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Abstract Two-point fermionic propagators in strongly-
correlated media are considered with an emphasis on the
dynamical interaction kernels of their equations of motion
(EOM). With the many-body Hamiltonian confined by a
two-body interaction, the EOMs for the two-point fermionic
propagators acquire the Dyson form and, before taking any
approximation, the interaction kernels decompose into the
static and dynamical (time-dependent) contributions. The lat-
ter translate to the energy-dependent and the former map
to the energy-independent terms in the energy domain. We
dwell particularly on the energy-dependent terms, which
generate long-range correlations while making feedback on
their short-range static counterparts. The origin, forms, and
various approximations for the dynamical kernels of one-
fermion and two-fermion propagators, most relevant in the
intermediate-coupling regime, are discussed. Applications
to the electromagnetic dipole response of 68,70Ni and low-
energy quadrupole response of 114,116,124Sn are presented.

1 Introduction

Finding accurate quantitative solutions to the nuclear many-
body problem remains an active field of research for decades.
Challenged by the requirements of various applications in
nuclear science and technology and driven by the newly
emerging computational capabilities, it shows substantial
progress over the years, however, predictive computation of
atomic nuclei calls for further developments on the theoreti-
cal side.

One of the most powerful tools to study atomic nuclei
and, more generally, strongly correlated fermionic many-
body systems is the Green function method. Various Green
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functions, or propagators, belonging to a larger class of cor-
relation functions (CFs), form a common theoretical back-
ground across the energy scales. The Green functions are
directly related to well-defined observables [1–7]. In partic-
ular, the single-nucleon propagators are linked to the energies
of odd-particle systems and spectroscopic factors which, in
the case of atomic nuclei, can be extracted from, e.g., transfer
or knock-out reactions. The two-nucleon particle-hole prop-
agators are associated with the response to external probes
of electromagnetic, strong, or weak character. Superfluidity
can be efficiently described by two-particle in-medium pair
propagators associated with pair transfer, while the residues
of those propagators can be related to the pairing gaps [8,9].

While these propagators are mostly relevant to the
observed phenomena, higher-rank propagators appear as part
of the general theory in the dynamical kernels of the equa-
tions of motion (EOMs) describing the lower-rank ones [5–
7,10]. The higher-rank propagators quantify the dynamical
in-medium effects of long-range correlations thus promot-
ing the connections between the degrees of freedom across
the energy scales. They are the source of coupling between
EOMs for propagators of all ranks allowable in the given sys-
tem into a hierarchy, which can be decoupled by making cer-
tain approximations. Note here that the famous EOM method
of Rowe [11] operating directly bosonic excitation operators
shows similar features and can be viewed as a counterpart to
the Green function method in its two-fermion sector. Besides
the perturbative treatment, useful mostly in weak-coupling
limit, the EOMs can be decoupled by cluster decompositions
of their dynamical kernels in either non-symmetric [5,8] or
symmetric [12–15] forms, with varied correlation content.

Certain advantages of the symmetric forms of the dynami-
cal kernels in the context of their cluster decompositions were
particularly pointed out and elaborated by Peter Schuck and
collaborators [13–15]. Considering symmetric kernels was
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found especially insightful for finding advanced solutions to
the quantum many-body problem, with applications ranging
from nuclear structure [16] to quantum chemistry and con-
densed matter physics [17–21], see the recent review [22]
devoted to a systematic assessment of the EOM method.

Based on the progress of the nuclear many-body theory
throughout the decades, recently it was demonstrated that
beyond-mean-field (BMF) approaches actively employed
in nuclear structure physics can be consistently linked
to the Hamiltonians operating bare fermionic interactions
[16,22–25]. Of particular interest are the BMF approaches
which account for emergent collective effects of the nuclear
medium, first of all, the correlated pairs of quasiparticles
known as phonons (vibrations). The phonons are shown
to be derived ab-initio, and the phenomenological BMF
approaches introducing phonons as part of their input, such
as the nuclear field theory (NFT) [26–30], its variants [31,32]
and the quasiparticle-phonon models (QPM) [33,34], follow
with the replacement of the bare fermionic interactions by
effective interactions derived, e.g., from the density func-
tional theories (DFTs). The procedure to correct the inter-
action kernel by subtraction of the Pauli-Villars type [35]
recovering the static limit of the kernel allows one to avoid
inconsistencies associated with this replacement in the self-
consistent implementations of the response theory [16,36–
41].

Furthermore, the single-fermion ab-initio EOM method
has been formulated for the superfluid case [42]. Although
some versions of such an extension were available in the
literature, they were either based on the phenomenologi-
cal assumptions about the dynamical kernel [43–52] or used
truncation on the one-body level to approximate it [53–56].
It was demonstrated in Ref. [42], in particular, how pairing
correlations beyond the Hartree-Fock-Bogoliubov approxi-
mation are integrated into ab-initio theory with the dynam-
ical kernel keeping the two-fermion CFs responsible for
the leading effects of emergent collectivity. In contrast to
the approaches employing the Bardeen-Cooper-Schrieffer
(BCS) or canonical basis, the exact single-fermion EOM was
transformed to the basis of the Bogoliubov quasiparticles.
This transformation has allowed for consistent unification
of the normal and pairing phonon modes and considerable
compactification of the superfluid Dyson equation in a more
general framework. Remarkably, this enables more efficient
handling of the dynamical kernels extending beyond HFB
than those of the Gor’kov Green functions and a clear link
of the quasiparticle-vibration coupling (qPVC) vertices to
the variations of the Bogoliubov quasiparticle Hamiltonian.
In Ref. [57] this formulation was employed for the EOM
of the response function, which has been worked out in the
basis of Bogoliubov quasiparticles from the beginning, lead-
ing to a comprehensive ab-initio response theory for super-
fluid fermionic systems. The qPVC approaches which vary-

ing correlation content were derived and shown to generate
the known phenomenological approaches, such as the sec-
ond RPA, NFT, and its extensions, in certain limits. Thus,
Ref. [57] has paved the way toward a response theory of
spectroscopic accuracy.

In this article, we discuss these recent developments
and their implementations for nuclear structure calculations,
where the dynamical kernels accounting for emergent collec-
tivity play an important role. In the existing implementations
of the nuclear response theory for medium-heavy nuclei, such
kernels introduce correlations beyond the simplistic random
phase approximation (RPA) and include up to (correlated)
two-particle-two-hole (2p2h) [37,38,40,58–63] configura-
tion complexity, in rare cases the 3p3h one up to high energy
[16] or in low-energy limited [64–68] model spaces with the
current computational capabilities. These are the approaches
mostly based on effective NN-interactions, either schematic
or derived from the DFTs, although beyond-RPA approaches
employing bare interactions also become available for light
and increasingly heavier nuclei [69–77]. An overarching goal
is to develop a universal approach demonstrating consistent
performance of spectroscopic accuracy across the nuclear
chart, and the effort toward it includes advancements in its
two major building blocks: (i) the nucleon-nucleon (NN)
interactions and (ii) the quantum many-body techniques. In
this work, we focus on the latter aspect for advanced model-
ing of the in-medium dynamics of nucleons using NN inter-
actions as an input to the theory.

