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We prove an inequality between the conductor and the discriminant for all hyperelliptic

curves de!ned over discretely valued !elds K with perfect residue !eld of characteristic

not 2. Speci!cally, if such a curve is given by y2 = f (x) with f (x) ∈ OK [x], and if X is

its minimal regular model over OK , then the negative of the Artin conductor of X (and

thus also the number of irreducible components of the special !ber of X ) is bounded

above by the valuation of disc(f ). There are no restrictions on genus of the curve or on

the rami!cation of the splitting !eld of f . This generalizes earlier work of Ogg, Saito, Liu,

and the second author.

1 Introduction

In this note, we prove a conductor-discriminant inequality for all hyperelliptic curves

over discretely valued !elds with perfect residue !eld of characteristic not 2.

1.1 Main theorem

Let K be a discretely valued !eld with perfect residue !eld k of characteristic not 2.

Let OK be the ring of integers of K. Let νK : K → Z ∪ {∞} be the corresponding discrete

Received April 24, 2023; Revised July 05, 2023; Accepted July 10, 2023

© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/9/7343/7231073 by guest on 05 June 2024

https://doi.org/10.1093/imrn/rnad173


7344 A. Obus and P. Srinivasan

valuation. Let X be a smooth, projective, geometrically integral curve of genus g ≥ 1

de!ned over K. Let X be a proper, "at, regular OK-scheme with generic !ber X. The Artin

conductor associated to the model X is de!ned by

Art(X /OK) = χ(XK) − χ(Xk) − δ,

where χ is the Euler characteristic for the $-adic cohomology and δ is the Swan conductor

associated to the $-adic representation Gal(K/K) → AutQ$
(H1

et(XK , Q$)) ($ (= char k). The

Artin conductor is a measure of degeneracy of the model X ; it is a non-positive integer

that is zero precisely when X /OK is smooth or when g = 1 and (Xk)red is smooth. If X /OK

is a regular, semistable model, then − Art(X /OK) equals the number of singular points

of the special !ber Xk.

For hyperelliptic curves, there is another measure of degeneracy de!ned in terms

of minimal Weierstrass equations. Assume that X is hyperelliptic, with hyperelliptic

degree 2 morphism X → Y ∼= P1
K . An integral Weierstrass equation for X is an equation

of the form y2 = f (x) with f (x) ∈ OK [x], such that X is birational to the plane curve given

by this equation. The discriminant of such an equation is de!ned to be the non-negative

integer νK(disc′(f )), where disc′(f ) is the discriminant of f , thought of as a polynomial of

degree 2+deg(f )/2, (note that this is the usual discriminant disc(f ) whenever f is monic

or deg(f ) is even). The main theorem of the paper is the following.

Theorem 1.1. Let K be the fraction !eld of a Henselian discrete valuation ring with

algebraically closed residue !eld of characteristic not 2 and let f ∈ OK [x] be a separable

polynomial with deg(f ) ≥ 3. Let X be the hyperelliptic curve with af!ne equation

y2 = f (x). Then there exists a proper "at regular OK-model Xf of X such that

− Art(Xf /OK) ≤ νK(disc′(f )). (1.2)

We call (1.2) the conductor-discriminant inequality for f .

A minimal Weierstrass equation is an equation for which the integer νK(disc′(f ))

is as small as possible amongst all integral equations. We de!ne the minimal discrim-

inant %X/K of X to be νK(disc′(f )) for the minimal Weierstrass equation. The minimal

discriminant of X is zero precisely when the minimal proper regular model of X is smooth

over S. Let Art(X/K) denote the Artin conductor associated to the minimal proper regular

model of X over OK .

When g = 1, we have − Art(X/K) = %X/K by the Ogg-Saito formula [13, p. 156,

Corollary 2]. When g = 2, Liu [7, p. 52, Théorème 1; p. 53, Théorème 2] shows that
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− Art(X/K) ≤ %X/K ; he also shows that equality can fail to hold. In the second author’s

thesis [15], Liu’s inequality was extended to hyperelliptic curves of arbitrary genus

assuming that the roots of f are de!ned over an unrami!ed extension of K. In subsequent

work [16], the second author proved the same inequality assuming only that roots of f

are de!ned over a tame extension of K. The argument in [16] is an induction on a natural

combinatorial gadget attached to a polynomial called the metric tree that records the

p-adic distances between the roots of the polynomial.

As a corollary to Theorem 1.1, we prove this inequality for all cases away from

residue characteristic 2.

Corollary 1.3. Let X be a hyperelliptic curve of genus g ≥ 1 over a discretely valued

!eld K with perfect residue !eld of characteristic not equal to 2. Let %X/K be the minimal

discriminant of X and let Art(X/K) denote the Artin conductor of the minimal regular

model of X. Then − Art(X/K) ≤ %X/K .

