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Abstract—This article investigates the problem of joint
continuous and discrete state estimation of randomly
switched linear systems in which subsystems may not be
observable. Estimation of both continuous state and dis-
crete sequence simultaneously based on the same output
observations is a challenging task that is inherently non-
linear and often infinite dimensional. This article presents
necessary and sufficient conditions when joint estimation
is possible without using a probing input. When such con-
ditions are not satisfied, a suitably designed input must be
used to achieve the goal of jointly detecting the subsys-
tem and estimating the internal state. This article employs
certain structures of randomly switched linear systems to
develop algorithms that use finite-dimensional estimators
for continuous states and sampled data for detecting the
discrete states. The convergence analysis shows that this
framework can achieve convergence. Examples and sim-
ulation case studies are presented to illustrate the main
results of this article. The findings of this article can be
used to form a supporting foundation for robust control.

Index Terms—Convergence, hybrid system, input de-
sign, observability, observer design, randomly switched lin-
ear system (RSLS), stochastic distinguishability, stochastic
joint observability.

I. INTRODUCTION

T
HIS article studies the problem of joint continuous and dis-

crete state estimation of randomly switched linear systems

(RSLSs). RSLSs are an important class of hybrid systems that
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cover diversified applications in which linear continuous dynam-

ics and discrete events interact to generate unique time-varying

systems [1], [2], [3], [4], [5], [6], [7], [8]. RSLSs are common in

practical systems, such as platoon reformulation in autonomous

vehicles, contingency and faults in smart grids, interruptions

and packet loss in networked communication systems, etc.

When the sequence of subsystems is known or can be directly

measured, one may treat a switched linear system as a linear

time-varying system and design control systems accordingly.

In addition, if each subsystem is observable, then following

the detection of the subsystem, observers can be designed to

estimate the continuous states. The literature on observability,

observer design, and other related properties in deterministic

hybrid system frameworks is quite extensive including observ-

ability and controllability [2], observability notions and testing

conditions [9], [10], [11], geometric methods [12], hybrid ob-

servability under input probing [13], observability, detectability,

attractivity, observer design, and related convergence analy-

sis [14], [15], [16], [17], among many others. A related study

on the distinguishability of linear systems and switched linear

systems was presented in [18] and [19] with a broad class of input

signals and control schemes. A different notion of observability

and distinguishability with an unknown switching time of jump

linear systems was treated in [20].

In contrast, to capture the random nature of system switching

in applications [21], [22], RSLSs were treated as stochastic hy-

brid systems, regime-switching systems, and hybrid switching

diffusions [23], [24], [25, pp. 137–157], [26].

This article treats RSLSs with a different perspective from

the aforementioned literature. When the switching sequence is

random and unknown and subsystems are unobservable, the

corresponding RSLSs are no longer amenable to treatment using

existing techniques, and the associated estimation problems

become highly challenging. The estimation problem is inher-

ently nonlinear and often infinite dimensional; see the work on

Wonham filters [27].

The main premise of this article reflects data collection and

estimation scenarios in typical large-scale complex systems

that involve many sensors for monitoring internal states and

detecting faults. Using modern power systems (MPSs) as exam-

ples, cyber-physical contingencies include loss of distribution

and transmission lines from natural causes, loss of generators,
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failure of communication systems, trips of line switches, etc.

Mathematically, these sudden changes can be represented by

jumps in system models from one configuration to another as

discrete events. Due to the unpredictable and random nature

of contingency and adversary events, they are stochastic and

can be modeled as finite-state stochastic processes. MPSs em-

ploy phasor measurement units (PMUs), advanced metering

infrastructures (AMIs), voltage transformers (VTs), and current

transformers (CTs), and many other sensors to monitor system

states, detect contingency, and support system operation.

In such systems, any single sensor or a local sensor cluster can-

not provide sufficient information for state estimation of the en-

tire MPS, resulting in unobservable subsystems. An information

processing center (such as power system control centers) collects

data from different sensor clusters and determines the current

subsystem and then gradually obtains accurate and evolving con-

tinuous state estimation by using the data collaboratively. Within

each time interval, only the observable subspace of the active

subsystem can be estimated. The same subspace may become

unobservable when the system is switched to another subsystem;

hence, its estimator must run open-loop using dynamic models

without correction and the estimation errors on the substates can

grow exponentially.

In our recent paper [28], state estimation of RSLSs with

unobservable subsystems was investigated under noise-free ob-

servations, known subsystems, and feedback-based linear ob-

servers. Properly designed subsystem observers and their suit-

able organization were shown to achieve strong and exponential

convergence.

This article investigates the joint estimation of continuous

and discrete states of RSLSs in which subsystems may not be

observable. For such systems, both the continuous and discrete

states must be determined from input–output data. The prob-

lem treated in this article encounters some fundamental new

challenges. First, when the active subsystem is unknown, one

cannot estimate the continuous state since the corresponding

system matrices are unavailable. Second, it is possible that for

different subsystems, certain special initial states may produce

exactly the same output. The issue is further complicated when

subsystems are unobservable, namely some initial states may

produce zero outputs. Third, if one can use the input to probe

subsystems, the ability to distinguish subsystems can be poten-

tially enhanced. This added capability introduces new issues on

input design, subsystem distinguishability, joint observability of

both continuous and discrete states, and algorithm development.

This article contains the following original contributions.

i) It presents some necessary and sufficient conditions on

joint observability by the output observation without

probing inputs.

ii) The probing capability of the input is investigated under

zero initial conditions. When the conditions in (i) are not

met, the input can be used. It is shown that as long as

the subsystem transfer functions are distinct, all nonvan-

ishing input signals with strictly proper rational Laplace

transforms can distinguish subsystems in an infinitesimal

time.

iii) For practical implementation, data must be sampled. A

sampling theorem is presented that provides sampling rate

conditions for distinguishing subsystems in a finite time

interval.

iv) Joint observability for both continuous and discrete states

is further developed for estimating the subsystems and

continuous states simultaneously under probing inputs.

Mode-modulated and magnitude-modulated input design

methods are introduced.

v) A time-division framework and the corresponding al-

gorithms for jointly estimating continuous and discrete

states are developed, and their convergence properties are

established.

The rest of the article is organized as follows. Section II

contains notations, system descriptions, and basic definitions of

distinguishability and joint observability for RSLSs. Section III

studies joint observability without a probing input. Necessary

and sufficient conditions are presented for both observable and

unobservable subsystems. The distinguishability of subsystems

by using probing inputs under zero initial states is discussed

in Section IV. Section V explores input design, estimation algo-

rithms, sampling theorems, and joint observability under a prob-

ing input. Also, mode-modulated and magnitude-modulated in-

put design methods are detailed, and a time-division framework

and estimation algorithms are developed. The main results of this

article are illustrated by some examples in Section VII. Finally,

the main findings and their potential extensions are summarized

in Section VIII.

II. PRELIMINARIES

Denote by R the field of real numbers and C the field of com-

plex numbers. For a column vector v ∈ R
n, ‖v‖ is its Euclidean

norm. For a matrix M ∈ R
n×m, M ′ is its transpose, λ(M)

an eigenvalue of M , σ(M) =
√

λ(M ′M) a singular value of

M , σmin(M) its minimum singular value, and σmax(M) its

largest singular value. The value σmax(M) is also its opera-

tor norm induced by the Euclidean norm σmax(M) = ‖M‖ =
sup‖v‖=1 ‖Mv‖. The kernel or null space of M ∈ R

n×m is

ker(M) = {x ∈ R
m : Mx = 0} and its range is Range(M) =

{y = Mx : x ∈ R
m}.

For a subspace U ⊆ R
n of dimension p ≤ n, a matrix M ∈

R
n×p is said to be a base matrix of U , written asM = Base(U),

if the column vectors of M are linearly independent and

Range(M) = U .

