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We prove an inequality between the conductor and the discriminant for all hyperelliptic
curves defined over discretely valued fields K with perfect residue field of characteristic
not 2. Specifically, if such a curve is given by y? = f(x) with f(x) € Olx], and if X is
its minimal regular model over O, then the negative of the Artin conductor of A (and
thus also the number of irreducible components of the special fiber of X) is bounded
above by the valuation of disc(f). There are no restrictions on genus of the curve or on
the ramification of the splitting field of f. This generalizes earlier work of Ogg, Saito, Liu,

and the second author.

1 Introduction

In this note, we prove a conductor-discriminant inequality for all hyperelliptic curves

over discretely valued fields with perfect residue field of characteristic not 2.

1.1 Main theorem

Let K be a discretely valued field with perfect residue field k of characteristic not 2.
Let Ok be the ring of integers of K. Let v : K — Z U {oo} be the corresponding discrete
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valuation. Let X be a smooth, projective, geometrically integral curve of genus g > 1
defined over K. Let X be a proper, flat, regular Og-scheme with generic fiber X. The Artin

conductor associated to the model X is defined by
Art(X/Ok) = x(Xg) — x (Xp) — 4,

where y is the Euler characteristic for the ¢-adic cohomology and § is the Swan conductor
associated to the ¢-adic representation Gal(K/K) — Autg, (Hg (Xg, Q;)) (¢ # chark). The
Artin conductor is a measure of degeneracy of the model X’; it is a non-positive integer
that is zero precisely when X /Oy is smooth or when g = 1 and (&X},).q is smooth. If X' /O
is a regular, semistable model, then — Art(X/Oy) equals the number of singular points
of the special fiber &;.

For hyperelliptic curves, there is another measure of degeneracy defined in terms
of minimal Weierstrass equations. Assume that X is hyperelliptic, with hyperelliptic
degree 2 morphism X — Y = PL. An integral Weierstrass equation for X is an equation
of the form y? = f(x) with f(x) € Oklx], such that X is birational to the plane curve given
by this equation. The discriminant of such an equation is defined to be the non-negative
integer vg (disc'(f)), where disc'(f) is the discriminant of f, thought of as a polynomial of
degree 2[deg(f)/2] (note that this is the usual discriminant disc(f) whenever f is monic

or deg(f) is even). The main theorem of the paper is the following.

Theorem 1.1. Let K be the fraction field of a Henselian discrete valuation ring with
algebraically closed residue field of characteristic not 2 and let f € Ok[x] be a separable
polynomial with deg(f) > 3. Let X be the hyperelliptic curve with affine equation

y? = f(x). Then there exists a proper flat regular Ox-model Xp of X such that

— ATt(X;/O) < ve(disc/(F)). (1.2)

We call (1.2) the conductor-discriminant inequality for f.

A minimal Weierstrass equation is an equation for which the integer v (disc’(f))
is as small as possible amongst all integral equations. We define the minimal discrim-
inant Ay of X to be vg(disc'(f)) for the minimal Weierstrass equation. The minimal
discriminant of X is zero precisely when the minimal proper regular model of X is smooth
over S. Let Art(X/K) denote the Artin conductor associated to the minimal proper regular
model of X over Ok.

When g = 1, we have — Art(X/K) = Ay g by the Ogg-Saito formula [13, p. 156,
Corollary 2]. When g = 2, Liu [7, p. 52, Théoréme 1; p. 53, Théoréme 2] shows that
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—Art(X/K) < AX/K,' he also shows that equality can fail to hold. In the second author’s
thesis [15], Liu's inequality was extended to hyperelliptic curves of arbitrary genus
assuming that the roots of f are defined over an unramified extension of K. In subsequent
work [16], the second author proved the same inequality assuming only that roots of f
are defined over a tame extension of K. The argument in [16] is an induction on a natural
combinatorial gadget attached to a polynomial called the metric tree that records the
p-adic distances between the roots of the polynomial.

As a corollary to Theorem 1.1, we prove this inequality for all cases away from

residue characteristic 2.

Corollary 1.3. Let X be a hyperelliptic curve of genus g > 1 over a discretely valued
field K with perfect residue field of characteristic not equal to 2. Let Ay x be the minimal
discriminant of X and let Art(X/K) denote the Artin conductor of the minimal regular
model of X. Then — Art(X/K) < Ay .

