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ABSTRACT

In this paper, we propose a learning-based algorithm for hybrid
systems with a twofold purpose: first, to design Lyapunov functions
and, second, to upper bound the cost of solutions to the system. Via
enforcing conditions at finitely many points of a set of interest and
leveraging regularity properties of the maps defining the dynamics
of the system and the stage costs associated to solutions, we extend
the conditions to the entire set of interest. The method employs neu-
ral networks to learn a Lyapunov function and a value-like function
to guarantee the extended pointwise conditions at all points in the
set of interest and thus, guarantee practical asymptotic stability of a
set or provide an upper bound on the cost of solutions, respectively.
The approach is illustrated in a hybrid oscillator system.

CCS CONCEPTS

« Theory of computation — Mathematical optimization; «
Computer systems organization — Robotic autonomy; - Com-
puting methodologies — Machine learning algorithms.

KEYWORDS

Hybrid Systems, Data-Driven, Lyapunov Stability, Cost Evaluation

ACM Reference Format:

Carlos A. Montenegro G., Santiago J. Leudo, and Ricardo G. Sanfelice. 2024.
A Data-Driven Approach for Certifying Asymptotic Stability and Cost
Evaluation for Hybrid Systems. In 27th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC ’24), May 14-16, 2024, Hong
Kong, Hong Kong. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3641513.3650122

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HSCC °24, May 14-16, 2024, Hong Kong, Hong Kong

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0522-9/24/05.

https://doi.org/10.1145/3641513.3650122

Santiago J. Leudo
University of California, Santa Cruz,
Santa Cruz, CA 95064, USA

sjimen28@ucsc.edu

Ricardo G. Sanfelice
University of California, Santa Cruz,
Santa Cruz, CA 95064, USA

ricardo@ucsc.edu

1 INTRODUCTION

Results on sufficient conditions to guarantee the satisfaction of
dynamical properties, such as stability, safety, and optimality rely
on pointwise conditions involving certificates, e.g., Lyapunov func-
tions, barrier functions, and value functions. Though such condi-
tions are sufficient to characterize the behavior of a system, synthe-
sizing the certificate to satisfy the required conditions is an open
research area, especially when the system dynamics are nonlinear.

On the one hand, different approaches have been considered to syn-
thesize Lyapunov functions for continuous-time systems with spe-
cific dynamics, e.g., sum of squares for polynomial systems [10, 21].
In [24], the authors structure the Lyapunov candidate function such
that it inherently yields a provable stability certificate. In [16], the
authors propose a framework for learning dynamical systems with
stable inference dynamics [2, 17]. In [13], a neural network struc-
ture is proposed to provably overcome the curse of dimensionality
in the synthesis of Lyapunov functions for continuous-time systems
with nonlinear dynamics, whereas in [20] a quadratic Lyapunov
function is optimized to provide stability guarantees. Furthermore,
in [1], a counterexample-guided approach is proposed using finitely
many points, as well as an approach to extend the results to a sub-
set of the state space using satisfiability modulo theories (SMT). A
similar approach is proposed in [5], where the authors opted for a
mixed-integer linear program (MILP) rather than SMT.

On the other hand, the interconnection of physical systems with
computational and communication devices, such as analog-to-digital
converters, sample-and-hold devices, quantizers, or coder/decoders,
etc., and the presence of discrete behavior such as timers that ex-
pire, resets, and impacts, give rise to dynamical systems with both
continuous and discrete behavior, namely, hybrid systems. Such
hybrid dynamics impose additional challenges to the construction
of certificates to guaranteeing a desired dynamical property. In
recent works, synthesizing Lyapunov function using LMI solvers
inside a counter-example guided inductive system framework is
shown to be feasible for switched systems [22]. In [6], the authors
propose a mixed-integer linear program (MILP) to learn a Lyapunov
function for piecewise linear systems. In [27], an approach to learn


https://orcid.org/ 0009-0004-5710-9039
https://orcid.org/0000-0002-8996-4679
https://orcid.org/0000-0002-6671-5362
https://doi.org/10.1145/3641513.3650122
https://doi.org/10.1145/3641513.3650122
https://doi.org/10.1145/3641513.3650122

HSCC 24, May 14-16, 2024, Hong Kong, Hong Kong

a Lyapunov function given a parametric form with unknown coef-
ficients, based on a system of linear inequality constraints is pro-
posed. Though impactful, these approaches are not general enough
to cover the behavior exhibited by hybrid systems.

To close this gap, in this work, for the broad class of hybrid systems
in [11], we propose methods for neural network-based synthesis of
certificates for asymptotic stability and optimality. Specifically, we
present results for the synthesis of Lyapunov functions and for the
construction of upper bounds on the cost associated to a solution
to a hybrid system. The hybrid systems modeling framework in
[11] is rich enough to cover switched systems, impulsive systems,
algebraic differential equations, and hybrid automata. The main
contribution of our paper is summarized as follows:

e We provide results to extend the satisfaction of stability and
cost upper bound point-wise conditions from finitely many
conveniently selected points to all of the points in a given
compact set.

e We present an algorithm to synthesize a Lyapunov function
that provable guarantees asymptotic stability of a set of interest
for a hybrid system using finitely many points, via training of
a neural network as an optimization program.

e We present an algorithm to synthesize an upper bound on the
cost associated to a solution to a hybrid system using finitely
many points, via training of a neural network as an optimization
program.

To the best of our knowledge, this paper presents the first algorithm
able to synthesize Lyapunov functions and to find upper bounds on
the cost of solutions for hybrid systems modeled as in [11], by only
relying on finitely many samples from the state space. The most
related work we are aware of is [18], where the authors propose
the use of a neural network to learn a control barrier function and
guarantee safety of a set for hybrid systems.