A function y(t) ∈ R in a time interval [0, T ) is piecewise

continuously differentiable if [0, T ) can be divided into a finite

number of subintervals [tk−1, tk), k = 1, . . . , �, t0 = 0, t� = T
such that y(t) is right continuous in [tk−1, tk) and continuously

differentiable, to any order as needed, in (tk−1, tk). The space

of such functions is denoted by C[0, T ).
Consider a continuous-time single-input-single-output RSLS

{
ẋ(t) = A(α(t))x(t) +B(α(t))u(t)

y(t) = C(α(t))x(t)
(1)

where u(t) ∈ R, x(t) ∈ R
n, y(t) ∈ R are the input, state, and

output, respectively.

The system matrices depend on the randomly switching pro-

cess α(t) that takes m possible values in a discrete state space

S = {1, . . . ,m}. For each given value i ∈ S , the corresponding
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(deterministic) linear time invariant (LTI) system in (1) with

constant matrices (C(i), A(i), B(i)) is called the ith subsystem

of the RSLS.

Assumption 2.1: Given τ > 0, (i) the switching process

α(t) can switch only at the sampling instants kτ , k = 0,
1, . . . , that generates a stochastic sequence α(t) = αk, t ∈
[kτ, (k + 1)τ). (ii) The sequence {αk} is independent and iden-

tically distributed (i.i.d.) such that the probability Pr{·} satisfies

Pr{αk = i} = pi > 0, i ∈ S and
∑m

i=1 pi = 1. (iii) αk cannot

be directly measured.

Remark 2.1: Although physical systems can change their

structures and parameters at any time instant, all management

platforms for practical systems have an interval (an internal

clock) for data sampling and transfer, and for decision making.

The interval depends on sensor, communication, and computer

hardware/software systems. For example, for data acquisition

accuracy and antialiasing requirements in PMU data, the data

rate of the Power Xpert Meter is 1024 samples per cycle in

power systems. For contingency management, 160 ms is the

IEEE-imposed limit for voltage sag/surge. For power dispatch,

a decision interval of 5 min is commonly used in practice.

Mathematically, under Assumption 2.1, the randomly switching

process can be treated as a discrete-time stochastic sequence,

rather than a continuous-time process. Random switching time

in continuous-time stochastic processes is beyond the scope of

this article.

Under Assumption 2.1, the following stochastic matrix se-

quences are induced by αk

Ak = A(αk) =
m∑

i=1

A(i)11{αk=i}

Bk = B(αk) =

m∑

i=1

B(i)11{αk=i}

Ck = C(αk) =

m∑

i=1

C(i)11{αk=i}

where 11V is the indicator function of the event V : 11V = 1 if

V is true; and 11V = 0, otherwise. The sampled values of the

signals are denoted by xk = x(kτ) and yk = y(kτ).
For constant A ∈ R

n×n and C ∈ R
1×n, and for a finite

time interval [0, τ), consider the mapping G : R
n → C[0, τ)

from the initial state x(0) = x0 to y(t), y(t) = G(x0)(t) =
CeAtx0, t ∈ [0, τ). The kernel of G is defined as Ker(G) =
{x0 ∈ R

n : y(t) ≡ 0, t ∈ [0, τ)}. Let W be the observability

matrix of (C,A)

W =

⎡
⎢⎢⎢⎣

C
CA

...

CAn−1

⎤
⎥⎥⎥⎦ .

The following result is classical and well known.

Lemma 2.1: For any τ > 0, Ker(G) = ker(W ).
The premise of this article is to treat RSLSs whose initial

states are unknown and whose switching sequence cannot be

directly measured. As a result, both the continuous state xk and

discrete state αk must be estimated from the known input u(t)
and observed output y(t). The available dataset in a time interval

[0, T ) is given by the noise-free datasetDT = {y(t), t ∈ [0, T )}
for a given T > 0.

Consider the RSLS in (1). For a given time interval [0, �τ),
the sample path {αk, k = 0, . . . , �− 1} is unknown.

Definition 2.1:

1) The system is said to be stochastically distinguishable if

{αk, k = 0, . . . , �− 1} can be uniquely determined from

the dataset D�τ .

2) The system is said to be stochastically and jointly observ-

able if {αk, k = 0, . . . , �− 1} and x(0) can be uniquely

determined from the dataset D�τ .

Remark 2.2: Since the stochastic distinguishability and

stochastic joint observability are conditioned on the sample path

αk, they are random quantities. During system implementation,

the sample path occurs (but unknown) and {αk, k = 0, . . . , �−
1} is to be estimated from the dataset D�τ . In the subsequent

analysis, we will focus on one time segment [kτ, (k + 1)τ).
In particular, without loss of generality, we will use the first

segment [0, τ) as a generic case for our study, focusing on the

determination of α0 and x(0).
In RSLSs with unobservable subsystems, we must identify

the subsystem even if we cannot estimate the continuous state

accurately. In contrast, there exist several different definitions

of distinguishability, such as these in [18], [19], and [20] that

require the determination of both continuous states and discrete

states simultaneously, which imply observable subsystems.1 We

will show that input assistance and design are critical. For

conciseness, “stochastic distinguishability” will be abbreviated

to “distinguishability” and “stochastic joint observability” to

“joint observability.”

Remark 2.3: Similar to the classical observability definition,

if an RSLS is distinguishable and/or jointly observable, then

theoretically the unique determination of α0 and x(0) can

be achieved over an infinitesimal time interval. On the other

hand, classical observer design uses the feedback-based observer

structure for its computational simplicity, robustness, and much

reduced memory complexity. Our theoretical results on the

distinguishability and joint observability are stated for any τ > 0
(so it can be infinitesimally small), but our observer algorithms

will be feedback-based. Our subsequent convergence analysis

shows that this observer structure is, indeed, suitable for the

joint estimation tasks.

III. JOINT OBSERVABILITY WITHOUT PROBING INPUT

We start by considering the case of zero-input systems. The

following example shows that in general, without input assis-

tance, joint observability may be lost.

Example 3.1: Consider two first-order subsystems
{
ẋ1(t) = ax1(t) + u(t)
y1(t) = x1(t).

;

{
ẋ2(t) = ax2(t) + u(t)
y2(t) = 2x2(t).

1The papers [18], [19], [20] consider more comprehensive problems of
switching time estimation, smooth inputs, etc. These are beyond the scope of
this article.
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Although these two subsystems are different, they share the same

eigenvalue a. Under the zero-input condition, their respective

outputs are y1(t) = eatx1(0), y2(t) = 2eatx2(0), t ∈ [0, τ).
For any initial state x1(0) 	= 0, there exists x2(0) = 0.5x1(0)
such that y1(t) ≡ y2(t), t ∈ [0, τ).Consequently,α0 and x(0)
cannot be uniquely determined from the dataset Dτ .

On the other hand, we will show that the common eigenvalues

are the only factor that will result in the loss of joint observability.

Consider the zero-input case u(t) ≡ 0
{
ẋ(t) = A(α(t))x(t)
y(t) = C(α(t))x(t).

(2)

For the ith subsystem in S , A(i) and C(i) are constant

matrices, and its observability matrix is

W (i) =

⎡
⎢⎢⎢⎣

C(i)
C(i)A(i)

...

C(i)(A(i))n−1

⎤
⎥⎥⎥⎦ , i = 1, . . . ,m. (3)

The combined matrix for the set S is

WS =

⎡
⎢⎢⎢⎣

W (1)
W (2)

...

W (m)

⎤
⎥⎥⎥⎦ . (4)

We note that W (i) and WS are deterministic matrices that

contain only information on subsystems. They do not involve

actual switching sequences. As a result, they can be evaluated

offline.

A. Observable Subsystems

We first consider RSLSs whose subsystems are observable.