Proof. We may assume that K is Henselian, since the invariants in (1.2) are constant

under unrami!ed base change and regular models satisfy étale descent.

Let X /OK be a regular model of X. Let n be the number of irreducible components

of the geometric special !ber Xk and let ϕ be the conductor exponent for the Galois

representation Gal(K/K) → AutQ$
(H1

et(XK , Q$)) ($ (= char k), which only depends on X.

Then [7, Proposition 1] shows that

− Art(X /OK) = n − 1 + ϕ. (1.4)

If X is a proper regular model of X, then the number of irreducible components

of Xk is at least the number of irreducible components in the geometric special !ber of

the minimal regular model of the curve X. Thus, (1.4) implies − Art(X/K) ≤ − Art(X /OK).

The minimal discriminant of a hyperelliptic curve X is equal to the discriminant of one

of the integral polynomials f that de!nes it via an equation y2 = f (x). So if f is such a

polynomial, we have

− Art(X/K) ≤ Art(Xf /OK) ≤ νK(disc′(f )) = %X/K , (1.5)

where the second inequality is Theorem 1.1. This proves the corollary. !

Remark 1.6. The proof of Corollary 1.3 in this paper in fact gives a new proof of the

results in [15] and [16].
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7346 A. Obus and P. Srinivasan

Proposition 1.7. Keep the notation of Theorem 1.1. Suppose deg(f ) = 3. Then,

− Art(Xf /OK) = %X/K .

Remark 1.8. Let X min be the minimal proper regular model of an elliptic curve X. The

Ogg-Saito formula is the assertion that − Art(X min) = %X/K . By Proposition 1.7, away

from residue characteristic 2, the Ogg-Saito formula is equivalent to the assertion that

the canonical map Xf → X min is an isomorphism.

1.2 Related work of other authors

1.2.1 Small genus

In genus 1, the proof of the Ogg-Saito formula used the explicit classi!cation of special

!bers of minimal regular models of genus 1 curves. In genus 2, [7] de!nes another

discriminant that is speci!c to genus 2 curves, and compares both the Artin conductor

and the minimal discriminant (our %X/K , which Liu calls %0) to this third discriminant

(which Liu calls %min). This third discriminant %min is sandwiched between the Artin

conductor and the minimal discriminant and is de!ned using a possibly non-integral

Weierstrass equation such that the associated differentials generate the OK-lattice

of global sections of the relative dualizing sheaf of the minimal regular model. It

does not directly generalize to higher genus hyperelliptic curves (but see [7, De!nition

1, Remarque 9] for a related conductor-discriminant question). Liu even provides an

explicit formula for the difference between the Artin conductor and both %0 and %min

that can be described in terms of the combinatorics of the special !ber of the minimal

regular model (of which there are already over 120 types!). This leads one to ask the

following question, which we do not address in this paper.

Question 1.9. Can one give an interpretation of the difference between − Art(X/K) and

%X/K in Corollary 1.3, analogous to the interpretation given in [7]?

1.2.2 General curves

Several people have worked on comparing conductor exponents and discriminants. In

the semistable case, work of Kausz [5] (when p (= 2) and Maugeais [9] (all p) compares

the Artin conductor to yet another notion of discriminant. In [3], the authors compute

many arithmetic invariants attached to hyperelliptic curves in the semistable case in

terms of the cluster picture of the polynomial f (which encodes the same information

as the metric tree of the roots of f .) In [6], Kohls compares the conductor exponent ϕ

with the minimal discriminant of superelliptic curves, by studying the Galois action on
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the special !ber of the semistable model as in [1]. In [2], the authors de!ne minimal

discriminants of Picard curves (degree 3 cyclic covers of P1
K ) and compare the conductor

exponent and the minimal discriminant for such curves.

1.3 Summary of proof strategy

Assume for the rest of the introduction that deg(f ) is even, so disc′(f ) = disc(f ). The

common technique of [15], [16], and this paper is to build a regular model Xf of X by

normalizing a speci!c regular model Yf of Y ∼= P1
K in K(X). The model Yf is an embedded

resolution of (P1
OK

, B), where B is the branch locus of the normalization of the standard

model P1
OK

in K(X). That is, Yf is a blowup of P1
OK

on which all components of div(f ) of

odd multiplicity are regular and disjoint.

