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Joint Estimation of Continuous and Discrete
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With Unobservable Subsystems
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Abstract—This article investigates the problem of joint
continuous and discrete state estimation of randomly
switched linear systems in which subsystems may not be
observable. Estimation of both continuous state and dis-
crete sequence simultaneously based on the same output
observations is a challenging task that is inherently non-
linear and often infinite dimensional. This article presents
necessary and sufficient conditions when joint estimation
is possible without using a probing input. When such con-
ditions are not satisfied, a suitably designed input must be
used to achieve the goal of jointly detecting the subsys-
tem and estimating the internal state. This article employs
certain structures of randomly switched linear systems to
develop algorithms that use finite-dimensional estimators
for continuous states and sampled data for detecting the
discrete states. The convergence analysis shows that this
framework can achieve convergence. Examples and sim-
ulation case studies are presented to illustrate the main
results of this article. The findings of this article can be
used to form a supporting foundation for robust control.

Index Terms—Convergence, hybrid system, input de-
sign, observability, observer design, randomly switched lin-
ear system (RSLS), stochastic distinguishability, stochastic
joint observability.

[. INTRODUCTION

HIS article studies the problem of joint continuous and dis-
crete state estimation of randomly switched linear systems
(RSLSs). RSLSs are an important class of hybrid systems that
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cover diversified applications in which linear continuous dynam-
ics and discrete events interact to generate unique time-varying
systems [1], [2], [3], [4], [5], [6], [7], [8]. RSLSs are common in
practical systems, such as platoon reformulation in autonomous
vehicles, contingency and faults in smart grids, interruptions
and packet loss in networked communication systems, etc.

When the sequence of subsystems is known or can be directly
measured, one may treat a switched linear system as a linear
time-varying system and design control systems accordingly.
In addition, if each subsystem is observable, then following
the detection of the subsystem, observers can be designed to
estimate the continuous states. The literature on observability,
observer design, and other related properties in deterministic
hybrid system frameworks is quite extensive including observ-
ability and controllability [2], observability notions and testing
conditions [9], [10], [11], geometric methods [12], hybrid ob-
servability under input probing [13], observability, detectability,
attractivity, observer design, and related convergence analy-
sis [14], [15], [16], [17], among many others. A related study
on the distinguishability of linear systems and switched linear
systems was presented in [ 18] and [ 19] with a broad class of input
signals and control schemes. A different notion of observability
and distinguishability with an unknown switching time of jump
linear systems was treated in [20].

In contrast, to capture the random nature of system switching
in applications [21], [22], RSLSs were treated as stochastic hy-
brid systems, regime-switching systems, and hybrid switching
diffusions [23], [24], [25, pp. 137-157], [26].

This article treats RSLSs with a different perspective from
the aforementioned literature. When the switching sequence is
random and unknown and subsystems are unobservable, the
corresponding RSLSs are no longer amenable to treatment using
existing techniques, and the associated estimation problems
become highly challenging. The estimation problem is inher-
ently nonlinear and often infinite dimensional; see the work on
Wonham filters [27].

The main premise of this article reflects data collection and
estimation scenarios in typical large-scale complex systems
that involve many sensors for monitoring internal states and
detecting faults. Using modern power systems (MPSs) as exam-
ples, cyber-physical contingencies include loss of distribution
and transmission lines from natural causes, loss of generators,
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failure of communication systems, trips of line switches, etc.
Mathematically, these sudden changes can be represented by
jumps in system models from one configuration to another as
discrete events. Due to the unpredictable and random nature
of contingency and adversary events, they are stochastic and
can be modeled as finite-state stochastic processes. MPSs em-
ploy phasor measurement units (PMUs), advanced metering
infrastructures (AMIs), voltage transformers (VTs), and current
transformers (CTs), and many other sensors to monitor system
states, detect contingency, and support system operation.

In such systems, any single sensor or alocal sensor cluster can-
not provide sufficient information for state estimation of the en-
tire MPS, resulting in unobservable subsystems. An information
processing center (such as power system control centers) collects
data from different sensor clusters and determines the current
subsystem and then gradually obtains accurate and evolving con-
tinuous state estimation by using the data collaboratively. Within
each time interval, only the observable subspace of the active
subsystem can be estimated. The same subspace may become
unobservable when the system is switched to another subsystem;
hence, its estimator must run open-loop using dynamic models
without correction and the estimation errors on the substates can
grow exponentially.

In our recent paper [28], state estimation of RSLSs with
unobservable subsystems was investigated under noise-free ob-
servations, known subsystems, and feedback-based linear ob-
servers. Properly designed subsystem observers and their suit-
able organization were shown to achieve strong and exponential
convergence.

This article investigates the joint estimation of continuous
and discrete states of RSLSs in which subsystems may not be
observable. For such systems, both the continuous and discrete
states must be determined from input—output data. The prob-
lem treated in this article encounters some fundamental new
challenges. First, when the active subsystem is unknown, one
cannot estimate the continuous state since the corresponding
system matrices are unavailable. Second, it is possible that for
different subsystems, certain special initial states may produce
exactly the same output. The issue is further complicated when
subsystems are unobservable, namely some initial states may
produce zero outputs. Third, if one can use the input to probe
subsystems, the ability to distinguish subsystems can be poten-
tially enhanced. This added capability introduces new issues on
input design, subsystem distinguishability, joint observability of
both continuous and discrete states, and algorithm development.

This article contains the following original contributions.

1) It presents some necessary and sufficient conditions on
joint observability by the output observation without
probing inputs.

ii) The probing capability of the input is investigated under
zero initial conditions. When the conditions in (i) are not
met, the input can be used. It is shown that as long as
the subsystem transfer functions are distinct, all nonvan-
ishing input signals with strictly proper rational Laplace
transforms can distinguish subsystems in an infinitesimal
time.

iii) For practical implementation, data must be sampled. A

sampling theorem is presented that provides sampling rate

conditions for distinguishing subsystems in a finite time
interval.

iv) Joint observability for both continuous and discrete states
is further developed for estimating the subsystems and
continuous states simultaneously under probing inputs.
Mode-modulated and magnitude-modulated input design
methods are introduced.

v) A time-division framework and the corresponding al-
gorithms for jointly estimating continuous and discrete
states are developed, and their convergence properties are
established.

The rest of the article is organized as follows. Section II
contains notations, system descriptions, and basic definitions of
distinguishability and joint observability for RSLSs. Section III
studies joint observability without a probing input. Necessary
and sufficient conditions are presented for both observable and
unobservable subsystems. The distinguishability of subsystems
by using probing inputs under zero initial states is discussed
in Section IV. Section V explores input design, estimation algo-
rithms, sampling theorems, and joint observability under a prob-
ing input. Also, mode-modulated and magnitude-modulated in-
put design methods are detailed, and a time-division framework
and estimation algorithms are developed. The main results of this
article are illustrated by some examples in Section VII. Finally,
the main findings and their potential extensions are summarized
in Section VIIL.

