⎢⎣ ẑ1
...

ẑm

⎤⎥⎦ ∈ Rns . Then, z = Fx and ẑ = F x̂.

nder Assumption 2, F is of (column) rank n. As a result, Φ =

F ′F )−1F ′
∈ Rn×ns is of (row) rank n, and x = Φz. Consequently,

heir sampled values are xk = Φzk, x̂k = Φ ẑk.

emark 5. Assumption 2 means that although each subsystem
ay be unobservable individually, the span of all observable sub-
paces covers the whole state space collectively. This is reflected
y the rank of F , resulting in the bounded mapping xk = Φzk. As
result, convergence of ẑk implies that of x̂k.

Since the true system is xk+1 = eAkT xk and Ak is known at kT ,
the true sampled value of the subsystem state is z ik+1 = Fixk+1 =

FieAkT xk. Consequently, the subsystem observer runs open-loop
with ẑ ik+1 = Fîxk+1 = FieAkT x̂k if αk = j ̸= i. The observer for
estimating x is x̂k = Φ ẑk. Denote the estimation errors ϵk = x̂k−xk
and ek = ẑk − zk. We have ϵk = Φek and when αk = j ̸= i

eik+1 = FieAkT ϵk = FieAkTΦek. (14)

3.2. Observer error analysis

Since these errors are related by the bounded mappings ϵk =

Φek and ek = Fϵk, the following analysis on state estimation
errors and their convergence will concentrate on ek.

Theorem 1. The observation error dynamics can be expressed as

ek+1 = Λkek + Γkdk (15)

where Λk = Λ1
+ Λ2FeAkTΦ , Λ1

= diag[1{αk=i}eA
i
cT ], Λ2

=

diag[1{αk ̸=i}Ini ], and Γk =

⎡⎢⎣ 1{αk=1}Q 1
k

...

1{αk=m}Qm
k

⎤⎥⎦.

Proof. For the ith subsystem, by (13) and (14),

i
k+1 =

{
eA

i
cT eik + Q i

kdk, if αk = i
FieAkTΦek, if αk ̸= i

nd

ek+1 =

⎡⎢⎣e1k+1
...

emk+1

⎤⎥⎦

=

⎡⎢⎣ 1{αk=1}(eA
1
c T e1k + Q 1

k dk) + 1{αk ̸=1}F1eAkTΦek
...

1{αk=m}(eA
m
c T emk + Qm

k dk) + 1{αk ̸=m}FmeAkTΦek

⎤⎥⎦
= Λ1ek + Λ2FeAkTΦek + Γkdk = Λkek + Γkdk. □

This section has established the observer structure for estimat-
ng observable sub-states of subsystems, the combined observer
or z (and hence for x = Φz), and estimation error dynamics.
o achieve convergence, the error dynamics must be stable in
he MS sense. This stability condition depends on the design
f Li. The next section will discuss design methods and present

onvergence results.

5

. Convergent observer design

.1. Kalman-Bucy filters and instability

For the ith subsystem, when αk = i, the dynamics of the
sub-state z i are governed by (6) and (C i

2, A
i
22) is observable. One

possible approach is to design the observer gain Li in (7) by
using the Kalman–Bucy filters. The classical Kalman–Bucy filters,
see Anderson and Moore (1979), Kalman (1963) and Zarchan and
Musof (2005) for detail, deal with systems with both state and
output stochastic noises,{
dx(t) = Ax(t)dt + Q 1/2dv
dy(t) = Cx(t)dt + R1/2dw

(16)

where Q 1/2 and R1/2 satisfy Q 1/2(Q 1/2)′ = Q ≥ 0 and R1/2(R1/2)′ =

R > 0, and v and w are mutually independent standard Brownian
motions. The initial value x(0) is independent of v and w, and
Gaussian distributed x(0) ∼ N (x0, P0) with P0 > 0. The Kalman–
Bucy filters start with the initial variance P(0) = P0 and initial
estimate x̂(0) = x̂0, and is represented by

Ṗ(t) = AP(t) + P(t)A′
+ Q − K (t)RK ′(t)

K (t) = P(t)C ′R−1

d̂x(t) = Âx(t)dt + K (t)(dy(t) − Cx̂(t)dt),

with the related limiting Algebraic Riccati Equation (ARE)

AP + PA′
+ Q − PC ′R−1CP = 0.