Hence, W (i), i = 1, . . . ,m, are full rank.

1) Joint Observability: Suppose that the RSLS starts from

x(0) = x0 and α0 in the first interval [0, τ). Both x0 and α0

are unknown and must be jointly estimated from the output

observation y(t), t ∈ [0, τ) for any given τ > 0. The unknown

pair is denoted by ξ0 = (x0, α0).
The output y(t) is said to be nonvanishing in [0, τ), if

y(t) 	≡ 0, t ∈ [0, τ). It is noted that if y(t) ≡ 0, t ∈ [0, τ), it

is obviously not possible to determine α0, although x(0) = 0
can be concluded since all subsystems are observable.

Definition 3.1: The system in (2) is said to be jointly observ-

able, if for any τ > 0, ξ0 can be uniquely determined from any

nonvanishing y(t), t ∈ [0, τ).
We first establish a basic necessary and sufficient condition

for the separation of two subsystems. Consider any two subsys-

tems with matrices (C(i), A(i)) and (C(j), A(j)), i 	= j. Their

corresponding observability matrices are W (i) and W (j).
Lemma 3.1 is similar to a result in [20],2 but with a different

statement and a different and self-contained proof.

Lemma 3.1: Suppose that both subsystems are observable,

namely W (i) and W (j) are full rank. Then ξ0 can be uniquely

2The paper [20] also treated the identification of switching time, which is
beyond the scope of this article.

determined from non-vanishing y(t), t ∈ [0, τ) for any τ > 0 if

and only if the combined matrix

W =

[
W (i) −W (j)

W (i)(A(i))n −W (j)(A(j))n

]
∈ R

2n (5)

is full rank.

Proof: Without loss of generality, assume that the true ξ0 is

(xi
0, i).
Consider the system

{
ż = Az

v = Cz
(6)

where A =

[
A(i) 0
0 A(j)

]
, C = [C(i),−C(j)]. Then, W in (5)

is the observability matrix of (6). From the initial condition z0 =[
xi
0

xj
0

]
, we have v(t) = C(i)eA(i)txi

0 − C(j)eA(j)txj
0.

The “Only If” Part: Suppose that W is not full rank. Then,

there exists initial value z0 ∈ ker(W ) with z0 	= 0 such that

v(t) = C(i)eA(i)txi
0 − C(j)eA(j)txj

0 ≡ 0, t ∈ [0, τ).

This implies that if the true ξ0 = (xi
0, i), then another ξ̄0 =

(xj
0, j)will generate exactly the samey(t), t ∈ [0, τ). As a result,

ξ0 cannot be uniquely determined from y(t), t ∈ [0, τ).
The “If” Part: Suppose that W is full rank. If there are (xi

0, i)
and (xj

0, j) that generate the same y(t) 	≡ 0, t ∈ [0, τ), then

v(t) = C(i)eA(i)txi
0 − C(j)eA(j)txj

0 ≡ 0, t ∈ [0, τ).

Since the combined system (6) is observable, this implies

z0 = 0, namely, xi
0 = 0 and xj

0 = 0. Therefore, y(t) ≡ 0, t ∈
[0, τ), which is a contradiction since y is nonvanishing. As

a result, α0 can be uniquely determined. Once α0 is deter-

mined, xi
0 can also be uniquely determined since (C(i), A(i))

is observable. �

Theorem 3.1: Suppose that m subsystems (C(i), A(i)),
i = 1, . . . ,m are individually observable. Then, ξ0 can be

uniquely determined from nonvanishing y(t), t ∈ [0, τ) if and

only if A(i) and A(j) do not have common eigenvalues, for all

i 	= j.

Proof: Let (C(i), A(i)) and (C(j), A(j)), i 	= j, be any two

subsystems.

The “Only If” Part: Suppose that λ is a common real-valued

eigenvalue ofA(i) andA(j). Then, there exist vi 	= 0 and vj 	= 0
such that

A(i)vi = λvi, A(j)vj = λvj .

Since W (i) and W (j) are full rank, ai = C(i)vi 	= 0 and aj =

C(j)vj 	= 0.3 Let z0 =

[
ajvi

aivj

]
	= 0. It can be directly verified

that

Wz0 =

[
W (i) −W (j)

W (i)(A(i))n −W (j)(A(j))n

] [
ajvi
aivj

]

3If ai = C(i)vi = 0, then C(i)(A(i))jvi = λ
jai = 0, for all j, which

implies that W (i) is not full rank.
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Algorithm 1:

1) For i = 1, . . . ,m, compute the observability Gramians:

Γi =
∫ τ

0 eA
′(i)tC ′(i)C(i)eA(i)tdt, and

Qi =
∫ τ

0 eA
′(i)tC ′(i)y(t)dt. Then, the estimate of xi

0 is

x̂i
0 = Γ−1

i Qi. It is noted that since (C(i), A(i)) is

observable, Γi is invertible for any τ > 0.

2) Generate m errors:

ei = sup
t∈[0,τ)

‖y(t)− C(i)eA(i)tx̂i
0‖, i = 1, . . . ,m.

3) Estimate ξ0:

α̂0 = i∗ = arg min
i=1,...,m

ei, Discrete State Estimation

x̂0 = xi∗

0 , Initial State Estimation

=

⎡
⎢⎢⎢⎣

ajai − aiaj
(ajai − aiaj)λ

...

(ajai − aiaj)λ
2n−1

⎤
⎥⎥⎥⎦

= 0.

This implies thatW is not full rank. By Lemma 3.1, the system is

not jointly observable. The proof for common complex-valued

eigenvalues is similar and omitted.

The “If” Part: Suppose that A(i) and A(j) do not have

common eigenvalues. Now, assume that there are (xi
0, i) and

(xj
0, j) that generate the same y(t). This implies that

v(t) = C(i)eA(i)txi
0 − C(j)eA(j)txj

0 ≡ 0, t ∈ [0, τ).

Since both subsystems are observable, the modes in

C(i)eA(i)txi
0 and C(j)eA(j)txj

0 are linearly independent, indi-

vidually.

Furthermore, since A(i) and A(j) do not have common

eigenvalues, the modes in v(t) = C(i)eA(i)txi
0 − C(j)eA(j)txj

0

are jointly linearly independent. Consequently, the fact

“v(t) ≡ 0, t ∈ [0, T )” implies that all coefficients are zero.

Therefore

C(i)eA(i)txi
0 ≡ 0 and C(j)eA(j)txj

0 ≡ 0, t ∈ [0, τ).

By hypothesis, both subsystems are observable, which implies

that xi
0 = 0 and xj

0 = 0. As a result, W is full rank. By Lemma

3.1, the system is jointly observable. �

2) Joint Estimation Algorithm: When the conditions of

Theorem 3.1 are satisfied, Algorithm 1 can be used to compute

ξ0.

Note that if the true α0 = i∗, then ei∗ = 0. Under the condi-

tions of Theorem 3.1, all other ej > 0, j 	= i∗. Consequently,

Algorithm 1 selects the true α0, which then implies that the

continuous state’s initial value can be uniquely determined since

the subsystem is observable.

We comment that Algorithm 1 is infinite dimensional since it

involves the integration of data in the interval [0, τ).

B. Unobservable Subsystems

The conditions of Theorem 3.1 do not cover RSLSs whose

subsystems are unobservable. Typically, one sensor does not

have sufficient data for estimating the entire state. Hence, sub-

systems are typically not observable, violating the conditions of

Theorem 3.1.

Assumption 3.1: (i) All subsystems are unobservable,

namely, Rank(W (i)) = ni < n, i ∈ S . (ii) WS is full column

rank.