The remainder of the paper is organized as follows. In Section 2,
we present preliminary material. In Section 3, we present the data-
driven design of Lyapunov functions for hybrid systems. Proposi-
tion 3.6 and Theorem 3.8 provide the main results of this section,
focusing on how to extend from finitely many samples to all of the
points in a given compact set of interest so as to guarantee practical
asymptotic stability. Sufficient conditions to find an upper bound
on the cost of solutions to autonomous hybrid systems are pre-
sented in Section 4, along with a data-driven algorithm to construct
cost upper bounds for hybrid systems. An example illustrating the
approach is presented in Section 5. Due to space limitations, the
proofs of most results have been omitted and will be published
elsewhere.

Notation. Given two vectors, x and y, we use the equivalent no-
tation (x,y) = [x"y"]7, and (x,y) denotes the Euclidean inner
product. We denote by xT the transpose of x and by |x| a vector
(e.g., Euclidean) norm of x. The symbol N denotes the set of natu-
ral numbers, including zero. The symbol R denotes the set of real
numbers, and R denotes the set of nonnegative reals. Given a
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vector x and a nonempty set A, the distance from x to A is defined
as |x| g = infye 5 |x — y|. We represent by B the closed Euclidean
unit ball and by x + ¢B the closed ball of radius ¢ centered at x
and by A+¢B = {a+b:aec ADb e B} the Minkowski sum of
A and eB . We denote by card(A) the cardinality of A, by int A
its interior, by A its closure, by vol(A) its Lebesgue measure, and
z ~ U(A) denotes that an element z is sampled from the uniform
probability distribution over the set A. Given an open set U, the
function f : U — R™ is said to be of differentiability class C¥ if the
derivatives f”, f”/, ... ,f(k> exist and are continuous on U. A func-
tion @ : R>¢9 — R is a class-K function, also written as a € %K,
if & is zero at zero, continuous, and strictly increasing. Similarly, a
function f : R>9 X R>9 — R is said to belong to class-K L if it
is continuous, nondecreasing in its first argument, nonincreasing
in its second argument and lim,_,g+o f(r, s) = 0 for each s € R,
and limg_, o0 f(r,s) = 0 for each r € Rx.

2 PRELIMINARIES

2.1 Modeling Hybrid Systems

This paper considers hybrid systems that will be modeled based
on the framework in [11]. In such a framework, the continuous
dynamics of the system are modeled by differential equations with
constraints, while the discrete dynamics are modeled by difference
equations with constraints. A hybrid dynamical system H is defined
as

| x =F(x) xeC
(H'{xJ':G(x) x€eD )

where x € R" is the state. The flow map F : R®*—R" captures the
continuous evolution of the system, when the state is in the flow
set C. The jump map G : R®*—>R" describes the discrete evolution
of the system when the state is in the jump set D.

Since solutions to the dynamical system H as in (1) can exhibit
both continuous and discrete behavior, we use ordinary time ¢ to
determine the amount of flow elapsed and a counter j € N that
keeps track of the number of jumps that have occurred. Based on
this parametrization of time, the concept of hybrid time domain,
over which solutions to H are defined, is as follows.

DEFINITION 2.1. (Hybrid time domain) A set E C Ryg XN isa
hybrid time domain if, for each (T,]) € E, the set EN ([0, T] X
{0,1,2,...,J}) is a compact hybrid time domain, i.e., it can be writ-
ten in the form ULO([tj, tiv1] X {j}) for some finite nondecreasing
sequence of times {t; }{:(1) with tjyy = T. Each element (t,j) € E
denotes the elapsed hybrid time, which indicates that t seconds of flow
time and j jumps have occurred.

Ahybrid signal is a function defined on a hybrid time domain. Given
a hybrid signal ¢ and j € N, we define Ié :={t: (t,j) € domg¢}.

DEFINITION 2.2. (Hybrid arc) A hybrid signal ¢ : dom¢$ — R"
is called a hybrid arc if; for each j € N, the function t — ¢(t, j) is
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locally absolutely continuous on the interval P A hybrid arc ¢ is

¢

said to be compact if dom ¢ is compact.

Let X be the set of hybrid arcs ¢ : dom ¢ — R". A solution to the
hybrid system H is defined as follows.

DEFINITION 2.3. (Solution to H) A hybrid arc ¢ defines a solution
toH in(1)ifp € X,

1) $(0,0) € C or ¢(0,0) € D,

2) For each j € N such that Ié has a nonempty interior intIqJ;, we

have, forallt € intI;;,

¢(t.j) €C

and, for almost all t € Ié,

C9(t.1) = F@ (5. ))

3) Forall (t, j) € dom ¢ such that (t, j + 1) € dom ¢,

¢(t,j) € D
P(t,j+1) = G(g(t, )))

A solution ¢ is a compact solution if ¢ is a compact hybrid arc; see
Definition 2.2. A solution ¢ to H from ¢ € R" is complete if dom ¢
is unbounded. It is maximal if there is no solution ¢ from ¢ such
that ¢(t, j) = ¢(t, j) for all (¢,j) € dom¢ and dom ¢ is a proper
subset of dom ¢. We denote by SH(M) the set of solutions ¢ to
H such that ¢(0,0) € M. The set Sgy(M) C S’«H(M) denotes all
maximal solution from M. We define sup, dom ¢ := sup{t € Rx :
Jj € Nsit. (¢, j) € dom¢} and sup; dom¢ :=sup{j €e N: 3t €
R0 s.t. (¢, j) € dom¢}.