Special emphasis is put on the recent advancements of the
nuclear many-body problem developed and inspired by the
scientific work of Peter Schuck. We derive the exact forms of
both the static and dynamical kernels of the one-fermion and
two-fermion propagators, from which all the approximations
follow. The major focus is then placed on the approximations
to the dynamical kernels, where the many-body problem is
truncated on the two-body level, i.e., variants of the qPVC
approximation. These approximations are found to be the
most promising ones for the applications to the regimes of
intermediate coupling as they allow for a reasonable compro-
mise between accuracy and feasibility. The latter is possible
by making use of modern effective interactions and the for-
mer is enabled by the qPVC as the leading approach to emer-
gent collectivity. New numerical implementations for the
nuclear response with the self-consistent relativistic qPVC
are presented and discussed.

2 Fermionic propagators in a correlated medium: the
two-point functions

2.1 Microscopic input and basic definitions

We adopt a framework, where the many-body fermionic
Hamiltonian serves as the only input, which determines
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uniquely all the properties of the system of interacting
fermions. The starting point is the fermionic Hamiltonian
in the field-theoretical representation:

H = H (1) + V (2) +W (3) + .... (1)

The operator H (1) describes the one-body contribution:

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑

12

v
(MF)
12 ψ

†
1 ψ2 ≡

∑

12

h12ψ
†
1 ψ2

(2)

with matrix elements h12 combining the kinetic energy t and
the mean-field v(MF) part of the interaction. The two-body
sector is described by the two-fermion interaction operator
V (2):

V (2) = 1
4

∑

1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3, (3)

and W (3) represents the three-body forces, which will be
neglected in this work, where we will eventually discuss
implementations employing the meson-nucleon interaction
in covariant form. In the many-body formalism of this work
we will not manifestly use covariant notations, however, keep
in mind that the relativistic nucleonic Hamiltonian with the
meson-exchange interaction is defined by the terms of essen-
tially the same form as H (1) andV (2) [78,79]. Hence, the gen-
eral structure of the EOMs remains the same, as it is shown
explicitly, for instance, for the one-fermion EOM with the
non-symmetric form of the dynamical kernel [80,81].

The formal covariant theory will be presented elsewhere.
Here we utilize the fact that in a relativistic theory, the role
of three-body forces is found to be considerably smaller
than in a non-relativistic one. The necessity of the relativis-
tic three-body forces in nuclear systems is still debatable,
while the corresponding quantitative studies were reported
only for few-body systems [82,83]. We conjecture that the
many-body dynamics, non-perturbatively described by the
in-medium fermionic propagators in the EOM framework,
includes the three- and higher-body forces defined as in Ref.
[83] and thus must adequately capture their effects, leaving
the contributions associated with the subnucleon degrees of
freedom for future studies. The formal part of this work will
operate solely on the bare interaction between two fermions
in the vacuum, while effective interactions will be used in
the applications presented in Sect. 3. The justification for this
replacement is discussed in Sect. 2.5.

The operators ψ1 and ψ
†
1 in Eqs. (2, 3) stand for the

fermionic fields in some basis of states completely charac-
terized by the number indices. In Eq. (3) and in the follow-
ing we use the antisymmetrized matrix elements v̄1234 =
v1234 − v1243. The fermionic fields obey the anticommuta-
tion relations

[ψ1, ψ
†

1′ ]+ ≡ ψ1ψ
†

1′ + ψ†
1′ψ1 = δ11′,

[ψ1, ψ1′ ]+ =
[
ψ†

1, ψ
†

1′
]

+
= 0, (4)

and the Heisenberg form defines their time evolution:

ψ(1) = eiHt1ψ1e−i Ht1 , ψ†(1) = eiHt1ψ†
1e

−i Ht1 . (5)

The fermionic in-medium propagator, or real-time Green
function, is defined as a correlator of two fermionic field
operators:

G(1, 1′) ≡ G11′(t − t ′) = −i〈Tψ(1)ψ†(1′)〉, (6)

where T is the chronological ordering operator, and the
averaging 〈...〉 is performed over the formally exact ground
state of the many-body system of N particles. Equation (6)
describes the propagation of a single fermion in the medium
of N interacting fermions.

In the EOM method, it is convenient to use the basis of
fermionic states {1}which diagonalizes the one-body (single-
particle) part of the Hamiltonian H (1): h12 = δ12ε1. The
propagator (6) depends explicitly on a single time difference
τ = t− t ′, so that its Fourier transform to the energy domain,
after inserting the operator ! = ∑

n |n〉〈n|with the complete
set of the many-body states, leads to the spectral (Lehmann)
representation:

G11′(ε) =
∑

n

ηn1ηn∗
1′

ε − (E (N+1)
n − E (N )

0 )+ iδ

+
∑

m

χm
1 χm∗

1′

ε + (E (N−1)
m − E (N )

0 ) − iδ
. (7)

G11′(ε) thus consists of terms of the simple pole character
with factorized residues, which is the common feature of the
propagators. Its poles are located at the formally exact ener-
gies E (N+1)

n − E (N )
0 and −(E (N−1)

m − E (N )
0 ) of the neighbor-

ing (N+1)-particle and (N−1)-particle systems with respect
to the ground state of the background N -particle system. The
corresponding residues are the matrix elements of the field
operators between the ground state |0(N )〉 of the reference
N -particle system and states |n(N+1)〉 and |m(N−1)〉:

ηn1 = 〈0(N )|ψ1|n(N+1)〉, χm
1 = 〈m(N−1)|ψ1|0(N )〉.

(8)

As it follows from their definition, these matrix elements are
the weights of the given single-particle (single-hole) config-
uration on top of the ground state |0(N )〉 in the n-th (m-th)
state of the (N + 1)-particle ((N − 1)-particle) systems. The
residues are thus associated with the occupancies of the cor-
responding fermionic states.

In the next subsection, we will discuss the EOM for the
propagator G11′(t − t ′) and find that it is connected to the
higher-rank two-time (two-point) CFs. Of particular impor-
tance are the two two-fermion correlators: the particle-hole
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propagator, also known as response function, and the particle-
particle, or fermionic pair, propagator. The response function
characterizes the response of the many-body system to an
external probe of the one-body character and it is defined as
follows:

R(12, 1′2′) ≡ R12,1′2′(t − t ′)

= −i〈Tψ†(1)ψ(2)ψ†(2′)ψ(1′)〉
= −i〈T (ψ†

1 ψ2)(t)(ψ
†
2′ψ1′)(t ′)〉, (9)

while the pair propagator has the form:

G(12, 1′2′) ≡ G12,1′2′(t − t ′)

= −i〈Tψ(1)ψ(2)ψ†(2′)ψ†(1′)〉
= −i〈T (ψ1ψ2)(t)(ψ

†
2′ψ

†
1′)(t ′)〉, (10)

where we imply that t1 = t2 = t, t1′ = t2′ = t ′ and adopt the
same phase phase factor as in Eq. (9) for convenience. In anal-
ogy to the one-fermion case, inserting the completeness rela-
tion between the operator pairs and making the Fourier trans-
formations of these CFs to the energy (frequency) domain
lead to:

R12,1′2′(ω) =
∑

ν>0

[ ρν
21ρ

ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
(11)

G12,1′2′(ω) =
∑

µ

α
µ
21α

µ∗
2′1′

ω − ω
(++)
µ + iδ

−
∑

+

β+∗
12 β+

1′2′

ω + ω
(−−)
+ − iδ

. (12)

Similarly to the one-fermion propagator of Eq. (7), Eqs.
(11,12) satisfy the general requirements of locality and
unitarity. The poles represent the energies ων = Eν −
E0, ω

(++)
µ = E (N+2)

µ − E (N )
0 , and ω

(−−)
µ = E (N−2)

+ − E (N )
0

of the states in the systems with N and N±2 particles, respec-
tively. In Eqs. (7, 11, 12) the sums are formally complete, i.e.,
run over the discrete spectra and engage the corresponding
integrals over the continuum states.

The matrix elements in the residues

ρν
12 = 〈0|ψ†

2 ψ1|ν〉 (13)

α
µ
12 = 〈0(N )|ψ2ψ1|µ(N+2)〉 β+

12 = 〈0(N )|ψ†
2 ψ

†
1 |+(N−2)〉

(14)

are the normal ρν
12 and anomalous (pairing) α

µ
12, β

+
12 tran-

sition densities. They give the weights of the pure particle-
hole, two-particle and two-hole configurations on top of the
ground state |0(N )〉 in the excited states of the respective
systems. These matrix elements play a central role in charac-
terizing transition probabilities, underlying properties of the
transitions, pair transfer, and superfluid pairing spectral gaps
in nuclear structure applications.

Equations (7, 11, 12) are model-independent, i.e., remain
valid for any physical approximations applied to determina-
tion of the many-body states |n〉, |m〉, |ν〉, |µ〉, and |+〉.

As we will see below, the two-fermion two-point func-
tions of Eqs. (9, 10) will appear in the cluster decomposition
of the three-fermion (two-particle-one-hole, or 2p1h) Green
function, which defines the exact symmetric dynamical ker-
nel of the EOM for the one-fermion Green function of Eq.
(6).

2.2 Equation of motion for one-fermion propagator

The EOM for the fermionic propagator (6) can be generated
by taking time derivatives with respect to the times t and
t ′. The detailed derivation procedure is described in Refs.
[16,42], which are in agreement with the major steps given
in earlier works [7,12–15,84,85].

The differentiation with respect to t leads to

∂tG11′(t − t ′) = −iδ(t − t ′)〈[ψ1(t), ψ†
1′(t ′)]+〉

+〈T [H, ψ1](t)ψ†
1′(t ′)〉, (15)

where [H, ψ1](t) = eiHt [H, ψ1]e−i Ht . Evaluating explic-
itly the commutator with the one-body part of the Hamilto-
nian and collecting the terms with G11′(t − t ′), one obtains
the equation:

(i∂t − ε1)G11′(t − t ′) = δ11′δ(t − t ′)

+i〈T [V, ψ1](t)ψ†
1′(t ′)〉,

(16)

or, after evaluating the latter commutator,

(i∂t − ε1)G11′(t − t ′) = δ11′δ(t − t ′)

+ i
2

∑

ikl

v̄i1kl 〈T (ψ†
i ψlψk)(t)ψ

†
1′(t ′)〉

(17)

which is commonly referred to as the first EOM, or EOM1.
Here we have introduced the Latin dummy indices, which
have the same meaning as the number indices, to mark
the intermediate fermionic states in the same single-particle
basis. The EOM1 of this form can be found in many arti-
cles and textbooks on the quantum many-body problem, for
instance, in Refs. [7,80,85]. The appearance of the two-
fermion CF on the right-hand side of Eq. (17) indicates that
the one-fermion propagator and the associated single-particle
in-medium trajectories and densities are fundamentally cou-
pled to higher-rank propagators. In principle, an EOM for
this two-fermion CF can be generated, but one sees imme-
diately that this EOM further produces a higher-rank CF.
The relevance of increasingly-complex CFs to the descrip-
tion of the motion of a single fermion is the characteristic
feature of strongly-correlated systems. In weakly-coupled
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regimes, the perturbation theory is a viable solution dis-
cussed in many applications, so we will concentrate on non-
perturbative solutions in this work.

Here one can note that the CF in the right-hand side of Eq.
(17)

G(2)
ilk,1′(t − t ′) = −i〈T (ψ†

i ψlψk)(t)ψ†
1′(t ′)〉 (18)

depends on the time difference τ = t − t ′, so that the Fourier
transform of Eq. (17) reads

G11′(ω) = G0
11′(ω)+ 1

2

∑

2ikl

G0
12(ω)v̄2iklG

(2)
ilk,1′(ω), (19)

where the free, or uncorrelated, fermionic propagator is intro-
duced as G0

11′(ω) = δ11′/(ω − ε1). Equations (17, 19) can
be further transformed to the Dyson form [84,85]. There
are various possible treatments of the integral part of the
Eq. (17), such as the relativistic “.00,.10,.11” approxima-
tions [81], which factorize the CF (18) into two one-fermion
CFs, correlated or uncorrelated. Another famous approach is
the Gor’kov factorization [8,42,86], which retains, in addi-
tion, one-fermion CFs with the same kind of field operators
(anomalous Green functions).

More insights into the interacting part of the one-fermion
EOM come with its symmetric form, which can be obtained
via the second EOM, or EOM2. It is generated by the dif-
ferentiation of the last term on the right-hand side of Eq.
(16),

R11′(t − t ′) = i〈T [V, ψ1](t)ψ†
1′(t ′)〉, (20)

with respect to t ′:

R11′(t − t ′)
←−
∂t ′ = −iδ(t − t ′)〈

[
[V, ψ1](t), ψ†

1′(t ′)
]
+〉

− 〈T [V, ψ1](t)[H, ψ†
1′ ](t ′)〉, (21)

which gives the EOM2:

R11′(t − t ′)(−i
←−
∂t ′ − ε1′)

= −δ(t − t ′)〈
[
[V, ψ1](t), ψ†

1′(t ′)
]
+〉

+i〈T [V, ψ1](t)[V, ψ†
1′ ](t ′)〉. (22)

Finally, after acting on the EOM1 (16) by the operator
(−i

←−
∂t ′ −ε1′) and Fourier transformation to the energy domain

one obtains:

G11′(ω) = G0
11′(ω)+

∑

22′
G0

12(ω)T22′(ω)G0
2′1′(ω). (23)

Thus, the complete in-medium one-fermion propagator is
expressed via the free propagatorG0 and the T -matrix, which
absorbs all possible interaction processes of the fermion with
the correlated medium. The T (ω) is the Fourier image of the
following time-dependent T -matrix:

T11′(t − t ′) = T 0
11′(t − t ′)+ T r

11′(t − t ′),

T 0
11′(t − t ′) = −δ(t − t ′)〈

[
[V, ψ1](t), ψ†

1′(t ′)
]
+〉,

T r
11′(t − t ′) = i〈T [V, ψ1](t)[V, ψ†

1′ ](t ′)〉. (24)

The superscript “0” marks the static, or instantaneous, part
of the T -matrix, and “r” is associated with its dynamical,
or time-dependent, part containing retardation effects. The
EOM (23) in the operator form reads:

G(ω) = G0(ω)+ G0(ω)T (ω)G0(ω). (25)

It is often more instructive to have this EOM in the Dyson
ansatz, for which one introduces the irreducible part of the
T -matrix with respect to the uncorrelated one-fermion prop-
agator G0, the self-energy (called also interaction kernel):
/ = T irr . This operation removes all the contributions con-
taining parts connected by the one-fermion free propagator
G0 from the T -matrix by the following definition:

T (ω) = /(ω)+ /(ω)G0(ω)T (ω). (26)

Combining Eqs. (25) and (26), one arrives at the Dyson equa-
tion for the fermionic propagator:

G(ω) = G0(ω)+ G0(ω)/(ω)G(ω). (27)

The self-energy holds the same decomposition as the T -
matrix:

/11′(ω) = /0
11′ + /r

11′(ω), (28)

where

/0
11′ = −〈[[V, ψ1], ψ†

1′ ]+〉 =
∑

il

v̄1i1′lρli , (29)

with ρli = 〈ψ†
iψl〉 being the ground-state one-body density,

and /r
11′(ω) is the Fourier image of

/r
11′(t − t ′) = − i

4

∑

npq

∑

ikl

v̄1ikl

×〈T
(
ψ

†
i ψlψk

)
(t)

(
ψ†

pψ
†
qψn

)
(t ′)〉irr v̄qpn1′

= 1
4

∑

npq

∑

ikl

v̄1iklG
(pph)irr
ilk,nqp (t − t ′)v̄qpn1′ . (30)

Thus, the EOM (27) for the fermionic propagator G(ω)

is formally a closed equation with respect to G(ω). How-
ever, its self-energy, which in this version has the symmetric
form of a CF “sandwiched” between two interaction matrix
elements, contains the three-fermion Green function. The
obtained form of the self-energy (28–30) indicates a clear
separation between the static (instantaneous) Hartree-Fock-
like term (29) and the dynamical term (30), which accumu-
lates all the retardation effects. Accordingly, the former is
responsible for the short-range and the latter generates long-
range correlations. Here the short range is associated with
the range of the input bare interaction v̄, and the long range
may extend to the size of the entire many-body system.

So far the theory is exact, but again, the EOM for the
three-body propagator generates higher-rank propagators,
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which makes the exact solution of the many-body problem
hardly tractable. There are various ways to approximate the
three-fermion propagator in the dynamical kernel of the one-
fermion EOM. Some approximations can be obtained by
making use of the cluster decomposition of the CF in the
dynamical kernel (30). In a symbolic form, it reads:

G(pph)irr = G(p)G(p)G(h) + G(p)R(ph)

+G(h)G(pp) + σ (pph), (31)

where the number of particles (holes) in the superscripts
indicates the rank of the respective CF and the sum implic-
itly includes all the necessary antisymmetrizations, see Refs.
[16,87,88] for details. Retaining the first term only is the
approach, which truncates the many-body problem at the
one-body level, which is sometimes called the self-consistent
Green functions approach. Some implementations were pre-
sented in Refs. [80,81]. The one-fermion EOM has then a
closed form and can, in principle, be solved iteratively. The
decomposition retaining all possible terms with one-fermion
and two-fermion propagators was discussed in detail, for
instance, in Refs. [5,16,87–90]. It was shown, in particular,
that this approximation can be linked to the nuclear field the-
ory [26–30], which implies a coupling between particles and
phonons of both particle-hole and particle-particle origins. In
this approximation, the one-fermion dynamical kernel takes
the form

/r
11′(ω) = /

r(ph)
11′ (ω)+ /

r(pp)
11′ (ω)+ /

r(0)
11′ (ω), (32)

where

/
r(ph)
11′ (ω) = −

∑

33′

∞∫

−∞

dε

2π i
2

ph
13′,1′3(ω − ε)G33′(ε), (33)

/
r(pp)
11′ (ω) =

∑

22′

∞∫

−∞

dε

2π i
2

pp
12,1′2′(ω + ε)G2′2(ε), (34)

/
r(0)
11′ (ω) = −

∑

2342′3′4′
v̄1234

×
∞∫

−∞

dεdε′

(2π i)2 G44′(ω + ε′ − ε)G33′(ε)G2′2(ε
′)

×v̄4′3′2′1′ , (35)

and the amplitudes 2 ph and 2 pp are defined as

2
ph
13′,1′3 =

∑

242′4′
v̄1234R

(ph)
24,2′4′(ω)v̄4′3′2′1′ =

=
∑

ν,σ=±1

gν(σ )
13 D(σ )

ν (ω)gν(σ )∗
1′3′ , (36)

v vR(ph)=

v v(pp)= G

Fig. 1 The microscopic mechanism of the quasiparticle-vibration cou-
pling: the phonon vertices are denoted by the empty and filled circles,
their propagators correspond to the wavy and double lines, for the nor-
mal (top) and pairing, or superfluid, phonons (bottom), respectively. The
bare interaction is given by the squares, antisymmetrized v̄ and plain
v, and the two-fermion correlation functions are the rectangular blocks
R(ph) and G(pp). Solid lines with arrows are associated with fermionic
particle (right) and hole (left) states with respect to the many-body N -
particle ground state |0(N )〉. The figure is adopted from Ref. [16]

where we introduced the phonon vertices gν and propagators
Dν(ω):

gν(σ )
13 = δσ,+1gν

13 + δσ,−1gν∗
31 , gν

13 =
∑

24

v̄1234ρ
ν
42,

(37)

D(σ )
ν (ω) = σ

ω − σ(ων − iδ)
, ων = Eν − E0, (38)

and

2
pp
12,1′2′(ω) =

∑

343′4′
v1234G

(pp)
43,3′4′(ω)v4′3′2′1′

=
∑

µ,σ=±1

γ
µ(σ)
12 4(σ)

µ (ω)γ
µ(σ)∗
1′2′ (39)

with the pairing vertices γ µ(±) and propagator 4µ(ω)

γ
µ(+)
12 =

∑

34

v1234α
µ
34, γ

+(−)
12 =

∑

34

β+
34v3412. (40)

4(σ)
µ (ω) = σ

ω − σ(ω
(σσ)
µ − iδ)

. (41)

In the definitions above the particle-particle (pp) and
particle-hole (ph) correlation functions defined by Eqs. (9,
10) are employed, while the mappings of Eqs. (36, 39) to
the particle-vibration coupling (PVC) are displayed diagram-
matically in Fig. 1.