Proof. We may assume that K is Henselian, since the invariants in (1.2) are constant
under unramified base change and regular models satisfy étale descent.

Let X /Ok be aregular model of X. Let n be the number of irreducible components
of the geometric special fiber A% and let ¢ be the conductor exponent for the Galois
representation Gal(K/K) — Autg,(Hg (Xg, Q) (¢ # chark), which only depends on X.
Then [7, Proposition 1] shows that

—Art(X/Og) =n—1+0¢. (1.4)

If X is a proper regular model of X, then the number of irreducible components
of A% is at least the number of irreducible components in the geometric special fiber of
the minimal regular model of the curve X. Thus, (1.4) implies — Art(X/K) < — Art(X/Og).
The minimal discriminant of a hyperelliptic curve X is equal to the discriminant of one
of the integral polynomials f that defines it via an equation y? = f(x). So if f is such a

polynomial, we have
— Art(X/K) < Art(Xy/Of) < v (disc'(f)) = Ax/kr (1.5)

where the second inequality is Theorem 1.1. This proves the corollary. |

Remark 1.6. The proof of Corollary 1.3 in this paper in fact gives a new proof of the
results in [15] and [16].
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Proposition 1.7. Keep the notation of Theorem 1.1. Suppose deg(f) = 3. Then,

Remark 1.8. Let XY™ be the minimal proper regular model of an elliptic curve X. The
Ogg-Saito formula is the assertion that — Art(x™?) = Ax k- By Proposition 1.7, away
from residue characteristic 2, the Ogg-Saito formula is equivalent to the assertion that

the canonical map Xy — A™" is an isomorphism.

1.2 Related work of other authors

1.2.1 Small genus
In genus 1, the proof of the Ogg-Saito formula used the explicit classification of special
fibers of minimal regular models of genus 1 curves. In genus 2, [7] defines another
discriminant that is specific to genus 2 curves, and compares both the Artin conductor
and the minimal discriminant (our Ay g, which Liu calls Ap) to this third discriminant
(which Liu calls A_ ;). This third discriminant A

conductor and the minimal discriminant and is defined using a possibly non-integral

min min 1S sandwiched between the Artin
Weierstrass equation such that the associated differentials generate the Oy-lattice
of global sections of the relative dualizing sheaf of the minimal regular model. It
does not directly generalize to higher genus hyperelliptic curves (but see [7, Definition
1, Remarque 9] for a related conductor-discriminant question). Liu even provides an
explicit formula for the difference between the Artin conductor and both A, and A ;,
that can be described in terms of the combinatorics of the special fiber of the minimal
regular model (of which there are already over 120 types!). This leads one to ask the

following question, which we do not address in this paper.

Question 1.9. Can one give an interpretation of the difference between — Art(X/K) and

Ax g in Corollary 1.3, analogous to the interpretation given in [7]?

1.2.2 General curves

Several people have worked on comparing conductor exponents and discriminants. In
the semistable case, work of Kausz [5] (when p # 2) and Maugeais [9] (all p) compares
the Artin conductor to yet another notion of discriminant. In [3], the authors compute
many arithmetic invariants attached to hyperelliptic curves in the semistable case in
terms of the cluster picture of the polynomial f (which encodes the same information
as the metric tree of the roots of f.) In [6], Kohls compares the conductor exponent ¢

with the minimal discriminant of superelliptic curves, by studying the Galois action on
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the special fiber of the semistable model as in [1]. In [2], the authors define minimal
discriminants of Picard curves (degree 3 cyclic covers of P}) and compare the conductor

exponent and the minimal discriminant for such curves.

1.3 Summary of proof strategy

Assume for the rest of the introduction that deg(f) is even, so disc’(f) = disc(f). The
common technique of [15], [16], and this paper is to build a regular model Ay of X by
normalizing a specific regular model Ve of Y = ]P)}{ in K(X). The model V¢ is an embedded
resolution of (P! K,B), where B is the branch locus of the normalization of the standard
model ]P’é)K in K(X). That is, J; is a blowup of IP’}QK on which all components of div(f) of
odd multiplicity are regular and disjoint.