Well-posed hybrid systems refer to a class of hybrid systems where
the solutions satisfy very useful structural properties [11]. A hybrid
system H as in (1) is well-posed if the basic conditions hold.

AssuMPTION 2.4. (Hybrid Basic Conditions) Given a hybrid system
H asin (1), i) the sets C and D are closed subsets of R", and ii) the flow
map F : R" — R" and the jump map G : R™ — R" are continuous.

2.2 Stability for Hybrid Systems

The following definition provides the notion of pre-asymptotic
stability of a closed set of interest for hybrid systems as in (1).

DEFINITION 2.5. (Pre-asymptotic stability (pAS)) Given a hybrid
system H = (C,F, D, G) as in (1), a nonempty set A C R" is said to
be

o stable for H if, for each € > 0, there exists § > 0 such that

19(0,0)|a<é = [(tj)la <e V(t))€domg
for each solution ¢ to H;
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o pre-attractive (pA) for H if there exists i > 0 such that every
solution ¢ to H with

1$(0,0)|a < p

is such that (t, j) — |¢(t, j)| & is bounded and if ¢ is complete

li t,Jj =0;
(t,j)gg)mlﬂ Nla
t+j—o00

o pre-asymptotically stable (pAS) for H if it is stable and pre-
attractive for H.

o practically pre-asymptotically stable for H with respect to an
associated parameter ¢ > 0 if, for a given yi > 0 and a compact
set U C R", there exists f € KL such that for a small enough
value of €, each solution ¢ to H, with $(0,0) € (CUD)NU and
remaining in (CUDUG(D))NU, satisfies

l¢(t, Dl < p14(0,0)| .t +j) +p V(1 j) € dom .

The conditions guaranteeing pAS of A for H without computing
solutions to H rely on Lyapunov functions.

DEFINITION 2.6. (Lyapunov function candidate [26, Definition 3.17])
Given the sets U, A c R", the function V : domV — R defines a
Lyapunov function candidate on U with respect to A for H if the
following conditions hold:

1) (CUDUGD) NU c domV;
2) U contains an open neighborhood of A N (C U D U G(D));

3) V is continuous on U and locally Lipschitz on an open set con-
taining C N U;

4) V is positive definite! on (CUD UG(D)) N U with respect to A.

THEOREM 2.7. (Sufficient Lyapunov conditions for pre-asymptotic
stability [26, Theorem 3.19]) Consider the sets U c R", compact
A c R", and a function V : domV — R defining a Lyapunov
function candidate on U with respect to A for a system H as in (1).
If H satisfies Assumption 2.4,V € PD(A), and

(VV(x),F(x)) <0 Vxe(CNU)\A (2a)
V(G(x)) - V(x) <0 Vxe (DNU)\A (2b)

then A is pAS for H.

If the function V : dom V' — R defining a Lyapunov function can-
didate on U with respect to A satisfies the conditions in Theorem
2.7 that guarantee pAS of a nonempty set A for H, then it is said
to be a Lyapunov function on U with respect to A for H.

'We say that a function g : dom g — R is positive definite with respect to a set K,
also written as g € PD(K), if g(x) = 0 for any x € domg N K and g(x) > 0 for
any x € domg \ K.
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3 ON THE DESIGN OF LYAPUNOYV FUNCTIONS
FOR HYBRID SYSTEMS

In this section, our main objective is to design a Lyapunov function
that guarantees asymptotic stability of a set of interest for a system
with dynamics H as in (1) via learning-based methods. Specifically,
we solve an optimization program at finitely many points satisfying
sufficient stability pointwise conditions. Via a strategic selection of
such points, we provide sufficient conditions to guarantee that the
set of interest is stable for { at any point of the state space.

3.1 Sets of Flow and Jump Data

Our data-driven approach relies on enforcing conditions on finitely
many samples of a set of interest and, under appropriate assump-
tions, characterize the behavior of all of the points in the set. To
provably extend the conditions from samples to the entire set, we
use e—nets, as defined next.

DEFINITION 3.1. (e-Nets) Given ¢ > 0 and a set X C R", the set
X, C R" is said to be an e—net over X if, for all x € X, there exists
x" € X, such that |x — x'| < e.

Equivalently, X, is an e-net over X if and only if X can be covered
by balls with centers in X, and radii ¢. In particular,

Xc U x" +¢B.

x'eX,

ProprosITION 3.2. (Lower bound on the cardinality of ¢ and Fp
[28, Proposition 4.2.12]) Given a compact set U c R", let F5 be an
e-net over x N U, with x € {C, D}. The smallest number of closed
balls with centers in x N U and radii ¢ whose union covers x N U is
lower bounded by

1 vol (x NU)

card () 2 e wol(B)

®)

The proof can be derived using [28, Proposition 4.2.12]. To con-
struct an e—net over x N U, a simple randomized algorithm that
repeatedly uniformly samples * N U works with high probability
[28, Lemma 4.2.6]. Therefore, as long as we can efficiently sample
from * N U this is a feasible approach. Alternatively, following the
lines of [3], a gridding approach can be considered.

If an e—net can cover a set of interest, the conditions enforced at the
centers of every ball (samples) can be extended, under appropriate
assumptions, to every point in the set. We elaborate on this in
Section 3.3.

Consider a system with dynamics H asin (1), described by (C, F, D, G),
a compact set A C R” that we seek to render asymptotically stable
for H, and a set U c R" that contains an open neighborhood of
AN (CU D). For given ¢ > 0, the set of flow data ¥, and the set
of jump data #p, are e—nets over C N U and D N U, respectively,
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as in Definition 3.1, and are defined as?

Fo = fx0x® 0o Hycna), @)
Fo =[x <@, 0yl )

which are collections of finitely many independent and identically
distributed (i.i.d) samples from the corresponding set, namely, CN'U
and D N U, respectively.