In §2, we reduce the proof of the conductor-discriminant inequality to an

inequality between the number of components of the model Yf and the “discriminant

bonus”

dbK(f ) := νK(disc(f )) −
r∑

i=1

νK(disc(Ki/K)), (1.10)

where f = f1 · · · fr is an irreducible factorization in K[x] and Ki is the !eld generated by

a root of fi. Namely, Remark 2.8 says that − Art(Xf /OK) ≤ νK(disc(f )) if and only if

2(NYf ,even − 1) ≤ dbK(f ), (1.11)

where NYf ,even is the number of irreducible components of the special !ber of Yf on which

the order of f is even (see Proposition 2.7).

The main content of §3, where Theorem 1.1 and Proposition 1.7 are proved, is an

inductive argument that shows that we can build Yf by blowing up successive points on

models Y of P1
K where the branch locus of Y in K(X) is singular, and that the inequality

(1.5) is satis!ed at the end of this process. We heartily thank the referee of a previous

submission for the core of this argument.

Example 1.12. Consider the hyperelliptic curve X given by the af!ne equation y2 = f (x),

where f (x) = xd − πK and πK is a uniformizer of K. In this case, the normalization X of

P1
OK

(with coordinate x) in the function !eld K(X) is already regular.

Assume d is even for simplicity. Then χ(XK) = 4 − d. On the other hand, the

special !ber of X is given by the af!ne equation y2 = xd, so it is a union of two copies

of P1
k meeting at one point. Thus, χ(Xk) = 2−0+1 = 3. So − Art(X /OK) = d−1+ δ, where

δ is the Swan conductor. Using, for example, Proposition 2.3, one calculates δ = νK(d).
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7348 A. Obus and P. Srinivasan

We also have νK(disc(f )) = νK(d) + d − 1. Thus, the conductor-discriminant inequality is

an equality in this case.

Note that the special !ber of X does not have simple normal crossings when

d ≥ 4, since the irreducible components do not meet transversely. By Equation 1.4, the

minimal snc-model X ′ of X has − Art(X ′/OK) > − Art(X /OK) = disc(f ), which means

that X ′ does not satisfy the conductor-discriminant inequality. So minimal snc-models

are insuf!cient for our purposes.

Notation and conventions

Throughout, K is a Henselian !eld with respect to a discrete valuation νK with residue

characteristic not 2. We further assume that the residue !eld k of K is algebraically

closed. We denote !xed separable and algebraic closures of K by Ksep ⊆ K. All algebraic

extensions of K are assumed to live inside K. This means that for any algebraic extension

L/K, there is a preferred embedding ιL ∈ HomK(L, K), namely the inclusion. We !x a

uniformizer πK of νK and normalize νK so that νK(πK) = 1.

For a !nite separable !eld extension L/K, we let disc(L/K) denote the discrimi-

nant of the !eld extension L/K and let %L/K := νK(disc(L/K)). For any separable polyno-

mial f ∈ K[x], we let disc(f ) (resp. disc′(f )) denote the discriminant of the polynomial

f viewed as a polynomial of degree deg(f ) (resp. degree 2+deg(f )/2,) and let %f ,K :=
νK(disc(f )). Note that with this convention, if f = cg for some monic polynomial g, then

%f ,K = 2νK(c)(deg(g)−1)+%g,K . We will suppress the index K whenever the !eld is clear.

For an integral K-scheme or OK-scheme S, we denote the corresponding function

!eld by K(S). If Y → OK is an arithmetic surface, an irreducible codimension 1

subscheme of Y is called vertical if it lies in a !ber of Y → OK , and horizontal otherwise.

Let f ∈ K(Y). We denote the divisor of zeroes of f by div0(f ). If div(f ) = ∑
i mi)i, call a

component )i for which mi is odd an odd component of div(f ) on Y. Similarly, de!ne

even component of div(f ) (this includes every component )i for which mi = 0).

If C and D are divisors on a regular, proper, "at relative curve over a Dedekind

scheme, we write (C, D) for their intersection number.

2 The Discriminant Bonus and Regular Models

Recall that X/K is a hyperelliptic curve with af!ne equation y2 = f (x), where X → P1 is

the projection to the x-coordinate. The discriminant of such an equation is the integer

νK(disc′(f )). Changing x-coordinates on P1
K using an element of GL2(OK) does not change

the valuation of the discriminant of an equation. Since k is algebraically closed, we may
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assume that f has even degree by such a change of coordinates [15, Section 1.3], and we

may even assume that no root of f specializes to ∞. That is, we may assume that all roots

of f lie in OK . If f has repeated roots, then disc′(f ) = 0 and (1.2) is satis!ed automatically,

so assume also that f is separable. Lastly, since K is Henselian with algebraically closed

residue !eld of characteristic not 2, the group K×/(K×)2 has two elements, whose coset

representatives are 1 and πK . So after multiplying f by squares, which does not change

the isomorphism class of X, we may assume that the leading coef!cient of f is 1 or πK .