In §2, we reduce the proof of the conductor-discriminant inequality to an
inequality between the number of components of the model )y and the “discriminant

bonus”

-
dbg (f) := vg(disc(f)) — D ve(disc(K;/K)), (1.10)
i=1
where f = f] - - - f, is an irreducible factorization in K[x] and K; is the field generated by
a root of f;. Namely, Remark 2.8 says that — Art(X/Og) < vg(disc(f)) if and only if

2(Nyf,even — 1) = dbg(f), (1.11)

where Ny, ) even is the number of irreducible components of the special fiber of }r on which
the order of f is even (see Proposition 2.7).

The main content of §3, where Theorem 1.1 and Proposition 1.7 are proved, is an
inductive argument that shows that we can build Jr by blowing up successive points on
models Y of IP’}< where the branch locus of ) in K(X) is singular, and that the inequality
(1.5) is satisfied at the end of this process. We heartily thank the referee of a previous

submission for the core of this argument.

Example 1.12. Consider the hyperelliptic curve X given by the affine equation y? = f(x),

where f(x) = x4

— g and g is a uniformizer of K. In this case, the normalization A" of
Pé?x (with coordinate x) in the function field K(X) is already regular.

Assume d is even for simplicity. Then x(X%) = 4 — d. On the other hand, the
special fiber of X is given by the affine equation y? = x¢

of ]P’,lc meeting at one point. Thus, x (X}) =2—0+1 = 3.So — Art(X/Of) = d — 1+6, where

, S0 it is a union of two copies

8 is the Swan conductor. Using, for example, Proposition 2.3, one calculates § = vg(d).
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We also have vg(disc(f)) = vg(d) + d — 1. Thus, the conductor-discriminant inequality is
an equality in this case.

Note that the special fiber of X does not have simple normal crossings when
d > 4, since the irreducible components do not meet transversely. By Equation 1.4, the
minimal snc-model X’ of X has —Art(X'/Og) > —Art(X/Og) = disc(f), which means
that X’ does not satisfy the conductor-discriminant inequality. So minimal snc-models

are insufficient for our purposes.

Notation and conventions

Throughout, K is a Henselian field with respect to a discrete valuation vy with residue
characteristic not 2. We further assume that the residue field k of K is algebraically
closed. We denote fixed separable and algebraic closures of K by K% C K. All algebraic
extensions of K are assumed to live inside K. This means that for any algebraic extension
L/K, there is a preferred embedding ¢; € HomK(L,f), namely the inclusion. We fix a
uniformizer ny of vy and normalize vy so that v () = 1.

For a finite separable field extension L/K, we let disc(L/K) denote the discrimi-
nant of the field extension L/K and let A; g := vg(disc(L/K)). For any separable polyno-
mial f € Kl[x], we let disc(f) (resp. disc’(f)) denote the discriminant of the polynomial
f viewed as a polynomial of degree deg(f) (resp. degree 2[deg(f)/2]) and let Apg =
vg(disc(f)). Note that with this convention, if f = cg for some monic polynomial g, then
Apg = 2vg(c)(deg(g)— 1)+ Agx-We will suppress the index K whenever the field is clear.

For an integral K-scheme or Og-scheme S, we denote the corresponding function
field by K(S). If Y — Oy is an arithmetic surface, an irreducible codimension 1
subscheme of Y is called vertical if it lies in a fiber of ) — Ok, and horizontal otherwise.
Let f € K()). We denote the divisor of zeroes of f by divy(f). If div(f) = > ;m,I';, call a
component I'; for which m; is odd an odd component of div(f) on Y. Similarly, define
even component of div(f) (this includes every component I'; for which m; = 0).

If C and D are divisors on a regular, proper, flat relative curve over a Dedekind

scheme, we write (C, D) for their intersection number.

2 The Discriminant Bonus and Regular Models

Recall that X/K is a hyperelliptic curve with affine equation y? = f(x), where X — P! is
the projection to the x-coordinate. The discriminant of such an equation is the integer
vg (disc’(f)). Changing x-coordinates on P} using an element of GL,(Og) does not change

the valuation of the discriminant of an equation. Since k is algebraically closed, we may
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assume that f has even degree by such a change of coordinates [15, Section 1.3], and we
may even assume that no root of f specializes to co. That is, we may assume that all roots
of f lie in Og. If f has repeated roots, then disc'(f) = 0 and (1.2) is satisfied automatically,
so assume also that f is separable. Lastly, since K is Henselian with algebraically closed
residue field of characteristic not 2, the group K*/(K*)? has two elements, whose coset
representatives are 1 and ng. So after multiplying f by squares, which does not change
the isomorphism class of X, we may assume that the leading coefficient of f is 1 or ng.