3.2 Computing a Sampled-Based Lyapunov
Function via Learning

With the aim of guaranteeing asymptotic stability of the set A via
learning a Lyapunov function for  on U with respect to A from
sampled data, under Assumption 2.4, we propose an optimization
program with conditions (2a) and (2b) as constraints, enforced at
the points that define the sets of flow data ¢ and of jump data ¥p,
respectively.

We model the Lyapunov function candidate —see Section 2.2- as a
neural network (NN). NN are adaptive basis functions regressors,
namely, a series of stacked generalized linear models (GLMs) [12],
defined as

X \79(x) = (z(d) 0---0 z(l)) (x), (5)

where d € N denotes the depth of the neural network (number of
layers), and w +— z(m) (w), withm € {1,2,...,d}, describes the
m-th hidden network layer, defined as

w o 2™ (1) = (zﬁ’") (w), 2™ (w), - ,z;’m”)(w)), ©)

with dimension ¢, € N. Given a nonlinear activation function®
@ : R — R, the neurons are defined as

W'—>Z§m)(w)=(p(<9i(m),w>), Vie{1,2,...,qm}, @

Vme {1,2,...,d}

where Ol.(m) € R9m-1 are design parameters, with go = n. The
dimension of the resulting network parameter vector
— (oM (1) 9(2) (2) (d) (d)
0= (91 s 0,00 07 0T 0 ) eR’,

@)

which is the stack of vectors 91.(m) , satisfies
d
r= Z dm-19m-
m=1

The design parameters 6 € R’ are initialized at random values.
Then, 6 is updated based on the datasets ¥¢ and #p such that the
candidate function ?9 satisfies the desired properties encoded in
the optimization program (this process is known as learning). The
final parameters are referred to as learned parameters.

2Note that each x() € Fy isa point sampled from the uniform distribution over
* N U, with x € {C, D}, not necessarily related to a particular solution ¢ to H.
3The activation function computes the node’s output by evaluating its inputs alongside
their corresponding weights.
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AssUMPTION 3.3.  Given the sets C,D, U c R", compact A c R"
with nonempty ANU N (CUD), a network parameter vector § as in
(8), and the candidate function Ve, suppose that 0 is such that there
exist ay, az € K satisfying

a1(Ix| ) < Vg(x) < aa(lxlq) Vx e (CUD)NU.  (9)

Notice that if Assumption 3.3 holds, then the function \79 is positive
definite on (C U D) N U with respect to A for any nontrivial
parameters 0. We formally introduce the process of learning a
Lyapunov function from data.

PROPOSITION 3.4. (Robust Program for Stability) Consider a hybrid
system H as in (1) described by (C, F, D, G), satisfying Assumption
2.4, a compact set A C R" and a set U C R" that contains an open
neighborhood of A N (C U D U G(D)), and a function \79 as in (5)
satisfying Assumption 3.3. If the optimization program

min |62
0eR"

st (v%(x),F(x)><o Vxe(CnU)\ A,  (10)

Vp(G(x)) = Vp(x) < 0 Vxe (DNU)\ A

is feasible, then Vg is a Lyapunov function on U with respect to A
for H and A is pre-asymptotically stable for H.

ProoF. Assume (10) is feasible. Then, there exist 0 € R” defining
the function Vy satisfying

<Vx79(x),F(x)> <0 Vxe(CnU)\ A,
Vp(G(x)) = Vg(x) <0 Vxe (DNU)\ A

Thus, such ‘79 satisfies (2). Given that by design, dom ‘79 =R", ‘79*
is continuous on U and locally Lipschitz on an open set containing
C N U [8], and given that, thanks to Assumption 3.3, %* is positive
definite on (C U D U G(D)) N U with respect to A, then %* isa
Lyapunov function on U with respect to A for H, as in Definition
2.6, and thanks to Theorem 2.7, we have that A is pAS for H. O

As stated in the previous section, (10) requires constraints satisfac-
tion for infinitely many points in C N U, which is computationally
intractable. Therefore, we compute a tractable approximation to
the optimization program in (10) through a scenario* program in
which only finitely many samples are considered. Given design
parameters 7c, 7p> 0, and p > > 0:

min |0,
OeR"

st <V\79(x'),1:(x’)> < -0 VX eFo\(A+uB), (1)

Vo(G(x")) = Vo(x') < —1p V' € Fe \ (A + iB)

Notice that if we allow p < ¢ or define the constraints in (11) at
(Fc U Fp) \ A, generalizing such conditions to every e—ball with
center at (F¢c U Fp) \ A will impose undesired conditions on A.
This justifies enforcing the constraints only outside a y—ball around

4Referring to the fact that (10) will be solved at finitely many state values [19].
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A. Naturally, this does not entail a cost-free implementation, and a
discussion on its implications is included after Theorem 3.10.

3.3 Generalizing Lyapunov Conditions from
Sampled Data

We aim to generalize the conditions enforced at the points in the
flow and jump data sets to every point in (CU D) N U. Thus, taking
advantage of the fact that an e—net can be constructed with centers
at the points in ¢, Fp and covering (C N U) \ (A + uB) and
(DNU)\ (A + pB), respectively, the parameters 7¢ and 7p in
the constraints in (11) can be conveniently chosen such that the
Lipschitz continuity® of %* as in (5), of its gradient, and of its time
derivative guarantee that the Lyapunov conditions (2a) and (2b)
hold at all points in (CNU) \ (A +pB) and (DN U) \ (A + uB),
respectively.

