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ABSTRACT

In this paper, we propose a learning-based algorithm for hybrid

systems with a twofold purpose: first, to design Lyapunov functions

and, second, to upper bound the cost of solutions to the system. Via

enforcing conditions at finitely many points of a set of interest and

leveraging regularity properties of the maps defining the dynamics

of the system and the stage costs associated to solutions, we extend

the conditions to the entire set of interest. The method employs neu-

ral networks to learn a Lyapunov function and a value-like function

to guarantee the extended pointwise conditions at all points in the

set of interest and thus, guarantee practical asymptotic stability of a

set or provide an upper bound on the cost of solutions, respectively.

The approach is illustrated in a hybrid oscillator system.

CCS CONCEPTS

• Theory of computation → Mathematical optimization; •
Computer systems organization→Robotic autonomy; •Com-
puting methodologies → Machine learning algorithms.
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1 INTRODUCTION

Results on sufficient conditions to guarantee the satisfaction of

dynamical properties, such as stability, safety, and optimality rely

on pointwise conditions involving certificates, e.g., Lyapunov func-

tions, barrier functions, and value functions. Though such condi-

tions are sufficient to characterize the behavior of a system, synthe-

sizing the certificate to satisfy the required conditions is an open

research area, especially when the system dynamics are nonlinear.

On the one hand, different approaches have been considered to syn-

thesize Lyapunov functions for continuous-time systems with spe-

cific dynamics, e.g., sum of squares for polynomial systems [10, 21].

In [24], the authors structure the Lyapunov candidate function such

that it inherently yields a provable stability certificate. In [16], the

authors propose a framework for learning dynamical systems with

stable inference dynamics [2, 17]. In [13], a neural network struc-

ture is proposed to provably overcome the curse of dimensionality

in the synthesis of Lyapunov functions for continuous-time systems

with nonlinear dynamics, whereas in [20] a quadratic Lyapunov

function is optimized to provide stability guarantees. Furthermore,

in [1], a counterexample-guided approach is proposed using finitely

many points, as well as an approach to extend the results to a sub-

set of the state space using satisfiability modulo theories (SMT). A

similar approach is proposed in [5], where the authors opted for a

mixed-integer linear program (MILP) rather than SMT.

On the other hand, the interconnection of physical systems with

computational and communication devices, such as analog-to-digital

converters, sample-and-hold devices, quantizers, or coder/decoders,

etc., and the presence of discrete behavior such as timers that ex-

pire, resets, and impacts, give rise to dynamical systems with both

continuous and discrete behavior, namely, hybrid systems. Such
hybrid dynamics impose additional challenges to the construction

of certificates to guaranteeing a desired dynamical property. In

recent works, synthesizing Lyapunov function using LMI solvers

inside a counter-example guided inductive system framework is

shown to be feasible for switched systems [22]. In [6], the authors

propose a mixed-integer linear program (MILP) to learn a Lyapunov

function for piecewise linear systems. In [27], an approach to learn
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a Lyapunov function given a parametric form with unknown coef-

ficients, based on a system of linear inequality constraints is pro-

posed. Though impactful, these approaches are not general enough

to cover the behavior exhibited by hybrid systems.

To close this gap, in this work, for the broad class of hybrid systems

in [11], we propose methods for neural network-based synthesis of

certificates for asymptotic stability and optimality. Specifically, we

present results for the synthesis of Lyapunov functions and for the

construction of upper bounds on the cost associated to a solution

to a hybrid system. The hybrid systems modeling framework in

[11] is rich enough to cover switched systems, impulsive systems,

algebraic differential equations, and hybrid automata. The main

contribution of our paper is summarized as follows:

• We provide results to extend the satisfaction of stability and

cost upper bound point-wise conditions from finitely many

conveniently selected points to all of the points in a given

compact set.

• We present an algorithm to synthesize a Lyapunov function

that provable guarantees asymptotic stability of a set of interest

for a hybrid system using finitely many points, via training of

a neural network as an optimization program.

• We present an algorithm to synthesize an upper bound on the

cost associated to a solution to a hybrid system using finitely

many points, via training of a neural network as an optimization

program.

To the best of our knowledge, this paper presents the first algorithm

able to synthesize Lyapunov functions and to find upper bounds on

the cost of solutions for hybrid systems modeled as in [11], by only

relying on finitely many samples from the state space. The most

related work we are aware of is [18], where the authors propose

the use of a neural network to learn a control barrier function and

guarantee safety of a set for hybrid systems.

The remainder of the paper is organized as follows. In Section 2,

we present preliminary material. In Section 3, we present the data-

driven design of Lyapunov functions for hybrid systems. Proposi-

tion 3.6 and Theorem 3.8 provide the main results of this section,

focusing on how to extend from finitely many samples to all of the

points in a given compact set of interest so as to guarantee practical

asymptotic stability. Sufficient conditions to find an upper bound

on the cost of solutions to autonomous hybrid systems are pre-

sented in Section 4, along with a data-driven algorithm to construct

cost upper bounds for hybrid systems. An example illustrating the

approach is presented in Section 5. Due to space limitations, the

proofs of most results have been omitted and will be published

elsewhere.

Notation. Given two vectors, 𝑥 and 𝑦, we use the equivalent no-

tation (𝑥,𝑦) = [𝑥⊤𝑦⊤]⊤, and ⟨𝑥,𝑦⟩ denotes the Euclidean inner

product. We denote by 𝑥⊤ the transpose of 𝑥 and by |𝑥 | a vector
(e.g., Euclidean) norm of 𝑥 . The symbol N denotes the set of natu-

ral numbers, including zero. The symbol R denotes the set of real

numbers, and R≥0 denotes the set of nonnegative reals. Given a

vector 𝑥 and a nonempty setA, the distance from 𝑥 toA is defined

as |𝑥 |A = inf𝑦∈A |𝑥 − 𝑦 |. We represent by B the closed Euclidean

unit ball and by 𝑥 + 𝜀B the closed ball of radius 𝜀 centered at 𝑥

and by A + 𝜀B B {𝑎 + 𝑏 : 𝑎 ∈ A, 𝑏 ∈ 𝜀B} the Minkowski sum of

A and 𝜀B . We denote by card(A) the cardinality of A, by intA
its interior, by A its closure, by vol(A) its Lebesgue measure, and

𝑧 ∼ U(A) denotes that an element 𝑧 is sampled from the uniform

probability distribution over the set A. Given an open set 𝑈 , the

function 𝑓 : 𝑈 → R𝑛 is said to be of differentiability class C𝑘 if the

derivatives 𝑓 ′, 𝑓 ′′, . . . , 𝑓 (𝑘 ) exist and are continuous on𝑈 . A func-

tion 𝛼 : R≥0 → R≥0 is a class-K function, also written as 𝛼 ∈ K ,

if 𝛼 is zero at zero, continuous, and strictly increasing. Similarly, a

function 𝛽 : R≥0 × R≥0 → R≥0 is said to belong to class-KL if it

is continuous, nondecreasing in its first argument, nonincreasing

in its second argument and lim𝑟→0
+
0
𝛽 (𝑟, 𝑠) = 0 for each 𝑠 ∈ R≥0,

and lim𝑠→∞ 𝛽 (𝑟, 𝑠) = 0 for each 𝑟 ∈ R≥0.

2 PRELIMINARIES

2.1 Modeling Hybrid Systems

This paper considers hybrid systems that will be modeled based

on the framework in [11]. In such a framework, the continuous

dynamics of the system are modeled by differential equations with

constraints, while the discrete dynamics are modeled by difference

equations with constraints. A hybrid dynamical systemH is defined

as

H :

{
¤𝑥 = 𝐹 (𝑥) 𝑥 ∈ 𝐶

𝑥+ = 𝐺 (𝑥) 𝑥 ∈ 𝐷
(1)

where 𝑥 ∈ R𝑛 is the state. The flow map 𝐹 : R𝑛→R𝑛 captures the

continuous evolution of the system, when the state is in the flow
set 𝐶 . The jump map 𝐺 : R𝑛→R𝑛 describes the discrete evolution

of the system when the state is in the jump set 𝐷 .