[I. PRELIMINARIES

Denote by R the field of real numbers and C the field of com-
plex numbers. For a column vector v € R", ||v|| is its Euclidean
norm. For a matrix M € R™™, M’ is its transpose, A(M)
an eigenvalue of M, o(M) = \/A(M'M) a singular value of
M, omin(M) its minimum singular value, and oy,ax (M) its
largest singular value. The value o, (M) is also its opera-
tor norm induced by the Euclidean norm o,.x (M) = | M|| =
Supyjy|=1 [[Mv]|. The kernel or null space of M € R™*™ is
ker(M) = {x € R™ : Ma = 0} and its range is Range(M) =
{y=Mz:zecR™}.

For a subspace U C R" of dimension p < n, a matrix M €
R™*P is said to be a base matrix of U, written as M = Base(U),
if the column vectors of M are linearly independent and
Range(M) = U.

A function y(t) € R in a time interval [0,7") is piecewise
continuously differentiable if [0, T") can be divided into a finite
number of subintervals [tx_1,%x), k=1,...,0,t0 =0,t, =T
such that y(¢) is right continuous in [tx_1, tj) and continuously
differentiable, to any order as needed, in (tx_1, tx). The space
of such functions is denoted by C[0, T').

Consider a continuous-time single-input-single-output RSLS

{Jb(t) = A(a(t))z(t) + B(a(t))u(t)
y(t) = Cla(t))x(t)

where u(t) € R, z(t) € R™, y(t) € R are the input, state, and
output, respectively.

The system matrices depend on the randomly switching pro-
cess «(t) that takes m possible values in a discrete state space
S ={1,...,m}.Foreach given value i € S, the corresponding

ey
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(deterministic) linear time invariant (LTI) system in (1) with
constant matrices (C(i), A(2), B(i)) is called the ith subsystem
of the RSLS.

Assumption 2.1: Given 7 > 0, (i) the switching process
a(t) can switch only at the sampling instants k7, k=0,
1,..., that generates a stochastic sequence «(t) = ay, t €
[kT, (k + 1)7). (il) The sequence {c, } is independent and iden-
tically distributed (i.i.d.) such that the probability Pr{-} satisfies
Pr{ay =i} =p; > 0,i € Sand Y ", p; = 1. (iii) o, cannot
be directly measured.

Remark 2.1: Although physical systems can change their
structures and parameters at any time instant, all management
platforms for practical systems have an interval (an internal
clock) for data sampling and transfer, and for decision making.
The interval depends on sensor, communication, and computer
hardware/software systems. For example, for data acquisition
accuracy and antialiasing requirements in PMU data, the data
rate of the Power Xpert Meter is 1024 samples per cycle in
power systems. For contingency management, 160 ms is the
IEEE-imposed limit for voltage sag/surge. For power dispatch,
a decision interval of 5 min is commonly used in practice.
Mathematically, under Assumption 2.1, the randomly switching
process can be treated as a discrete-time stochastic sequence,
rather than a continuous-time process. Random switching time
in continuous-time stochastic processes is beyond the scope of
this article.

Under Assumption 2.1, the following stochastic matrix se-
quences are induced by o

Ap = Alag) =Y A0 (g—g)
=1

Bk = B(ak) = ZB(i)l{ak:i}
i=1

m

Cr = Clag) =Y C(i)l{a, =g
i=1

where 1y, is the indicator function of the event V: 1y =1 if
V' is true; and 1y = 0, otherwise. The sampled values of the
signals are denoted by x;, = z(k7) and yi. = y(k7).

For constant A € R™™ and C € R*™*™, and for a finite
time interval [0,7), consider the mapping G : R™ — C[0,7)
from the initial state x(0) = z¢ to y(t), y(t) = G(xo)(t) =
Cezy, t€[0,7). The kernel of G is defined as Ker(G) =
{zo € R™ : y(t) =0,t € [0,7)}. Let W be the observability
matrix of (C, A)

C

CA
W:

CAn—l

The following result is classical and well known.

Lemma 2.1: For any 7 > 0, Ker(G) = ker(W).

The premise of this article is to treat RSLSs whose initial
states are unknown and whose switching sequence cannot be
directly measured. As a result, both the continuous state z;, and

discrete state a;; must be estimated from the known input w(t)
and observed output y(¢). The available dataset in a time interval
[0, T) is given by the noise-free dataset Dy = {y(t),t € [0,7T)}
for a given T' > 0.

Consider the RSLS in (1). For a given time interval [0, {7),
the sample path {ay, k = 0,...,¢ — 1} is unknown.

Definition 2.1:

1) The system is said to be stochastically distinguishable if
{ag,k=0,...,¢— 1} can be uniquely determined from
the dataset Dy, .

2) The system is said to be stochastically and jointly observ-
able if {ay,k =0,...,¢ — 1} and x(0) can be uniquely
determined from the dataset Dy..

Remark 2.2: Since the stochastic distinguishability and
stochastic joint observability are conditioned on the sample path
o, they are random quantities. During system implementation,
the sample path occurs (but unknown) and {ay, k= 0,...,¢ —
1} is to be estimated from the dataset Dy,. In the subsequent
analysis, we will focus on one time segment [k7, (k + 1)7).
In particular, without loss of generality, we will use the first
segment [0, 7) as a generic case for our study, focusing on the
determination of g and x(0).

In RSLSs with unobservable subsystems, we must identify
the subsystem even if we cannot estimate the continuous state
accurately. In contrast, there exist several different definitions
of distinguishability, such as these in [18], [19], and [20] that
require the determination of both continuous states and discrete
states simultaneously, which imply observable subsystems.! We
will show that input assistance and design are critical. For
conciseness, “stochastic distinguishability” will be abbreviated
to “distinguishability” and “‘stochastic joint observability” to
“joint observability.”

Remark 2.3: Similar to the classical observability definition,
if an RSLS is distinguishable and/or jointly observable, then
theoretically the unique determination of « and z(0) can
be achieved over an infinitesimal time interval. On the other
hand, classical observer design uses the feedback-based observer
structure for its computational simplicity, robustness, and much
reduced memory complexity. Our theoretical results on the
distinguishability and joint observability are stated forany 7 > 0
(so it can be infinitesimally small), but our observer algorithms
will be feedback-based. Our subsequent convergence analysis
shows that this observer structure is, indeed, suitable for the
joint estimation tasks.

[ll. JOINT OBSERVABILITY WITHOUT PROBING INPUT

We start by considering the case of zero-input systems. The
following example shows that in general, without input assis-
tance, joint observability may be lost.

Example 3.1: Consider two first-order subsystems

{jrl(t) =azi(t) +u(t) {dsg(t) = axs(t) + u(t)
yi(t) = z1(2). " a(t) = 22a(2).

IThe papers [18], [19], [20] consider more comprehensive problems of
switching time estimation, smooth inputs, etc. These are beyond the scope of
this article.
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Although these two subsystems are different, they share the same
eigenvalue a. Under the zero-input condition, their respective
outputs are y;(t) = ex1(0), y2(t) = 2e**z2(0), t €[0,7).
For any initial state x1(0) # 0, there exists 25(0) = 0.521(0)
suchthaty; (t) = y2(t), t € [0, 7). Consequently, g and z(0)
cannot be uniquely determined from the dataset D .