Remark 3.1: We assume that all subsystems are unobserv-

able. If some subsystems are actually observable, then condition

(ii) of Assumption 3.1 will be trivially satisfied. As a result,

we focus on the nontrivial scenario given by condition (i) of

Assumption 3.1. Condition (ii) of Assumption 3.1 ensures that

their collective observable subspaces cover R
n. This condition

of Assumption 3.1 is a necessary condition in our develop-

ment. To see this, if WS is not full rank, then the kernel of

WS cannot be observed by any subsystem, see an example

in [28].

Since the ith subsystem is not observable, namely

Rank(W (i)) = ni < n, we construct Mi = Base(ker
(W (i))) ∈ R

n×(n−ni) and select any Ni ∈ R
n×ni such that

Ti = [Mi, Ni] is invertible. The inverse of Ti is decomposed

into T−1
i =

[
Ki

Fi

]
, where Ki ∈ R

(n−ni)×n and Fi ∈ R
ni×n.

The state transformation z̃i = T−1
i x can be decomposed into

z̃i = T−1
i x =

[
Kix
Fix

]
=

[
vi

zi

]
where zi ∈ R

ni . Correspond-

ingly, this coordinate transformation leads to the transformed

matrices Ai = T−1
i A(i)Ti, C

i = C(i)Ti, and Ai and Ci have

the structure Ai =

[
Ai

11 Ai
12

0 Ai
22

]
, Ci = [0, Ci

2] with Ai
22 ∈

R
ni×ni and Ci

2 ∈ R
1×ni .

As a result, if we focus only on the dynamics of the observable

partial state zi, we have

{
żi = Ai

22z
i

y = Ci
2z

i
(7)

and (Ci
2, A

i
22) is observable.

Define the true observable substates z =

⎡
⎢⎣
z1

...

zm

⎤
⎥⎦ ∈ R

ns and

their estimates, to be designed later, as ẑ =

⎡
⎢⎣
ẑ1

...

ẑm

⎤
⎥⎦ ∈ R

ns . Let

zik = zi(kτ).

Assumption 3.2: For all i 	= j, Ai
22 and Aj

22 do not have

common eigenvalues.

Theorem 3.2: Under Assumption 3.2, if y(t) 	≡ 0, t ∈
[kτ, (k + 1)τ), then αk = i∗ can be uniquely determined from
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Dτ = {y(t), t ∈ [kτ, (k + 1)τ)}. Furthermore, the observable

partial state zik can be uniquely determined.

Proof: Since y(t) 	≡ 0, [t ∈ kτ, (k + 1)τ), we have

y(t) = Ci
2e

Ai
22

(t−kτ)zik.

Under Assumption 3.2, by limiting all subsystems to their

observable partial states, the conditions of Theorem 3.1 hold.

As a result, by applying Algorithm 1 to the observable partial

states, αk = i∗ can be uniquely determined. Furthermore, since

(Ci
2, A

i
22) is observable, zik can be uniquely determined. �

Example 3.2: Consider an RSLS with αk ∈ {1, 2, 3}
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎣
a1 0 0
0 a2 0
0 0 a3

⎤
⎦x(t)

y(t) = C(α(t))x(t)

(8)

with distinct a1, a2, a3, and C(1) = [1, 0, 0], C(2) = [0, 1, 0],
C(3) = [0, 0, 1].

All three subsystems are unobservable. In this case, transfor-

mation matrices are

T1 =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ , T2 =

⎡
⎣
1 0 0
0 0 1
0 1 0

⎤
⎦ , T3 =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

with observable subspaces (C1
2 , A

1
22) = (1, a1), (C

2
2 , A

2
22) =

(1, a2), (C
3
2 , A

3
22) = (1, a3).

Since a1, a2, a3 are distinct, Assumption 3.2 is satisfied. It

follows thatαk can be uniquely determined in each time interval

under nonvanishing data.

IV. DISTINGUISHABILITY WITH PROBING INPUT UNDER ZERO

INITIAL STATE

A. Distinguishability

Assumption 3.2 for subsystems is restrictive since a com-

plex system often contains overlapping subspaces for different

subsystems. In interconnected complex systems, switching of

systems may be caused by an interruption of a communication

channel, a sensor failure, a switching control, among many

other scenarios. In such networked systems, switching usually

affects only part of the system, leaving most of the system

unchanged. These unchanged system components imply that

some subsystems often have common components and therefore

share common eigenvalues, violating the conditions of Theorem

3.1. In such situations, it is necessary to use probing inputs to

assist in determining α0 and x(0). In this section, we explore the

determination of the switching sequence with assistance from a

probing input.

The algebra of proper rational functions of s over the field R

is denoted by R =
{
G(s) : G(s) = b(s)

a(s)

}
, where a(s) and b(s)

are polynomials of s with real coefficients, and the order of b(s)
is less than or equal to the order of a(s). The vanishing function

G(s) ≡ 0 for all s is denoted by 0. The subalgebra of R that

consists of nonvanishing and strictly proper (namely, the order

of b(s) is strictly less than the order of a(s)) rational functions

is denoted by R0. It is easy to verify that R0 is an algebra over

the field R. Also, if G(s) ∈ R, G(s) 	= 0, and U(s) ∈ R0, then

Y (s) = G(s)U(s) ∈ R0.

For a one-sided time function g(t), t ≥ 0, its Laplace trans-

form is G(s) = L{g}, and correspondingly g = L−1{G(s)}.

We say g ∈ R (or g ∈ R0) if and only if G(s) = L{g} ∈ R (or

G(s) ∈ R0).

Lemma 4.1: Suppose that Y (s) ∈ R0 and y = L−1{Y (s)}.

For any τ > 0, y(t) ≡ 0, t ∈ [0, τ) if and only if Y (s) = 0.

Proof: The “If” Part: Apparently, if Y (s) = 0, then y(t) =
L−1{Y (s)} ≡ 0, t ≥ 0.

Proof: The “Only If” Part: Suppose that Y (s) 	= 0. For

Y (s) = b(s)
a(s) , suppose that the order of a(s) is r. Let λi ∈ C,

i = 1, . . . , q be the distinct roots of a(s) of multiplicity ri,∑q
i=1 ri = r. Since Y (s) is rational and strictly proper, y(t)

is a linear combination of exponential polynomial functions

y(t) =

q∑

i=1

ri∑

j=1

cijt
j−1eλit

for some cij ∈ C.4 Since Y (s) 	= 0, in any time interval of finite

length, y(t) has only a finite number of zeros. It follows that

y(t) 	≡ 0, t ∈ [0, τ) for any τ > 0. �

In this article, the “input response” and the “zero-state re-

sponse” have the same meaning, as do the “zero-input response”

and the “initial-state response.”

Consider two nonvanishing rational transfer functions

G1(s), G2(s) ∈ R. Suppose that the input u(t), t ≥ 0 has its

Laplace transform U(s) ∈ R0, and the zero-state responses are

denoted by y1(t) = G1u and y2(t) = G2u, respectively.

Theorem 4.1: For any τ > 0, y1(t) ≡ y2(t), t ∈ [0, τ), if and

only if G(s) = G1(s)−G2(s) = 0.

Proof: Obviously, if G1(s)−G2(s) = 0, then y1(t) ≡
y2(t), t ≥ 0.

Conversely, suppose that G(s) = G1(s)−G2(s) 	= 0. Then,

G(s) ∈ R0. Since U(s) ∈ R0 and R0 is an algebra,

Y (s) = Y1(s)− Y2(s) = G(s)U(s) ∈ R0, namely, Y (s) 	= 0.

By Lemma 4.1, y(t) 	≡ 0, t ∈ [0, τ), for any τ > 0. �

Theorem 4.1 immediately implies the following conclusion

on distinguishability by using a rational probing input under zero

initial conditions.

Corollary 4.1: Consider a set of m nonvanishing and dis-

tinct rational transfer functions G = {G1(s), . . . , Gm(s)} with

Gi(s) ∈ R, i = 1, . . . ,m, and Gi(s)−Gj(s) 	= 0 if i 	= j. Let

u(t) be a probing input whose Laplace transform U(s) ∈ R0.