Since solutions to the dynamical system H as in (1) can exhibit

both continuous and discrete behavior, we use ordinary time 𝑡 to

determine the amount of flow elapsed and a counter 𝑗 ∈ N that

keeps track of the number of jumps that have occurred. Based on

this parametrization of time, the concept of hybrid time domain,

over which solutions to H are defined, is as follows.

Definition 2.1. (Hybrid time domain) A set 𝐸 ⊂ R≥0 × N is a
hybrid time domain if, for each (𝑇, 𝐽 ) ∈ 𝐸, the set 𝐸 ∩ ([0,𝑇 ] ×
{0, 1, 2, . . . , 𝐽 }) is a compact hybrid time domain, i.e., it can be writ-
ten in the form

⋃𝐽
𝑗=0

( [𝑡 𝑗 , 𝑡 𝑗+1] × { 𝑗}) for some finite nondecreasing

sequence of times {𝑡 𝑗 }𝐽 +1𝑗=0
with 𝑡 𝐽 +1 = 𝑇 . Each element (𝑡, 𝑗) ∈ 𝐸

denotes the elapsed hybrid time, which indicates that 𝑡 seconds of flow
time and 𝑗 jumps have occurred.

A hybrid signal is a function defined on a hybrid time domain. Given

a hybrid signal 𝜙 and 𝑗 ∈ N, we define 𝐼 𝑗
𝜙
:= {𝑡 : (𝑡, 𝑗) ∈ dom𝜙}.

Definition 2.2. (Hybrid arc) A hybrid signal 𝜙 : dom𝜙 → R𝑛

is called a hybrid arc if, for each 𝑗 ∈ N, the function 𝑡 ↦→ 𝜙 (𝑡, 𝑗) is



A Data-Driven Approach for Certifying Asymptotic Stability
and Cost Evaluation for Hybrid Systems HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

locally absolutely continuous on the interval 𝐼 𝑗
𝜙
. A hybrid arc 𝜙 is

said to be compact if dom𝜙 is compact.

Let X be the set of hybrid arcs 𝜙 : dom 𝜙 → R𝑛 . A solution to the

hybrid system H is defined as follows.

Definition 2.3. (Solution to H ) A hybrid arc 𝜙 defines a solution
to H in (1) if 𝜙 ∈ X,

1) 𝜙 (0, 0) ∈ 𝐶 or 𝜙 (0, 0) ∈ 𝐷 ,

2) For each 𝑗 ∈ N such that 𝐼 𝑗
𝜙
has a nonempty interior int𝐼 𝑗

𝜙
, we

have, for all 𝑡 ∈ int𝐼
𝑗

𝜙
,

𝜙 (𝑡, 𝑗) ∈ 𝐶

and, for almost all 𝑡 ∈ 𝐼
𝑗

𝜙
,

𝑑

𝑑𝑡
𝜙 (𝑡, 𝑗) = 𝐹 (𝜙 (𝑡, 𝑗))

3) For all (𝑡, 𝑗) ∈ dom𝜙 such that (𝑡, 𝑗 + 1) ∈ dom𝜙 ,

𝜙 (𝑡, 𝑗) ∈ 𝐷

𝜙 (𝑡, 𝑗 + 1) = 𝐺 (𝜙 (𝑡, 𝑗))

A solution 𝜙 is a compact solution if 𝜙 is a compact hybrid arc; see

Definition 2.2. A solution 𝜙 toH from 𝜉 ∈ R𝑛 is complete if dom𝜙

is unbounded. It is maximal if there is no solution 𝜑 from 𝜉 such

that 𝜙 (𝑡, 𝑗) = 𝜑 (𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom𝜙 and dom𝜙 is a proper

subset of dom𝜑 . We denote by
ˆSH (𝑀) the set of solutions 𝜙 to

H such that 𝜙 (0, 0) ∈ 𝑀 . The set SH (𝑀) ⊂ ˆSH (𝑀) denotes all
maximal solution from𝑀 . We define sup𝑡 dom𝜙 := sup{𝑡 ∈ R≥0 :
∃ 𝑗 ∈ N s.t. (𝑡, 𝑗) ∈ dom𝜙} and sup𝑗 dom𝜙 := sup{ 𝑗 ∈ N : ∃𝑡 ∈
R≥0 s.t. (𝑡, 𝑗) ∈ dom𝜙}.

Well-posed hybrid systems refer to a class of hybrid systems where

the solutions satisfy very useful structural properties [11]. A hybrid

system H as in (1) is well-posed if the basic conditions hold.

Assumption 2.4. (Hybrid Basic Conditions) Given a hybrid system
H as in (1), i) the sets𝐶 and𝐷 are closed subsets ofR𝑛 , and ii) the flow
map 𝐹 : R𝑛 → R𝑛 and the jump map 𝐺 : R𝑛 → R𝑛 are continuous.

2.2 Stability for Hybrid Systems

The following definition provides the notion of pre-asymptotic

stability of a closed set of interest for hybrid systems as in (1).

Definition 2.5. (Pre-asymptotic stability (pAS)) Given a hybrid
system H = (𝐶, 𝐹, 𝐷,𝐺) as in (1), a nonempty set A ⊂ R𝑛 is said to
be

• stable for H if, for each 𝜖 > 0, there exists 𝛿 > 0 such that

|𝜙 (0, 0) |A ≤ 𝛿 =⇒ |𝜙 (𝑡, 𝑗) |A ≤ 𝜖 ∀(𝑡, 𝑗) ∈ dom𝜙

for each solution 𝜙 to H ;

• pre-attractive (pA) for H if there exists 𝜇 > 0 such that every
solution 𝜙 to H with

|𝜙 (0, 0) |A ≤ 𝜇

is such that (𝑡, 𝑗) ↦→ |𝜙 (𝑡, 𝑗) |A is bounded and if 𝜙 is complete

lim

(𝑡, 𝑗 ) ∈dom𝜙
𝑡+𝑗→∞

|𝜙 (𝑡, 𝑗) |A = 0;

• pre-asymptotically stable (pAS) for H if it is stable and pre-
attractive for H .

• practically pre-asymptotically stable for H with respect to an
associated parameter 𝜀 > 0 if, for a given 𝜇 > 0 and a compact
set U ⊂ R𝑛 , there exists 𝛽 ∈ KL such that for a small enough
value of 𝜀, each solution 𝜙 toH , with 𝜙 (0, 0) ∈ (𝐶 ∪𝐷) ∩U and
remaining in (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)) ∩ U, satisfies

|𝜙 (𝑡, 𝑗) |A ≤ 𝛽 ( |𝜙 (0, 0) |A , 𝑡 + 𝑗) + 𝜇 ∀(𝑡, 𝑗) ∈ dom𝜙.

The conditions guaranteeing pAS of A for H without computing

solutions to H rely on Lyapunov functions.

Definition 2.6. (Lyapunov function candidate [26, Definition 3.17])

Given the sets U,A ⊂ R𝑛 , the function 𝑉 : dom𝑉 → R defines a
Lyapunov function candidate on U with respect to A for H if the
following conditions hold:

1) (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)) ∩ U ⊂ dom𝑉 ;

2) U contains an open neighborhood of A ∩ (𝐶 ∪ 𝐷 ∪𝐺 (𝐷));

3) 𝑉 is continuous on U and locally Lipschitz on an open set con-
taining 𝐶 ∩U;

4) 𝑉 is positive definite1 on (𝐶 ∪𝐷 ∪𝐺 (𝐷)) ∩U with respect toA.