On the other hand, we will show that the common eigenvalues
are the only factor that will result in the loss of joint observability.
Consider the zero-input case u(t) = 0

(t) = A(a(t))z(t)
{y(t) — Cla(®)ald). @)

For the ith subsystem in S, A(i) and C(i) are constant
matrices, and its observability matrix is
C(i)
C()A(i)
W(i) = ) , S, m. 3)

C(i)(A@)
The combined matrix for the set S is
W(1)

Wi(2
Ws = () . 4

W (m)
We note that W (i) and Ws are deterministic matrices that
contain only information on subsystems. They do not involve

actual switching sequences. As a result, they can be evaluated
offline.

A. Observable Subsystems

We first consider RSLSs whose subsystems are observable.
Hence, W (i), i =1, ..., m, are full rank.

1) Joint Observability: Suppose that the RSLS starts from
x(0) = z¢ and «p in the first interval [0, 7). Both 2 and oy
are unknown and must be jointly estimated from the output
observation y(t), t € [0, 7) for any given 7 > 0. The unknown
pair is denoted by £, = (g, o).

The output y(¢) is said to be nonvanishing in [0,7), if
y(t) #0, t € [0,7). It is noted that if y(t) =0, ¢t € [0,7), it
is obviously not possible to determine «y, although 2(0) = 0
can be concluded since all subsystems are observable.

Definition 3.1: The system in (2) is said to be jointly observ-
able, if for any 7 > 0, £ can be uniquely determined from any
nonvanishing y(¢), t € [0, 7).

We first establish a basic necessary and sufficient condition
for the separation of two subsystems. Consider any two subsys-
tems with matrices (C(i), A(i)) and (C(5), A(j)), ¢ # j. Their
corresponding observability matrices are W (i) and W (j).

Lemma 3.1 is similar to a result in [20],2 but with a different
statement and a different and self-contained proof.

Lemma 3.1: Suppose that both subsystems are observable,
namely W () and W (j) are full rank. Then &, can be uniquely

2The paper [20] also treated the identification of switching time, which is
beyond the scope of this article.

determined from non-vanishing y(¢), t € [0, 7) forany 7 > 0 if
and only if the combined matrix

140
W (i) (A(@)"

—W()

“wiagy X0

w-|
is full rank.
Proof: Without loss of generality, assume that the true & is
(:C 6, Z)
Consider the system

z=Az
{v =Cxz ©
C[AG) 0 o , .
where A = 0 A() ,C =[C(i),—C(j)]. Then, W in (5)

is the observability matrix of (6). From the initial condition zy =
i

To — (A i
2 , we have v(t) = C(i)eM Dyl —

The “Only If” Part: Suppose that W is not full rank. Then,
there exists initial value zy € ker(W') with zy # 0 such that

v(t) = C(0)er Dty — C(j)er Dzl = 0,t € [0,7).

C(j)er D ap.

This implies that if the true & = (z,i), then another & =
(@}, 7) will generate exactly the same y(t),¢ € [0, 7). Asaresult,
&o cannot be uniquely determined from y(¢), ¢ € [0, 7).

The “If” Part: Suppose that W is full rank. If there are (z{), %)
and (z7), j) that generate the same y(t) # 0, ¢t € [0, 7), then

o(t) = C(@)er Dty — C (e Dzl = 0,t € [0,7).

Since the combined system (6) is observable, this implies
zo = 0, namely, z{ = 0 and =, = 0. Therefore, y(t) =0, t €
[0,7), which is a contradiction since y is nonvanishing. As
a result, oy can be uniquely determined. Once oy is deter-
mined, z{) can also be uniquely determined since (C(4), A(7))

is observable. u
Theorem 3.1: Suppose that m subsystems (C(i), A(7)),
t=1,...,m are individually observable. Then, £, can be

uniquely determined from nonvanishing y(t), ¢ € [0, 7) if and
only if A(¢) and A(j) do not have common eigenvalues, for all
i .

Proof: Let (C'(i), A(7)) and (C(j), A(4)), @ # j, be any two
subsystems.

The “Only If” Part: Suppose that X is a common real-valued
eigenvalue of A(¢) and A(j). Then, there existv; # Oandv; # 0
such that

A(i)vi = )\.Ui, A(])U] = )\Uj.
Since W (i) and W (j) are full rank, a; = C'(4)v; # 0 and a; =
C(j)v; #0.3 Let 29 = E]‘zi} # 0. It can be directly verified
(A

that

-W(j) ] [a 'Uz]
W2z = . N
’ [ WA [aiv;

3If a; = C(i)v; = 0, then C(i)(A(i)) v; = A a; = 0, for all j, which
implies that W (%) is not full rank.
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Algorithm 1:
1) Fori=1,...,m, compute the observability Gramians:
L, = [ e @ (4)C(i)eADtdt, and
Qi = [y eYDtC"(i)y(t)dt. Then, the estimate of 7 is
zh =1, 'Q,. Itis noted that since (C(i), A(4)) is
observable, I'; is invertible for any 7 > 0.
2) Generate m errors:

o= swp y(t) — COEADT, i=1,...
tel0,7)

,m.

3) Estimate &q:

Qo =1i" = arg rlnin €, Discrete State Estimation
i=1,....m

*

To = x Initial State Estimation
a;a; — G;ay
(ajai - CL,'CL]'))\.
(ajai — Clﬂbj))\Qnil
=0.

This implies that W is not full rank. By Lemma 3.1, the system is
not jointly observable. The proof for common complex-valued
eigenvalues is similar and omitted.

The “If” Part: Suppose that A(7) and A(j) do not have
common eigenvalues. Now, assume that there are (zf,i) and
(x]),7) that generate the same y(t). This implies that

o(t) = C()er Dtz — C(5)erDal = 0,t € 0,7).
Since both subsystems are observable, the modes in
C(i)eAWtzl and O(j)eAtx) are linearly independent, indi-
vidually.

Furthermore, since A(i) and A(j) do not have common
eigenvalues, the modes in v(t) = C'(i)eAWtz) — C(j)eAW)ix)
are jointly linearly independent. Consequently, the fact
“v(t)=0, t €[0,7)” implies that all coefficients are zero.
Therefore

C(i)eA Dzl = 0 and C(5)e*Dta) = 0,t € 0, 7).

By hypothesis, both subsystems are observable, which implies
that z{, = 0 and x}, = 0. As aresult, W is full rank. By Lemma
3.1, the system is jointly observable. (|

2) Joint Estimation Algorithm: When the conditions of
Theorem 3.1 are satisfied, Algorithm 1 can be used to compute
€o-

Note that if the true ovg = ¢*, then ¢; = 0. Under the condi-
tions of Theorem 3.1, all other e; > 0, j # ¢*. Consequently,
Algorithm 1 selects the true c, which then implies that the
continuous state’s initial value can be uniquely determined since
the subsystem is observable.