Suppose that G∗ ∈ G is the true system and y∗ = G∗u is the

true output under the zero initial condition. Then, for any τ > 0,

the observation data y∗(t) in [0, τ) can uniquely determine G∗.

Remark 4.1: The condition that the probing input belongs to

R0 is essential. Indeed, if u(t) is a delayed input of u1(t), t ≥ 0,

with starting timeT > 0 andU1(s) ∈ R0, then its Laplace trans-

form is e−TsU1(s) 	∈ R0. In the time domain, u(t) = u1(t−
T ), t ≥ T . Under this input, for all Gi ∈ G, yi(t) = Giu ≡ 0,

t ∈ [0, T ). As a result, the conclusions of Theorem 4.1 are no

longer true.

4Although λi ∈ C and cij ∈ C, y(t) is still real valued.
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Under the conditions of Theorem 4.1, a subsystem can be

uniquely determined over an infinitesimal time interval. We

should emphasize that this conclusion is under the zero initial

condition. The combination of nonzero initial conditions and

probing input significantly complicates the analysis and will be

studied in Section V.

B. Sampling Theorem for Distinguishability

For practical implementation, data need to be sampled. When

αk is known, the feedback-based observer algorithms in [28] are

shown to converge strongly and exponentially. In this section,

we focus only on accurately determining αk.

Let 0 < τ0 � τ . We will use data in [0, τ0) to estimate α0,

so that the correct observer feedback can be designed and

implemented in [τ0, τ). Let Dτ0 = {y(t), t ∈ [0, τ0)}. Take N
samples of y(t) in [0, τ0) with sampling interval υ = τ0/N ,

where N needs to be decided. Denote by D̃τ0 the sampled

dataset D̃τ0 = {y(�υ), � = 0, 1, . . . , N − 1}. We will answer

the following key questions: Will D̃τ0 be sufficient for uniquely

determining α0? How many data points are needed? How can

we estimate α0? Can we estimate α0 recursively?

We first establish a result on the number of zeros of expo-

nential polynomial functions in a finite time interval. Suppose

that a system G(s) ∈ R is non-vanishing, U(s) ∈ R0. Then,

Y (s) = G(s)U(s) ∈ R0. Let the distinct poles of G(s)U(s) be

λi ∈ C with multiplicity mi, i = 1, . . . , q, whose real parts are


(λi) and imaginary parts are �(λi) ≥ 0. The order of Y (s) is

r =
∑q

i=1 mi. Define ωmax = maxi=1,...,q �(λi), and

µτ0 = 2(r − 1) +
⌈ τ0
2π

ωmax

⌉
(9)

where �a� is the smallest integer that is larger than or equal to

the value a.

Since Y (s) ∈ R0, y(t) = Gu is a linear combination of the

modes from {λi, i = 1, . . . , q}. As a result, it belongs to the class

of exponential polynomials: for any t ∈ [0, τ0)

y(t) =

q∑

i=1

mi∑

j=1

vi,j
tj−1

(j − 1)!
eλit. (10)

Since the modes are linearly independent andY is nonvanishing,

the coefficients are not all zeros. The following key lemma on

the number of zeros of exponential polynomials can be derived

from [29].

Lemma 4.2: The number Nτ0 of zeros in [0, τ0) of a nonvan-

ishing exponential polynomial y defined in (10) is bounded by

Nτ0 ≤ µτ0 .
Assumption 4.1: (i) The subsystem transfer functions Gi ∈

R, i = 1, . . . , n are nonvanishing and distinct. (ii) The input

u ∈ R0.

Under a given input u satisfying Assumption 4.1, the sub-

system output yi = Giu ∈ R0. Let the poles of Gi(s)U(s)
be denoted by aij , j = 1, . . . , ζi with real parts 
(aij) and

imaginary parts �(aij) ≥ 0, and the order of Gi(s)U(s) be ri.
Define

rmax = max
i=1,...,m

ri

Algorithm 2: Estimation of α0 Under Zero Initial State.

1) Initial Set of Discrete State: S(0) = S = {1, . . . ,m}.

For � = 0, . . . , N − 1, perform the following recursion.

2) Observation Error Calculation: Calculate

|δi(�υ)| = |y0i (�υ)− y0(�υ)|, i ∈ S(�). Define

∆(�) = {i ∈ S(�) : |δi(�υ)| 	= 0}.

3) Discrete State Set Reduction: S(�+ 1) = S(�)�∆(�),
where � is the set subtraction.

4) Identification of α0: S(N) is a singleton, containing the

estimate of the true i∗.

ωmax = max
i=1,...,m

max
j=1,...,ζi

�(aij).

Define

N0 = 2(2rmax − 1) +
⌈ τ0
2π

ωmax

⌉
.

Theorem 4.2: Under Assumption 4.1, if N > N0, then α0

can be uniquely determined from D̃τ0 .

Proof: Without loss of generality, suppose that the true

α0 = 1. The true input response is y01(t) = G1u, t ∈ [0, τ0).
For any i 	= 1, the input response of the ith subsys-

tem is y0i (t) = Giu, t ∈ [0, τ0). The difference is δi(t) =
y0i (t)− y01(t) = (Gi −G1)u, t ∈ [0, τ0). Here, (Gi −G1)U ∈
R0 whose order is less than or equal to 2rmax. By Lemma

4.2, the number of zeros of δi(t) is bounded by N0. It fol-

lows that if the number N of samples in [0, τ0) exceeds N0,

δi(�υ) 	≡ 0, � = 0, 1, . . . , N − 1. This is sufficient to exclude

Gi.

Since i 	= 1 is arbitrary, this proves that G1 can be uniquely

determined from D̃τ0 . �

C. Recursive Estimation of αk

Take N > N0 samples of y(t) in [0, τ0) to obtain the sampled

dataset D̃τ0 = {y(�υ), � = 0, 1, . . . , N − 1}.
By Theorem 4.2, this algorithm will always terminate with

a singleton S(N) that contains the true discrete state α0. We

emphasize that this conclusion is valid under the condition

that the initial state is zero and the sampled dataset is noise

free.

V. JOINT OBSERVABILITY WITH PROBING INPUT

When the input is applied to an unknown subsystem with the

unknown initial state, the situation becomes substantially more

complicated. To illustrate the complications involved in joint

observability with the unknown initial state, we use an example

to show that even with input assistance, joint observability can

still be lost.

Example 5.1: Consider the following two subsystems, both

are observable
⎧
⎪⎪⎨
⎪⎪⎩

ẋ1(t) =

[
−1 0
0 −2

]
x1(t) +

[
1
1

]
u

y1(t) = [1 2]x1(t)
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⎧
⎪⎪⎨
⎪⎪⎩

ẋ2(t) =

[
−1 0
0 −3

]
x2(t) +

[
1
1

]
u

y2(t) = [1 3]x2(t).

Since the two systems share the common eigenvalue −1, they

cannot be distinguished without assistance from a probing input.

Their respective transfer functions are G1(s) =
1

s+1 + 2
s+2 =

3s+4
(s+1)(s+2) ∈ R; G2(s) =

1
s+1 + 3

s+3 = 4s+6
(s+1)(s+3) ∈ R.

Suppose that the input is the unit step U(s) = 1
s
∈ R0. The

total respective responses of the two subsystems are

y1(t) = a1e
−t + a2e

−2t + 2− e−t − e−2t, t ∈ [0, τ)

y2(t) = b1e
−t + b2e

−2t + 2− e−t − e−3t, t ∈ [0, τ)

where a1, a2, b1, b2 are determined by the initial states.