Thus, Eq. (32) is the foundation for microscopic
approaches to the single-particle self-energy, which refer to
the phenomenon of PVC. The mappings (36, 39) lead to the
diagrammatic form of the self-energy shown in Fig. 2. The
spectral representations of the respective terms read:

/
r(ph)
11′ (ω) =

∑

33′

[∑

νn

ηn3g
ν
13g

ν∗
1′3′η

n∗
3′

ω − ων − ε
(+)
n + iδ

+
∑

νm

χm
3 gν∗

31 g
ν
3′1′χ

m∗
3′

ω + ων + ε
(−)
m − iδ

]
, (42)

/
r(pp)
11′ (ω) =

∑

22′

[∑

µm

χm∗
2 γ

µ(+)
12 γ

µ(+)∗
1′2′ χm

2′

ω − ω
(++)
µ − ε

(−)
m + iδ

+
∑

+n

ηn∗
2 γ

+(−)∗
21 γ

+(−)
2′1′ ηn2′

ω + ω
(−−)
+ + ε

(+)
n − iδ

]
, (43)
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~~

Fig. 2 The dynamical kernel /r of Eq. (32) in terms of the particle-vibration coupling, with the same conventions as in Fig. 1. The block G(pph)

stands for the three-fermion propagator of Eq. (30). The figure is adopted from Ref. [16]

/
r(0)
11′ (ω) = −

∑

2342′3′4′
v̄1234

×
[ ∑

mn′n′′

χm
2′ χ

m∗
2 ηn

′
3 ηn

′∗
3′ ηn

′′
4 ηn

′′∗
4′

ω − ε
(+)
n′ − ε

(+)
n′′ − ε

(−)
m + iδ

+
∑

nm′m′′

ηn2′η
n∗
2 χm′

3 χm′∗
3′ χm′′

4 χm′′∗
4′

ω + ε
(+)
n + ε

(−)
m′ + ε

(−)
m′′ − iδ

]
v̄4′3′2′1′ .

(44)

Here the single-particle energies in the neighboring (N +1)-
particle system are defined as ε

(+)
n = E (N+1)

n − E (N )
0 and

those in the (N−1)-particle system as ε
(−)
m = E (N−1)

m −E (N )
0 .

The complete dynamical part (32–35) of the fermionic
self-energy truncated at the two-body level is shown in Fig. 2
in the diagrammatic form. Note that the signs in front of
the diagrams are convention dependent, for instance, they
may not respect Feynman’s convention. For instance, the
last uncorrelated term is often shown with the “-” sign in
the literature, and the phonon vertices may include the mul-
tiplier “i”. The first two diagrams on the right-hand side in
Fig. 2 are the typical one-loop diagrams, which are analogous
to the electron self-energy correction in quantum electrody-
namics (QED). In electronic systems, an electron typically
emits and reabsorbs a virtual photon or a phonon excitation of
the lattice in a metal. In the nucleonic self-energy of quantum
hadrodynamics (QHD) a single nucleon emits and reabsorbs
mesons of various kinds, which in the lowest order can be
described by the first diagram on the right-hand side if the
wavy line is attributed to the meson propagator. In the appli-
cations discussed in this work, the meson exchange acts as a
bare interaction (although slightly renormalized) described
by the matrix elements of v̄. The dynamical self-energy
then expresses the medium-induced emerging contribution
to the fermionic interaction. Quite remarkably, in the leading
approximation dominated by the term /r(ph) (42) in a strong
coupling regime, the dynamical fermionic self-energy takes
an analogous form of the boson exchange, thereby illustrating
how this type of interaction is driven across the energy scales.
This process can be expressed by an effective Hamiltonian
with the explicit phonon degrees of freedom, as it is done
in the phenomenological NFT. The difference between the
nuclear system and QED or QHD, besides the differences in
the reference (“vacuum”) states, is that in the latter theories,
the fermionic and bosonic degrees of freedom are indepen-
dent. Interestingly, the PVC vertices in nuclear systems are

not the effective parameters of the theory but are in principle
calculable from the underlying fermionic bare interaction.

There are very few realizations of the PVC model based
on the bare NN interaction [91,92]. The implementations
employing effective interactions [49–51,93] are more accu-
rate quantitatively and more feasible because the phonons can
be reasonably described already on the level of (quasiparti-
cle) random phase approximation ((Q)RPA) and successive
iterations of the fermionic propagator in the Dyson equa-
tion may be omitted. However, such approaches inevitably
imply an additional procedure to remove the double count-
ing of PVC, implicitly contained in the effective interac-
tion [35]. An elegant way of avoiding such double count-
ing is the explicit subtraction of the dynamical PVC ker-
nel taken in the static limit from the effective interaction.
The subtraction method is widely applied in calculations of
two-nucleon Green functions, in particular, the particle-hole
response [16,32,35–37,59], while a corresponding method
has not been yet adopted to the case of the one-body propa-
gator.

The information about the two-fermion propagators R(ph)

and G(pp) in terms of the phonon vertices and propagators
can be obtained from their direct computation by solving
the EOMs for these correlation functions. The theory and
implementations of the corresponding EOMs are presented
in Refs. [15,16,21,24].

The spectral forms (42–44) of the three terms with the
explicit locality and unitarity are best suited for the accu-
rate diagrammatic mapping and they reveal a different sign
of the “second-order” term /r(0) as compared to the “radia-
tive correction” terms /r(ph) and/r(pp) containing phonons.
This means, in particular, that potentially the positivity can
be violated in the optical theorem. As it was pointed out,
for instance, in Refs. [14,94], to prevent this violation it is
important to keep the integrity of the spectral representation
of the dynamical self-energy (30)

/r
11′(ω) = 1

4

∑

rpq

∑

ikl

v̄1iklG
(pph)irr
ilk,rqp (ω)v̄qpr1′

G(pph)
ilk,rqp(ω) =

∑

n

〈0|ψ†
i ψlψk |n〉〈n|ψ†

pψ
†
qψr |0〉

ω − (E (N+1)
n − E (N )

0 )+ iδ

+
∑

m

〈0|ψ†
pψ

†
qψr |m〉〈m|ψ†

i ψlψk |0〉
ω + (E (N−1)

m − E (N )
0 ) − iδ

. (45)
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Comparing the exact dynamical self-energy of Eq. (45) to
Eqs. (42–44), one can see clearly that the above-mentioned
sign problem and potentially other inconsistencies may
appear because of the different analytical structures of the
exact and approximate solutions.

One may notice that the poles of the G(pph) in Eq. (45)
coincide with those of the one-fermion propagator G in the
form of Eq. (7), because both sums on the right-hand sides of
these expressions run over the complete formally exact spec-
tra of the same N ± 1 systems. Combining these equations
with Eq. (23) and considering the energy argument close to
the exact pole εn , one obtains:

〈0|ψ1|n〉 = 1
2

∑

ikl

v̄1ikl
〈0|ψ†

i ψlψk |n〉
εn − ε1

, (46)

which is consistent with the exact EOM for a single field
operator [95].