We comment that Algorithm 1 is infinite dimensional since it
involves the integration of data in the interval [0, 7).

B. Unobservable Subsystems

The conditions of Theorem 3.1 do not cover RSLSs whose
subsystems are unobservable. Typically, one sensor does not
have sufficient data for estimating the entire state. Hence, sub-
systems are typically not observable, violating the conditions of
Theorem 3.1.

Assumption 3.1: (i) All subsystems are unobservable,
namely, Rank(W (7)) = n; <n, i € S. (ii) W is full column
rank.

Remark 3.1: We assume that all subsystems are unobserv-
able. If some subsystems are actually observable, then condition
(i1) of Assumption 3.1 will be trivially satisfied. As a result,
we focus on the nontrivial scenario given by condition (i) of
Assumption 3.1. Condition (ii) of Assumption 3.1 ensures that
their collective observable subspaces cover R™. This condition
of Assumption 3.1 is a necessary condition in our develop-
ment. To see this, if Wy is not full rank, then the kernel of
Ws cannot be observed by any subsystem, see an example
in [28].

Since the ith subsystem is not observable, namely
Rank(W(i)) =n; <n, we construct M, = Base(ker
(W(4))) € R™("=ni) and select any N; € R™™ such that
T; = [M;, N;] is invertible. The inverse of T; is decomposed

. _ K;
into 7 1= {FZ} , where K; € R("=7)xn and F; € R™*™,
7
The state transformation z% = Ti_lsc can be decomposed into

=Tz =

Kix] v Correspond-

=|".| where 2' € R™,
Fix z

ingly, this coordinate transformation leads to the transformed
matrices A' = T, Y A(i)T;, C* = C(i)T}, and A® and C* have
Ay Ap i A i
0 A%J , C"=1[0,C%] with A}, €
R™i*"i and C} € R1*ni,
As aresult, if we focus only on the dynamics of the observable
partial state z°, we have

the structure A® = {

= Ay o
y=C52'
and (C%, AL,) is observable.
Sl
Define the true observable substates z = | : | € R"s and
Zm
=1
their estimates, to be designed later, as Z = o | € R". Let
2?77,

zi = 24 (k7).

Assumption 3.2: For all i # j, Ab, and A}, do not have
common eigenvalues.

Theorem 3.2: Under Assumption 3.2, if y(t) #0,t €
[kT, (k 4+ 1)7), then o, = ¢* can be uniquely determined from
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D, ={y(t),t € [kr, (k + 1)7)}. Furthermore, the observable
partial state 2] can be uniquely determined.
Proof: Since y(t) # 0, [t € k7, (k + 1)7), we have

y(t) = Chetbalthr) 1

Under Assumption 3.2, by limiting all subsystems to their
observable partial states, the conditions of Theorem 3.1 hold.
As a result, by applying Algorithm 1 to the observable partial
states, o, = ¢* can be uniquely determined. Furthermore, since
(Cs, Ab,) is observable, zi can be uniquely determined. W
Example 3.2: Consider an RSLS with oy, € {1,2,3}

a1 0 0
it)=0 az 0|2@)
0 0 a3 ®)

y(t) = Cla(t))x(t)

with distinct a1, as, as, and C(1) = [1,0,0], C(2) = [0, 1,0],
C(3) =10,0,1].

All three subsystems are unobservable. In this case, transfor-
mation matrices are

00 1
01 0|,Tx=
100

100

T = 0 0 1|,75=
010
with observable subspaces (C3, AL,) = (1,a1), (C3, A3y) =
(17 a2)’ (Cga A%Q) = (la Clg).

Since a1, ag, ag are distinct, Assumption 3.2 is satisfied. It
follows that av, can be uniquely determined in each time interval
under nonvanishing data.

[V. DISTINGUISHABILITY WITH PROBING INPUT UNDER ZERO
INITIAL STATE

A. Distinguishability

Assumption 3.2 for subsystems is restrictive since a com-
plex system often contains overlapping subspaces for different
subsystems. In interconnected complex systems, switching of
systems may be caused by an interruption of a communication
channel, a sensor failure, a switching control, among many
other scenarios. In such networked systems, switching usually
affects only part of the system, leaving most of the system
unchanged. These unchanged system components imply that
some subsystems often have common components and therefore
share common eigenvalues, violating the conditions of Theorem
3.1. In such situations, it is necessary to use probing inputs to
assist in determining o and x(0). In this section, we explore the
determination of the switching sequence with assistance from a
probing input.

The algebra of proper rational functions of s over the field R

is denoted by R = {G(s) :G(s) = Ziig }, where a(s) and b(s)

are polynomials of s with real coefficients, and the order of b(s)
is less than or equal to the order of a(s). The vanishing function
G(s) =0 for all s is denoted by 0. The subalgebra of R that
consists of nonvanishing and strictly proper (namely, the order
of b(s) is strictly less than the order of a(s)) rational functions

is denoted by Ry. It is easy to verify that R is an algebra over
the field R. Also, if G(s) € R, G(s) # 0,and U(s) € Ry, then
Y (s) = G(s)U(s) € Ro.

For a one-sided time function g(t), ¢t > 0, its Laplace trans-
form is G(s) = £{g}, and correspondingly g = L *{G(s)}.
We say g € R (or g € Ry) if and only if G(s) = L{g} € R (or
G(S) € Ro)

Lemma 4.1: Suppose that Y (s) € Rg and y = L~ {Y (s)}.
Forany 7 > 0,y(t) =0, ¢ € [0,7) if and only if Y (s) = 0.

Proof: The “If” Part: Apparently, if Y (s) = 0, then y(t) =
LYY (s)}=0,t>0.

Proof: The “Only If” Part: Suppose that Y'(s) # 0. For
Y(s) = Z%Z)), suppose that the order of a(s) is r. Let A; € C,
i=1,...,q be the distinct roots of a(s) of multiplicity r;,
>4 r; =r. Since Y(s) is rational and strictly proper, y(t)
is a linear combination of exponential polynomial functions

y(t) = i i it tetit

i=1 j=1

for some ¢;; € C.*Since Y (s) # 0, in any time interval of finite
length, y(¢) has only a finite number of zeros. It follows that
y(t) #0,t € [0,7) for any 7 > 0. [ |

In this article, the “input response” and the “zero-state re-
sponse” have the same meaning, as do the “zero-input response”
and the “initial-state response.”

Consider two nonvanishing rational transfer functions
G1(s),G2(s) € R. Suppose that the input u(t), ¢ > 0 has its
Laplace transform U (s) € Ry, and the zero-state responses are
denoted by y; (t) = G1u and y2(t) = Gau, respectively.

Theorem4.1: Forany T > 0,y1(t) = ya(t), t € [0,7), ifand
only if G(s) = G1(s) — Ga(s) = 0.

Proof: Obviously, if Gi(s) —Ga(s) =0, then y(t) =
Y2 (t), t Z 0.