Since switched unobservable linear systems involve multiple
subsystems and stochastic switching, the switching process will
have critical impact on MS convergence of observers. We now
show by a counterexample that the Kalman–Bucy filters designed
to estimate the observable sub-state at each subsystem by using
the ARE may lead to a divergent observer for the entire state of
the RSLS.

Example 1. Consider a second-order system without state noise⎧⎨⎩
ẋ1(t) = a1x1(t)
ẋ2(t) = a2x2(t)

dy = (1{α(t)=1}x1(t) + 1{α(t)=2}x2(t))dt +
√

ζdw

where a1 > 0, a2 > 0, α(t) ∈ {1, 2} and w is the standard

rownian motion. Since A =

[
a1 0
0 a2

]
, C(1) = [1, 0], C(2) =

0, 1], the observability matrices are W (1) =

[
1 0
a1 0

]
, W (2) =

0 1
0 a2

]
. As a result, both subsystems (C(1), A) and (C(2), A) are

nobservable.
Within [kT , (k+1)T ), if αk = 1, only x1 is observed with noise.

he filter takes the form
d̂x1(t) = a1̂x1(t)dt + L1(dy − x̂1(t)dt)

˙̂x2(t) = a2̂x2(t).

f αk = 2, only x2 is observed with noise. The filter takes the form
˙̂x1(t) = a1̂x1(t)

d̂x2(t) = a2̂x2(t)dt + L2(dy − x̂2(t)dt).

To calculate the Kalman gains L1 and L2, we use the ARE. If
k = 1, the Kalman gain is L1 = P1/ζ , and P1 satisfies 2a1P1 −

1
ζ
P2
1 = 0, resulting in P1 = 2a1ζ and L1 = 2a1. Similarly, if αk = 2,

L2 = 2a2. The estimation error dynamics for e1 = x̂1 − x1 and
e2 = x̂2 − x2 are{
de1 = (1{α(t)=1}(−a1) + 1{α(t)=2}a1)e1(t)dt + L1

√
ζdw,

2 √ (17)

de = (1{α(t)=1}a2 + 1{α(t)=2}(−a2))e2(t)dt + L2 ζdw.
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Fig. 1. Observer error dynamics under Kalman–Bucy design.
uppose that Pr{αk = 1} = p > 0 and Pr{αk = 2} = 1 − p. For
stability analysis, we may consider only the noise-free part for e1,
hose sampled values are

1
k+1 = γ 1

k e
1
k (18)

here γ 1
k = e−a1T1{αk=1} + ea1T1{αk=2}.

To evaluate the MS errors, denote σ i
k = E((eik)

2), i = 1, 2. By
Assumption 1, {αk} is a sequence of i.i.d. random variables and
independent of x(0). This implies that γ i

k and σ i
k are independent,

and σ i
k+1 = Eαk ((γ

i
k)

2(eik)
2) = γ̄ 1σ 1

k , where γ̄ 1
= Eαk ((γ

1
k )

2) =

e−2aiT + (1 − p)e2aiT .
If γ̄ 1 > 1, σ 1

k → ∞, as k → ∞, namely, the filter’s error
dynamics are divergent in MS. For a numerical example, let a1 =

, a2 = 4, T = 0.03, p = 0.2. Then, we can calculate that γ̄ 1
=

e−2a1T +(1−p)e2a1T = 1.0794 > 1, γ̄ 2
= (1−p)e−2a2T +pe2a2T =

.8836 < 1. These imply that when we use MS errors, the error
ynamics for e1k are unstable although the error dynamics for e2k
re stable. Fig. 1 verifies this conclusion.

This example demonstrates that in general the Kalman–Bucy
ilters designed on a given sample path of {αk} and applied
o the observable sub-states are not convergent in RSLSs with
nobservable subsystems. This is mainly due to excluding the
tochastic information of the switching process αk in design.
We now introduce new algorithms to overcome the diver-

ence issues of Kalman–Bucy filters, develop MS convergent ob-
ervers, and derive their main convergence properties.