3.3.1 Lipschitz Continuity of the derivative of‘79. Sufficient con-
ditions to guarantee Lipschitz continuity of Vy include Lipschitz
continuity of the activation function ¢ defining Vjp, as follows.

LEmMA 3.5. (Lipschitz continuity of the Lyapunov function candi-
date) Consider a compact set the function ?9 as in (5) with d layers
and network parameter vector 0. If the activation function ¢ defining
\79 is Ly-Lipschitz continuous, then \79 is L% —Lipschitz continuous.

LEMMA 3.6. (Lipschitz continuity of the gradient of Vg) Consider
a hybrid system H as in (1), described by (C, F, D, G), a compact set
U c R", and a function ‘79 as in (5). Assume that the activation
function ¢ defining \79 is C%. Then, the gradient of\79, namely V%,
is locally LV% —Lipschitzon (CUDUG(D)) NU.

Finally, we will leverage these results to prove Lipschitz continuity
of the time derivative of Vj.

ProrosITION 3.7. (Lipschitz continuity of \79) Consider the func-
tion Vg as in (5) and a hybrid system H = (C,F,D,G) as in (1).
Assume that the flow map F : C — R" is locally Lg-Lipschitz
on C N U, and there exists ng > 0 such that |F(x)| < nf for all
x € CNU, and the conditions in Lemma 3.5 and Lemma 3.6 hold,
namely the activation function ¢ defining Vg is Ly-Lipschitz con-
tinuous and its gradient Vo is Ly ,—Lipschitz continuous. Then, the
function \79 (x) = (V% (x), F(x)) is Lipschitz continuous with con-
stant L§6 = LV{/\QUF + L{}QLF~

ProrosITION 3.8. (Generalized Lyapunov Conditions) Given com-
pact sets U, A c R", consider the hybrid system H = (C, F, D, G) as
in (1), with F locally Lp—Lipschitz on CN'U and G locally Lg—Lipschitz
on D NU, a Lipschitz function ﬁg as in (5) with constantL% over
(CuD)NU, and L‘A/g —Lipschitz time derivative on C N U. Given

& > 0 defining Fc and Fp as e—nets over C N U and over D N U,
SWe follow the definition of Lipschitz continuity in [26, Definition A.21], and use

interchangeably the terms L-Lipschtiz continuous and Lipschitz continuous with
constant L.
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respectively, if, for some ¢ > L‘A/ & 1Tp > L‘A,g(l +Lg)e, p > €, we
0

have
<V179(x’),F(x')> <10 VX eFo\(A+uB), (12a)
Vo(G(x') - Vp(x') < —tp Vx' € Fp \ (A+uB),  (12b)
then,
<v17€(x), F(x)> <0 Vxe(CNU)\(A+uB), (13a)

Vp(G(x) = Vop(x) <0  Vxe (DNU)\ (A+uB). (13b)

Proposition 3.8 implies that, as the chosen p is closer to zero, the
number of closed balls needed to cover (C N U) \ (A + uB) and
(DNU)\ (A + uB) increases, which relaxes (12) since the right-
hand sides in conditions 7¢c > L‘-Alee and 7p > L\79 (1+Lg)e become

smaller.
REMARK 3.9. (Bootstrap Evaluation) The conditions in Proposi-
tion 3.8 can be used to iteratively find a learning-based Lyapunov

function that satisfies (13). Following [25], given initial parameters
r,d, tc,tp> 0, and 0 € R’, first we solve (11) if feasible (if not,

choose new initial ¢, tp ). Then, take L‘A/ (x) ~ |Vv9(x)| for all
0

x € CNU and LA%(x) ~ |VAV(x)| for all x € D N U, where

AV@ (x) = VQ(G(X)) - Vg(x), and verify

e- rc/L% (x) <0 VxeFe\(A+uB), (14)

Vx € Fp \ (A + pB). (15)

If either (14) or (15) do not hold, choose new hyperparametersr,d,
7c, and Tp, then solve (11), and verify (14) and (15) again, iterating
until a feasible set of hyperparameters is found.

E—TD/LA‘79(x) <0

3.4 Learning-Based Sufficient Conditions for
Stability

In this section, we show that under suitable assumptions, the solu-
tion to (11) satisfying conditions in Proposition 3.8 allows to learn
a Lyapunov function for H on U with respect to A that satisfies
sufficient conditions to guarantee practical pre-asymptotic stability
of A.

The generalization to (CUD)NU of the conditions that are enforced
on the sets ¢, Fp in (11) depends on an adequate construction
of the e—nets defined by ¢ and ¥p. Specifically, for each x” €
Fe \ (A + uB), define

Ec(x') = max {e >0:x" +¢B C (CNU)\ (A +uB),

\79(x) <0 Vxex +gIB3}
and for each x” € Fp \ (A + uB), define
Ep(x') = max {g >0:x" +¢B C (DNU)\ (A+uB),

Ua(G(x)) = Va(x) <0 Vxex + gB}

C. Montenegro and S. ). Leudo and R. G. Sanfelice

as the radii of the biggest balls around x” over which 179 and AVj are

negative, respectively. Then, we select ec= min Ec(x),
& P x'€Fe\(A+uB)

such that the set
Ge = U x' +ecB
x' € Fe\(A+uB)

is an e—net over (CNU)\ (A+pB), and \79 (x) <0forallx € (CN

U\ (A+pB) C Ge. Likewise, we select ep= min Ep(x)),
X' €Fp\(A+pB)
such that the set

Gp = U x" +epB
x'€Fp\(A+uB)
is an e—net over (D N U) \ (A + pB), and AVy(x) < 0 for all
x € (DNU)\ (A+pB) c Gp. Notice we can conveniently define
a single size for the balls of both sets as ¢ := max{¢c, ep}. In the
following result, we state sufficient conditions to guarantee that,
under a proper definition of the e—nets covering (CNU) \ (A+pB)
and (DNU) \ (A + uB), the conditions over the derivative and the
change of % are satisfied at every point in ((CUD)NU)) \ (A+uB).