Their difference

δ(t) = y1(t)− y2(t)

= (a1 − b1)e
−t + (a2 − 1)e−2t + (b2 − 1)e−3t

becomes δ(t) ≡ 0, t ∈ [0, τ) if a1 = b1, a2 = 1, b2 = 1. This

implies that under this input, the dataset Dτ cannot uniquely

determine α0 and x(0).
In this section, we will develop methods on input design for

joint observability with suitable conditions that resolve the issue

demonstrated by Example 5.2. For simplicity, we assume that all

subsystems are individually observable in this section. The same

conclusions can be obtained by using the methods in Section III

for unobservable subsystems.

A. Mode-Modulated Input Design

Consider the set G = {Gi, i = 1, . . . ,m} of m distinct sub-

systems. The set of poles of Gi (or equivalently the eigenvalues

of A(i)) is Λi and Λ = ∪m
i=1Λi.

Assumption 5.1: Let U ⊂ R0 be the set of nonvanishing

inputs u whose Laplace transforms U(s) satisfy the following

conditions. (i) U(s) = b(s)
a(s) is coprime, namely, no common

pole-zero pairs (i.e., no pole-zero cancellation). (ii) U(s) con-

tains at least one pole λ of any multiplicity q ≥ 1 such that λ 	∈ Λ
and Gi(λ), i = 1, . . . ,m, are distinct.

Theorem 5.1: For the set of distinct subsystemsG = {Gi, i =
1, . . . ,m}, if the input u ∈ U , then for any τ > 0, the true

subsystem can be uniquely determined from the dataset Dτ =
{y(t) 	≡ 0, t ∈ [0, τ)}, regardless of the actual initial state x(0).

Proof: Without loss of generality, assume Gi ∈ G is the true

subsystem.

Since u satisfies Assumption 5.1, U(s) contains a pole λ 	∈ Λ
that is of multiplicity q.

Case 1: Real-valued λ. In this case U(s) = 1
(s−λ)q U1(s) such

that λ is not a pole of U1(s). Since U(s) is coprime, U1(λ) 	= 0.

Consider anyGj , j 	= i. Under any input u ∈ U with real-valued

λ, the input responses are

Y input
i (s) =

1

(s− λ)q
Gi(s)U1(s)

=
Gi(λ)U1(λ)

(s− λ)q
+ · · ·+

a

s− λ
+ Ỹ input

i (s)

Y input
j (s) =

1

(s− λ)q
Gj(s)U1(s)

=
Gj(λ)U1(λ)

(s− λ)q
+ · · ·+

b

s− λ
+ Ỹ input

j (s)

for some a and b, where Ỹ input
i (s) (and Ỹ input

j (s)) contains all

other terms of the partial fraction expansions. Their correspond-

ing modes in time-domain expressions are

yinputi (t) = Gi(λ)U1(λ)t
q−1eλt + · · ·+ aeλt + ỹinputi (t),

yinputj (t) = Gj(λ)U1(λ)t
q−1eλt + · · ·+ beλt + ỹinputj (t),

where ỹinputi (t) (and ỹinputj (t)) contains modes from other poles.

Furthermore, the initial-state responses

ystatei (t) = C(i)eA(i)txi(0), y
state
j (t) = C(j)eA(j)txj(0)

consist of modes from the eigenvalues of A(i) and A(j) that are

in Λ.

It is well known that the mode tq−1eλt is linearly independent

of {eλt, . . . , tq−2eλt} and the modes corresponding to different

poles are linearly independent [30]. As a result, their total

responses

yi(t) = Gi(λ)U1(λ)t
q−1eλt + δi(t)

yj(t) = Gj(λ)U1(λ)t
q−1eλt + δj(t)

contain the same mode tq−1eλt, which is linearly independent

of all modes in δi(t) and δj(t). Their difference is

∆(t) = yi(t)− yj(t)

= [Gi(λ)−Gj(λ)]U1(λ)t
q−1eλt + δi(t)− δj(t).

Under Assumption 5.1, U1(λ) 	= 0 and is finite, Gi(λ)−
Gj(λ) 	= 0. Hence, [Gi(λ)−Gj(λ)]U1(λ)t

q−1eλt 	≡ 0 in t ∈
[0, τ) for any τ > 0. Furthermore, since λ 	∈ Λ and U1(s) does

not have poles at λ, tq−1eλt is linearly independent of the modes

in δi(t)− δj(t) that consist of the modes from Λ, U1(s), and

{eλt, . . . , tq−2eλt}.

This implies that ∆(t) 	≡ 0, t ∈ [0, τ). Therefore, Gi can be

uniquely determined from Dτ .

Case 2: Complex-valued λ = α+ jω. Since the subsystems

have real coefficients whose complex poles are in pairs, λ̄ = α−
jω is also a pole. By grouping factors corresponding to λ and

λ̄, the input can be expressed as U(s) = 1
(s2−2αs+α2+ω2)q U1(s)

such that λ and λ̄ are not poles of U1(s). The modes in the total

responses ofGi andGj contain the same mode tq−1eαt cos(ωt+
θ) but with different coefficients in Gi and Gj . The remaining

steps of the proof are nearly identical to Case 1, with tq−1eλt

replaced by tq−1eαt cos(ωt+ θ) and, hence, are omitted. �

Example 5.2: Consider the two subsystems in Example 5.2

G1(s) =
1

s+ 1
+

2

s+ 2
;G2(s) =

1

s+ 1
+

3

s+ 3
.

Λ1 = {−1,−2}, Λ2 = {−1,−3}, Λ = {−1,−2,−3}. Choose

λ = −4 	∈ Λ and U(s) = 1
s+4 . Since G1(−4) = − 10

3 ,
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G2(−4) = − 4
3 , Assumption 5.1 is satisfied. As a result,

this input can be used to distinguish G1 and G2, regardless of

what the initial state is.

On the other hand, λ = 0 	∈ Λ but G1(0) = 2 = G2(0). It

means U(s) = 1
s

violates Assumption 5.1. Example 5.2 has

already demonstrated that U(s) = 1
s

(the unit step) cannot be

used to distinguish G1 and G2.

B. Magnitude-Modulated Input Design

Suppose that we have an RSLS with m subsystems,

represented by the set of distinct rational transfer func-

tions G = {Gi(s) = C(i)(sI −A(i))−1B(i), i = 1, . . . ,m}
with Gi(s) ∈ R, i = 1, . . . ,m, and Gi(s)−Gj(s) 	= 0 if i 	=
j. Let the true subsystem be i∗ and the corresponding true system

be G∗ ∈ G with the unknown initial state x∗(0). The input

u(t) = Ru1(t)withU1(s) ∈ R0, and the magnitudeR > 0will

be selected later.

For a selected 0 < τ0 � τ , denote the dataset Dτ0 =
{y(t), t ∈ [0, τ0]}.5

Assumption 5.2: (i) ‖x∗(0)‖ ≤ µ0. (ii)

maxi=1,...,m maxt∈[0,τ0] ‖C(i)eA(i)t‖ ≤ µ1.

Theorem 5.2: Under Assumption 5.2, there exists R0, de-

pending on τ0, such that if R > R0, then the discrete state α0 of

the RSLS can be uniquely determined from the dataset Dτ0 .

Proof: Under the input u1(t), the corresponding zero-state

responses y0i (t) = Giu1, i = 1, . . . ,m, are exponential poly-

nomial functions and, hence, are continuous. The true zero-state

output is

y0∗ (t) =

∫ t

0

eA(i∗)(t−θ)u1(θ)dθ, t ∈ [0, τ0].

By Theorem 5.2, if i 	= i∗, then y0i (t)− y0∗ (t) 	≡ 0, t ∈ [0, τ0].
By continuity, δi = maxt∈[0,τ0] |y

0
i (t)− y0∗ (t)| > 0 and δmin =

mini 	=i∗ δi > 0.