Thus, for the remainder of the paper, we make the following assumption:

Assumption 2.1. The polynomial f (x) has even degree, is separable, and has irreducible

factorization πb
Kf1 . . . fr, where the fi ∈ OK [x] are monic irreducible polynomials and

b ∈ {0, 1}.

The argument above proves the following proposition.

Proposition 2.2. If the conductor-discriminant inequality (Theorem 1.1) holds for all f

satisfying Assumption 2.1, then it holds for all f ∈ OK [x].

For f satisfying Assumption 2.1, we de!ne Ki = K[x]/fi(x) for 1 ≤ i ≤ r.

Proposition 2.3. The Swan conductor of X equals
∑r

i=1(%Ki/K −deg fi +1) = r−deg(f )+
∑r

i=1 %Ki/K .

Proof. The argument in [3, Theorem 1.20(i)] for K a local !eld works also for K Henselian

discretely valued with algebraically closed residue !eld, with the added simpli!cation

that all residue degrees are 1. !

De!nition 2.4. The discriminant bonus of f over K, written dbK(f ), is the quantity

%f ,K − ∑r
i=1 %Ki/K .

Remark 2.5. If f = πb
Kf0 where f0 is monic, then %f ,K = %f0,K + 2b(deg(f ) − 1), so

dbK(f ) = dbK(f0) + 2b(deg(f ) − 1).

Remark 2.6. If f0 is monic, then dbK(f0) = lengthOK
(dC/A/dB/A), where B = OK [x]/f0

and C is the integral closure of B in its total ring of fractions. As a consequence of [14,

III, §2, Proposition 5], we get dbK(f0) = 2 lengthOK
(C/B).

We now obtain a formula for the Artin conductor. Let Y be a regular model of

P1
K and let X be the normalization of Y in K(x)[y]/(y2 − f (x)). Let B be the branch locus
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of X → Y. Write Ys and Yη
∼= P1

K
for the special and geometric generic !bers of Y,

respectively, and write Bs and Bη for the special and geometric generic !bers of B,

respectively. Let NY be the number of irreducible components of Ys, and let NY ,odd/NY ,even

be the number of odd/even vertical components of div(f ), so NY = NY ,odd + NY ,even.

Proposition 2.7. Keep the notation from the paragraph above. Assume that the odd

components of div0(f ) are regular and pairwise disjoint. Then X is regular and we have

− Art(X /OK) = 2(NY − 1) − 2NY ,odd +
r∑

i=1

%Ki/K = 2(NY ,even − 1) +
r∑

i=1

%Ki/K

Proof. By [15, Lemma 2.1], the model X is regular. By [16, Lemma 2.2], we have

− Art(X /OK) = 2(χ(Ys) − χ(Yη)) − (χ(Bs) − χ(Bη)) + δ,

where δ is the Swan conductor of X. We will use Hi and hi to denote the étale cohomology

groups and their dimensions respectively. Now, Ys and Yη both have trivial H1 and one-

dimensional H0, while h2(Ys) = NY and h2(Yη) = 1. So χ(Ys) − χ(Yη) = NY − 1. Since

deg(f ) is even by Assumption 2.1, it follows that B consists of precisely all the odd

components of div0(f ). Since the odd components of div0(f ) are regular and pairwise

disjoint, it follows that as a closed subset, Bs is a disjoint union of closed points and

closed codimension 1 sets: the closed points correspond to points where the horizontal

components of div0(f ) specialize, so there is exactly one for each irreducible factor of f ,

and the codimension 1 sets correspond to the vertical components appearing with odd

multiplicity in div(f ) on Y. By [11, Lemma 7.1], these irreducible components are all

isomorphic to P1
k and therefore have trivial H1, and since χ is an additive functor, it

follows that χ(Bs) = r + 2NY ,odd. Since deg(f ) is even, Bη consists of deg(f ) points and

therefore χ(Bη) = deg(f ). Lastly, by Proposition 2.3, δ = r − deg(f ) + ∑r
i=1 %Ki/K . Putting

everything together proves the proposition. !

Remark 2.8. In light of Proposition 2.7 and De!nition 2.4 of the discriminant bonus,

in order to prove the conductor-discriminant inequality for f satisfying Assumption 2.1,

it suf!ces to !nd a regular model Yf of P1
K on which the odd components of div0(f ) are

regular and disjoint, such that

dbK(f ) ≥ 2(NYf ,even − 1). (2.9)

We say that such a model Yf realizes the conductor-discriminant inequality for f . If

the inequality in (2.9) is an equality, then the normalization Xf of Yf in K(X) satis!es
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− Art(Xf /OK) = %f ,K , so we say that Yf realizes the conductor-discriminant equality

for f .