Theorem 2.7. (Sufficient Lyapunov conditions for pre-asymptotic

stability [26, Theorem 3.19]) Consider the sets U ⊂ R𝑛 , compact
A ⊂ R𝑛 , and a function 𝑉 : dom𝑉 → R defining a Lyapunov
function candidate on U with respect to A for a system H as in (1).
If H satisfies Assumption 2.4, 𝑉 ∈ PD(A), and

⟨∇𝑉 (𝑥), 𝐹 (𝑥)⟩ < 0 ∀𝑥 ∈ (𝐶 ∩U) \ A (2a)

𝑉 (𝐺 (𝑥)) −𝑉 (𝑥) < 0 ∀𝑥 ∈ (𝐷 ∩U) \ A (2b)

then A is pAS for H .

If the function 𝑉 : dom𝑉 → R defining a Lyapunov function can-

didate on U with respect to A satisfies the conditions in Theorem

2.7 that guarantee pAS of a nonempty set A forH , then it is said

to be a Lyapunov function on U with respect to A forH .

1
We say that a function 𝑔 : dom𝑔 → R≥0 is positive definite with respect to a set 𝐾 ,

also written as 𝑔 ∈ PD(𝐾 ) , if 𝑔 (𝑥 ) = 0 for any 𝑥 ∈ dom𝑔 ∩ 𝐾 and 𝑔 (𝑥 ) > 0 for

any 𝑥 ∈ dom𝑔 \𝐾 .
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3 ON THE DESIGN OF LYAPUNOV FUNCTIONS
FOR HYBRID SYSTEMS

In this section, our main objective is to design a Lyapunov function

that guarantees asymptotic stability of a set of interest for a system

with dynamicsH as in (1) via learning-based methods. Specifically,

we solve an optimization program at finitely many points satisfying

sufficient stability pointwise conditions. Via a strategic selection of

such points, we provide sufficient conditions to guarantee that the

set of interest is stable for H at any point of the state space.

3.1 Sets of Flow and Jump Data

Our data-driven approach relies on enforcing conditions on finitely

many samples of a set of interest and, under appropriate assump-

tions, characterize the behavior of all of the points in the set. To

provably extend the conditions from samples to the entire set, we

use 𝜀−nets, as defined next.

Definition 3.1. (𝜀-Nets) Given 𝜀 > 0 and a set 𝑋 ⊂ R𝑛 , the set
𝑋𝜀 ⊂ R𝑛 is said to be an 𝜀−net over 𝑋 if, for all 𝑥 ∈ 𝑋 , there exists
𝑥 ′ ∈ 𝑋𝜀 such that |𝑥 − 𝑥 ′ | ≤ 𝜀.

Equivalently, 𝑋𝜀 is an 𝜀-net over 𝑋 if and only if 𝑋 can be covered

by balls with centers in 𝑋𝜀 and radii 𝜀. In particular,

𝑋 ⊆
⋃
𝑥 ′∈𝑋𝜀

𝑥 ′ + 𝜀B.

Proposition 3.2. (Lower bound on the cardinality of F𝐶 and F𝐷
[28, Proposition 4.2.12]) Given a compact setU ⊂ R𝑛 , let F★ be an
𝜀-net over ★ ∩ U, with ★ ∈ {𝐶, 𝐷}. The smallest number of closed
balls with centers in ★∩U and radii 𝜀 whose union covers ★∩U is
lower bounded by

card(F★) ≥
1

𝜀𝑛
vol (★∩U)
vol (B) . (3)

The proof can be derived using [28, Proposition 4.2.12]. To con-

struct an 𝜀−net over ★∩ U, a simple randomized algorithm that

repeatedly uniformly samples ★∩U works with high probability

[28, Lemma 4.2.6]. Therefore, as long as we can efficiently sample

from ★∩U this is a feasible approach. Alternatively, following the

lines of [3], a gridding approach can be considered.

If an 𝜀−net can cover a set of interest, the conditions enforced at the

centers of every ball (samples) can be extended, under appropriate

assumptions, to every point in the set. We elaborate on this in

Section 3.3.

Consider a systemwith dynamicsH as in (1), described by (𝐶, 𝐹, 𝐷,𝐺),
a compact setA ⊂ R𝑛 that we seek to render asymptotically stable

for H , and a set U ⊂ R𝑛 that contains an open neighborhood of

A ∩ (𝐶 ∪ 𝐷). For given 𝜀 > 0, the set of flow data F𝐶 , and the set

of jump data F𝐷 , are 𝜀−nets over 𝐶 ∩U and 𝐷 ∩U, respectively,

as in Definition 3.1, and are defined as
2

F𝐶 B
{
𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑛𝐶 ) i.i.d∼ U(𝐶 ∩U)

}
, (4a)

F𝐷 B
{
𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑛𝐷 ) i.i.d∼ U(𝐷 ∩U)

}
, (4b)

which are collections of finitely many independent and identically

distributed (i.i.d) samples from the corresponding set, namely,𝐶∩U
and 𝐷 ∩U, respectively.

3.2 Computing a Sampled-Based Lyapunov
Function via Learning

With the aim of guaranteeing asymptotic stability of the set A via

learning a Lyapunov function for H on U with respect to A from

sampled data, under Assumption 2.4, we propose an optimization

program with conditions (2a) and (2b) as constraints, enforced at

the points that define the sets of flow data F𝐶 and of jump data F𝐷 ,
respectively.

We model the Lyapunov function candidate –see Section 2.2– as a

neural network (NN). NNs are adaptive basis functions regressors,

namely, a series of stacked generalized linear models (GLMs) [12],

defined as

𝑥 ↦→ 𝑉𝜃 (𝑥) =
(
𝑧 (𝑑 ) ◦ · · · ◦ 𝑧 (1)

)
(𝑥), (5)

where 𝑑 ∈ N denotes the depth of the neural network (number of

layers), and 𝑤 ↦→ 𝑧 (𝑚) (𝑤), with 𝑚 ∈ {1, 2, . . . , 𝑑}, describes the
𝑚-th hidden network layer, defined as

𝑤 ↦→ 𝑧 (𝑚) (𝑤) B
(
𝑧
(𝑚)
1

(𝑤), 𝑧 (𝑚)
2

(𝑤), · · · , 𝑧 (𝑚)
𝑞𝑚 (𝑤)

)
, (6)

with dimension 𝑞𝑚 ∈ N. Given a nonlinear activation function
3

𝜑 : R→ R, the neurons are defined as

𝑤 ↦→ 𝑧
(𝑚)
𝑖

(𝑤) = 𝜑

(〈
𝜃
(𝑚)
𝑖

,𝑤

〉)
,

∀𝑖 ∈ {1, 2, . . . , 𝑞𝑚},
∀𝑚 ∈ {1, 2, . . . , 𝑑} (7)

where 𝜃
(𝑚)
𝑖

∈ R𝑞𝑚−1
are design parameters, with 𝑞0 = 𝑛. The

dimension of the resulting network parameter vector

𝜃 =

(
𝜃
(1)
1

, · · · , 𝜃 (1)𝑞1 , 𝜃
(2)
1

, · · · , 𝜃 (2)𝑞2 , · · · , 𝜃 (𝑑 )
1

, · · · , 𝜃 (𝑑 )𝑞𝑑

)
∈ R𝑟 ,

(8)

which is the stack of vectors 𝜃
(𝑚)
𝑖

, satisfies

𝑟 =

𝑑∑︁
𝑚=1

𝑞𝑚−1𝑞𝑚 .

The design parameters 𝜃 ∈ R𝑟 are initialized at random values.

Then, 𝜃 is updated based on the datasets F𝐶 and F𝐷 such that the

candidate function 𝑉𝜃 satisfies the desired properties encoded in

the optimization program (this process is known as learning). The

final parameters are referred to as learned parameters.

2
Note that each 𝑥 (𝑖 ) ∈ F★ is a point sampled from the uniform distribution over

★∩ U, with★ ∈ {𝐶,𝐷 }, not necessarily related to a particular solution 𝜙 to H.