.2. Design of the observer feedback gain Li

The design of Li aims to achieve the MS convergence of ek. The
ollowing theorem provides a design criterion.

heorem 2. If the feedback gains Li, i = 1, . . . ,m, are designed
uch that γk = E(∥Λk∥

2) ≤ γ < 1, then ek is MS convergent.

roof. From the error dynamics ek+1 = Λkek +Γkdk, the solution
is

ek =
(
Π k−1

j=0 Λj
)
ei0 +

k−1∑
j=0

Λk−jΓjdj.

or convergence analysis of the error dynamics, we first focus
n the noise-free dynamics ek+1 = Λkek. From ∥ek+1∥

2
≤

∥Λk∥
2
∥ek∥2 and independence of Λk and ek, we have

E(∥ek+1∥
2) ≤ E(∥Λk∥

2)E(∥ek∥2)
= γkE(∥ek∥2)

2

≤ γ E(∥ek∥ ).

6

Since γ < 1, the noise-free system is MS exponentially stable.
Furthermore, since Λk, ek, and dk are mutually independent,

and Γk and dk are independent,

E(∥ek+1∥
2) = E(e′

kΛ
′

kΛkek) + E(d′

kΓ
′

kΓkdk)
≤ γ E(∥ek∥2) + Ξk

for some Ξk ≥ 0. Since γ < 1, this is a stable system. It follows
that E(∥ek∥2) is convergent. □

To achieve the design criterion E(∥Λk∥
2) ≤ γ < 1, there is a

constraint on T . We first establish a sufficient condition showing
the existence of design algorithms for Li, i = 1, . . . ,m, that can
satisfy this condition. Then we use a counterexample to explain
why this constraint on T is necessary in general.

Theorem 3. Under Assumption 2, there exists Tmax > 0 such that
for any T < Tmax, Li, i = 1, . . . ,m, can be designed to satisfy
γk ≤ γ < 1.

Proof. By the definitions of Λ1 and Λ2, we have (Λ1)′Λ2
= 0,

and as a result,

Λ′

kΛk = (Λ1
+ Λ2FeAkTΦ)′(Λ1

+ Λ2FeAkTΦ)

= (Λ1)′Λ1
+ (Λ2FeAkTΦ)′Λ2FeAkTΦ.

By Singular Value Decomposition, ∥Λk∥
2

= ∥(Λk)′Λk∥ ≤

∥(Λ1)′Λ1
∥+∥(Λ2FeAkTΦ)′Λ2FeAkTΦ∥ = ∥Λ1

∥
2
+∥Λ2FeAkTΦ∥

2. It
follows that E(∥Λk∥

2) ≤ E(∥Λ1
∥
2) + E(∥Λ2FeAkTΦ∥

2).
Since the poles of eA

i
cT can be arbitrarily placed, γ i

= ∥eA
i
cT∥2

can be made arbitrarily small. As a result, γmax = maxi=1,...,m γ i

can be made arbitrarily small. Denote

pmax = max
i=1,...,m

pi, qmax = max
i=1,...,m

(1 − pi).

By Assumption 1, 0 < pmax < 1 and 0 < qmax < 1. Then, we
have ∥Λ1

∥
2

≤ γmax. Consequently, subsystem observers can be
designed to satisfy

E(∥Λ1
∥
2) ≤ pmaxγmax = γ1 < ε, (19)

for any ε > 0.
On the other hand,

h(T ) = max ∥FeA(i)TΦ∥
2

= max ∥FeA(i)T (F ′F )−1F ′
∥
2

i∈S i∈S
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i

h

s a continuous function of T and for T = 0

(0) = max
i∈S

∥FeA(i)0(F ′F )−1F ′
∥
2

= λmax(F (F ′F )−1F ′F (F ′F )−1F ′)
= λmax(F (F ′F )−1F ′)
= λmax((F ′F )−1F ′F ) by Jacobson’s Lemma
= λmax(Is)
= 1,

where λmax is the largest eigenvalue. Since qmax < 1, by continu-
ity of h(T ), there exists Tmax > 0 such that

γ2 = max
T<Tmax

E(∥Λ2FeAkTΦ∥
2)

≤ qmaxh(Tmax) < 1 − ε
(20)

for some ε > 0.
Together, by selecting T first to satisfy T < Tmax in (20), and

then designing subsystem observers to satisfy (19), we obtain
γ ≤ γ1 + γ2 < ε + 1 − ε = 1. □

4.3. Fundamental limitations

In Wang et al. (2023), without observation noises, we showed
that for any given T > 0, Li could be designed by using pole
placement such that the observer for the entire state x converges
strongly. This paper deals with MS observation errors and con-
vergence. Intriguingly, the same design as in Wang et al. (2023)
may not converge in MS. In fact, a fundamental limitation exists
for MS convergence. We will use an example to demonstrate this
property.