Conversely, suppose that G(s) = G1(s) — Ga(s) # 0. Then,
G(s) € Ryp. Since U(s) € Rop and Ry is an algebra,
Y (s) = Yi(s) — Ya(s) = G(s)U(s) € Ry, namely, Y (s) # 0.
By Lemma 4.1, y(t) # 0,t € [0, 7), for any 7 > 0. |

Theorem 4.1 immediately implies the following conclusion
on distinguishability by using a rational probing input under zero
initial conditions.

Corollary 4.1: Consider a set of m nonvanishing and dis-
tinct rational transfer functions G = {G1(s), ..., Gy, (s)} with
Gi(s) e R,i=1,...,m,and G;(s) — Gj(s) # 0if i # j. Let
u(t) be a probing input whose Laplace transform U (s) € Ry.
Suppose that G* € G is the true system and y* = G™u is the
true output under the zero initial condition. Then, for any 7 > 0,
the observation data y*(¢) in [0, 7) can uniquely determine G*.

Remark 4.1: The condition that the probing input belongs to
Ry is essential. Indeed, if u(¢) is a delayed input of u; (¢), ¢ > 0,
withstarting time 7' > O and Uy (s) € R, thenits Laplace trans-
form is e" 75U} (s) € Ro. In the time domain, u(t) = uy(t —
T),t > T. Under this input, for all G; € G, y;(t) = G;u =0,
t € [0,T). As a result, the conclusions of Theorem 4.1 are no
longer true.

4Although 1; € C and ¢;; € C, y(¢) is still real valued.
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Under the conditions of Theorem 4.1, a subsystem can be
uniquely determined over an infinitesimal time interval. We
should emphasize that this conclusion is under the zero initial
condition. The combination of nonzero initial conditions and
probing input significantly complicates the analysis and will be
studied in Section V.

B. Sampling Theorem for Distinguishability

For practical implementation, data need to be sampled. When
oy, is known, the feedback-based observer algorithms in [28] are
shown to converge strongly and exponentially. In this section,
we focus only on accurately determining cvy.

Let 0 < 79 < 7. We will use data in [0, 7) to estimate ay,
so that the correct observer feedback can be designed and
implemented in [7g, 7). Let D, = {y(¢),t € [0,70)}. Take N
samples of y(¢) in [0, 7p) with sampling interval v = 79/N,
where N needs to be decided. Denote by 1570 the sampled
dataset 570 ={y(w),£=0,1,...,N —1}. We will answer
the following key questions: Will ZSTO be sufficient for uniquely
determining «y? How many data points are needed? How can
we estimate ag? Can we estimate g recursively?

We first establish a result on the number of zeros of expo-
nential polynomial functions in a finite time interval. Suppose
that a system G(s) € R is non-vanishing, U(s) € Ry. Then,
Y (s) = G(s)U(s) € Ry. Let the distinct poles of G(s)U(s) be
A; € C with multiplicity m;, i = 1, ..., g, whose real parts are
R(%;) and imaginary parts are (A;) > 0. The order of Y (s) is
r = >.1 , m;. Define wpax = max;—1, 4 S(A;), and

fry = 2(r — 1) + %“WW 9)

where [a] is the smallest integer that is larger than or equal to
the value a.

Since Y'(s) € Ro, y(t) = Gu is a linear combination of the
modes from {};,7 = 1,..., ¢}. Asaresult, it belongs to the class
of exponential polynomials: for any ¢ € [0, 79)

q my i—1
t’ ait
y(H) =D ves gy

i=1 j=1

(10)

Since the modes are linearly independent and Y is nonvanishing,
the coefficients are not all zeros. The following key lemma on
the number of zeros of exponential polynomials can be derived
from [29].

Lemma 4.2: The number N, of zeros in [0, 79) of a nonvan-
ishing exponential polynomial y defined in (10) is bounded by

NTO < Horg -

Assumption 4.1: (i) The subsystem transfer functions G; €
R, i=1,...,n are nonvanishing and distinct. (ii) The input
u € Ro.

Under a given input wu satisfying Assumption 4.1, the sub-
system output y; = G;u € Ry. Let the poles of G;(s)U(s)
be denoted by a,;, j =1,...,¢ with real parts #(a;;) and
imaginary parts S(a;;) > 0, and the order of G;(s)U(s) be r;.
Define

max 7r;

Tmax = .
i=1,...,m

Algorithm 2: Estimation of oy Under Zero Initial State.

1) Initial Set of Discrete State: S(0) =S = {1,...,m}.
For ¢ =0,...,N — 1, perform the following recursion.

2) Observation Error Calculation: Calculate
16; (00)| = |y (bv) — y°(¢v)], i € S(¥). Define
A(0) = {i € S(0) £ [5:(0v)] # 0}.

3) Discrete State Set Reduction: S(¢ 4 1) = S(¢) © A(¢),
where © is the set subtraction.

4) Identification of ag: S(N) is a singleton, containing the
estimate of the true 7*.

max

S
i=1,.om =1,...,Cs S(aij)-

Define
No = 2<2rmax - 1) + [Ewmax—‘ .
2m

Theorem 4.2: Under Assumption 4.1, if N > Ny, then «y
can be uniquely determined from D,.

Proof: Without loss of generality, suppose that the true
o = 1. The true input response is 39 () = Gyu, t € [0,70).

For any ¢ # 1, the input response of the ith subsys-
tem is y)(t) = Gyu, t € [0,70). The difference is §;(t) =
y2(t) —y(t) = (G; — Gh)u,t € [0,79). Here, (G; — G1)U €
Ry whose order is less than or equal to 2r,,x. By Lemma
4.2, the number of zeros of §;(t) is bounded by Ny. It fol-
lows that if the number N of samples in [0, 7p) exceeds N,
0;(fv) £0,£ =0,1,..., N — 1. This is sufficient to exclude
G;.

Since i # 1 is arbitrary, this proves that G'; can be uniquely
determined from D, . u

C. Recursive Estimation of o,

Take N > Ny samples of y(t) in [0, 79) to obtain the sampled
dataset 570 ={y(v),£=0,1,...,N —1}.

By Theorem 4.2, this algorithm will always terminate with
a singleton S(INV) that contains the true discrete state . We
emphasize that this conclusion is valid under the condition
that the initial state is zero and the sampled dataset is noise
free.

V. JOINT OBSERVABILITY WITH PROBING INPUT

When the input is applied to an unknown subsystem with the
unknown initial state, the situation becomes substantially more
complicated. To illustrate the complications involved in joint
observability with the unknown initial state, we use an example
to show that even with input assistance, joint observability can
still be lost.

Example 5.1: Consider the following two subsystems, both
are observable

ya(t) = [1 2] (¢)
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y2(t) = [1 3]za(t).