3
The activation function computes the node’s output by evaluating its inputs alongside

their corresponding weights.
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Assumption 3.3. Given the sets 𝐶, 𝐷,U ⊂ R𝑛 , compact A ⊂ R𝑛
with nonemptyA∩U∩ (𝐶 ∪𝐷), a network parameter vector 𝜃 as in
(8), and the candidate function 𝑉𝜃 , suppose that 𝜃 is such that there
exist 𝛼1, 𝛼2 ∈ K satisfying

𝛼1 ( |𝑥 |A ) ≤ 𝑉𝜃 (𝑥) ≤ 𝛼2 ( |𝑥 |A ) ∀𝑥 ∈ (𝐶 ∪ 𝐷) ∩ U . (9)

Notice that if Assumption 3.3 holds, then the function𝑉𝜃 is positive

definite on (𝐶 ∪ 𝐷) ∩ U with respect to A for any nontrivial

parameters 𝜃 . We formally introduce the process of learning a

Lyapunov function from data.

Proposition 3.4. (Robust Program for Stability) Consider a hybrid
systemH as in (1) described by (𝐶, 𝐹, 𝐷,𝐺), satisfying Assumption
2.4, a compact set A ⊂ R𝑛 and a setU ⊂ R𝑛 that contains an open
neighborhood of A ∩ (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)), and a function 𝑉𝜃 as in (5)

satisfying Assumption 3.3. If the optimization program
min

𝜃 ∈R𝑟
|𝜃 |2

s.t.
〈
∇𝑉𝜃 (𝑥), 𝐹 (𝑥)

〉
< 0 ∀𝑥 ∈ (𝐶 ∩U) \ A,

𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) < 0 ∀𝑥 ∈ (𝐷 ∩U) \ A

(10)

is feasible, then 𝑉𝜃 is a Lyapunov function on U with respect to A
for H and A is pre-asymptotically stable for H .

Proof. Assume (10) is feasible. Then, there exist 𝜃 ∈ R𝑟 defining
the function 𝑉𝜃 satisfying〈

∇𝑉𝜃 (𝑥), 𝐹 (𝑥)
〉
< 0 ∀𝑥 ∈ (𝐶 ∩U) \ A,

𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) < 0 ∀𝑥 ∈ (𝐷 ∩U) \ A

Thus, such𝑉𝜃 satisfies (2). Given that by design, dom𝑉𝜃 := R𝑛 , 𝑉𝜃 ∗

is continuous onU and locally Lipschitz on an open set containing

𝐶 ∩U [8], and given that, thanks to Assumption 3.3,𝑉𝜃 ∗ is positive

definite on (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)) ∩ U with respect to A, then 𝑉𝜃 ∗ is a

Lyapunov function onU with respect to A forH , as in Definition

2.6, and thanks to Theorem 2.7, we have that A is pAS for H . □

As stated in the previous section, (10) requires constraints satisfac-

tion for infinitely many points in 𝐶 ∩U, which is computationally

intractable. Therefore, we compute a tractable approximation to

the optimization program in (10) through a scenario
4
program in

which only finitely many samples are considered. Given design

parameters 𝜏𝐶 , 𝜏𝐷> 0, and 𝜇 > 𝜀> 0:

min

𝜃 ∈R𝑟
|𝜃 |2

s.t.

〈
∇𝑉𝜃 (𝑥 ′), 𝐹 (𝑥 ′)

〉
≤ −𝜏𝐶 ∀𝑥 ′ ∈ F𝐶 \ (A + 𝜇B),

𝑉𝜃 (𝐺 (𝑥 ′)) −𝑉𝜃 (𝑥 ′) ≤ −𝜏𝐷 ∀𝑥 ′ ∈ F𝐶 \ (A + 𝜇B)

(11)

Notice that if we allow 𝜇 ≤ 𝜀 or define the constraints in (11) at

(F𝐶 ∪ F𝐷 ) \ A, generalizing such conditions to every 𝜀−ball with
center at (F𝐶 ∪ F𝐷 ) \ A will impose undesired conditions on A.

This justifies enforcing the constraints only outside a 𝜇−ball around
4
Referring to the fact that (10) will be solved at finitely many state values [19].

A. Naturally, this does not entail a cost-free implementation, and a

discussion on its implications is included after Theorem 3.10.

3.3 Generalizing Lyapunov Conditions from
Sampled Data

We aim to generalize the conditions enforced at the points in the

flow and jump data sets to every point in (𝐶 ∪𝐷) ∩U. Thus, taking

advantage of the fact that an 𝜀−net can be constructed with centers

at the points in F𝐶 , F𝐷 and covering (𝐶 ∩ U) \ (A + 𝜇B) and
(𝐷 ∩ U) \ (A + 𝜇B), respectively, the parameters 𝜏𝐶 and 𝜏𝐷 in

the constraints in (11) can be conveniently chosen such that the

Lipschitz continuity
5
of 𝑉𝜃 ∗ as in (5), of its gradient, and of its time

derivative guarantee that the Lyapunov conditions (2a) and (2b)

hold at all points in (𝐶 ∩U) \ (A + 𝜇B) and (𝐷 ∩U) \ (A + 𝜇B),
respectively.

3.3.1 Lipschitz Continuity of the derivative of 𝑉𝜃 . Sufficient con-

ditions to guarantee Lipschitz continuity of 𝑉𝜃 include Lipschitz

continuity of the activation function 𝜑 defining 𝑉𝜃 , as follows.

Lemma 3.5. (Lipschitz continuity of the Lyapunov function candi-

date) Consider a compact set the function 𝑉𝜃 as in (5) with 𝑑 layers
and network parameter vector 𝜃 . If the activation function 𝜑 defining
𝑉𝜃 is 𝐿𝜑 -Lipschitz continuous, then 𝑉𝜃 is 𝐿

𝑉𝜃
−Lipschitz continuous.

Lemma 3.6. (Lipschitz continuity of the gradient of 𝑉𝜃 ) Consider
a hybrid system H as in (1), described by (𝐶, 𝐹, 𝐷,𝐺), a compact set
U ⊂ R𝑛 , and a function 𝑉𝜃 as in (5). Assume that the activation
function 𝜑 defining 𝑉𝜃 is C2. Then, the gradient of 𝑉𝜃 , namely ∇𝑉𝜃 ,
is locally 𝐿∇𝑉𝜃−Lipschitz on (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)) ∩ U.

Finally, we will leverage these results to prove Lipschitz continuity

of the time derivative of 𝑉𝜃 .

Proposition 3.7. (Lipschitz continuity of
¤̂
𝑉 𝜃 ) Consider the func-

tion 𝑉𝜃 as in (5) and a hybrid system H = (𝐶, 𝐹, 𝐷,𝐺) as in (1).
Assume that the flow map 𝐹 : 𝐶 → R𝑛 is locally 𝐿𝐹 -Lipschitz
on 𝐶 ∩ U, and there exists 𝜂𝐹 > 0 such that |𝐹 (𝑥) | ≤ 𝜂𝐹 for all
𝑥 ∈ 𝐶 ∩ U, and the conditions in Lemma 3.5 and Lemma 3.6 hold,
namely the activation function 𝜑 defining 𝑉𝜃 is 𝐿𝜑 -Lipschitz con-
tinuous and its gradient ∇𝜑 is 𝐿∇𝜑−Lipschitz continuous. Then, the
function ¤̂

𝑉 𝜃 (𝑥) B ⟨∇𝑉𝜃 (𝑥), 𝐹 (𝑥)⟩ is Lipschitz continuous with con-
stant 𝐿 ¤̂

𝑉 𝜃

:= 𝐿∇𝑉𝜃𝜂𝐹 + 𝐿
𝑉𝜃
𝐿𝐹 .