THEOREM 3.10. (Practical pre-asymptotic stability) Given compact
sets U, A C R", consider a hybrid system H as in (1) described by
(C,F,D,G), with F locally Lg—Lipschitz on C N U and G locally
Lg—Lipschitz on D N U. Given the sets Fc, Fp as in (4) that are
e—nets over C N U and D N U, respectively, with ¢ > 0, assume
there exists a Lipschitz function 17,9 as in (5) with constantL% over

(DUC)NU and with Lf/g -Lipschitz time derivative over C N U that
satisfies Assumption 3.3, Vo(A) = {0}, and, for y > ¢, satisfies

<V\79(x’),F(x’)> <-tc VX' e Fo\(A+uB),  (162)

Vp(G(x")) = Vp(x') < —tp  Vx' € Fp \ (A +uB),  (16b)

for some ¢ > L‘A/ eandrp > LVQ (1+ Lg)e. Then, A is practically
0

pre-asymptotically stable for H with respect to ¢, i.e., there exists
B € KL such that each solution ¢ to H with $(0,0) € (CUD)NU
that stays in (CU D U G(D)) N U, satisfies

ot Dl < BU$(0,0)[ A, t+j) +p V(2 j) € domg.  (17)

4 COST UPPER BOUND FOR HYBRID SYSTEMS

4.1 Sufficient Conditions for Cost Upper Bound

Following the approach in [9, 14, 15], in this section, we derive an
upper bound on the cost associated to a solution to a hybrid system
H as in (1) without computing the solution itself.

AssuMPTION 4.1.  The flow map F and the flow set C are such that
solutions to x = F(x) x € C are unique. The jump map G is single
valued.

Given & € CUD, the stage cost for flows L : R" — Ry, the stage
cost for jumps Lp : R" — Ry, and the terminal cost ¢ : R" — R,



A Data-Driven Approach for Certifying Asymptotic Stability
and Cost Evaluation for Hybrid Systems

we define the cost associated to the solution to H from the initial
condition &, under Assumption 4.1, as

sup; dom ¢ i sup; dom¢-1
: n ,
g@= Y [T Lc@emas Y Lo
j=0 t j=0
+  limsup  q(8(t, ))),
(¢,j)—sup dom ¢
(t,j)edome¢
(18)
sup;dom¢ | . .
where {t; j:OJ is a nondecreasing sequence associated to the

definition of the hybrid time domain of ¢ - see Definition 2.2.

In the next result, following [9], we present sufficient conditions to
compute an upper bound on the cost associated to a solution to H.
As a difference to [9], and similar to [14], note that (18) includes a
terminal cost.

ProprosITION 4.2. (Cost Upper Bound) Given a hybrid system H as
in (1), stage costs Lc : R® — R and Lp : R" — R, terminal
costq : R" — R, and the set U C R", suppose that there exists a
function V : domV — R, domV > C N U, that is continuously
differentiable on an open set containing C N U, and such that

Lo(x)+(VV(x),F(x)) <0 VxeCNU, (19a)
Lp(x)+V(G(x)-V(x) <0 VxeDNU. (19b)

Let ¢ : dom¢ — R™ be a solution to H from £ € (CU D) N U and
suppose that (t, j) — V(¢(t, j)) is bounded on dom ¢ and

limsup ~ V(¢(t,j)) =  limsup  q(4(t,))).  (20)
(¢.j)—sup dom ¢ (¢.j)—sup dom ¢
(t.j)€dom¢ (t.j)€dom¢
Then, it follows that
T <V(©). (21)

By building a function V that satisfies the conditions in Proposi-
tion 4.2, we provide an upper bound on the cost, which is computed
by evaluating V' at the initial condition &.

4.2 Sets of Flow and Jump Data for Data-Driven
Cost Upper Bound

Our data-driven approach relies on enforcing conditions on finitely
many points and, under appropriate assumptions, characterize the
behavior of all the points in the set. To provably extend the condi-
tions from samples to the entire set, we use e—nets, as in Definition
3.1, and guarantee the conditions of interest at every e—ball. If a
set of interest can be covered by an e—net, the conditions enforced
at the centers of every ball can be extended, under appropriate
assumptions, to every point in the set of interest.

Consider a hybrid system H as in (1), and a set ¢ c R" such that
(C U D) NU is nonempty. For given ¢ > 0, the set of flow data
Fc and the set of jump data Fp defined as in (4), are e—nets, as
in Definition 3.1, which are collections of finitely many samples
from the corresponding set. Using ¢ and #p, in the following
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sections, we propose a method to find an upper bound to the cost
J associated to a solution to H, by using learning-based methods.

4.3 Sampled-Based Cost Upper Bound
Conditions via Learning

With the aim of learning an upper bound on the cost J associated
to a solution to H from sampled data, under Assumption 2.4, we
propose an optimization program with conditions (19a) and (19b)
as constraints, enforced at the points that define the set of flow
data 7 and of jump data p, respectively. By properly choosing
the points of each set, we guarantee a provable extension of the
aforementioned conditions to all the points of a set of interest.

We model the function V in Section 4.1 as a neural network as in
Section 3.2, to learn the upper bound on the cost associated to a
solution to H. Thus, V is an adaptive basis functions regressor as
in (5), with network parameter vector 6 € R".