3 Proof of Inequality 2.9

3.1 Preliminary lemmas

We begin with a pair of preliminary lemmas about divisors on arithmetic surfaces.

Lemma 3.1. Suppose that C′ and C′′ are reduced, relatively prime, effective divisors on a

regular proper "at relative curve X over OK . If C = C′ +C′′ and C̃, C̃′, C̃′′ are the respective

normalizations of C, C′, C′′, we have that

lengthOK
(OC̃/OC) = lengthOK

(OC̃′/OC′) + lengthOK
(OC̃′′/OC′′) + (C′, C′′).

Proof. Since OC̃
∼= OC̃′ × OC̃′′ , it suf!ces to show that

lengthOK
(OC′ × OC′′/OC) = (C′, C′′). (3.2)

It suf!ces to check this locally at each point P of C′ ∩ C′′. If A = OX ,P, then both C′ and C′′

are principal in Spec A, so let C′ = div(g′) and C′′ = div(g′′). Then C = div(gg′) and (3.2)

follows from the exact sequence

0 → A/gg′ → A/g′ × A/g′′ → A/(g′, g′′) → 0

and the fact that the local intersection number (C′, C′′)P equals lengthOK
(A/(g′, g′′)). !

The following lemma is an adaptation of [4, V, Proposition 3.7] and [8, Ex. 9.2.12]

to the case of an arithmetic surface with a possibly horizontal divisor.

Lemma 3.3. Let C be an effective divisor on a regular, proper, "at relative curve X over

OK . Let π : X ′ → X be the blowup at a multiplicity µ closed point x of C, and let C′ → C

be the strict transform. Then lengthOK
(OC′/OC) = µ(µ − 1)/2.

Proof. For this proof, we may restrict to an af!ne neighbourhood U := Spec A of x in X
such that the maximal ideal mU,x is generated by two global functions u and v on U,

and by shrinking U, we may assume that the curve C is cut out by a single polynomial

equation ϕ = 0. As in the proof of [8, Proposition 9.2.23], we may write ϕ = P(u, v)+Q for

a homogeneous polynomial P of degree µ with coef!cients in O×
U,x and for Q(u, v) ∈ mµ+1

U,x .
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Up to a linear change of generators of mU,x, we may further assume that w := π∗(u)/π∗(v)

is a regular function at every point in the preimage of x in C′. Up to further shrinking

U if necessary, we may assume that C′ ∩ π−1(U) is contained in the af!ne U × A1 where

w is regular, where C′ is cut out by the equations wu = v and ϕ/uµ, and furthermore

degw P(1, w) = µ.

Concretely, letting g = Q(1, w)/uµ, we have ϕ/uµ = P(1, w) + ug and the ring of

regular functions on C′ ∩π−1(U) corresponds to the ring R := A[w]/(wu−v, P(1, w)+ug).

Let B := A/(ϕ) be the coordinate ring of C∩U and let m be the image of the ideal (u, v) ⊆ A

in B. Then m is the maximal ideal of x in B, and B/m ∼= k. Under the natural inclusion

B ↪→ R given by the identity on A, we have lengthOK
(OC′/π∗OC) = lengthOK

R/B. We will

now write down an explicit composition series for the inclusion B ⊆ R of OK-modules,

such that the associated graded OK-module is isomorphic to kµ(µ−1)/2, where k is the

residue !eld of OK . Since lengthOK
k = 1, this proves the result.

For 0 ≤ i ≤ µ − 1 and 0 ≤ j ≤ µ − 1 − i, let Mi be the B-submodule of R spanned

by 1, w, w2, . . . , wi, and let Mi
j be the B-submodule of R spanned by Mi and the elements

vµ−1−i−jwi+1, vµ−1−i−(j−1)wi+1, . . . , vµ−2−iwi+1 (thus, Mi
0 = Mi and Mi

µ−1−i = Mi+1). Since

degw P(1, w) = µ, we also have that Mµ−1 = R. In particular, we have

B = M0 = M0
0 ⊆ M0

1 ⊆ · · · ⊆ M0
µ−1 =

M1 = M1
0 ⊆ M1

1 ⊆ M1
2 ⊆ · · · ⊆ M1

µ−2 =

M2 = M2
0 ⊆ M2

1 ⊆ M2
2 ⊆ · · · ⊆ M2

µ−3 =

· · · ⊆ Mµ−2
1 = Mµ−1 = R.