The total observed true response from the input u = Ru1 and

the initial state x∗(0) is

y∗(t) = C(i∗)eA(i∗)tx∗(0) +Ry0∗ (t)

and for i 	= i∗

yi(t) = C(i)eA(i)txi(0) +Ry0i (t).

It follows that

max
t∈[0,τ0]

|yi(t)− y∗(t)|

≥ R max
t∈[0,τ0]

|y0i (t)− y0∗ (t)|

− |C(i∗)eA(i∗)tx∗(0)− C(i)eA(i)txi(0)|

= Rδi − |C(i∗)eA(i∗)tx∗(0)− C(i)eA(i)txi(0)|

≥ Rδi − 2µ0µ1

≥ Rδmin − 2µ0µ1.

5The closed set [0, τ0] is used here so that it becomes a compact set for the
maximum to exist in the subsequent expressions. It does not have any further
implications on the results.

Fig. 1. Time-division framework for estimating the unknown subsys-
tem and unknown continuous state of the identified subsystem.

Define R0 = 2µ0µ1

δmin
. Then for i 	= i∗, if R > R0, we have

min
i	=i∗

max
t∈[0,τ0]

|yi(t)− y∗(t)| > 0.

Consequently, the estimate

î = arg min
i=1,...,m

max
t∈[0,τ0]

|yi(t)− y∗(t)| = i∗

namely, i∗ can be uniquely determined. �

VI. OBSERVER DESIGN AND STOCHASTIC CONVERGENCE

ANALYSIS

A. Time-Division Framework

Our observers will be implemented in a time-division frame-

work. Each time segment [kτ, (k + 1)τ) is divided into two

intervals. The first (much smaller) interval [kτ, kτ + τ0] is

designated for estimating αk (that is, identifying the active

subsystem). Using the magnitude-modulated input design as an

example, during this interval, the input signal u = Ru1 with R
satisfying Theorem 5.2 is used as a probing input to assist in the

determination of αk. Since the information on the continuous

state improves over time, the magnitude R may be broadened to

a sequence of time-varying Rk and adapted accordingly. Since

the true αk is unknown in this interval, all subsystem observers

run open loop on the basis of system models only.

Once αk = i is correctly estimated, in the second interval

[kτ + τ0, (k + 1)τ), a feedback-based observer is implemented

for the ith subsystem to estimate its observable substate zi. All

other subsystem observers still run open loop. This framework

is depicted in Fig. 1.

B. Estimation Algorithm for αk Using Data in
[kτ, kτ + τ0].

Let 0 < τ0 � τ . We will use data in [kτ, kτ + τ0] to estimate

αk first. Let the observation dataset be given as Dk = {y(t) :
t ∈ [kτ, kτ + τ0)}. Compute the value Rk

0 as in Theorem 5.2.

Choose Rk > Rk
0 .

Algorithm 3: Estimation of αk Under Unknown Initial State

1) Compute the input responses of the subsystems (assum-

ing zero initial condition): yi(t) = Giu, t ∈ [kτ, kτ +
τ0], i = 1, . . . ,m

2) Calculate the errors: εi = supt∈[kτ,kτ+τ0] |yi(t)− y(t)|.
3) Determine αk: α̂k = argmini=1,...,m εi.
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In Algorithm 3, we ignore the unknown true zero-input re-

sponse of the ith subsystem in computing the outputs of subsys-

tems although we know that the actual output y(t) is affected by

the unknown initial state. Since the input response is dominant

due to the suitably selected magnitude Rk, by Theorem 5.2, this

algorithm will always produce the correct αk.

C. Observer Design

After determining αk = i correctly, an observer can be de-

signed to estimate zi(kτ + τ0). Since the observer feedback

developed in [28] can be designed and implemented in [kτ +
τ0, (k + 1)τ) when αk = i is identified, in principle, the design

considerations in [28] remain valid. Also, since τ0 can be made

very small, its impact on convergence properties in [28] can be

tolerated. We refer the reader to [28] for observer design and the

corresponding properties.

However, design parameters must be modified to accom-

modate the time required for estimating αk, the effect on the

unknown state due to probing inputs, and relationships between

the input response and initial-state response. These new aspects

in observer design and convergence analysis will be covered in

this section.

For simplicity and clarity, we will focus on the scenario in [28,

Sec. VI], which treats RSLSs with independent subsystem error

dynamics. General systems can be treated in a similar way as

in [28, Sec. VII]. The errors in estimating zi and z are denoted

by ei = zi − ẑi and e = z − ẑ, respectively. Denote µi(t) =
‖ei(t)‖, µi

k = ‖ei(kτ)‖, µ(t) = ‖e(t)‖, µk = ‖e(kτ)‖.

Assumption 6.1: (i) The RSLS has independent subspace

error dynamics, namely żi depends on zi only, independent

of αk, under zero input. For such systems, the subsystem state

equation will be ėi = Ai
22ei in open loop without input. (ii) Bk

is known.

We consider three cases in error analysis.

Case 1: t ∈ [kτ, kτ + τ0]
In this time interval, all subsystem observers are running open

loop. Since a probing input is applied, under Assumption 6.1 the

dynamics of zi are

żi = Fiẋ = FiAkx+ FiBku = Ai
22z

i + FiBku.

The observer is ˙̂zi = Ai
22ẑ

i + FiBku. It follows that the error

dynamics are ėi = Ai
22ei and ‖ei(kτ + τ0)‖ ≤ γi

0 for some

γi
0 > 0. Let γ0 = maxi=1,...,m γi

0.

Case 2: t ∈ [kτ + τ0, (k + 1)τ) and αk 	= i.
In the interval t ∈ [kτ + τ0, (k + 1)τ), the inputu ≡ 0. When

the ith subsystem is running open loop, we have the error

bound µi
k+1 ≤ γi

1‖ei(kτ + τ0)‖ ≤ γi
1γ

i
0µ

i
k, αk 	= i for some

constant γi
1. Let γ1 = maxi=1,...,m γi

1.
Case 3: t ∈ [kτ + τ0, (k + 1)τ) and αk = i.
Observe that ifαk = i, the observer error dynamics for the ith

subsystem are ėi = (Ai
22 − LiC

i
2)ei = Ai

cei. By designing the

observer gain properly, Ai
c = Ai

22 − LiC
i
2 can have ni eigen-

values with real part less than −ai with ai > 0. Under the

given τ , for some c > 0, ‖eA
i
cτ‖ ≤ ce−aiτ , which can be made

arbitrarily small by choosing sufficiently large ai. Consequently,

µi
k+1 ≤ γi

c‖ei(kτ + τ0)‖ ≤ γi
cγ

i
0µ

i
k, where γi

c can be made ar-

bitrarily small. Denote γc = maxi=1,...,m γi
c. The actual value

γc will be selected later to ensure convergence of the organized

observer for the entire system.

Total Errors

Combining the three cases, we have

ėi =

{
Ai

22ei, t ∈ [kτ, kτ + τ0]
I{αk=i}A

i
cei + I{αk 	=i}A

i
22ei, t ∈ [kτ + τ0, (k + 1)τ).

It follows that the errors are bounded by µi
k+1 ≤ γi

kµ
i
k,

with γi
k = I{αk=i}γ

i
cγ

i
o + I{αk 	=i}γ

i
1γ

i
o. Consequently, µi

k ≤

(Πk
j=1γ

i
j)µ

i
0.

Under Assumption 2.1, the process {γi
k} is i.i.d. withP (γi

k =
γi
cγ

i
o) = pi, P (γi

k = γi
1γ

i
o) = 1− pi.

Lemma 6.1: Under Assumption 2.1, for any γ∗ < 1, the pole

positions in the observer design can be selected such that

γi = (γi
cγ

i
o)

pi(γi
1γ

i
o)

(1−pi) ≤ γ∗ < 1. (11)

Subsystem observers are designed to satisfy (11).