Thus, for the remainder of the paper, we make the following assumption:

Assumption 2.1. The polynomial f(x) has even degree, is separable, and has irreducible
factorization n};fl ...f,» where the f; € Oglx] are monic irreducible polynomials and
b e{0,1}.

The argument above proves the following proposition.

Proposition 2.2. If the conductor-discriminant inequality (Theorem 1.1) holds for all f
satisfying Assumption 2.1, then it holds for all f € Oglx].

For f satisfying Assumption 2.1, we define K; = Kl[x]/f;(x) for 1 <i <r.
Proposition 2.3. The Swan conductor of X equals >";_; (Ag,x—degfi+1) =r—deg(f)+
Z;:l AKl/K

Proof. The argument in [3, Theorem 1.20(i)] for K a local field works also for K Henselian
discretely valued with algebraically closed residue field, with the added simplification

that all residue degrees are 1. |

Definition 2.4. The discriminant bonus of f over K, written dbg(f), is the quantity
Ak — i A,k

Remark 2.5. If f = n}éfo where fj, is monic, then A = Ag ¢ + 2b(deg(f) — 1), so

dbg (f) = dbg (fy) + 2b(deg(f) — 1).

Remark 2.6. If f; is monic, then dbg(fy) = lengthy, (d¢/a/dp/4), where B = Oglxl/f
and C is the integral closure of B in its total ring of fractions. As a consequence of [14,
111, §2, Proposition 5], we get dbg (fy) = 2lengthy (C/B).

We now obtain a formula for the Artin conductor. Let ) be a regular model of
Pll{ and let X’ be the normalization of ) in K(x)[yl/(y? — f(x)). Let B be the branch locus
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of ¥ — ). Write ); and yﬁ =~ ]P’lf for the special and geometric generic fibers of ),
respectively, and write By and Bj; for the special and geometric generic fibers of B,
respectively. Let Ny, be the number of irreducible components of ), and let Ny, ,44/Ny eyen
be the number of odd/even vertical components of div(f), so Ny, = Ny, ;44 + Ny eyen-

Proposition 2.7. Keep the notation from the paragraph above. Assume that the odd

components of div,(f) are regular and pairwise disjoint. Then X" is regular and we have

r r
— ATt(X/Og) = 2(Ny, — 1) = 2Ny, a9 + D Ag x = 2Ny gyen — 1) + D Ag.
i/ i/

i=1 i=1
Proof. By [15, Lemma 2.1], the model X is regular. By [16, Lemma 2.2], we have

— Art(X/Og) = 2(x V) — x V) — (x (By) — x (Byp) + 8,

where § is the Swan conductor of X. We will use H' and k' to denote the étale cohomology
groups and their dimensions respectively. Now, J; and ); both have trivial H 1 and one-
dimensional H?, while h?();) = Ny, and h?();) = 1. So x(Jy) — x(J;) = Ny, — 1. Since
deg(f) is even by Assumption 2.1, it follows that B consists of precisely all the odd
components of divy(f). Since the odd components of div,(f) are regular and pairwise
disjoint, it follows that as a closed subset, B, is a disjoint union of closed points and
closed codimension 1 sets: the closed points correspond to points where the horizontal
components of div,(f) specialize, so there is exactly one for each irreducible factor of f,
and the codimension 1 sets correspond to the vertical components appearing with odd
multiplicity in div(f) on ). By [11, Lemma 7.1], these irreducible components are all
isomorphic to ]P’,lc and therefore have trivial H!, and since x is an additive functor, it
follows that x(B;) = r + 2Ny, ,qq. Since deg(f) is even, B; consists of deg(f) points and
therefore x (B;) = deg(f). Lastly, by Proposition 2.3, § = r — deg(f) + > Ag, k- Putting

everything together proves the proposition. |

Remark 2.8. In light of Proposition 2.7 and Definition 2.4 of the discriminant bonus,
in order to prove the conductor-discriminant inequality for f satisfying Assumption 2.1,
it suffices to find a regular model Yy of P} on which the odd components of div,(f) are

regular and disjoint, such that
de(f) = Z(Nyf'even - ]-)' (29)

We say that such a model ) realizes the conductor-discriminant inequality for f. If

the inequality in (2.9) is an equality, then the normalization Xy of )}, in K(X) satisfies
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—Art(X;/Og) = Ay g, so we say that ) realizes the conductor-discriminant equality
for f.