Considerable effort on finding viable approximations for
the irreducible part of G(pph) compatible with the spectral
expansion (45) was undertaken in the past. The authors of
Ref. [94] have formulated the two-particle-one-hole (2p1h)
RPA for this correlation function, while a more accurate
approximation to the 2p1h energies and matrix elements
via Faddeev series has been developed in Ref. [14] to
include emergent collectivity in the ph and pp channels.
Nuclear structure implementations, however, are still quite
limited and confined by the Tamm-Dancoff and random
phase approximations to the ph and pp correlation functions
[90–92,96].

2.3 Superfluid phase

The majority of strongly-correlated fermionic systems,
including atomic nuclei, exhibit pronounced effects of super-
fluidity [89], that need an extended treatment. The superfluid
phase is generally characterized by the enhanced formation
of Cooper pairs and pairing phonons, which appear to be a
dynamical counterpart of the Cooper pairs. In calculations
for normal systems within the PVC approach to the self-
energy using effective interactions one usually neglects the
pairing phonons because of their relatively low importance,
but they should be kept for superfluid systems and also if a
bare interaction is used.

Within the PVC approach discussed above the pairing
interaction is fully dynamical and mediated by the pairing
phonons emerging naturally in the one-fermion self-energy.
In the traditional frameworks based on effective interactions,
however, the pairing is included in the static approximations,
such as the BCS or the Hartree-(Fock)-Bogoliubov (HFB)
ones. On this level of description, the corresponding Green
function technique is the Gor’kov Green functions, which
extends the notion of the one-fermion propagator (6) by

introducing anomalous propagators with the same kind of
fermionic operators, see Eq. (51) below. These correlation
functions do not vanish because correlated fermionic pairs
are present in the ground state of the system.

The simplest approach to the Gor’kov Green functions can
be obtained from the EOM1 if the two-body correlations are
neglected, see, for instance, [8]. In ref. [42] it is shown how
the Gor’kov theory is generalized beyond this approxima-
tion, in particular, to the inclusion of the PVC effects in the
dynamical self-energy. It is convenient to introduce the HFB
basis, or the basis of the Bogoliubov quasiparticles [97]. The
states in this basis combine particle and hole states, i.e., the
states above and below the Fermi energy:

ψ1 = U1µαµ + V ∗
1µα†

µ

ψ
†
1 = V1µαµ +U∗

1µα†
µ. (47)

Here and henceforth the Greek indices are used to denote
fermionic states in the HFB basis, while the number indices
and the Roman indices are reserved for the single-particle
mean-field basis states. The repeated indices µ imply sum-
mation, so that Eq. (47) can be expressed in a matrix form:
(

ψ

ψ†

)
= W

(
α

α†

)
, (48)

where

W =
(
U V ∗

V U∗

)

W† =
(
U † V †

V T UT

)

(49)

are unitary matrices. The quasiparticle operators α and α†

obey the same anticommutator algebra as the particle opera-
tors ψ and ψ†, while the matrices U and V satisfy:

U †U + V †V = ! UU † + V ∗V T = !
UT V + V TU = 0 UV † + V ∗UT = 0. (50)

The generalized fermionic propagator, therefore, takes the
form

Ĝ12(t − t ′) = −i〈T51(t)5
†
2 (t

′)〉

= −iθ(t − t ′)

(
〈ψ1(t)ψ

†
2 (t

′)〉 〈ψ1(t)ψ2(t ′)〉
〈ψ†

1 (t)ψ
†
2 (t

′)〉 〈ψ†
1 (t)ψ2(t ′)〉

)

+iθ(t ′ − t)

(
〈ψ†

2 (t
′)ψ1(t)〉 〈ψ2(t ′)ψ1(t)〉

〈ψ†
2 (t

′)ψ†
1 (t)〉 〈ψ2(t ′)ψ

†
1 (t)〉

)

=
(
G12(t − t ′) F (1)

12 (t − t ′)
F (2)

12 (t − t ′) G(h)
12 (t − t ′)

)

. (51)

with

51(t1) =
(

ψ1(t1)
ψ

†
1 (t1)

)
, 5

†
1 (t1) =

(
ψ

†
1 (t1) ψ1(t1)

)
.

(52)
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In Ref. [42] it was shown in detail how the procedure of gen-
erating the one-fermion EOM is performed for all the compo-
nents of the propagator (51). A unified EOM was obtained,
in particular, by transforming the matrix equation for the
Ĝ12 to the quasiparticle basis. The resulting Gor’kov-Dyson
equation for the quasiparticle propagator reads in the energy
domain:

G(η)
νν′(ε) = G̃(η)

νν′(ε)+
∑

µµ′
G̃(η)

νµ(ε)/
r(η)
µµ′ (ε)G

(η)
µ′ν′(ε). (53)

The indices η = + and η = − are introduced for the quasi-
particle forward and backward components, respectively.
The mean-field G̃(η)

νν′(ε) and exact G(η)
νν′(ε) propagator com-

ponents are defined as follows:

G̃(η)
νν′(ε) = δνν′

ε − η(Eν − E0 − iδ)
(54)

G(η)
νν′(ε) =

∑

n

Sη(n)
νν′

ε − η(En − E0 − iδ)
, (55)

with the mean-field energies of the Bogoliubov quasipar-
ticles Eν and formally exact quasiparticle energies En .
The residues are the matrix element products S+(n)

νν′ =
〈0|αν |n〉〈n|α†

ν′ |0〉 and S−(m)
νν′ = 〈0|αν |m〉〈m|α†

ν′ |0〉 with the
formally exact states |n〉 and |m〉. The components of the
dynamical kernel in the quasiparticle basis are related to those
in the single-particle basis as follows:

/
r(+)
µµ′ (ε) =

∑

12

(
U†
µ1 V †

µ1

) (
/r

12(ε) /
(1)r
12 (ε)

/
(2)r
12 (ε) /

(h)r
12 (ε)

) (
U2µ′

V2µ′

)

=
∑

12

(
U†
µ1/

r
12(ε)U2µ′ +U†

µ1/
(1)r
12 (ε)V2µ′

+V †
µ1/

(2)r
12 (ε)U2µ′ + V †

µ1/
(h)r
12 (ε)V2µ′

)
, (56)

/
r(−)
µµ′ (ε) =

∑

12

(
V T
µ1 UT

µ1

) (
/r

12(ε) /
(1)r
12 (ε)

/
(2)r
12 (ε) /

(h)r
12 (ε)

) (
V ∗

2µ′

U∗
2µ′

)

=
∑

12

(
V T
µ1/

r
12(ε)V

∗
2µ′ + V T

µ1/
(1)r
12 (ε)U∗

2µ′

+UT
µ1/

(2)r
12 (ε)V ∗

2µ′ +UT
µ1/

(h)r
12 (ε)U∗

2µ′
)
, (57)

while the matrix structure of the dynamical self-energy /̂r
11′

corresponds to the structure of the propagator matrix (51):

/̂r
12(ε) =

(
/r

12(ε) /
(1)r
12 (ε)

/
(2)r
12 (ε) /

(h)r
12 (ε)

)

. (58)

The components of the exact dynamical self-energy are
obtainable as the Fourier images of the double contractions
of the three-fermion correlators with two interaction matrix
elements:

/r
11′(t − t ′) = i

4

∑

ikl

∑

mnq

v̄1ikl

× 〈T
(
ψ

†
i ψlψk

)
(t)

(
ψ†
mψ†

nψq
)
(t ′)〉irr v̄mnq1′

/
(1)r
11′ (t − t ′) = i

4

∑

ikl

∑

mnq

v̄1ikl

× 〈T (ψ†
i ψlψk)(t)(ψ†

mψqψn)(t ′)〉irr v̄1′mnq .