Proposition 3.8. (Generalized Lyapunov Conditions) Given com-
pact setsU,A ⊂ R𝑛 , consider the hybrid systemH = (𝐶, 𝐹, 𝐷,𝐺) as
in (1), with 𝐹 locally𝐿𝐹−Lipschitz on𝐶∩U and𝐺 locally𝐿𝐺−Lipschitz
on 𝐷 ∩ U, a Lipschitz function 𝑉𝜃 as in (5) with constant 𝐿

𝑉𝜃
over

(𝐶 ∪ 𝐷) ∩ U, and 𝐿 ¤̂
𝑉 𝜃

−Lipschitz time derivative on 𝐶 ∩U. Given

𝜀 > 0 defining F𝐶 and F𝐷 as 𝜀−nets over 𝐶 ∩ U and over 𝐷 ∩ U,

5
We follow the definition of Lipschitz continuity in [26, Definition A.21], and use

interchangeably the terms 𝐿-Lipschtiz continuous and Lipschitz continuous with

constant 𝐿.
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respectively, if, for some 𝜏𝐶 > 𝐿 ¤̂
𝑉 𝜃

𝜀, 𝜏𝐷 > 𝐿
𝑉𝜃

(1 + 𝐿𝐺 )𝜀, 𝜇 > 𝜀, we

have 〈
∇𝑉𝜃 (𝑥 ′), 𝐹 (𝑥 ′)

〉
≤ −𝜏𝐶 ∀𝑥 ′ ∈ F𝐶 \ (A + 𝜇B), (12a)

𝑉𝜃 (𝐺 (𝑥 ′)) −𝑉𝜃 (𝑥 ′) ≤ −𝜏𝐷 ∀𝑥 ′ ∈ F𝐷 \ (A + 𝜇B), (12b)

then, 〈
∇𝑉𝜃 (𝑥), 𝐹 (𝑥)

〉
< 0 ∀𝑥 ∈ (𝐶 ∩U) \ (A + 𝜇B), (13a)

𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) < 0 ∀𝑥 ∈ (𝐷 ∩U) \ (A + 𝜇B) . (13b)

Proposition 3.8 implies that, as the chosen 𝜇 is closer to zero, the

number of closed balls needed to cover (𝐶 ∩ U) \ (A + 𝜇B) and
(𝐷 ∩U) \ (A + 𝜇B) increases, which relaxes (12) since the right-

hand sides in conditions 𝜏𝐶 > 𝐿 ¤̂
𝑉 𝜃

𝜀 and 𝜏𝐷 > 𝐿
𝑉𝜃

(1+𝐿𝐺 )𝜀 become

smaller.

Remark 3.9. (Bootstrap Evaluation) The conditions in Proposi-
tion 3.8 can be used to iteratively find a learning-based Lyapunov
function that satisfies (13). Following [25], given initial parameters
𝑟, 𝑑 , 𝜏𝐶 , 𝜏𝐷> 0, and 𝜃 ∈ R𝑟 , first we solve (11) if feasible (if not,
choose new initial 𝜏𝐶 , 𝜏𝐷 ). Then, take 𝐿 ¤̂

𝑉 𝜃

(𝑥) ≈ |∇ ¤̂
𝑉 𝜃 (𝑥) | for all

𝑥 ∈ 𝐶 ∩ U and 𝐿
Δ𝑉𝜃

(𝑥) ≈ |∇Δ𝑉 (𝑥) | for all 𝑥 ∈ 𝐷 ∩ U, where

Δ𝑉𝜃 (𝑥) = 𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥), and verify

𝜀 − 𝜏𝐶/𝐿 ¤̂
𝑉 𝜃

(𝑥) < 0 ∀𝑥 ∈ F𝐶 \ (A + 𝜇B), (14)

𝜀 − 𝜏𝐷/𝐿Δ𝑉𝜃 (𝑥) < 0 ∀𝑥 ∈ F𝐷 \ (A + 𝜇B) . (15)

If either (14) or (15) do not hold, choose new hyperparameters 𝑟, 𝑑 ,
𝜏𝐶 , and 𝜏𝐷 , then solve (11), and verify (14) and (15) again, iterating
until a feasible set of hyperparameters is found.

3.4 Learning-Based Sufficient Conditions for
Stability

In this section, we show that under suitable assumptions, the solu-

tion to (11) satisfying conditions in Proposition 3.8 allows to learn

a Lyapunov function forH onU with respect to A that satisfies

sufficient conditions to guarantee practical pre-asymptotic stability

of A.

The generalization to (𝐶∪𝐷)∩U of the conditions that are enforced

on the sets F𝐶 , F𝐷 in (11) depends on an adequate construction

of the 𝜀−nets defined by F𝐶 and F𝐷 . Specifically, for each 𝑥 ′ ∈
F𝐶 \ (A + 𝜇B), define

E𝐶 (𝑥 ′) B max

{
𝜀 > 0 : 𝑥 ′ + 𝜀B ⊂ (𝐶 ∩U) \ (A + 𝜇B),

¤̂
𝑉 𝜃 (𝑥) < 0 ∀𝑥 ∈ 𝑥 ′ + 𝜀B

}
and for each 𝑥 ′ ∈ F𝐷 \ (A + 𝜇B), define

E𝐷 (𝑥 ′) B max

{
𝜀 > 0 : 𝑥 ′ + 𝜀B ⊂ (𝐷 ∩U) \ (A + 𝜇B),

𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) < 0 ∀𝑥 ∈ 𝑥 ′ + 𝜀B
}

as the radii of the biggest balls around 𝑥 ′ over which ¤̂
𝑉 𝜃 and Δ𝑉𝜃 are

negative, respectively. Then, we select 𝜀𝐶= min

𝑥 ′∈F𝐶\(A+𝜇B)
E𝐶 (𝑥 ′),

such that the set

G𝐶 B
⋃

𝑥 ′∈F𝐶\(A+𝜇B)
𝑥 ′ + 𝜀𝐶B

is an 𝜀−net over (𝐶∩U) \ (A+𝜇B), and ¤̂
𝑉 𝜃 (𝑥) < 0 for all 𝑥 ∈ (𝐶∩

U)\(A+𝜇B) ⊂ G𝐶 . Likewise, we select 𝜀𝐷= min

𝑥 ′∈F𝐷\(A+𝜇B)
E𝐷 (𝑥 ′),

such that the set

G𝐷 B
⋃

𝑥 ′∈F𝐷\(A+𝜇B)
𝑥 ′ + 𝜀𝐷B

is an 𝜀−net over (𝐷 ∩ U) \ (A + 𝜇B), and Δ𝑉𝜃 (𝑥) < 0 for all

𝑥 ∈ (𝐷 ∩U) \ (A + 𝜇B) ⊂ G𝐷 . Notice we can conveniently define

a single size for the balls of both sets as 𝜀 := max{𝜀𝐶 , 𝜀𝐷 }. In the

following result, we state sufficient conditions to guarantee that,

under a proper definition of the 𝜀−nets covering (𝐶∩U)\ (A+𝜇B)
and (𝐷 ∩U) \ (A + 𝜇B), the conditions over the derivative and the
change of𝑉𝜃 are satisfied at every point in ((𝐶∪𝐷)∩U))\(A+𝜇B).