Example 2. Consider the system in Example 1. To illustrate this
property, we note that by Theorem 3, for stability we need to
choose feedback gains such that pe2(a1−L1)T + (1 − p)e2a1T < 1
and pe2a2T + (1 − p)e2(a2−L2)T < 1. Since a1 > 0, for any given
0 < p < 1, there exists Tmax such that (1 − p)e2a1T > 1 when
T > Tmax. This results in the scenario

min
L1

(pe2(a1−L1)T + (1 − p)e2a1T ) > 1,

implying a divergent state observer, regardless of how L1 is se-
lected. It is similar for L2 design.

Due to unobservable subsystems, there is always a time in-
terval in which the observer must run open-loop. When this
open-loop system is unstable, if T is too big, it will become
apparent that the average value γ will always be greater than
1, resulting in an unstable observer, no matter how the observer
gain is designed. This fundamental limitation indicates that T
must be selected first to be small. Then Li can be designed to
achieve MS convergent observers.

For the system in Example 1, if a1 = 2, a2 = 4, p = 0.2, then
the thresholds are T 1

max = ln(1/(1 − p))/(2a1) = 0.0558 for the
error dynamics of e1k and T 2

max = ln(1/p)/(2a2) = 0.2012 for the
error dynamics of e2k . As a result, T must be selected to be smaller
than min{0.0558, 0.2012} = 0.0558.

Suppose that we select T = 0.03 < 0.0558 as in Example 1.
Instead of using the Kalman–Bucy filter design, we select pole
positions such that pe2(a1−L1)T + (1 − p)e2a1T < 1 and (1 −

p)e2(a2−L2)T + pe2a2T < 1. This leads to the bounds on selection
of L1 and L2 as

L1 > 25.7775, L2 > 6.3407.

By choosing L1 = 40 and L2 = 15, we have γ = max{0.9225,
0.6677} = 0.9225 < 1, resulting in a convergent observer design.
This is demonstrated in Fig. 2, showing that both e1k and e2k are
now convergent.
7

To demonstrate the critical importance of selecting T correctly
first, we now select T = 0.25 > 0.0558. Under the same design
of L1 = 40 and L2 = 15, Fig. 3 shows that observers for both e1k
and e2k are now unstable.

5. Steady state error and design tradeoff

We now study the steady-state estimation error of the error
dynamics (15), ek+1 = Λkek + Γkdk, and discuss some de-
sign tradeoffs that are inherent between convergence speeds and
steady-state error variances.

5.1. Steady-state error variance

Denote Vk = Eαk (eke
′

k), µk = Eαk (e
′

kek) = Tr(Vk). Select T <

Tmax and design Li so that the matrix M = E(Λ′

kΛk) is stable,
namely all of its eigenvalues are inside the open unit circle. Write
M = P ′P and denote Ψ = E(Γ ′

kΓk). Since Λk is induced by αk, it
is i.i.d. and M is a constant matrix. By Assumption 1, Λk, ek, and
dk are mutually independent. Consequently, noting that Tr and E
commute,

µk+1 = TrVk+1

= Tr(E(Λkeke′

kΛ
′

k)) + Tr(E(Γkdkd′

kΓ
′

k ))
= E(Tr(Λkeke′

kΛ
′

k)) + E(Tr(Γkdkd′

kΓ
′

k ))
= Tr(E(Λ′

kΛkeke′

k)) + Tr(E(Γ ′

kΓkdkd′

k))
= Tr(MVk + Ψk)
= Tr(P ′VkP + +Ψk).