Since the two systems share the common eigenvalue —1, they
cannot be distinguished without assistance from a probing input.
Their respective transfer functions are G (s) = — + 25 =

3s+4 1 3 dsye T T
i ERG8) = st s = i € R
Suppose that the input is the unit step U(s) = % € Ro. The

total respective responses of the two subsystems are

yi(t) =are tage ™ +2 et —e 2 tc[0,7)

yo(t) =bre t Fbhge? 2 -t —e 3t 0,7)

where aq, as, b1, by are determined by the initial states.
Their difference

6(t) = y1(t) — ya(?)
= (a1 — bl)e_t

becomes 6(t) = 0,t € [0,7) if a3 = by, ag = 1, be = 1. This
implies that under this input, the dataset D, cannot uniquely
determine oy and z(0).

In this section, we will develop methods on input design for
joint observability with suitable conditions that resolve the issue
demonstrated by Example 5.2. For simplicity, we assume that all
subsystems are individually observable in this section. The same
conclusions can be obtained by using the methods in Section III
for unobservable subsystems.

+ (ag — 1)e 2" + (b — 1)e 3

A. Mode-Modulated Input Design

Consider the set G = {G;,i = 1,...,m} of m distinct sub-
systems. The set of poles of GG; (or equivalently the eigenvalues
of A(7))is Ay and A = U™, A,

Assumption 5.1: Let U C Rg be the set of nonvanishing
inputs u whose Laplace transforms U (s) satisfy the following
conditions. (i) U(s) = Z((i)) is coprime, namely, no common
pole-zero pairs (i.e., no pole-zero cancellation). (ii) U(s) con-
tains at least one pole A of any multiplicity ¢ > 1suchthat i ¢ A
and G;(1), 7 =1,...,m, are distinct.

Theorem 5.1: For the setof distinct subsystems G = {G;, i =
1,...,m}, if the input u € U, then for any 7 > 0, the true
subsystem can be uniquely determined from the dataset D, =
{y(t) £ 0,t € [0,7)}, regardless of the actual initial state z(0).

Proof: Without loss of generality, assume G; € G is the true
subsystem.

Since u satisfies Assumption 5.1, U(s) contains a pole & ¢ A
that is of multiplicity q.

Case I: Real-valued }.. In this case U(s) = o A)q Ui (s) such
that A is not a pole of Uy (s). Since U (s) is coprime, Uy (A) # 0.
Consider any G, j # 4. Under any input u € U with real-valued
X, the input responses are

Y.input (S) —

K2

_ Gzi)xz[il)(q)t) 4ot — + )"}iinput<s)
input s) = 1 (s)U, (s
Y™ s) = G0 (s)
_ Gj(i)»_)[il)i)\) F.. + — Jr)/mput( )

for some a and b, where Y;"""(s) (and }N/jinpm(s)) contains all
other terms of the partial fraction expansions. Their correspond-
ing modes in time-domain expressions are

Y () = G (AU (AWM 4 -
YU () = G (UL ()T e 4

where 7."P" (t) (and Nmp “*(t)) contains modes from other poles.
Furthermore the 1n1t1a1 state responses

yrrete(t) = C(0)eV2i(0), y5t=te(t) = C(j)ePa;(0)

consist of modes from the eigenvalues of A(¢) and A(j) that are
in A.

It is well known that the mode t¢~ e’ is linearly independent
of {e*, ... t972e*} and the modes corresponding to different
poles are linearly independent [30]. As a result, their total
responses

+ae’ + " (1),

+bett 4 P (8),

yi(t) = G;(M)UL (M)t e + 5(t)
y;(t) = G; (UL (M)t e +65(t)

contain the same mode 9~ '¢**, which is linearly independent
of all modes in §;(t) and 6;(¢). Their difference is

A(t) = yi(t) — y;(t)
= [Gi(A) = G (UL ()T e + 6;(t) — 6;(1).

Under Assumption 5.1, Uj(A) # 0 and is finite, G;(1) —
G;(*) # 0. Hence, [Gi(x) — Gj(M)]U;(M)t9 e’ £0 in t €
[0,7) for any 7 > 0. Furthermore, since A € A and U (s) does
not have poles at A, 9~ 'e** is linearly independent of the modes
in 0;(t) — d,(t) that consist of the modes from A, U;(s), and
{er, ... t172eM ),

This implies that A(¢) # 0, ¢ € [0, 7). Therefore, G; can be
uniquely determined from D, .

Case 2: Complex-valued ) = o+ jw. Since the subsystems
have real coefficients whose complex poles are in pairs, A = a —
jw is also a pole. By grouping factors corresponding to A and
X, the input can be expressed as U (s) = mUl( s)

such that A and A are not poles of Uy (s). The modes in the total
responses of G; and G contain the same mode 7~ ! e? cos(wt +
6) but with different coefficients in G; and G;. The remaining
steps of the proof are nearly identical to Case 1, with ¢4~ 1e**
replaced by t9 1e® cos(wt + 6) and, hence, are omitted. W
Example 5.2: Consider the two subsystems in Example 5.2

1 2 1 3
Gl(s) = ﬁ+78+2,G2(8) = 754—1 —‘,—754—3
Ay ={-1,-2}, Ay = {-1,-3}, A = {~1,-2,—-3}. Choose
rh=—-4¢A and U(s)= ler4‘ Since  Gi(—4) = -2,
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G2(—4) = —3, Assumption 5.1 is satisfied. As a result,
this input can be used to distinguish G; and G, regardless of
what the initial state is.

On the other hand, A =0 & A but G1(0) =2 = G5(0). It
means U(s) = 1 violates Assumption 5.1. Example 5.2 has
already demonstrated that U(s) = % (the unit step) cannot be

used to distinguish G; and Gb.

B. Magnitude-Modulated Input Design

Suppose that we have an RSLS with m subsystems,
represented by the set of distinct rational transfer func-
tions G = {G,(s) = CO(i)(sI — A(i))*B(i),i=1,...,m}
with G;(s) e R,i=1,...,m, and G;(s) — G;j(s) #0if i #
7. Let the true subsystem be ¢* and the corresponding true system
be G* € G with the unknown initial state z*(0). The input
u(t) = Ruq(t) withU; (s) € Ry, and the magnitude R > 0 will
be selected later.

For a selected 0 < 79 < 7, denote the dataset D,, =
{y(t)v le [Oa TO]}'S

Assumption 5.2: (1) [l2*(0)]| < po.
Max;—1,....;m MaXse[o,7,] [|C(7) | < .

Theorem 5.2: Under Assumption 5.2, there exists Iy, de-
pending on 7y, such that if R > Ry, then the discrete state o of
the RSLS can be uniquely determined from the dataset D, .

Proof: Under the input u;(t), the corresponding zero-state
responses y?(t) = Giuy, i = 1,...,m, are exponential poly-
nomial functions and, hence, are continuous. The true zero-state
output is

(ii)

SA()t

t
y%w:/eﬂﬁwwmwmatemmy
0

By Theorem 5.2,if i # i*, theny?(t) — y0(t) # 0,t € [0, 70).
By continuity, §; = max,e[o,-, |47 (t) — y2(t)| > 0 and Opin =
min,;#,;* 6; > 0.