Theorem 3.10. (Practical pre-asymptotic stability) Given compact
setsU,A ⊂ R𝑛 , consider a hybrid systemH as in (1) described by
(𝐶, 𝐹, 𝐷,𝐺), with 𝐹 locally 𝐿𝐹−Lipschitz on 𝐶 ∩ U and 𝐺 locally
𝐿𝐺−Lipschitz on 𝐷 ∩ U. Given the sets F𝐶 , F𝐷 as in (4) that are
𝜀−nets over 𝐶 ∩ U and 𝐷 ∩ U, respectively, with 𝜀 > 0, assume
there exists a Lipschitz function 𝑉𝜃 as in (5) with constant 𝐿

𝑉𝜃
over

(𝐷 ∪𝐶) ∩U and with 𝐿 ¤̂
𝑉 𝜃

-Lipschitz time derivative over𝐶 ∩U that

satisfies Assumption 3.3, 𝑉𝜃 (A) = {0}, and, for 𝜇 > 𝜀, satisfies〈
∇𝑉𝜃 (𝑥 ′), 𝐹 (𝑥 ′)

〉
≤ −𝜏𝐶 ∀𝑥 ′ ∈ F𝐶 \ (A + 𝜇B), (16a)

𝑉𝜃 (𝐺 (𝑥 ′)) −𝑉𝜃 (𝑥 ′) ≤ −𝜏𝐷 ∀𝑥 ′ ∈ F𝐷 \ (A + 𝜇B), (16b)

for some 𝜏𝐶 > 𝐿 ¤̂
𝑉 𝜃

𝜀 and 𝜏𝐷 > 𝐿
𝑉𝜃

(1 + 𝐿𝐺 )𝜀. Then, A is practically

pre-asymptotically stable for H with respect to 𝜀, i.e., there exists
𝛽 ∈ KL such that each solution 𝜙 toH with 𝜙 (0, 0) ∈ (𝐶 ∪𝐷) ∩U
that stays in (𝐶 ∪ 𝐷 ∪𝐺 (𝐷)) ∩ U, satisfies

|𝜙 (𝑡, 𝑗) |A ≤ 𝛽 ( |𝜙 (0, 0) |A , 𝑡 + 𝑗) + 𝜇 ∀(𝑡, 𝑗) ∈ dom𝜙. (17)

4 COST UPPER BOUND FOR HYBRID SYSTEMS

4.1 Sufficient Conditions for Cost Upper Bound

Following the approach in [9, 14, 15], in this section, we derive an

upper bound on the cost associated to a solution to a hybrid system

H as in (1) without computing the solution itself.

Assumption 4.1. The flow map 𝐹 and the flow set 𝐶 are such that
solutions to ¤𝑥 = 𝐹 (𝑥) 𝑥 ∈ 𝐶 are unique. The jump map 𝐺 is single
valued.

Given 𝜉 ∈ 𝐶∪𝐷 , the stage cost for flows L𝐶 : R𝑛 → R≥0, the stage
cost for jumps L𝐷 : R𝑛 → R≥0, and the terminal cost 𝑞 : R𝑛 → R,
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we define the cost associated to the solution to H from the initial

condition 𝜉 , under Assumption 4.1, as

J (𝜉) :=
sup𝑗 dom𝜙∑︁

𝑗=0

∫ 𝑡 𝑗+1

𝑡 𝑗

L𝐶 (𝜙 (𝑡, 𝑗))𝑑𝑡 +
sup𝑗 dom𝜙−1∑︁

𝑗=0

L𝐷 (𝜙 (𝑡 𝑗+1, 𝑗))

+ lim sup

(𝑡, 𝑗 )→sup dom𝜙

(𝑡, 𝑗 ) ∈dom𝜙

𝑞(𝜙 (𝑡, 𝑗)),

(18)

where {𝑡 𝑗 }
sup𝑗 dom𝜙

𝑗=0
is a nondecreasing sequence associated to the

definition of the hybrid time domain of 𝜙 – see Definition 2.2.

In the next result, following [9], we present sufficient conditions to

compute an upper bound on the cost associated to a solution to H .

As a difference to [9], and similar to [14], note that (18) includes a

terminal cost.

Proposition 4.2. (Cost Upper Bound) Given a hybrid systemH as
in (1), stage costs L𝐶 : R𝑛 → R≥0 and L𝐷 : R𝑛 → R≥0, terminal
cost 𝑞 : R𝑛 → R, and the set U ⊂ R𝑛 , suppose that there exists a
function 𝑉 : dom𝑉 → R, dom𝑉 ⊃ 𝐶 ∩ U, that is continuously
differentiable on an open set containing 𝐶 ∩U, and such that

L𝐶 (𝑥) + ⟨∇𝑉 (𝑥), 𝐹 (𝑥)⟩ ≤ 0 ∀𝑥 ∈ 𝐶 ∩U, (19a)

L𝐷 (𝑥) +𝑉 (𝐺 (𝑥)) −𝑉 (𝑥) ≤ 0 ∀𝑥 ∈ 𝐷 ∩U . (19b)

Let 𝜙 : dom𝜙 → R𝑛 be a solution toH from 𝜉 ∈ (𝐶 ∪ 𝐷) ∩ U and
suppose that (𝑡, 𝑗) ↦→ 𝑉 (𝜙 (𝑡, 𝑗)) is bounded on dom𝜙 and

lim sup

(𝑡, 𝑗 )→sup dom𝜙

(𝑡, 𝑗 ) ∈dom𝜙

𝑉 (𝜙 (𝑡, 𝑗)) = lim sup

(𝑡, 𝑗 )→sup dom𝜙

(𝑡, 𝑗 ) ∈dom𝜙

𝑞(𝜙 (𝑡, 𝑗)) . (20)

Then, it follows that
J (𝜉) ≤ 𝑉 (𝜉) . (21)

By building a function 𝑉 that satisfies the conditions in Proposi-

tion 4.2, we provide an upper bound on the cost, which is computed

by evaluating 𝑉 at the initial condition 𝜉 .

4.2 Sets of Flow and Jump Data for Data-Driven
Cost Upper Bound

Our data-driven approach relies on enforcing conditions on finitely

many points and, under appropriate assumptions, characterize the

behavior of all the points in the set. To provably extend the condi-

tions from samples to the entire set, we use 𝜀−nets, as in Definition

3.1, and guarantee the conditions of interest at every 𝜀−ball. If a
set of interest can be covered by an 𝜀−net, the conditions enforced
at the centers of every ball can be extended, under appropriate

assumptions, to every point in the set of interest.

Consider a hybrid system H as in (1), and a set U ⊂ R𝑛 such that

(𝐶 ∪ 𝐷) ∩ U is nonempty. For given 𝜀 > 0, the set of flow data

F𝐶 and the set of jump data F𝐷 defined as in (4), are 𝜀−nets, as
in Definition 3.1, which are collections of finitely many samples

from the corresponding set. Using F𝐶 and F𝐷 , in the following

sections, we propose a method to find an upper bound to the cost

J associated to a solution to H , by using learning-based methods.

4.3 Sampled-Based Cost Upper Bound
Conditions via Learning

With the aim of learning an upper bound on the cost J associated

to a solution toH from sampled data, under Assumption 2.4, we

propose an optimization program with conditions (19a) and (19b)

as constraints, enforced at the points that define the set of flow

data F𝐶 and of jump data F𝐷 , respectively. By properly choosing

the points of each set, we guarantee a provable extension of the

aforementioned conditions to all the points of a set of interest.

We model the function 𝑉 in Section 4.1 as a neural network as in

Section 3.2, to learn the upper bound on the cost associated to a

solution toH . Thus, 𝑉 is an adaptive basis functions regressor as

in (5), with network parameter vector 𝜃 ∈ R𝑟 .

First, to introduce an optimization program enforcing conditions

(19a) and (19b), we consider the hybrid systemH as in (1) described

by (𝐶, 𝐹, 𝐷,𝐺), under Assumption 2.4, and use 𝑉𝜃 as in (5) to learn

𝑉 . Given the stage costs L𝐶 : R𝑛 → R≥0 and L𝐷 : R𝑛 → R≥0,
and the set U ⊂ R𝑛 , define the terminal cost 𝑞 : R𝑛 → R as

𝑞(𝑥) = 𝑉𝜃 (𝑥) for each 𝑥 ∈ (𝐶∪𝐷) ∩U. We formulate the following

optimization program to compute and evaluate a cost upper bound

as in (21):

min

𝜃 ∈R𝑟
|𝜃 |2

s.t. L𝐶 (𝑥) +
〈
∇𝑉𝜃 (𝑥), 𝐹 (𝑥)

〉
≤ 0 ∀𝑥 ∈ 𝐶 ∩U,

L𝐷 (𝑥) +𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) ≤ 0 ∀𝑥 ∈ 𝐷 ∩U

(22)

Notice that the constraints in (22) are enforced at all (likely infinitely

many) points in (𝐶 ∪𝐷) ∩U, which is computationally intractable.