3 Proof of Inequality 2.9
3.1 Preliminary lemmas

We begin with a pair of preliminary lemmas about divisors on arithmetic surfaces.

Lemma 3.1. Suppose that C’ and C” are reduced, relatively prime, effective divisors on a
regular proper flat relative curve X over O.If C = C'+ C” and C,C',C" are the respective

normalizations of C, C’, C’, we have that

lengthy, (Oz/Oc) = lengthy, (Op/Oc) + lengthy, (Oz:/Oci) + (C', C).

Proof. Since Oz = Op x Og, it suffices to show that
lengthOK(Oc/ X OC”/OC) == (C/, C”). (3.2)

It suffices to check this locally at each point P of C'NC".If A = Oy p, then both C’ and C”
are principal in Spec 4, so let ¢’ = div(g’) and C” = div(g”). Then C = div(gg’) and (3.2)

follows from the exact sequence
0~ A/g9 — Alg xAlg"— A/(g.g") — 0

and the fact that the local intersection number (C’, C")p equals length,_(A/(g’,g")). B

The following lemma is an adaptation of [4, V, Proposition 3.7] and [8, Ex. 9.2.12]

to the case of an arithmetic surface with a possibly horizontal divisor.

Lemma 3.3. Let C be an effective divisor on a regular, proper, flat relative curve X over
Og.Let w: X' — X be the blowup at a multiplicity x closed point x of C, and let ¢’ — C
be the strict transform. Then lengthOK((’)C,/C’)C) =u(un—1)/2.

Proof. For this proof, we may restrict to an affine neighbourhood U := Spec A of xin X
such that the maximal ideal my; , is generated by two global functions u and v on U,
and by shrinking U, we may assume that the curve C is cut out by a single polynomial

equation ¢ = 0. As in the proof of [8, Proposition 9.2.23], we may write ¢ = P(u,v) + Q for

p+l1

a homogeneous polynomial P of degree u with coefficients in Oy, , and for Q(u, v) € my; .
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Up to a linear change of generators of my; ,, we may further assume that w := 7*(u) /7 *(v)
is a regular function at every point in the preimage of x in C'. Up to further shrinking
U if necessary, we may assume that ¢’ N7 ~!(U) is contained in the affine U x A! where
w is regular, where C’ is cut out by the equations wu = v and ¢/u*, and furthermore
deg,, P(1,w) = p.

Concretely, letting g = Q(1, w)/u*, we have ¢/u* = P(1,w) + ug and the ring of
regular functions on C’'Nz~!(U) corresponds to the ring R := Alw]/(wu —v, P(1, W) +ug).
Let B := A/(¢) be the coordinate ring of CNU and let m be the image of the ideal (u,v) C A
in B. Then m is the maximal ideal of x in B, and B/m = k. Under the natural inclusion
B < R given by the identity on A, we have length, (O /7n*O() = length,, R/B. We will
now write down an explicit composition series for the inclusion B € R of O-modules,
such that the associated graded Og-module is isomorphic to k*“~1/2, where k is the
residue field of O. Since length, k = 1, this proves the result.