Let Ψ = limk→∞ Ψk. The steady-state variance is V∞, satisfying
µ∞ = TrV∞ = Tr(P ′V∞P + Ψ ). As a result, µ∞ can be obtained
by first solving the Lyapunov equation

P ′V∞P − V∞ + Ψ = 0 (21)

and then compute µ∞ = TrV∞.
There is an inherent tradeoff in designing Li. Intuitively, from

the expression of Γk, it is clear that the larger the feedback
gains, the larger the steady-state error µ∞. On the other hand,
to increase convergence speed, it is desirable to place poles with
larger absolute values of their negative real parts. In other words,
fast convergence and small steady-state errors are in conflict. We
use an example to explain the tradeoff and discuss some potential
approaches for choosing suitable design parameters.

5.2. Discussion on design tradeoff

We now use the system in Example 1 to illustrate a tradeoff
in filter design.

Example 3. Let the parameters in Example 1 be c1 = c2 = 1,
a1 = a2 = 10, Pr{αk = 1} = 0.5, ζ = 1. When αk = 1, we
observe x1 only, and a1c = a1 − L1. For stability, it is required
that 0.5e2a1T + 0.5e2(a1−L1)T = 0.5e20T + 0.5e20T e−2L1T < 1,
which implies T < ln 2

20 . Under this condition, L1 must satisfy
e−2L1T < 1−0.5e20T

0.5e20T
= 2e−20T

− 1, or L1 > −
1
2T ln(2e−20T

− 1).
From the viewpoint of convergence speed, the larger the gain

L1 is, the smaller the factor γ̄1 is, and in turn the faster the conver-
gence of e1k . On the other hand, from (15), a larger L1 contributes
to a larger equivalent variance on the diffusion term, which leads
to a larger steady-state variance of the state estimation error.

Because of the constraints on T and L1, the transient conver-
gence speed and the steady-state error variance form a funda-
mental tradeoff in the design consideration.
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Fig. 2. Observer error dynamics under small T and new observer gain design.
Fig. 3. Observer error dynamics under large T .
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This tradeoff indicates that some optimization may be used
or parameter selection. While a comprehensive treatment of
his problem is beyond the scope of this paper, we now use an
xample to illustrate the main aspects of parameter selection.

xample 4. Consider the system in Example 1, with a1 = 2,
2 = 4, T = 0.03, p = 0.2, ζ = 0.01.

tate Estimation Error Dynamics: The state estimation error
ynamics are
1
k+1 = γ 1

k e
1
k + 1{αk=1}Q 1

k dk
2
k+1 = γ 2

k e
2
k + 1{αk=2}Q 2

k dk.
(22)

here
1
k = e(a1−L1)T1{αk=1} + ea1T1{αk=2},

2
k = e(a2−L2)T1{αk=2} + ea2T1{αk=1},

nd by (15) for i = 1, 2, the limiting values of Q 1
k and Q 2

k (only
hese values are used in steady-state error calculations) are

i =

(∫ T

0
e2(ai−Li)τ L2i ζdτ

)1/2

=
Li
√

ζ
√
2(Li − ai)

(1 − e−2(Li−ai)T ).

To analyze the dynamics of error variances, define σ 1
k =

((e1)2), σ 2
= E((e2)2), and σ = σ 1

+ σ 2. Under Pr{α = 1} = p
k k k k k k k

8

ith 0 < p < 1,
1
k+1 = γ 1σ 1

k + pQ 2
1

2
k+1 = γ 2σ 2

k + (1 − p)Q 2
2

(23)

ith
1

= E((γ 1
k )

2) = pe2(a1−L1)T + (1 − p)e2a1T ,
2

= E((γ 2
k )

2) = (1 − p)e2(a2−L1)T + pe2a2T .

is selected such that

max{(1 − p)e2a1T , pe2a2T } < 1. (24)

For an illustration, we consider only σ 1
k . To show the impact of

1 on convergence rates and steady-state error variances, we se-
ect three different values in the permissible range L1 > 25.7775,
ee Example 2. For L1 = 30, γ 1

= 0.9883; for L1 = 60,
1

= 0.9371; for L1 = 100, γ 1
= 0.9126. Fig. 4 shows the error

ariance trajectories under these three different L1 values. When
1 is small (L1 = 30), the error trajectories converge slowly to
relative high value. After increasing L1 to 60, we see a faster
onvergence and smaller steady state variance. However, if L1
s further increased to 200, the steady-state variance becomes
igger. These curves indicate that there is potentially an optimal
1 value.
As a demonstration, for L1 = 60, one sample-path error

rajectory for e1k from (22) is shown in Fig. 5.

election of Design Parameters: For stability, L1 and L2 must be
esigned to satisfy the condition

max{γ 1, γ 2
} < 1. (25)
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Fig. 5. Estimation error trajectories for e1k under L1 = 60.
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Then, σ 1
∞
(L1, T ) =

pQ 2
1

1−γ 1 , σ 2
∞
(L2, T ) =

(1−p)Q 2
2

1−γ 2 , and the total

steady-state MS error is

σ∞(L1, L2, T ) = σ 1
∞
(L1, T ) + σ 2

∞
(L2, T ).