Therefore, we propose solving a relaxed version of (22) using a

scenario
6
program, given by

min

𝜃 ∈R𝑟
|𝜃 |2

s.t. L𝐶 (𝑥 ′) +
〈
∇𝑉𝜃 (𝑥 ′), 𝐹 (𝑥 ′)

〉
≤ −𝜂𝐶 ∀𝑥 ′ ∈ F𝐶 ,

L𝐷 (𝑥 ′) +𝑉𝜃 (𝐺 (𝑥 ′)) −𝑉𝜃 (𝑥 ′) ≤ −𝜂𝐷 ∀𝑥 ′ ∈ F𝐷

(23)

where F𝐶 , F𝐷 , and 𝜂𝐶 , 𝜂𝐷> 0 are given. In the next section, we

provide sufficient conditions to guarantee that if (23) is feasible,

then we can provide an upper bound on the cost associated to a

solution that starts and remains in (𝐶 ∪𝐷) ∩U, under appropriate

assumptions on 𝐹,𝐺 , and the elements in F𝐶 , F𝐷 . Such upper bound
can be computed without computing solutions to H .

6
Referring to the fact that (22) will be solved at samples of the state space [19].
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Figure 1: Flow set 𝐶, jump set 𝐷 , sampling set U ⊂ R2 for the oscillator with impacts. In (a), we show the coverings over 𝐶 ∩U
and 𝐷 ∩U. We enforce conditions at the sampled points (centers of the balls), and under certain assumptions, generalize them
to the set U to upper bound the cost associated to solutions to (28). In (b), the 𝜀-nets cover the sets (𝐶 ∩ U) \ (A + 𝜇B) and
(𝐷 ∩U) \ (A + 𝜇B), respectively, and by extending the conditions enforced at the centers of the balls to the setU, we guarantee
practical asymptotic stability of A as in Section 3.2.

4.4 Sufficient Conditions for Design of
Learning-Based Cost Upper Bound

In this section, we show that under suitable assumptions, the solu-

tion to (23) allows to construct the function 𝑉 in Section 4.1 with

a structure as in (5), which guarantees the existence of an upper

bound on the cost associated to a solution to H .

Similar to Section 3.2, we aim to extend the conditions enforced at

the points in the flow and jump data sets, F𝐶 and F𝐷 , to every point
in (𝐶 ∪ 𝐷) ∩ U. The parameters 𝜂𝐶 and 𝜂𝐷 in the constraints in

(23) can be conveniently chosen such that the Lipschitz continuity
7

of 𝑉𝜃 as in (5), its gradient, and its time derivative guarantee that

the cost upper bound conditions (19a) and (19b) hold at all points

in 𝐶 ∩U and 𝐷 ∩U, respectively.

The extension to (𝐶 ∪ 𝐷) ∩ U of the conditions that are enforced

on the sets F𝐶 , F𝐷 in (23) depends on an adequate construction of

the 𝜀−nets defined by F𝐶 and F𝐷 . Specifically, for each 𝑥 ′ ∈ F𝐶 ,
define

EJ
𝐶
(𝑥 ′) B max

{
𝜀 > 0 : 𝑥 ′ + 𝜀B ⊂ 𝐶 ∩U,

¤̂
𝑉 𝜃 (𝑥) + L𝐶 (𝑥) ≤ 0 ∀𝑥 ∈ 𝑥 ′ + 𝜀B

}
and for each 𝑥 ′ ∈ F𝐷 , define

EJ
𝐷
(𝑥 ′) B max

{
𝜀 > 0 : 𝑥 ′ + 𝜀B ⊂ 𝐷 ∩U,

𝑉𝜃 (𝐺 (𝑥)) −𝑉𝜃 (𝑥) + L𝐷 (𝑥) ≤ 0 ∀𝑥 ∈ 𝑥 ′ + 𝜀B
}

as the radii of the biggest balls around 𝑥 ′ over which ¤̂
𝑉 𝜃 + L𝐶

and Δ𝑉𝜃 + L𝐷 are nonpositive, respectively. Then, we choose

7
Guaranteed according to Lemmas 3.5, 3.6, and Proposition 3.7.

𝜀= min

𝑥 ′∈F𝐶
EJ
𝐶
(𝑥 ′), such that the set

GJ
𝐶
B

⋃
𝑥 ′∈F𝐶

𝑥 ′ + 𝜀B

is an 𝜀−net over𝐶∩U, and
¤̂
𝑉 𝜃 (𝑥)+L𝐶 (𝑥) ≤ 0 for all 𝑥 ∈ (𝐶∩U) ⊂

GJ
𝐶
. Likewise, we choose 𝜀= min

𝑥 ′∈F𝐷
EJ
𝐷
(𝑥 ′), such that the set

GJ
𝐷
B

⋃
𝑥 ′∈F𝐷

𝑥 ′ + 𝜀B

is an 𝜀−net over 𝐷 ∩ U, and Δ𝑉𝜃 (𝑥) + L𝐷 (𝑥) ≤ 0 for all 𝑥 ∈
(𝐷 ∩ U) ⊂ GJ

𝐷
. In the following result, we state the sufficient

conditions to guarantee that, under a proper definition of the 𝜀−nets
covering 𝐶 ∩U and 𝐷 ∩U, the conditions over the derivative and

the change of𝑉𝜃 are satisfied at every point in in𝐶 ∩U and 𝐷 ∩U,

respectively.

Theorem 4.3. (Data-Driven Cost Upper Bound) Given a compact
set U ⊂ R𝑛 , consider a hybrid system H as in (1), with 𝐹 locally
𝐿𝐹−Lipschitz on𝐶∩U and𝐺 locally 𝐿𝐺−Lipschitz on𝐷∩U, locally
Lipschitz continuous functions L𝐶 : R𝑛 → R≥0 in 𝐶 ∩ U, L𝐷 :

R𝑛 → R≥0 in𝐷∩U, with constants 𝐿𝐶 and 𝐿𝐷 , respectively, defining
the stage cost for flows and jumps, and the terminal cost 𝑞 : R𝑛 → R.
Given the sets F𝐶 , F𝐷 as in (4), suppose that these sets are 𝜀−nets over
𝐶 ∩U and 𝐷 ∩U, respectively, with 𝜀 > 0, and suppose that there
exists a parameter vector 𝜃 ∈ R𝑟 , defining a Lipschitz function 𝑉𝜃 as
in (5) with constant 𝐿

𝑉𝜃
over (𝐶 ∪ 𝐷) ∩ U and with 𝐿 ¤̂

𝑉 𝜃

−Lipschitz
time derivative over 𝐶 ∩U, that satisfies

L𝐶 (𝑥 ′) +
〈
∇𝑉𝜃 (𝑥 ′), 𝐹 (𝑥 ′)

〉
≤ −𝜂𝐶 ∀𝑥 ′ ∈ F𝐶 , (24)

L𝐷 (𝑥 ′) +𝑉𝜃 (𝐺 (𝑥 ′)) −𝑉𝜃 (𝑥 ′) ≤ −𝜂𝐷 ∀𝑥 ′ ∈ F𝐷 , (25)
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with 𝜂𝐶 , 𝜂𝐷 satisfying

𝜂𝐶 ≥ 𝜀 (𝐿𝐶 + 𝐿 ¤̂
𝑉 𝜃

) (26)

𝜂𝐷 ≥ 𝜀 (𝐿
𝑉𝜃

(1 + 𝐿𝐺 ) + 𝐿𝐷 ) . (27)

Let 𝜙 : dom𝜙 → R𝑛 be a solution to H from 𝜉 ∈ (𝐶 ∪ 𝐷) ∩ U
and suppose that (𝑡, 𝑗) ↦→ 𝑉𝜃 (𝜙 (𝑡, 𝑗)) is bounded on dom𝜙 and (20)

holds. Then,
J (𝜉) ≤ 𝑉𝜃 (𝜉).