Convergence Analysis

Assumption 6.2: α(t) is independent of ei(0).
Recall that for a positive-valued stochastic process {sk}, it

is said to converge to 0 strongly if limk→∞ sk = 0 w.p.1. The

convergence rate is said to be exponential if limk→∞
1
k
ln sk =

−r w.p.1. for some r > 0.

Define the continuous-time error µi(t) = ‖ei(t)‖, which is

a scalar stochastic process. Although the rate expressions are

different in this article, the proofs for the following theorems

are similar to those in [28] and will be omitted.

Theorem 6.1: Under Assumption 6.2 and the observer design

in Lemma 6.1, (i) µi
k converges strongly and exponentially to 0,

as k → ∞. (ii) µi(t) converges strongly and exponentially to 0,

as t → ∞.

Define e(t) = [e1(t), . . . , em(t)]′. The estimation error on x
is ε(t) = x(t)− x̂(t) with error norm µ(t) = ‖ε(t)‖.

Theorem 6.2: Under the same assumptions as Theorem 4.1,

the estimation error on x(t) satisfies µ(t) → 0 exponentially as

t → ∞.

VII. ILLUSTRATIVE EXAMPLES

Example 7.1: Consider an RSLS with two scalar subsystems

ẋ1 = a1x1 + b1u

ẋ2 = a2x2 + b2u

y(t) = 11{α(t)=1}x1 + 11{α(t)=2}x2

where a1 = 4, a2 = 3. Hence,A1 = A2 =

[
4 0
0 3

]
,C1 = [1, 0],

C2 = [0, 1], W1 =

[
1 0
4 0

]
, W2 =

[
0 1
0 3

]
, WS =

⎡
⎢⎢⎣

1 0
4 0
0 1
0 3

⎤
⎥⎥⎦.

SinceRank(W1) = 1 andRank(W2) = 1, both subsystems are

unobservable. But Rank(W ) = 2, satisfying Assumption 3.1.
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Fig. 2. Error trajectory of the observer for Subsystem 1.

Now consider the observable parts of the two subsystems with

A1
22 = 4, A2

22 = 3. Since these two eigenvalues are distinct, As-

sumption 3.2 is satisfied, implying that the input is not needed for

distinguishing the two subsystems. As a result, u ≡ 0. Suppose

that the interval τ = 0.5 s. Within each time segment, the first

interval of length τ0 = 0.05 is used to estimate αk in which all

subsystems run open loop. Suppose that the true initial states

are x1(0) = 10 and x2(0) = 5. As an example, suppose that the

true α0 = 1. Then, in the first time segment [0,0.5), we use the

data in [0,0.05] to estimate α0. The true output is y(t) = 10e4t,
t ∈ [0, 0.05]. By Algorithm 1, applied to the subinterval [0,0.05]

on the observable subsystems, we have

Γ1 =

∫ 0.05

0

e8tdt = 0.0615, Q1 =

∫ 0.05

0

10e8tdt = 0.615

x̂1
0 = Q1/Γ1 = 10

Γ2 =

∫ 0.05

0

e6tdt = 0.0583, Q2 =

∫ 0.05

0

10e7tdt = 0.5987

x̂2
0 = Q2/Γ2 = 10.2670.

Apparently, we have

e1 = sup
t∈[0,0.05)

‖y(t)− e4t10‖ = 0

e2 = sup
t∈[0,0.05)

‖y(t)− 10.2670e3t‖

= sup
t∈[0,0.05)

‖10e4t − 10.2670e3t‖ > 0.

As a result, α̂0 = argmin{e1, e2} = 1, namely the correct α0

is identified.

This algorithm is applied to all time segments. As a demon-

stration, we show the error trajectories for estimating x1 in

this simulation. When αk = 1, a feedback-based observer is

designed such that the closed-loop system has the eigenvalue

ac = −7. These parameters lead to γ0 = ea1τ0 = 1.2214, γ1 =
eac(τ−τ0) = 0.0429, and γ2 = ea1(τ−τ0) = 6.0496.

The random switching with P{α(t) = 1} = 0.5 results in

the value in (11) as γ = (γ0γ1)
p(γ0γ2)

1−p = 0.6219. Since

γ < 1, this implies that the RSLS observer for Subsystem 1 is

convergent. The same conclusion can be reached for Subsystem

2. Fig. 2 demonstrates the convergence of state estimation errors

on x1.

Example 7.2: Consider the following two subsystems,

similar to an example in [28] but with the unknown

Fig. 3. Estimation error trajectories for the subsystems and for the
entire state.

sequence now, C(1) = [1, 0, 0], A(1) =

⎡
⎣
1 2 0
5 3 0
0 0 8

⎤
⎦, W (1) =

⎡
⎣

C(1)
C(1)A(1)

C(1)(A(1))2

⎤
⎦ =

⎡
⎣
1 0 0
1 2 0
11 8 0

⎤
⎦ with Rank(W (1)) =

2, C(2) = [0, 0, 2], A(2) =

⎡
⎣
5 0 0
0 3 1
0 2 0

⎤
⎦ ,W (2) =

⎡
⎣

C(2)
C(2)A(2)

C(2)(A(2))2

⎤
⎦ =

⎡
⎣
0 0 2
0 4 0
0 12 4

⎤
⎦ with Rank(W (2)) = 2,

WS =

[
W (1)
W (2)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 2 0
11 8 0
0 0 2
0 4 0
0 12 4

⎤
⎥⎥⎥⎥⎥⎥⎦

with Rank(WS) = 3.

The eigenvalues of A1 are {−1.3166, 5.3166, 8.0000} and

the eigenvalues of A2 are {−0.5616, 3.5616, 5.0000}. Without

common eigenvalues, the two subsystems can be separated by

using y without probing input.

For observer design on subsystems, we can obtain

M1 =

⎡
⎣
0
0
1

⎤
⎦ , T1 =

⎡
⎣
0 0 −1
0 1 0
1 0 0

⎤
⎦ , F1 =

[
0 1 0
−1 0 0

]

M2 =

⎡
⎣
1
0
0

⎤
⎦ , T2 =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ , F2 =

[
0 1 0
0 0 1

]
,

and F =

⎡
⎢⎢⎣

0 1 0
−1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ . F is full column rank.

Suppose that we choose τ = 0.5 s as the decision interval.

Within this interval, the first part of τ0 = 0.05 is used for

detecting subsystems (estimation of αk). After the correct αk is

detected, the remaining part of the interval with length τ − τ0 =
0.45 is used for estimating the continuous state. The poles

for the observer of Subsystem 1 are selected as −15± 100j,

and the poles for the observer for Subsystem 2 are selected as
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−15,−15.1. The subsystem states and the total states are related

by z̃1 = F1x, z̃2 = F2x, x = Φz̃ where z̃ = [z̃1,
′ z̃′2]

′.

For each time interval [kτ, (k + 1)τ), during [kτ, kτ + τ0),
both observers run open-loop. During [kτ + τ0, (k + 1)τ), the

observer for the identified subsystem runs closed loop but the

other observer still runs open loop. Starting from the initial

condition x(0) = [1, 1, 1]′, we ran simulations and recorded the

error norms. One sample path is shown in Fig. 3 . The result

demonstrates convergence of state estimation after integrating

the discrete state estimator with continuous state observers.

VIII. CONCLUSION

The joint estimation of continuous state and discrete switching

sequence for RSLSs with unobservable subsystems involves

intriguing technical complications on distinguishability, joint

observability, input design, observer design, and convergence

analysis. Under noise-free observations, this article has estab-

lished testing conditions, input design methods, a sampling

theorem, observer design algorithms, and convergence analysis.

One immediate step along the direction of this article is to

include noisy observations, which will be pursued in the near

future. Furthermore, the integration of the results of this article

with optimization or control in complex systems is an important

topic to explore.
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