Furthermore, for all i ≥ 0, j ≥ 1 with i+j ≤ µ−1, Mi
j is generated over Mi

j−1 as a B-module

by αi
j := vµ−1−i−jwi+1. Since

uαi
j = uvµ−1−i−jwi+1 = vµ−i−jwi ∈ Mi−1

j ⊆ Mi
j−1 and vαi

j = vµ−i−jwi+1 ∈ Mi
j−1,

we have that m annihilates Mi
j/Mi

j−1, or equivalently that Mi
j/Mi

j−1
∼= k. Thus, we have

constructed a composition series for R/B of length µ(µ − 1)/2 where the successive

quotients are all isomorphic to the residue !eld k of OK . !

3.2 Proof of Theorem 1.1

Now, let Y be regular, proper, "at, relative curve over Spec OK , and let D ⊆ Y be a reduced

effective Cartier divisor. Set (Y0, D0) = (Y, D) and de!ne a sequence (Yn, Dn), n = 0, ..., N

as follows. Suppose (Yn−1, Dn−1) is de!ned. If Dn−1 is regular, we set N = n − 1 and stop
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here. Suppose otherwise and let xn ∈ Dn−1 be a singular point with multiplicity mn. Let

fn : Yn → Yn−1 be the blow-up at xn and En = f −1
n (xn) be the exceptional divisor. Let

D′
n ⊆ Y be the proper transform of Dn−1. Then f −1

n (Dn−1) = D′
n + mnEn. If mn is even

(resp. odd), set Dn = D′
n (resp. Dn = D′

n + En). Let D̃ be the normalization of D.

Proposition 3.4. With notation as above, we have

#{n | 0 ≤ n ≤ N and mn is even} ≤ lengthOK
(OD̃/OD), (3.5)

with equality holding if and only if the multiplicity of every xn in each Dn−1 for 0 < n ≤ N

is at most 3.

Proof. By induction on n, it suf!ces to show the following inequality:

lengthOK
(OD̃n

/ODn
) ≤ lengthOK

OD̃n−1
/ODn−1

−





0 mn odd

1 mn even
,

with equality if and only if mn ∈ {2, 3}.
First, suppose mn is even. Then, Dn = D′

n is the proper transform of Dn−1 and we

have D̃n = D̃n−1. By Lemma 3.3, we have lengthOK
(ODn

/ODn−1
) = mn(mn −1)/2 ≥ 1, since

mn > 1. So

lengthOK
(OD̃n

/ODn
) = lengthOK

(OD̃n−1
/ODn

)

= lengthOK
(OD̃n−1

/ODn−1
) − lengthOK

(ODn
/ODn−1

)

≤ lengthOK
(OD̃n−1

/ODn−1
) − 1,

(3.6)

which proves the proposition in this case.

Now, suppose mn is odd. Recall that Dn = D′
n + En, where Dn is the strict

transform of Dn−1. By Lemma 3.1 applied to D′
n and the regular divisor En, we have

lengthOK
(OD̃n

/ODn
) = lengthOK

(OD̃′
n
/OD′

n
) + (En, D′

n).

By [4, V, Corollary 3.7], we have (En, D′
n) = mn. Since D′

n is the strict transform of Dn−1,

we have D̃′
n = D̃n−1. (The result in [4] is stated only for projective surfaces, but the proof

goes through verbatim in the arithmetic surface case.) Putting all this together once
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again with Lemma 3.3 yields

lengthOK
(OD̃n

/ODn
) = lengthOK

(OD̃′
n
/OD′

n
) + mn

= lengthOK
(OD̃n−1

/OD′
n
) + mn

= lengthOK
(OD̃n−1

/ODn−1
) − lengthOK

(OD′
n
/ODn−1

) + mn

= lengthOK
(OD̃n−1

/ODn−1
) − mn(mn − 1)/2 + mn

≥ lengthOK
(OD̃n−1

/ODn−1
),

(3.7)

since mn ≥ 3. Equality occurs when mn = 3, proving the proposition in this case. !

Corollary 3.8. Let X → P1
K be a hyperelliptic curve given by af!ne equation y2 = f (x)

satisfying Assumption 2.1. In the notation above, let Y = Y0 = P1
OK

be the standard

smooth model of P1
K with coordinate x. Lastly, let D ⊆ Y be the branch locus of the

normalization of Y in K(X).

Then, in the notation above, the model YN satis!es the hypotheses of Remark 2.8,

as well as inequality (2.9) with respect to f . That is, in the language of Remark 2.8, we

say that YN realizes the conductor-discriminant inequality of f .

Furthermore, if the multiplicity mn of each xn in Dn−1 the notation above is at

most 3, then YN realizes the conductor-discriminant equality for f .

Proof. Observe that D = D0 ≡ div(f ) (mod 2 Div(Y0)) as divisors on Y0, and the same

congruence holds with Di in place of D0 on Yi. In particular, DN and the odd part of div(f )

have the same support on YN . Since DN is regular, the model YN satis!es the hypotheses

of Remark 2.8.