ForO<i<pu—landO<j<u—1-1ilet M be the B-submodule of R spanned
by 1, w, w?,..., w?, and let MJ‘ be the B-submodule of R spanned by M and the elements
yH =iyl pu—l=i=(=D i+l pu=2-iytl (thyg, MY = M! and Mfklfi = M'*1), Since
deg,, P(1,w) = u, we also have that M*~1 = R. In particular, we have

0 0 0 0
B=M’=MjcM)c . .cM_, =
1 1 1 1 1

M'=M{CMCcM}C--CM_,=
2 2 2 2 2
M*=M{CM}CM;C - CM: 5=

.C Mi“z - M+ 1 =R,
Furthermore, foralli > 0,j > 1 withi+j < u— lel is generated over M}4 as a B-module
by a} = vH 1=yt Since
uoz]l. = uvt Iyt = gyt M]lfl - M}_l and VOl} =y Iyt ¢ M}_l,

-1 —
constructed a composition series for R/B of length u(u — 1)/2 where the successive

we have that m annihilates ZV[J?'/IVIJ‘.;I, or equivalently that M]‘ /1\/.le.' k. Thus, we have

quotients are all isomorphic to the residue field k of O. ]

3.2 Proof of Theorem 1.1

Now, let Y be regular, proper, flat, relative curve over Spec O, and let D € ) be a reduced
effective Cartier divisor. Set (), Dy) = (¥, D) and define a sequence (},,,D,), n =0,...,.N

as follows. Suppose (V,,_;,D,,_,) is defined. If D,,_, is regular, we set N = n — 1 and stop

n—1
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here. Suppose otherwise and let x,, € D,,_; be a singular point with multiplicity m,,. Let
fou: Y, = V,_; be the blow-up at x,, and E, = f;!(x,) be the exceptional divisor. Let
D), € Y be the proper transform of D,,_;. Then f,1(D,_,) = D, + m,E,. If m, is even
(resp. odd), set D,, = D/, (resp. D,, = D, + E,,). Let D be the normalization of D.

Proposition 3.4. With notation as above, we have
#{n|0<n <N and m, is even} < lengthOK((’)ﬁ/(’)D), (3.5)

with equality holding if and only if the multiplicity of every x,, ineach D,,_, forO <n <N

is at most 3.

Proof. By induction on n, it suffices to show the following inequality:

0 m,odd
lengthOK((’)ﬁn/(’)Dn) < lengthOK (91371_1/(’)]%H - ,
1 m, even

with equality if and only if m,, € {2, 3}.
First, suppose m,, is even. Then, D,, = Dy, is the proper transform of D,,_; and we
have D,, = D,,_;. By Lemma 3.3, we have lengthy (Op /Op, ) =my(m,—1)/2 > 1, since

m, > 1.S0

lengthy, (Op,/0p,) = lengthy, (Op, /Op,)
— lengthy, (05, ,/Op, ) —lengthy, (O /Op ) (3.6)

= lengthOK (05n71 /ODn—l) - 1’

which proves the proposition in this case.

Now, suppose m,, is odd. Recall that D, = D, + E,

.» where D,, is the strict

transform of D,,_;. By Lemma 3.1 applied to D), and the regular divisor E,,, we have
lengtho, (05, /Op,) = lengthy, (Of, /Opy) + (Ey, D}y

By [4, V, Corollary 3.7], we have (E,,, D,,) = m,,. Since D), is the strict transform of D,,_;,
we have D), = D,,_,. (The result in [4] is stated only for projective surfaces, but the proof

goes through verbatim in the arithmetic surface case.) Putting all this together once
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again with Lemma 3.3 yields

lengthy, (Op,/0p,) = lengthy, (O, /Op,) +m,
= lengthy (Op, /Op) +m,
= lengthy, (Op, | /Op, ) —lengthy, (Op /Op ) +m, (3.7)
= lengthy, (Op /Op, ) —m,(m, —1)/2+m,

> lengthy (Op ,/Op, ),
since m,, > 3. Equality occurs when m,, = 3, proving the proposition in this case. |

Corollary 3.8. Let X — PL be a hyperelliptic curve given by affine equation y? = f(x)
satisfying Assumption 2.1. In the notation above, let Y = ), = }P}QK be the standard
smooth model of ]P}{ with coordinate x. Lastly, let D € ) be the branch locus of the
normalization of ) in K(X).

Then, in the notation above, the model ), satisfies the hypotheses of Remark 2.8,
as well as inequality (2.9) with respect to f. That is, in the language of Remark 2.8, we
say that )y, realizes the conductor-discriminant inequality of f.

Furthermore, if the multiplicity m,, of each x,, in D,,_, the notation above is at

most 3, then )y realizes the conductor-discriminant equality for f.