Remark 4.4. (Data Driven Cost Upper Bound with Asymptotic

Stability) There are results that connect cost evaluation and asymp-
totic stability for hybrid systems [9]. Accordingly, under additional
conditions, the learning-based cost upper bound function presented
in Theorem 4.3 can be rendered as a Lyapunov function to guarantee
practical pAS of a set of interest A .

5 CASE OF STUDY: LYAPUNOV FUNCTION
AND COST UPPER BOUND FOR
OSCILLATOR WITH IMPACTS

To illustrate our proposed algorithm
8
to design Lyapunov functions

and to upper bound the cost of solutions to a hybrid system via

learning, consider the linear oscillator with impacts with dynamics

given by

H


¤𝑥 = 𝐹 (𝑥) B

(
𝑥2

−𝑥1 − 𝜆𝐶𝑥2

)
𝑥 ∈ 𝐶 B

{
𝑥 ∈ R2 : 𝑥1 ≥ 0

}
𝑥+ = 𝐺 (𝑥) B

(
0

−𝜆𝐷𝑥2

)
𝑥 ∈ 𝐷 B

{
𝑥 ∈ R2 : 𝑥1 = 0,

𝑥2 ≤ 0

}
(28)

On the other hand, to certify stability of the set A for the oscillator

in (28) using learning-based methods, we follow a similar approach

using separate coverings for the sets (𝐶 ∩ U) \ (A + 𝜇B) and
(𝐷 ∩U) \ (A + 𝜇B) by finitely many round balls (see Figure 1b).

By enforcing conditions at the centers of such balls that can be

generalized to every point in ((𝐶 ∪ 𝐷) ∩ U) \ (A + 𝜇B), under
proper assumptions, we guarantee practical asymptotic stability of

A for H with respect to 𝜇.

Finally, for the remainder of the section, we consider the following

sampling set

U =
{
𝑥 ∈ R2 | 𝑥2

1
/ℎ2

0
+ 𝑥2

2
/𝑣2

0
≤ 1

}
where ℎ0, 𝑣0 > 0.

5.1 Data-Driven Lyapunov Function

The samples are strategically chosen to form 𝜀-nets over 𝐶 ∩U \
(A + 𝜇B) and 𝐷 ∩ U \ (A + 𝜇B), with 𝜀 = 0.01 and 𝜇 = 1.1𝜀.

To design a learning-based Lyapunov function, we implement a

8
The implementation code can be found at https://github.com/HybridSystemsLab/

LearningLyapunovFunction-HybridOscillator.
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Figure 2: Lyapunov function designed as a neural network
trained on the set U by solving the SP in (11). A hybrid solu-
tion to H from 𝜉 = (1, 0) is shown (in dark blue), illustrating
how 𝑉𝜃 decreases along flows and jumps.

specific structure of a neural network that is positive definite with

respect to the set A = {0} on (𝐶 ∪𝐷) ∩U, which is guaranteed in

[23, Theorem 2], and it is shown in Figure 2. We solve the SP in (11)

with 𝜏𝐶 = 0.037 and 𝜏𝐷 = 0.049 using JAX [4] while following the

augmented Lagrangian method [7] to account for the constraints in

the learning process. First, we verify that the chosen hyperparame-

ters satisfy (14) and (15), and adjust them according to Remark 3.9

until a successful case is found.

Then, leveraging regularity conditions of the neural network and

properties of the 𝜀-nets of the sets of interest, following Proposition

3.8, we extend the pointwise conditions from samples to the set

U, such that the learned 𝑉𝜃 and its derivative satisfy (13). This is

illustrated in Figures 3 and 4. Thanks to Theorem 3.10, we certify

that A = {0} is practically pre-asymptotically stable for H as in

(28) (see Figure 2).

5.2 Data-Driven Cost Upper Bound

Following a similar approach, the samples are strategically chosen

to form 𝜀-nets over 𝐶 ∩ U and 𝐷 ∩ U with 𝜀 = 0.01. We set

𝑥 ↦→ L𝐶 (𝑥) = 0.5|𝑥 |2 and 𝑥 ↦→ L𝐷 (𝑥) = 0.15|𝑥 |2, defining the

stage costs as in the cost functional J in (18). To design a learning-

based cost upper bound, we implement a neural network by solving

the SP in (23), following the augmented Lagrangian approach to

account for the constraints in the learning process. To tune the

hyperparameters, namely. the number of neurons 𝑟 , the number of

layers 𝑑 , the slack variable for flows 𝜂𝐶 , and the slack variable for

jumps 𝜂𝐷 , we also follow Remark 3.9 replacing (14) and (15) by

𝜀 − 𝜂𝐶

𝐿𝐶 (𝑥) + 𝐿 ¤̂
𝑉 𝜃

(𝑥) ≤ 0 ∀𝑥 ∈ F𝐶 ,

https://github.com/HybridSystemsLab/LearningLyapunovFunction-HybridOscillator
https://github.com/HybridSystemsLab/LearningLyapunovFunction-HybridOscillator
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Figure 3: Surface plot of the function 𝑥 ↦→ ¤̂
𝑉 𝜃 (𝑥) B

⟨∇𝑉𝜃 (𝑥), 𝐹 (𝑥)⟩. The flow set 𝐶 and the boundary of the sam-
pling set, namely 𝜕U, are displayed. We show that ¤̂

𝑉 𝜃 < 0 at
(𝐶 ∩U) \ (A + 𝜇B) which is enforced via solving the SP𝜏 in
(11) and by Proposition 3.8.
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Figure 4: Contour plot of the function 𝑥 ↦→ ¤̂
𝑉 𝜃 (𝑥) B〈

∇𝑉𝜃 (𝑥), 𝐹 (𝑥)
〉
. Contours are filled only in the flow set 𝐶,

which confirms ¤̂
𝑉 𝜃 ≤ 0 at 𝐶 ∩U.

𝜀 − 𝜂𝐷

𝐿
𝑉𝜃

(𝑥) (1 + 𝐿𝐺 (𝑥)) + 𝐿𝐷 (𝑥)
≤ 0 ∀𝑥 ∈ F𝐷

therein, respectively, and iterating until a successful case was found,

which yielded 𝜂𝐶 = 0.058 and 𝜂𝐷 = 0.044.

Therefore, leveraging regularity conditions of the neural network

and the properties of the 𝜀-nets covers at the sets of interest, fol-

lowing Section 4, we extend the pointwise conditions from samples
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Figure 5: Cost upper bound function designed as a neural
network trained on the setU by solving the SP in (23) for the
hybrid oscillator (28). An upper bound on the cost of evolving
hybridly from any 𝜉 in (𝐶 ∪𝐷) ∩U is displayed (in blue) with
the neural network evaluated at such a point, which does not
require computing solutions.

to the set U, and thanks to Theorem 4.3, we certify that 𝑉𝜃 (see

Figure 5) defines an upper bound on the cost of solutions to the

oscillator in (28).

6 CONCLUSIONS AND FUTUREWORK

In this work, we propose a data-driven algorithm to synthesize a

Lyapunov function to guarantee asymptotic stability of a set of

interest for a hybrid system. In addition, given a cost functional

associated to solutions to a hybrid system, we propose a data-driven

approach to obtain an upper bound on the cost, which does not

require computing of solutions. Both approaches are based on strate-

gically sampling points from a set of the state space and enforcing

point-wise conditions at them, that under regularity properties, are

generalized to every point of the set.

In future work, we will consider evaluating different data-driven

methods to learn the Lyapunov and value functions and compare

their scaling properties and repeatability. In addition, extending

the results to hybrid inclusions will allow us to address scenarios

with nondeterminism.
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