The total observed true response from the input v = Ru; and
the initial state 2*(0) is

y.(t) = C(i")e 2% (0) + Ry(t)
and for ¢ # i*

yi(t) = C(1)e Dz, (0) + Ry?(t).
It follows that

(1) — y. (2
tg[}%\y() Y« (1)

> R max |y?(t) - yf(t)\

t€[0,7o]
— C(i7)e D (0) — C(i)e V' a; (0))]
= RS — |C()eA " (0) — C(i)eAD i (0)]
> Ry — 2pop

> Rdmin - 2.“0,”’1-

3The closed set [0, o] is used here so that it becomes a compact set for the
maximum to exist in the subsequent expressions. It does not have any further
implications on the results.

Ty T-T,
1 1
L} r 1

| ] | .
kel 41 t e

* Subsystem @, is
estimated

* u=Ryujisusedasa
probing input

¢ R,is adapted

+ All subsystem observers
run open loop

* The identified subsystem @ is
used for observer
implementation

* uisused as feedback in the
subsystem observer

« All other subsystem observers
run open loop

Fig. 1. Time-division framework for estimating the unknown subsys-
tem and unknown continuous state of the identified subsystem.

Define Ry = 2‘50—’“ Then for i # i*, if R > Ry, we have

; (1) —y«(t)| > 0.
r;lélir*ltgl[()é}i] Iyz( ) — ya( )|

Consequently, the estimate

i=arg min  max_|y;(t) — y.(t)| = i*
i=1,..,m te[0,70)

namely, ¢* can be uniquely determined. |

VI. OBSERVER DESIGN AND STOCHASTIC CONVERGENCE
ANALYSIS

A. Time-Division Framework

Our observers will be implemented in a time-division frame-
work. Each time segment [k7, (k + 1)7) is divided into two
intervals. The first (much smaller) interval [k, kT 4 7] is
designated for estimating «y, (that is, identifying the active
subsystem). Using the magnitude-modulated input design as an
example, during this interval, the input signal © = Ru; with R
satisfying Theorem 5.2 is used as a probing input to assist in the
determination of «y,. Since the information on the continuous
state improves over time, the magnitude R may be broadened to
a sequence of time-varying Ry, and adapted accordingly. Since
the true oy, is unknown in this interval, all subsystem observers
run open loop on the basis of system models only.

Once oy =1 is correctly estimated, in the second interval
[kT + 70, (k + 1)7), a feedback-based observer is implemented
for the ith subsystem to estimate its observable substate z*. All
other subsystem observers still run open loop. This framework
is depicted in Fig. 1.

B. Estimation Algorithm for v, Using Data in
[kT, kT + 0]

Let0 < 79 < 7. We will use data in [k, kT + 7] to estimate
ay, first. Let the observation dataset be given as DF = {y(t) :
t € [kT,kT + 79)}. Compute the value R} as in Theorem 5.2.
Choose Ry, > RE.

Algorithm 3: Estimation of ay, Under Unknown Initial State

1) Compute the input responses of the subsystems (assum-
ing zero initial condition): y;(t) = Giu, t € [kT, kT +
7'0], = 1,...,m

2) Calculate the errors: €; = SUDye [ kr4r) [Yi (t) — y(2)]-

3) Determine ay,: O, = argming—1, . &;.
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In Algorithm 3, we ignore the unknown true zero-input re-
sponse of the ith subsystem in computing the outputs of subsys-
tems although we know that the actual output y(t) is affected by
the unknown initial state. Since the input response is dominant
due to the suitably selected magnitude I?;, by Theorem 5.2, this
algorithm will always produce the correct cvy.

C. Observer Design

After determining ay, = ¢ correctly, an observer can be de-
signed to estimate z°(kT + 7p). Since the observer feedback
developed in [28] can be designed and implemented in [kT +
70, (k + 1)7) when «y, = 4 is identified, in principle, the design
considerations in [28] remain valid. Also, since 7y can be made
very small, its impact on convergence properties in [28] can be
tolerated. We refer the reader to [28] for observer design and the
corresponding properties.

However, design parameters must be modified to accom-
modate the time required for estimating oy, the effect on the
unknown state due to probing inputs, and relationships between
the input response and initial-state response. These new aspects
in observer design and convergence analysis will be covered in
this section.

For simplicity and clarity, we will focus on the scenario in [28,
Sec. V1], which treats RSLSs with independent subsystem error
dynamics. General systems can be treated in a similar way as
in [28, Sec. VII]. The errors in estimating 2 and z are denoted
by e; = 2* — ' and e = z — Z, respectively. Denote p’(t) =
lea)l, 1, = llea(kr) . w(t) = eIl i = lle(kr)]:

Assumption 6.1: (i) The RSLS has independent subspace
error dynamics, namely 2’ depends on 2 only, independent
of oy, under zero input. For such systems, the subsystem state
equation will be é; = Aézei in open loop without input. (ii) By
is known.

We consider three cases in error analysis.

Case I:t € [kT, kT + 70]

In this time interval, all subsystem observers are running open
loop. Since a probing input is applied, under Assumption 6.1 the
dynamics of z* are

3" = Fyi = FjApx + FiBpu = Aby2' + F;Byu.

The observer is Z; = Ab,Z" + F; Byu. It follows that the error
dynamics are ¢é; = Abse; and ||e; (kT + 70)|| < 4 for some
7§ > 0. Let o = max—1,....m V5

Case 2: t € [kT + 10, (k + 1)7) and oy, # 1.

Intheintervalt € [kT + 79, (k + 1)7), the inputu = 0. When
the 7th subsystem is running open loop, we have the error
bound pij, y < villei(kT + 7o)l < ~ivbup, o # i for some
constant 7. Let 1 = max;—1,...m V7.

Case 3: t € [kT + 10, (k 4+ 1)7) and oy, = 1.

Observe thatif a;, = 4, the observer error dynamics for the 7th
subsystem are ¢; = (A%, — L;C4)e; = Ale;. By designing the
observer gain properly, A% = A%, — L;C% can have n; eigen-
values with real part less than —a; with a; > 0. Under the
given 7, for some ¢ > 0, HeAZT || < ce %7, which can be made
arbitrarily small by choosing sufficiently large a;. Consequently,

ph iy < Alllei(kT +70)|| < yivg s, where 47 can be made ar-
bitrarily small. Denote v, = max;—1,...» V.. The actual value
v, will be selected later to ensure convergence of the organized
observer for the entire system.

Total Errors

Combining the three cases, we have

G = Abse;, _ _ t € kT, kT + 70]
Y fap=iyAtei + Ia2iyAbgei,  t € [kT 470, (k+1)7).

It follows that the errors are bounded by pf ,, < i/,
with ’y}? :_I{ak:i}'yé’yg + Lo, #i}717,- Consequently, pj <
(10517 ) - _ _

Under Assumption 2.1, the process {~;}, } is i.i.d. with P (v}, =
VeYo) = Pis P(7, = 117%) = 1 — pi-

Lemma 6.1: Under Assumption 2.1, for any v, < 1, the pole
positions in the observer design can be selected such that

7= ()P (i) TP < e < L (1

Subsystem observers are designed to satisfy (11).