Proof. Observe that D = D, = div(f) (mod 2Div()),)) as divisors on ), and the same
congruence holds with D; in place of D, on });. In particular, Dy, and the odd part of div(f)
have the same support on Y. Since Dy, is regular, the model )y, satisfies the hypotheses
of Remark 2.8.

Let f = nPf, ---f. with b € {0, 1} as in Assumption 2.1. In Proposition 3.4, the left
hand side of (3.5) counts all even vertical components of div(f) on )y, except possibly the
strict transform of the special fiber S of ). Since this strict transform is even for div(f)
exactly when b = 0, we have that the left hand side of (3.5) equals Ny, yen — (1 — D).

Let Dy, be the horizontal part of D. Then D = bS + Dy, Since (S, Dy riz) =
deg(f), Lemma 3.1 applied to Dy, and the regular divisor S implies that the

lengthy, (O5/O0p) = lengthy, (Op, . /Op, )+ bdeg(f). (3.9)

The sheaf Op _ is the sheafification of the Og-algebra B := Oklx1/(f/72),

whereas Op, _ is the sheafification of the integral closure C of B in its total ring of
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fractions. By Remark 2.6,

lengthy, (Op, . /Op, . ) =lengthy (C/B) = (1/2) de(f/nIlé).

Dhoriz

So, using Remark 2.5 for the first equality, and Proposition 3.4 and (3.9) in the inequality

below,

dbg (f) = 2b(deg(f) — 1) + dbg (f /D)
= 2b(deg(f) — 1) + 2lengthy, (Oﬁhoriz/ODhoriz)
> 2b(deg(f) — 1) — 2bdeg(f) + 2(Ny,, eyen — (1 — b))

= 2(]Vy]v,even -1,

(3.10)

which proves the inequality (2.9). By Proposition 3.4, equality holds in (3.10) exactly

when each x, has multiplicity at most 3 in D proving the last statement of

n—1r

the corollary. |

Proof of Theorem 1.1. This is immediate from Proposition 2.2, Remark 2.8, and
Corollary 3.4. |

3.3 Proof of Proposition 1.7

Definition 3.11. A reduced effective divisor D on a regular arithmetic surface ) over O
is robustly of multiplicity < n at P if it has multiplicity up p < n at P, and furthermore if

Upp = n, then D has reducible tangent cone at P.

Lemma 3.12. Let ) be aregular arithmetic surface over Oy, let D be a reduced effective
divisor on Y, let P € Y be a closed point such that D has multiplicity up p at P. Let E be
the exceptional divisor of Bl,()) — Y, and let D’ be the strict transform of D on Bl,()).
Let n > 1. If D is robustly of multiplicity < n at P, then both D’ and D’ + E are robustly
of multiplicity < n at every closed point P € D'NE.

Proof. We first claim that, since P is a closed point on a regular surface,

2 , Mpa = Kpp-
QeD'NE
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To prove this, note that intersection theory on the blow up tells us that
0= (n*D,E) = (D' + up pE,E) = (D', E) — up p,

and so (D', E) = Kp,pr and it suffices to observe that for each Q in D' N E, we have Upa <
ig(D',E),since D' and E are locally Cartier and the defining equation for D’ at Q is also in
mngé'Q. In particular, for P € D'NE, we have Up p < Up p, With strict inequality whenever
the tangent cone to D at P is reducible.

Let us prove the statement for D". If upp < nthen up p < pupp <n.fupp=n
then D has reducible tangent cone at P, so jpy p < up p = 1. In both cases, up p < 1, so
we are done.

Now we prove the statement for D’ + E, which always has reducible tangent cone.
So it suffices to show that if P € D' N E, then up g p < n, or equivalently that up p < n.

This was proved in the previous paragraph. |

Proposition 3.13. If deg(f) = 3 and y? = f(x) is a minimal Weierstrass equation, then
the process in Proposition 3.4 with ), = IP’}QK and D, the reduced divisor satisfying
D, = div(f) (mod 2Div(}),)) always yields m,, € {2,3}.