Optimal design of T , L1, L2 is a constrained optimization problem

min
L1,L2,T

σ 1
∞
(L1, T ) + σ 2

∞
(L2, T ),

Subject to: (1 − p)e2a1T < 1, pe2a2T < 1, γ 1 < 1, γ 2 < 1.

For a fixed T that satisfies (24), both σ 1
∞
(L1, T ) and σ 2

∞
(L2, T )

are strictly convex functions of L1 and L2, respectively, and can be
individually optimized with the unique solutions L∗

1(T ) and L∗

2(T ).
hen T is optimized under the constraint (24). Since exponential
unctions are involved in this optimization problem, in general it
s a highly nonlinear problem that can be solved numerically. For
= 0.03, Fig. 6 shows σ 1

∞
(L1, T ) as a function of L1. The optimal

alue is L∗

1 = 61.3 with the corresponding minimum variance
1
∞
(L∗

1, T ) = 0.9864.
In conclusion, in practical applications of the design method

ntroduced in this paper, design of the observer feedback gains
hould be carefully evaluated to achieve a balance between con-
ergence speeds and steady-state errors.

. A case study

In this section, we use a practical case of power systems to
llustrate the design process, performance evaluation, and related
ssues. We use a common IEEE 5-Bus system that has been
 u

9

idely used in performing power system optimization, power
low analysis, and contingency detection.

xample 5. Consider the IEEE 5-Bus system shown in Fig. 7.
he bus structure and data are from the open-source information
n Tan (2023). Bus 1 and Bus 2 are generator buses and Buses 3–5
re load buses.
Buses 1 and 2 are PV buses (generator buses) with bus voltage

agnitudes controlled to its rated values by Var condensers or
ompensators.2 Similarly, in light of rapid advancement in Var
ompensation technology such as flexible AC transmission sys-
ems (FACTS), we assume that all load buses have their voltage
agnitudes maintained near the rated values.

ynamic Systems. The two generator buses are dynamic buses
ith synchronous generators (Kundur, 1994). Denote ω1 = δ̇1,

1 = [δ1, ω1]
′, ω2 = δ̇2, z = [δ2, ω2]

′. The dynamic systems are

1ω̇1 + g1(ω1) = P1
in − P1

L + P1
21 + P1

31

2ω̇2 + g2(ω2) = P2
in − P2

L + P2
12 + P2

32 + P2
42 + P2

52

here the real power flow from Bus i into Bus j on Bus j is

j
ij =

V 2
j

|Z |ij
cos(θij) −

ViVj

Xij
cos(θij + δij), (26)

2 In power systems, a PQ bus has its real power (P) and reactive power
Q) specified, often by loads; a PV bus has its real power (P) and the voltage
agnitude (V) specified, often for generators; and a slack bus has its voltage
hasor specified (as a reference point) and its real and reactive powers are
sed to balance powers in a grid.
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Fig. 6. Impact of L1 on σ 1
∞
(L1, T ) when T = 0.03.
b

Fig. 7. IEEE 5-Bus system.

and δij = δi − δj. The damping term gi(wi) has the linear part

iω1 with bi > 0, i = 1, 2. Denote ξd =

[
δ1
δ2

]
, ξnd =

[
δ3
δ4
δ5

]
,

nd their perturbations from the nominal values as xd = ∆ξd,
nd = ∆ξnd. The dynamic systems can be expressed as a nonlinear
tate equation