First, to introduce an optimization program enforcing conditions
(19a) and (19Db), we consider the hybrid system H as in (1) described
by (C, F, D, G), under Assumption 2.4, and use \73 as in (5) to learn
V. Given the stage costs Lo : R® = Ry and Lp : R — Ry,
and the set U C R", define the terminal cost ¢ : R — R as
q(x) = \79 (x) for each x € (CUD) NU. We formulate the following
optimization program to compute and evaluate a cost upper bound
as in (21):

min |02
OeR"

st. Leo(x)+ <VV9(x),F(x)> <0

Lp(x) +Vp(G(x)) = Vp(x) <0

VxeCNU, (22)

VxeDNU

Notice that the constraints in (22) are enforced at all (likely infinitely
many) points in (C U D) N U, which is computationally intractable.
Therefore, we propose solving a relaxed version of (22) using a
scenario® program, given by

min 6
OeR" | |2

st Lo(x) + <V\79(x’),F(x')> < e
Lp(x') +Vp(G(x)) = Vp(x') < =np

vx' e T, (23)

Vx' € TD

where F¢, Fp, and 5, np> 0 are given. In the next section, we
provide sufficient conditions to guarantee that if (23) is feasible,
then we can provide an upper bound on the cost associated to a
solution that starts and remains in (C U D) N U, under appropriate
assumptions on F, G, and the elements in F¢, p. Such upper bound
can be computed without computing solutions to H.

®Referring to the fact that (22) will be solved at samples of the state space [19].
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Figure 1: Flow set C, jump set D, sampling set U C R? for the oscillator with impacts. In (a), we show the coverings over C N U
and D N U. We enforce conditions at the sampled points (centers of the balls), and under certain assumptions, generalize them
to the set U to upper bound the cost associated to solutions to (28). In (b), the e-nets cover the sets (C N U) \ (A + pyB) and
(DNU)\ (A + uB), respectively, and by extending the conditions enforced at the centers of the balls to the set U/, we guarantee

practical asymptotic stability of A as in Section 3.2.

4.4 Sufficient Conditions for Design of
Learning-Based Cost Upper Bound

In this section, we show that under suitable assumptions, the solu-
tion to (23) allows to construct the function V in Section 4.1 with
a structure as in (5), which guarantees the existence of an upper
bound on the cost associated to a solution to H.

Similar to Section 3.2, we aim to extend the conditions enforced at
the points in the flow and jump data sets, ¢ and #p, to every point
in (C U D) N U. The parameters 5jc and 5p in the constraints in
(23) can be conveniently chosen such that the Lipschitz continuity’
of % as in (5), its gradient, and its time derivative guarantee that
the cost upper bound conditions (19a) and (19b) hold at all points
in CN U and D N U, respectively.

The extension to (C U D) N U of the conditions that are enforced
on the sets F¢, Fp in (23) depends on an adequate construction of
the e—nets defined by F¢ and Fp. Specifically, for each x” € ¢,
define

Sg(x') = max{£>0:x'+€B cCnU,
‘.79(x) +Lo(x) <0 Vxex +£B}
and for each x” € Fp, define
SDJ(x’) = max{£> 0:x'+eBCcDNU,

Vp(G(x) = Vo(x) + Lp(x) <0 ¥Vxex' + EB}

as the radii of the biggest balls around x’ over which ‘79 +Lc
and AVyp + Lp are nonpositive, respectively. Then, we choose

7Guaranteed according to Lemmas 3.5, 3.6, and Proposition 3.7.

&= min SCJ (x"), such that the set
x' €fc
gg = x' + B

x'eFe

is an e—net over CNU, and 179 (x)+Lc(x) < 0forallx € (CNU) C
Qg . Likewise, we choose e= min Sg(x’ ), such that the set
x' €Fp

gg = U x' +¢B

x'€Fp

is an e—net over D N U, and A%(x) + Lp(x) < 0forall x €
(DNU) c §Dj . In the following result, we state the sufficient
conditions to guarantee that, under a proper definition of the é—nets
covering C N U and D N U, the conditions over the derivative and
the change of ?9 are satisfied at every pointinin CNU and DNU,
respectively.

THEOREM 4.3. (Data-Driven Cost Upper Bound) Given a compact
set U c R", consider a hybrid system H as in (1), with F locally
Lp—Lipschitz on CNU and G locally Lg—Lipschitz on DNU, locally
Lipschitz continuous functions Lc : R® — Ry inCNU, Lp :
R™ — Ryx¢ in DNU, with constants Lc and Lp, respectively, defining
the stage cost for flows and jumps, and the terminal cost g : R™ — R.
Given the sets Fc, Fp as in (4), suppose that these sets are e—nets over
CNU and D N U, respectively, with e > 0, and suppose that there
exists a parameter vector @ € R", defining a Lipschitz function Ve as
in (5) with constantL% over (CU D) N U and with L‘;;g —Lipschitz

time derivative over C N U, that satisfies

Lo(x) + <v179(x'),F(x’)> < e VX eFe,  (24)

Lp(x) +Vp(G(x") = Vo(x') < —np Vx' € Fp, (25
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with e, np satisfying
nc = e(Le+Ls ) (26)
Vo

np = E(ng(l+LG)+LD). (27)

Let ¢ : dom¢p — R™ be a solution to H from & € (CUD) N U
and suppose that (t, j) — \79((;5(1‘, J)) is bounded on dom ¢ and (20)
holds. Then, R

T (&) < Vp(d).

REMARK 4.4. (Data Driven Cost Upper Bound with Asymptotic
Stability) There are results that connect cost evaluation and asymp-
totic stability for hybrid systems [9]. Accordingly, under additional
conditions, the learning-based cost upper bound function presented
in Theorem 4.3 can be rendered as a Lyapunov function to guarantee
practical pAS of a set of interest A.