Proof. LetD,, D), E,, Y, be as in Proposition 3.4. We will first use the minimality of f
to argue that every singular point of Dy has multiplicity < 3. Suppose not. Assume that P
is a point of multiplicity > 4 on D, and observe that D, = div(f) away from x = co since
our Weierstrass equation is minimal. Without loss of generality, we may assume that P
corresponds to the maximal ideal (x, ). Write f(x) = ?:o CiXi. Since x,m € mp \ mf,, the
assumption y > 4 implies that 74~ | c; for every i. Letting z := x/m, we see that f(x) =
7t 3 (c;/nt 7 = 7*f(2), with f(2) € Oglz). Letting 7 := y/n?, we see that % = f(2)
is another integral Weierstrass equation for X with associated discriminant disc(f) — 6,
contradicting the minimality of f. So every singular point of D, has multiplicity < 3.

If no singular point of Dy has multiplicity 3, then all singular points are robustly
of multiplicity < 3, which implies (by Lemma 3.12) that the same is true forall D,, proving
the proposition.

Now, suppose there is a singular point P of D, of multiplicity u = 3 which we take
to be x, . If the tangent cone to D, at P is reducible, then D is robustly of multiplicity < 3 at
P,and by Lemma 3.12 the same is true for all D,, at all points, and we are done. So assume
the tangent cone to D at P is irreducible, and assume further (without loss of generality)
that P corresponds to the maximal ideal mp = (x,7) in Oglx]. The irreducibility of the

tangent cone means that there exists g € mp such that g° = f(x) (mod m%,). We have the
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freedom to add elements of m12, to g, so we may assume that g = ax + b, where a and b

are in Oy. After an invertible change of variables, we may thus assume that g = x, and so
f(x)=x> (mod m}).

This implies that if we write f(x) = Z?:o ciXi with cj € Ok, then v(cy) > 4, v(c;) > 3,
v(cy) = 2,and v(cy) = 0. On the other hand, the minimality of the Weierstrass equation
implies that either v(c,) < 6, v(c;) < 4, or v(cy) < 2. So v(c;) = 3 or v(cy) € {4, 5}.

After blowing up at P, the strict transform D/ of D meets the exceptional divisor
E, completely in the chart x = xs, at the point Q given by 7 = s = 0. On this chart,
we have f = 73(c38° + (¢cp/m)s? + (¢;/7?)s + ¢y/n3). So D; = D} + E; is cut out by
h = 7(cys® + (cy/)s? + (c1/72)s + ¢y/73).

Now,
c c
h="1s+-% (mod mp).
T T

From this we see that if v(c,) = 4, then the multiplicity m, of D, at x, := Qis 2. Otherwise,
if v(c;) = 3, then m, = 3, and the tangent cone is reducible. In both of these cases, D, is
robustly of multiplicity < 3 at Q. By Lemma 3.12, the same is true for all further D,, at
all points, and we are done.

Lastly, if v(c;) > 3 but v(cy) = 5, then m; = 3 and we take one more blowup at the
point Q. After this blowup, the strict transform D/, of D, meets the exceptional divisor
E, completely in the chart 7 = st at the point R given by s = ¢ = 0. On this chart, we have
that D, = D), + E, is cut out by j := st(css® + (cp/st)s? + (c;/s%t?)s + ¢,/s°t%)/s?. Since
J = ¢35%t (mod m}) (note that = € m%), we see that, taking x; = R, we have m; = 3 and
the tangent cone to D, at R is reducible. So D, is robustly of multiplicity < 3 at R. As in

the previous cases, we are done. |

Proof of Proposition 1.7. By Proposition 3.7, it follows that there exists a minimal
Weierstrass equation y? = f(x) with deg(f) = 3 such that m, € {2,3} for all n. Now
change coordinates on ), = IP’%OK by an element of GL,(Og) (and also all further }),)
to produce a new minimal Weierstrass equation that satisfies Assumption 2.1 — note
that this invertible change of variables does not affect any of the m,. By Corollary
3.4, it then follows that if Xf is the normalization of the model yf in K(X), then
— Art(X;/Og) = Ax - [ |

Remark 3.14. The multiplicity of each singular point of D, being at most 3 is not

sufficient to guarantee equality in every step of the induction. For instance, it is possible
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for m; = 3 and m, = 4 as the genus 2 example y? = (x — 1)(x — 2)(x — 3)(x — 4t?)(x —
5t2)(x — 6t2) over K = C((t)) illustrates. In this case, D, = Dy + E, and for calculating m,
we also need to include the contribution coming from the multiplicity of the point on the

exceptional divisor.
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