˙d = F (ξd, ξnd) + B1v + B2e

where v =

[
P1
in

P2
in

]
, e =

⎡⎢⎣P3
L

P4
L

P5
L

⎤⎥⎦, B1 =

⎡⎢⎣ 0 0
1/M1 0
0 0
0 1/M2

⎤⎥⎦, B2 =

⎡⎢⎣ 0 0
−1/M1 0

0 0
0 −1/M2

⎤⎥⎦. The dynamic systems can be linearized near

the nominal operating points as ẋd = A1xd + A2xnd.
The three load buses have real-power equations P3

L = P3
13 +

P3
23 + P3

43, P
4
L = P4

24 + P4
34 + P4

54, P
5
L = P5

25 + P5
45, where P j

ij is given
in (26). These nonlinear equations can be linearized near the
nominal operating points as 0 = H1xnd + H2xd where H1 and H2
are the corresponding Jacobian matrices. In power systems under
permitted operating ranges, H1 is invertible, leading to xnd = Hxd
with H = −H−1

1 H2. It follows that

ẋd = (A1 + A2H)xd = Axd

with A = A1 + A2H . The bus line parameters are defined in Tan
(2023) and listed in Table 1, with R = Resistance, X = Reactance,
Z = |Z |̸ θ = Impedance.
10
Table 1
IEEE 5-Bus system line parameters.
Line R (p.u.) X (p.u.) Z (p.u |Z |̸ θ rad)

1–2 0.02 0.06 0.06̸ 1.25
1–3 0.08 0.24 0.25̸ 1.25
2–3 0.06 0.25 0.26̸ 1.33
2–4 0.06 0.18 0.19̸ 1.25
2–5 0.04 0.12 0.13̸ 1.25
3–4 0.01 0.03 0.03̸ 1.25
4–5 0.08 0.24 0.25̸ 1.25

Table 2
IEEE 5-Bus system bus data.
Bus V (p.u. ̸ rad) P Q PL QL

1 1.06 ̸ 0 129 −7.42 0 0
2 1.0474 ̸ − 2.8063 40 30 20 10
3 1.0242 ̸ − 4.997 0 0 45 15
4 1.0236 ̸ − 5.3291 0 0 40 5
5 1.0179 ̸ − 6.1503 0 0 60 10

The nominal operating condition defined in Bhandakkar and
Mathew (2018) and Tan (2023) is used here with the nominal
us voltages, generation powers and load powers listed in Table 2

with real power P (MW) and reactive power Q (MVar). The base
MVA is SB = 100 MVA and base voltage is VB = 230 kV.

Under the per unit system, the normalized generator param-
eters are M1 = 1.9 and b1 = 0.2 with equivalent time constant
T1 = M1/b1 = 9.5 s for Generator 1, and M2 = 0.9, b1 = 0.16
with equivalent time constant T2 = M2/b2 = 5.625 s for Genera-
tor 2, see Bhandakkar and Mathew (2018) for the computational
results.

Under these operating conditions, we obtain

A =

⎡⎢⎣ 0 1 0 0
7.7926 −0.1053 −7.7926 0

0 0 0 1
−20.3866 0 20.3866 −0.1778

⎤⎥⎦ .

Since eigenvalues of A are {−5.3880, 5.2302, 0, −0.1253}, it is an
unstable system.

Sensor Systems. In energy management systems (EMS), frequen-
cies and voltage phasors on some buses are measured by fre-
quency sensors and synchrophasor measurement units (PMUs).
Each sensor represents an output equation. For cost reduction and
maintenance simplification, it is highly desirable to reduce sensor
complexity. Table 3 lists some common sensor systems and their
observability under normal and contingency conditions. Si = the
ith sensor, i = 1, 2. Yes = Observable; No = Unobservable.
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Table 3
Sensor systems and observability.
S1 S2 Normal S1 fails S2 fails Both fail

δ1 δ2 Yes Yes Yes No
δ1 ω1 Yes No Yes No
ω1 ω2 No No No No
δ1 ω2 Yes No Yes No

Since the sensor system with (δ1, δ2) has better observability
roperties, we will use this as an example here.

ontingency and Stochastic Hybrid Systems. In modern micro-
rids, the measured signals are communicated to the supervisory
ontrol and data acquisition (SCADA) and EMS via wireless com-
unication networks. Due to communication packet loss, the
acket delivery ratio for each channel is given by ξj > 0 for
uccessful data transfer on channel j.
Suppose that δ1 and δ2 are measured. By adding measurement

nd communication noises in PMU measurement errors (Castello,
uscas, & Pegoraro, 2022; Salls, Torres, Varghese, Patterson, &