5 CASE OF STUDY: LYAPUNOV FUNCTION
AND COST UPPER BOUND FOR
OSCILLATOR WITH IMPACTS

To illustrate our proposed algorithm® to design Lyapunov functions
and to upper bound the cost of solutions to a hybrid system via
learning, consider the linear oscillator with impacts with dynamics
given by

. . X2 o 2.
x=F(x) = (_XI_ACXZ) xeC:= {xeR .x120}
H . _ 0 o 2., =
xt=G(x) = “Apxs xeD:= {xeR 1x1 =0,
XZSO}
(28)

On the other hand, to certify stability of the set A for the oscillator
in (28) using learning-based methods, we follow a similar approach
using separate coverings for the sets (C N U) \ (A + pB) and
(DNU)\ (A + uB) by finitely many round balls (see Figure 1b).
By enforcing conditions at the centers of such balls that can be
generalized to every point in ((C U D) N U) \ (A + uB), under
proper assumptions, we guarantee practical asymptotic stability of
A for H with respect to p.

Finally, for the remainder of the section, we consider the following
sampling set

U= {xeR?|x}/h3+x2/0f <1}

where hgy, vy > 0.

5.1 Data-Driven Lyapunov Function

The samples are strategically chosen to form e-nets over CN U \
(A+pB)and DN U \ (A + pB), with ¢ = 0.01 and p = 1.1e.
To design a learning-based Lyapunov function, we implement a

8The implementation code can be found at https://github.com/HybridSystemsLab/
LearningLyapunovFunction-HybridOscillator.
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Figure 2: Lyapunov function designed as a neural network
trained on the set U by solving the SP in (11). A hybrid solu-
tion to H from ¢ = (1,0) is shown (in dark blue), illustrating
how % decreases along flows and jumps.

specific structure of a neural network that is positive definite with
respect to the set A = {0} on (C U D) N U, which is guaranteed in
[23, Theorem 2], and it is shown in Figure 2. We solve the SP in (11)
with 7¢ = 0.037 and 7p = 0.049 using JAX [4] while following the
augmented Lagrangian method [7] to account for the constraints in
the learning process. First, we verify that the chosen hyperparame-
ters satisfy (14) and (15), and adjust them according to Remark 3.9
until a successful case is found.

Then, leveraging regularity conditions of the neural network and
properties of the e-nets of the sets of interest, following Proposition
3.8, we extend the pointwise conditions from samples to the set
U, such that the learned 179 and its derivative satisfy (13). This is
illustrated in Figures 3 and 4. Thanks to Theorem 3.10, we certify
that A = {0} is practically pre-asymptotically stable for H as in
(28) (see Figure 2).

5.2 Data-Driven Cost Upper Bound

Following a similar approach, the samples are strategically chosen
to form e-nets over C N U and D N U with ¢ = 0.01. We set
x = Lo(x) = 0.5]x|2 and x — Lp(x) = 0.15|x|?, defining the
stage costs as in the cost functional 7 in (18). To design a learning-
based cost upper bound, we implement a neural network by solving
the SP in (23), following the augmented Lagrangian approach to
account for the constraints in the learning process. To tune the
hyperparameters, namely. the number of neurons r, the number of
layers d, the slack variable for flows n¢, and the slack variable for
jumps np , we also follow Remark 3.9 replacing (14) and (15) by

nc

T <y Vxeve
¢ Le()+Ls (1) xe¥e
0


https://github.com/HybridSystemsLab/LearningLyapunovFunction-HybridOscillator
https://github.com/HybridSystemsLab/LearningLyapunovFunction-HybridOscillator
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Figure 3: Surface plot of the function x — Vg (x) =
(V\79 (x), F(x)). The flow set C and the boundary of .the sam-
pling set, namely 0%, are displayed. We show that ?9 <0at
(CNU)\ (A+ pB) which is enforced via solving the SP; in
(11) and by Proposition 3.8.

0.0
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Vi

x1

Figure 4: Contour plot of the function x +— \79(x) =
<VV9(x),F(x)>. Contours are filled only in the flow set C,

which confirms ‘79 <o0atCNU.

— D <
Ly, (x)(1+Lg(x)) + Lp(x) ~

therein, respectively, and iterating until a successful case was found,
which yielded n¢ = 0.058 and np = 0.044.

£ 0 Vx € Fp

Therefore, leveraging regularity conditions of the neural network
and the properties of the ¢-nets covers at the sets of interest, fol-
lowing Section 4, we extend the pointwise conditions from samples
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Figure 5: Cost upper bound function designed as a neural
network trained on the set 2/ by solving the SP in (23) for the
hybrid oscillator (28). An upper bound on the cost of evolving
hybridly from any ¢ in (CUD) N U is displayed (in blue) with
the neural network evaluated at such a point, which does not
require computing solutions.

to the set U, and thanks to Theorem 4.3, we certify that \79 (see
Figure 5) defines an upper bound on the cost of solutions to the
oscillator in (28).

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose a data-driven algorithm to synthesize a
Lyapunov function to guarantee asymptotic stability of a set of
interest for a hybrid system. In addition, given a cost functional
associated to solutions to a hybrid system, we propose a data-driven
approach to obtain an upper bound on the cost, which does not
require computing of solutions. Both approaches are based on strate-
gically sampling points from a set of the state space and enforcing
point-wise conditions at them, that under regularity properties, are
generalized to every point of the set.

In future work, we will consider evaluating different data-driven
methods to learn the Lyapunov and value functions and compare
their scaling properties and repeatability. In addition, extending
the results to hybrid inclusions will allow us to address scenarios
with nondeterminism.
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