Convergence Analysis

Assumption 6.2: «(t) is independent of e;(0).

Recall that for a positive-valued stochastic process {sy}, it
is said to converge to O strongly if limy_,o, 5 = 0 w.p.1. The
convergence rate is said to be exponential if limg_,, % Ins, =
—7r w.p.l. for some r > 0.

Define the continuous-time error z¢(t) = ||e;(¢)]|, which is
a scalar stochastic process. Although the rate expressions are
different in this article, the proofs for the following theorems
are similar to those in [28] and will be omitted.

Theorem 6.1: Under Assumption 6.2 and the observer design
in Lemma 6.1, (i) 1, converges strongly and exponentially to 0,
as k — oo. (i) p*(t) converges strongly and exponentially to 0,
ast — oo.

Define e(t) = [e1(t), . .., em(t)]’. The estimation error on x
is €(t) = x(t) — z(¢t) with error norm p(t) = ||e(t)]|.

Theorem 6.2: Under the same assumptions as Theorem 4.1,
the estimation error on x(t) satisfies 1(¢t) — 0 exponentially as
t — oo.

VIIl. ILLUSTRATIVE EXAMPLES

Example 7.1: Consider an RSLS with two scalar subsystems
T1 = a1x1 + bu
To = agxo + bou
y(t) = Law=1}71 + L{a()=2)72

4 0

where a; = 4,ao = 3.Hence, A; = Ay = [O 3

}Cl =[1,0],

1
1 0 0 1 4
Cy=10,1], Wy = {4 0], Wy = {0 3], Ws = 0

w = oo

Since Rank(W;) = 1 and Rank(W5) = 1, both subsystems are
unobservable. But Rank(W) = 2, satisfying Assumption 3.1.
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Estimation Error of Subsystem 1
0.15

0.1

Estimation Error

0.05

2NN

0 5 10 15 20 25 30 35 40

Fig. 2. Error trajectory of the observer for Subsystem 1.

Now consider the observable parts of the two subsystems with
Aly =4, A%, = 3. Since these two eigenvalues are distinct, As-
sumption 3.2 is satisfied, implying that the input is not needed for
distinguishing the two subsystems. As a result, v = 0. Suppose
that the interval 7 = 0.5 s. Within each time segment, the first
interval of length 7y = 0.05 is used to estimate «y, in which all
subsystems run open loop. Suppose that the true initial states
are £1(0) = 10 and x2(0) = 5. As an example, suppose that the
true oy = 1. Then, in the first time segment [0,0.5), we use the
data in [0,0.05] to estimate cv. The true output is y(t) = 10e*,
t € [0,0.05]. By Algorithm 1, applied to the subinterval [0,0.05]
on the observable subsystems, we have

0.05 0.05
I, = eStdt = 0.0615,Q, = / 10e8tdt = 0.615
0

0

Ty =0Q1/T1 =10
0.05 0.05

Iy = eStdt = 0.0583, Qs = / 10e™dt = 0.5987
0 0

73 = Q2/Ty = 10.2670.

Apparently, we have

er = sup |ly(t) —e*10]| =0
£€[0,0.05)
ea = sup |ly(t) — 10.2670e* ||
£€[0,0.05)
= sup |[10e* —10.2670e3 || > 0.
£€[0,0.05)

As aresult, &g = argmin{e;, es} = 1, namely the correct oy
is identified.

This algorithm is applied to all time segments. As a demon-
stration, we show the error trajectories for estimating x; in
this simulation. When «yj, = 1, a feedback-based observer is
designed such that the closed-loop system has the eigenvalue
a. = —T7. These parameters lead to vg = e = 1.2214, y; =
e(7=70) = (0.0429, and 5 = € (7-70) = 6.0496.

The random switching with P{«(t) =1} = 0.5 results in
the value in (11) as v = (7071)P(072)' P = 0.6219. Since
v < 1, this implies that the RSLS observer for Subsystem 1 is
convergent. The same conclusion can be reached for Subsystem
2.Fig.2 demonstrates the convergence of state estimation errors
on ri.

Example 7.2: Consider the following two subsystems,
similar to an example in [28] but with the unknown

Subsystems

Estimation Error

s
Time Index

Fig. 3. Estimation error trajectories for the subsystems and for the
entire state.

1 20
sequence now, C'(1) =[1,0,0], A(1)= |5 3 0|, W(1) =
0 0 8
C(1) 1 00
C(1HAQ) (=11 2 0 with  Rank(W(1)) =
C(1)(A(1))? 11 8 0
5 0 0
2, C(2) = [0,0,2] A2)=10 3 1| W(@©) =
0 2 0
C(2) 0 0 2]
C(2)A@2) | =[0 4 0| with Rank(W(2)) =2
C(2)(A(2))? 0 12 4]
1 0 0]
1 2 0
Ws = [g//g;] = 101 (8) (2) with Rank(Ws) = 3.
0 4 0
0 12 4

The eigenvalues of A; are {—1.316675.3166,8.0000} and
the eigenvalues of A, are {—0.5616, 3.5616, 5.0000}. Without
common eigenvalues, the two subsystems can be separated by
using y without probing input.

For observer design on subsystems, we can obtain

0 0 0 -1
M= |0, T3=10 1 O ,Flz[ol (1) g]
11 1 0 0
[1] [1 0 0
My= |0, T5=1(0 1 0O ’F2—|:8 (1) ﬂ,
10] 0 0 1
0 10
-1 0 0 .
and F' = 0 1 ol F is full column rank.
0 0 1

Suppose that we choose 7 = 0.5 s as the decision interval.
Within this interval, the first part of 79 = 0.05 is used for
detecting subsystems (estimation of «;). After the correct oy, is
detected, the remaining part of the interval with length 7 — 79 =
0.45 is used for estimating the continuous state. The poles
for the observer of Subsystem 1 are selected as —15 =+ 1007,
and the poles for the observer for Subsystem 2 are selected as
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—15, —15.1. The subsystem states and the total states are related
by 21 = Fix, 2 = Fhx,x = ®Z where Z = |21, 24

For each time interval [k7, (k + 1)7), during [kT, kT + 709),
both observers run open-loop. During [k7 + 79, (k + 1)7), the
observer for the identified subsystem runs closed loop but the
other observer still runs open loop. Starting from the initial
condition (0) = [1,1, 1), we ran simulations and recorded the
error norms. One sample path is shown in Fig. 3 . The result
demonstrates convergence of state estimation after integrating
the discrete state estimator with continuous state observers.

VIIl. CONCLUSION

The joint estimation of continuous state and discrete switching
sequence for RSLSs with unobservable subsystems involves
intriguing technical complications on distinguishability, joint
observability, input design, observer design, and convergence
analysis. Under noise-free observations, this article has estab-
lished testing conditions, input design methods, a sampling
theorem, observer design algorithms, and convergence analysis.
One immediate step along the direction of this article is to
include noisy observations, which will be pursued in the near
future. Furthermore, the integration of the results of this article
with optimization or control in complex systems is an important
topic to explore.
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