Let f = πbf1 · · · fr with b ∈ {0, 1} as in Assumption 2.1. In Proposition 3.4, the left

hand side of (3.5) counts all even vertical components of div(f ) on YN , except possibly the

strict transform of the special !ber S of Y0. Since this strict transform is even for div(f )

exactly when b = 0, we have that the left hand side of (3.5) equals NYN ,even − (1 − b).

Let Dhoriz be the horizontal part of D. Then D = bS + Dhoriz. Since (S, Dhoriz) =
deg(f ), Lemma 3.1 applied to Dhoriz and the regular divisor S implies that the

lengthOK
(OD̃/OD) = lengthOK

(OD̃horiz
/ODhoriz

) + b deg(f ). (3.9)

The sheaf ODhoriz
is the shea!!cation of the OK-algebra B := OK [x]/(f /πb

K),

whereas OD̃horiz
is the shea!!cation of the integral closure C of B in its total ring of
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fractions. By Remark 2.6,

lengthOK
(OD̃horiz

/ODhoriz
) = lengthOK

(C/B) = (1/2) dbK(f /πb
K).

So, using Remark 2.5 for the !rst equality, and Proposition 3.4 and (3.9) in the inequality

below,

dbK(f ) = 2b(deg(f ) − 1) + dbK(f /πb
K)

= 2b(deg(f ) − 1) + 2 lengthOK
(OD̃horiz

/ODhoriz
)

≥ 2b(deg(f ) − 1) − 2b deg(f ) + 2(NYN ,even − (1 − b))

= 2(NYN ,even − 1),

(3.10)

which proves the inequality (2.9). By Proposition 3.4, equality holds in (3.10) exactly

when each xn has multiplicity at most 3 in Dn−1, proving the last statement of

the corollary. !

Proof of Theorem 1.1. This is immediate from Proposition 2.2, Remark 2.8, and

Corollary 3.4. !

3.3 Proof of Proposition 1.7

De!nition 3.11. A reduced effective divisor D on a regular arithmetic surface Y over OK

is robustly of multiplicity ≤ n at P if it has multiplicity µD,P ≤ n at P, and furthermore if

µD,P = n, then D has reducible tangent cone at P.

Lemma 3.12. Let Y be a regular arithmetic surface over OK , let D be a reduced effective

divisor on Y, let P ∈ Y be a closed point such that D has multiplicity µD,P at P. Let E be

the exceptional divisor of BlP(Y) → Y, and let D′ be the strict transform of D on BlP(Y).

Let n ≥ 1. If D is robustly of multiplicity ≤ n at P, then both D′ and D′ + E are robustly

of multiplicity ≤ n at every closed point P′ ∈ D′ ∩ E.

Proof. We !rst claim that, since P is a closed point on a regular surface,

∑

Q∈D′∩E

µD′,Q ≤ µD,P.
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To prove this, note that intersection theory on the blow up tells us that

0 = (π∗D, E) = (D′ + µD,PE, E) = (D′, E) − µD,P,

and so (D′, E) = µD,P, and it suf!ces to observe that for each Q in D′ ∩ E, we have µD′,Q ≤
iQ(D′, E), since D′ and E are locally Cartier and the de!ning equation for D′ at Q is also in

m
µD′,Q
E,Q . In particular, for P′ ∈ D′ ∩E, we have µD′,P′ ≤ µD,P, with strict inequality whenever

the tangent cone to D at P is reducible.

Let us prove the statement for D′. If µD,P < n then µD′,P′ ≤ µD,P < n. If µD,P = n

then D has reducible tangent cone at P, so µD′,P < µD,P = n. In both cases, µD′,P < n, so

we are done.

Now we prove the statement for D′ +E, which always has reducible tangent cone.

So it suf!ces to show that if P′ ∈ D′ ∩ E, then µD′+E,P′ ≤ n, or equivalently that µD′,P′ < n.

This was proved in the previous paragraph. !

Proposition 3.13. If deg(f ) = 3 and y2 = f (x) is a minimal Weierstrass equation, then

the process in Proposition 3.4 with Y0 = P1
OK

and D0 the reduced divisor satisfying

D0 ≡ div(f ) (mod 2 Div(Y0)) always yields mn ∈ {2, 3}.