Pal, 2021), we have C(1) =

[
1 0 0 0
0 0 1 0

]
for normal operation,

C(2) = [1, 0, 0, 0] for failure of Sensor 2 (δ1 measurement only),
C(3) = [0, 0, 1, 0] for failure of Sensor 1 (δ2 measurement only),
and C(4) = [0, 0, 0, 0] for failure on both sensors. Suppose that
the packet delivery ratio for Sensor 1 is ξ1 = 0.99 and for Sensor
2 is ξ2 = 0.995. This data acquisition scheme can be modeled
by an i.i.d. stochastic process αk ∈ S = {1, . . . , 4} with p1 =

1ξ2 = 0.985, p2 = ξ1(1 − ξ2) = 0.005, p3 = (1 − ξ1)ξ2 = 0.01,
4 = (1 − ξ1)(1 − ξ2) = 5 · 10−5.

bserver Design. The pole placement design is used for de-
igning observer feedback gains for αk = 1 and αk = 2.
ince C(4) = [0, 0, 0, 0], the observer can only run open-loop.
or example, if we choose the desired closed-loop poles to be

= [−6,−4.5, −5 − 5.5], then the Matlab function Li =

lace(A′, C ′(i), λ), i = 1, 2, 3, 4, yields the suitable feedback gains
nd the closed-loop error dynamics with Ai

c = A − LiC(i), i =

, 2, 3, 4.
For this example, the upper bound on T can be computed

s Tmax = 0.7365, which is a sufficient condition for feasible
bserver design. Select T = 0.6997. Denote Λ(i) = eA

i
cτ , i =

, 2, 3, 4. The closed-loop error dynamics of ek are a stochastic
ystem with noise-free dynamics ek+1 = Λkek, where Λk =

4
1 Λ(i). For MS stability of the combined observer, we
j=1 {αk=j}

11
verify that the eigenvalues of p1(Λ(1))′Λ(1) + p2(Λ(2))′Λ(2) +

3(Λ(3))′Λ(3)+p4(Λ(4))′Λ(4) are {0.9904, 0.54, 0.0032, 0.0356}
that are stable.

The initial estimation error is selected to be e(0) = [2, 0, 1, 0]′

with error norm 2.2361. Suppose that the standard deviations are
Ξ (1) = 0.01 · [1, 1]′; Ξ (2) = 0.011; Ξ (3) = 0.012. To simulate
the MS errors, the simulations for error trajectories are repeated
400 times, and the sample MS value at each k is computed as an
approximation of E(e′

kek). Fig. 8 shows estimation error variance
trajectories.

Design Tradeoff. We now illustrate the design tradeoff discussed
in Section 5. Suppose that we now select the designed pole
positions to be more negative at [−12, −9, −10, −11] which
represents a more aggressive observer design. It can be com-
puted that the eigenvalues of p1(Λ(1))′Λ(1) + p2(Λ(2))′Λ(2) +

p3(Λ(3))′Λ(3) + p4(Λ(4))′Λ(4) become {0.6891, 0.0046, 0.0015,
0.0001}. Since the eigenvalues are smaller than before, it con-
verges faster. However, the steady-state errors become bigger
due to much larger feedback gains. For example, L1 is increased
from L1 = [20.7170, 187.0468, −123.7698, −568.3264]′ to L1 =

[41.7, 675.4, −681.6, −3181.7]′. Fig. 9 shows estimation error
variance trajectories, showing larger persistent errors.

7. Conclusions

This paper has shown that continuous state estimation of
RSLSs with unobservable subsystems and observation noises must
jointly consider features of continuous subsystems and stochastic
switching sequences in order to achieve MS convergence of
the observers. Due to a tradeoff between convergence speeds
and steady-state estimation errors, a constrained optimization
problem may be used to minimize estimation errors.

There are some open issues and potential extensions for the
problems treated in this paper. More sophisticated switching
processes such as Markov chains can be studied to accommodate
broader classes of RSLSs. Modeling errors that are of practical
importance are not considered in this paper. Applications of
the methodologies and algorithms to emerging technology areas,
such as autonomous systems, modern power systems, cyber–
physical systems will be highly valuable.
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