Proof. Let Dn, D′
n, En, Yn be as in Proposition 3.4. We will !rst use the minimality of f

to argue that every singular point of D0 has multiplicity ≤ 3. Suppose not. Assume that P

is a point of multiplicity ≥ 4 on D0, and observe that D0 = div(f ) away from x = ∞ since

our Weierstrass equation is minimal. Without loss of generality, we may assume that P

corresponds to the maximal ideal (x, π). Write f (x) = ∑3
i=0 cix

i. Since x, π ∈ mP \ m2
P, the

assumption µ ≥ 4 implies that π4−i | ci for every i. Letting z := x/π , we see that f (x) =
π4 ∑

(ci/π
4−i)zi =: π4f̃ (z), with f̃ (z) ∈ OK [z]. Letting ỹ := y/π2, we see that ỹ2 = f̃ (z)

is another integral Weierstrass equation for X with associated discriminant disc(f ) − 6,

contradicting the minimality of f . So every singular point of D0 has multiplicity ≤ 3.

If no singular point of D0 has multiplicity 3, then all singular points are robustly

of multiplicity ≤ 3, which implies (by Lemma 3.12) that the same is true for all Dn, proving

the proposition.

Now, suppose there is a singular point P of D0 of multiplicity µ = 3 which we take

to be x1. If the tangent cone to D0 at P is reducible, then D is robustly of multiplicity ≤ 3 at

P, and by Lemma 3.12 the same is true for all Dn at all points, and we are done. So assume

the tangent cone to D0 at P is irreducible, and assume further (without loss of generality)

that P corresponds to the maximal ideal mP = (x, π) in OK [x]. The irreducibility of the

tangent cone means that there exists g ∈ mP such that g3 ≡ f (x) (mod m4
P). We have the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/9/7343/7231073 by guest on 05 June 2024



Conductor-Discriminant Inequality for Hyperelliptic Curves 7357

freedom to add elements of m2
P to g, so we may assume that g = ax + bπ , where a and b

are in O×
K . After an invertible change of variables, we may thus assume that g = x, and so

f (x) ≡ x3 (mod m4
P).

This implies that if we write f (x) = ∑3
i=0 cix

i with cj ∈ OK , then v(c0) ≥ 4, v(c1) ≥ 3,

v(c2) ≥ 2, and v(c3) = 0. On the other hand, the minimality of the Weierstrass equation

implies that either v(c0) < 6, v(c1) < 4, or v(c2) < 2. So v(c1) = 3 or v(c0) ∈ {4, 5}.
After blowing up at P, the strict transform D′

1 of D meets the exceptional divisor

E1 completely in the chart x = πs, at the point Q given by π = s = 0. On this chart,

we have f = π3(c3s3 + (c2/π)s2 + (c1/π2)s + c0/π3). So D1 = D′
1 + E1 is cut out by

h := π(c3s3 + (c2/π)s2 + (c1/π2)s + c0/π3).

Now,

h ≡ c1

π
s + c0

π2 (mod m4
Q).

From this we see that if v(c0) = 4, then the multiplicity m2 of D1 at x2 := Q is 2. Otherwise,

if v(c1) = 3, then m2 = 3, and the tangent cone is reducible. In both of these cases, D1 is

robustly of multiplicity ≤ 3 at Q. By Lemma 3.12, the same is true for all further Dn at

all points, and we are done.

Lastly, if v(c1) > 3 but v(c0) = 5, then m1 = 3 and we take one more blowup at the

point Q. After this blowup, the strict transform D′
2 of D1 meets the exceptional divisor

E2 completely in the chart π = st at the point R given by s = t = 0. On this chart, we have

that D2 = D′
2 + E2 is cut out by j := st(c3s3 + (c2/st)s2 + (c1/s2t2)s + c0/s3t3)/s2. Since

j ≡ c3s2t (mod m4
R) (note that π ∈ m2

R), we see that, taking x3 = R, we have m3 = 3 and

the tangent cone to D2 at R is reducible. So D2 is robustly of multiplicity ≤ 3 at R. As in

the previous cases, we are done. !

Proof of Proposition 1.7. By Proposition 3.7, it follows that there exists a minimal

Weierstrass equation y2 = f (x) with deg(f ) = 3 such that mn ∈ {2, 3} for all n. Now

change coordinates on Y0 = P1
OK

by an element of GL2(OK) (and also all further Yn)

to produce a new minimal Weierstrass equation that satis!es Assumption 2.1 – note

that this invertible change of variables does not affect any of the mn. By Corollary

3.4, it then follows that if Xf is the normalization of the model Yf in K(X), then

− Art(Xf /OK) = %X/K . !

Remark 3.14. The multiplicity of each singular point of D0 being at most 3 is not

suf!cient to guarantee equality in every step of the induction. For instance, it is possible
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for m1 = 3 and m2 = 4 as the genus 2 example y2 = (x − 1)(x − 2)(x − 3)(x − 4t2)(x −
5t2)(x − 6t2) over K = C((t)) illustrates. In this case, D1 = D′

0 + E, and for calculating m2

we also need to include the contribution coming from the multiplicity of the point on the

exceptional divisor.
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