/
(2)r
11′ (t − t ′) = i

4

∑

ikl

∑

mnq

v̄ikl1

× 〈T (ψ†
i ψ

†
k ψl)(t)(ψ†

mψ†
nψq)(t ′)〉irr v̄mnq1′

/
(h)r
11′ (t − t ′) = i

4

∑

ikl

∑

mnq

v̄ikl1

× 〈T (ψ†
i ψ

†
k ψl)(t)(ψ†

mψqψn)(t ′)〉irr v̄1′mnq .

(59)

In analogy to the normal case, the components (59) of
the superfluid dynamical kernel can be treated in various
approximations. In particular, one can apply the general clus-
ter decomposition (31) to each of these components. How-
ever, in the superfluid ground state, more correlation func-
tions will give non-vanishing contributions. As mentioned
above, the approximation, where the many-body problem is
truncated on the two-body level, i.e., the PVC approximation
and its variants, is the most important one for applications
to the regimes of intermediate coupling as it enables a good
compromise between accuracy and feasibility. In the exten-
sion of the PVC approach to the superfluid, or quasiparticle,
PVC dubbed as qPVC, the one-fermion propagators extend
to the Gor’kov Green functions (51), and the two-fermion
propagators include the contributions collected in Fig. 3 in
the diagrammatic representation.

After the corresponding algebra discussed in detail in Ref.
[42], in the qPVC approach the dynamical kernel /

r(+)
νν′ (ε)

takes the form

/
r(+)
νν′ (ε) =

∑

ν′′µ

[
2
(11)µ
νν′′ 2

(11)µ∗
ν′ν′′

ε − Eν′′ − ωµ + iδ
+

2
(02)µ∗
νν′′ 2

(02)µ
ν′ν′′

ε + Eν′′ + ωµ − iδ

]
,

(60)

where the vertex functions 2(11) and 2(02) are defined as
follows:

2
(11)µ
νν′ =

∑

12

[
U †

ν1(g
µ
12η

ν′
2 + γ

µ(+)
12 χν′∗

2 )

−V †
ν1((g

µ
12)

Tχν′∗
2 + (γ

µ(−)
12 )T ην′

2 )
]

(61)

2
(02)µ
νν′ = −

∑

12

[
V T

ν1(g
µ
12η

ν′
2 + γ

µ(+)
12 χν′∗

2 )

−UT
ν1((g

µ
12)

Tχν′∗
2 + (γ

µ(−)
12 )T ην′

2 )
]
. (62)

The η = − component of /r
νν′(ε) has an analogous form,

however, in practice the η = − equation of the set (53) is
redundant as it has the same solution as itsη = + counterpart.
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=

v v=
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= v v+

= v v+ + +

= v v+

= v v+ + ++ +

v v= + +

Fig. 3 The emergence of the quasiparticle-vibration coupling ampli-
tudes in the diagrammatic form. Same conventions as in Figs. 1, 2
apply to the normal and pairing vibration (phonon) vertices and propa-
gators, and for the antisymmetrized v̄ and non-antisymmetrized v inter-

action matrix elements. The operator products in the rectangular boxes,
together with the attached fermionic lines (solid lines with arrows),
denote the two-point correlation functions, according to the rule: abcd
= −i〈T (ab)(t)(cd)(t ′)〉 [98]. The figure is adopted from Ref. [98]

Fig. 4 The superfluid qPVC self-energy in the single-particle (right)
and quasiparticle (left) bases. The operationW stands for Bogolyubov’s
transformation. Double wavy lines are introduced for the propagators
of the superfluid phonons of the “unified” character in the quasiparticle

basis, the associated filled (red) circles denote the respective combined
phonon vertices and a single line without arrows is reserved for the
quasiparticle propagator. The figure is adopted from Ref. [57]

In the leading approximation, i.e., with the HFB values for
the matrix elements ην

i and χν
i , Eqs. (61,62) reduce to

2
(11)µ
νν′ =

[
U †gµU +U †γ µ(+)V

−V †gµT V − V †γ µ(−)TU
]

νν′ (63)

2
(02)µ
νν′ = −

[
V T gµU + V T γ µ(+)V

−UT gµT V −UT γ µ(−)TU
]

νν′ . (64)

In this way, one arrives at the compact form of the Gor’kov-
Dyson equation (53) in the qPVC approximation, where the
dynamical kernel (60) has essentially the same form as in the
non-superfluid case. The corresponding operation is shown
in Fig. 4. All the complexity arising from the superfluidity is
thus transferred to the qPVC vertices (61,62). Essentially, in
this framework both the normal and pairing phonons are uni-
fied in the superfluid phonons, whose vertices can be linked
to the variations of the Hamiltonian of the Bogoliubov quasi-
particles [42].

2.4 Response theory

The EOMs for the two-fermion propagators defined by Eqs.
(9, 10) were obtained, for instance, in Refs. [13,15] and,
particularly, the PVC approximation was discussed in Refs.
[16,23,24]. The direct “superfluid” generalization of Eqs. (9,
10) unifies these propagators, however, working in terms of
Gor’kov Green functions (51) is quite cumbersome because
of the quickly increasing number of components. It turns out
that the formalism becomes more accessible if the EOM is
derived in the quasiparticle space (47) from the beginning.
While the detailed derivation was presented in Ref. [57], here
we concentrate on the major building blocks of the general
theory and concrete feasible approximations.

In the quasiparticle basis, the Hamiltonian (1) takes the
following form [89]:

H = H0 +
∑

µν

H11
µνα

†
µαν +

1
2

∑

µν

(
H20
µνα

†
µα†

ν + h.c.
)

+
∑

µµ′νν′

(
H40
µµ′νν′α

†
µα

†
µ′α

†
να

†
ν′ + h.c

)

+
∑

µµ′νν′

(
H31
µµ′νν′α

†
µα

†
µ′α

†
ναν′ + h.c

)

+ 1
4

∑

µµ′νν′
H22
µµ′νν′α

†
µα

†
µ′αν′αν. (65)
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The upper indices in the matrix elements Hi j
µν and Hi j

µνµ′ν′
are associated with the numbers of creation and annihilation
quasiparticle operators in the associated terms. The matrix
elements Hi j are listed, for instance, in [89]. The matrix H20

vanishes at the stationary point defining the HFB equations,
while the matrix elements of H11 correspond to the quasi-
particle energies. Thus, with H11

µν = δµνEµ, the Hamiltonian
reads [89]:

H = H0 +
∑

µ

Eµα†
µαµ + V, (66)

where V includes the remaining terms and has the meaning
of the residual interaction:

V =
∑

µµ′νν′

(
H40
µµ′νν′α

†
µα

†
µ′α

†
να

†
ν′ + h.c

)

+
∑

µµ′νν′

(
H31
µµ′νν′α

†
µα

†
µ′α

†
ναν′ + h.c

)

+1
4

∑

µµ′νν′
H22
µµ′νν′α

†
µα

†
µ′αν′αν. (67)

The definition of the superfluid response function to a
sufficiently weak external field F can be deduced from the
generic strength function:

S(ω) =
∑

n>0

[
|〈n|F†|0〉|2δ(ω − ωn) − |〈n|F |0〉|2δ(ω + ωn)

]
,

(68)

where the summation runs over all the formally exact excited
states |n〉. The generic one-body operator F in terms of the
quasiparticle fields reads:

F = 1
2

∑

µµ′

(
F20
µµ′α

†
µα

†
µ′ + F02

µµ′αµ′αµ

)

F† = 1
2

∑

µµ′

(
F20∗
µµ′ αµ′αµ + F02∗

µµ′ α
†
µα

†
µ′

)
, (69)

following Bogolyubov’s transformation of the second-
quantized form of F . The full composition in the quasipar-
ticle basis contains formally also F11 terms, however, their
contribution vanishes in the leading approximations to the
superfluid response [99]. Subleading contributions will be
considered elsewhere. Equation (68) can be transformed as
follows:

S(ω) = − 1
π

lim
4→0

Im7(ω),

7(ω) = 1
4

∑

µµ′νν′

(
F02
µµ′ F20

µµ′
)
R̂µµ′νν′ (ω + i4)




F02∗
νν′

F20∗
νν′



 ,

(70)

where the matrix of the response function reads:

R̂µµ′νν′(ω)

=
∑

n>0

(
X n
µµ′

Yn
µµ′

)
1

ω − ωn + iδ

(
X n∗

νν′ Yn∗
νν′

)

−
∑

n>0

(
Yn∗
µµ′

X n∗
µµ′

)
1

ω + ωn − iδ

(
Yn

νν′ X n
νν′

)
, (71)

with the matrix elements

X n
µµ′ = 〈0|αµ′αµ|n〉 Yn

µµ′ = 〈0|α†
µα

†
µ′ |n〉. (72)

In terms of the time-dependent field operators, it can be thus
defined as

R̂µµ′νν′(t − t ′)

= −i
〈
T

(
(αµ′αµ)(t)(α†

να
†
ν′)(t ′) (αµ′αµ)(t)(αν′αν)(t ′)

(α†
µα

†
µ′)(t)(α†

να
†
ν′)(t ′) (α†

µα
†
µ′)(t)(αν′αν)(t ′)

) 〉

= −i
〈
T

(
Aµµ′(t)A†

νν′(t ′) Aµµ′(t)Aνν′(t ′)
A†
µµ′(t)A

†
νν′(t ′) A†

µµ′(t)Aνν′(t ′)

) 〉
,

(73)

where we introduce the time-dependent operator products in
the Heisenberg picture:

Aµµ′(t) = (αµ′αµ)(t) = eiHtαµ′αµe−i Ht

A†
νν′(t) = (α†

να
†
ν′)(t) = eiHtα†

να
†
ν′e−i Ht . (74)

The EOM for the superfluid response (73) is generated
by the same technique. Differentiating Eq. (73) sequentially
with respect to t and t ′ and performing the Fourier transfor-
mation, one obtains

R̂µµ′νν′(ω) = R̂0
µµ′νν′(ω)

+1
4
R̂0

µµ′γ γ ′(ω)K̂γ γ ′δδ′(ω)R̂δδ′νν′(ω),

(75)

which has the form of the Bethe-Salpeter-Dyson equation,
but with the 2 × 2 matrix structure in the quasiparticle basis.
The free response is meanwhile defined as

R̂0
µµ′νν′(ω) = [ω − σ̂3Eµµ′

]−1 N̂µµ′νν′ , (76)

with

Eµµ′ = Eµ + Eµ′ , σ̂3 =
(

1 0

0 −1

)

(77)

and the norm matrix N̂µµ′νν′ specified below. The interaction
kernel is given by

K̂0
γ γ ′δδ′ = 1

4
N̂−1

γ γ ′ηη′ T̂ 0
ηη′ρρ′N̂−1

ρρ′δδ′

K̂r
γ γ ′δδ′(ω) = 1

4

[
N̂−1

γ γ ′ηη′ T̂ r
ηη′ρρ′(ω)N̂−1

ρρ′δδ′

]irr
(78)
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with the static and dynamical T̂ -matrices in the quasiparticle
space:

T̂ 0
µµ′νν′ = −

〈




[
[V, Aµµ′ ], A†

νν′
] [

[V, Aµµ′ ], Aνν′
]

[
[V, A†

µµ′ ], A†
νν′

] [
[V, A†

µµ′ ], Aνν′
]





〉

(79)

T̂ r
µµ′νν′ (t − t ′) = i

×
〈
T

(
[V, Aµµ′ ](t)[V, A†

νν′ ](t ′) [V, Aµµ′ ](t)[V, Aνν′ ](t ′)[
V, A†

µµ′
]
(t)[V, A†

νν′ ](t ′) [V, A†
µµ′ ](t)[V, Aνν′ ](t ′)

) 〉
.

(80)

The norm matrix N̂µµ′νν′ also acquires an extended form and
reads:

N̂µµ′νν′ =
〈(

[Aµµ′ , A†
νν′ ] 0

0 [A†
µµ′ , Aνν′ ]

) 〉
, (81)

with the inverse introduced according to the identity:

1
2

∑

δδ′
N̂−1

µµ′δδ′N̂δδ′νν′ = δµµ′νν′ = δµνδµ′ν′ − δµν′δµ′ν .

(82)

So far the theory is still very general and, in order to pro-
ceed, evaluation of the double commutators of Eq. (79) and
the commutator products of Eq. (80) is required. The ab-
initio form of the static kernel (79) is the unification of the
ph and pp static kernels discussed in Refs. [16,22–24,100].
In addition to the pure contributions from the bare fermionic
interaction, these kernels contain the terms with contractions
of the interaction with the correlated parts of the two-body
fermionic densities. The latter should be generalized to the
superfluid two-body densities and include feedback from the
dynamical kernel, which will be considered elsewhere. If
the ground state is confined by the HFB approximation, the
superfluid static kernel simplifies to the well-known kernel
of the quasiparticle random phase approximation (QRPA),
with the expectation values of the commutators

〈HFB|
[
[V, Aµµ′ ], A†

νν′

]
|HFB〉 = −H22

µµ′νν′ ,

〈HFB|
[
[V, Aµµ′ ], Aνν′

]
|HFB〉 = 4!H40

µµ′νν′ ,

N̂µµ′νν′ = σ̂3δµµ′νν′ , (83)

while the remaining matrix elements of Eq. (79) can be
obtained by Hermitian conjugation.

The components of the dynamical kernel defined by the
time-dependent commutator products of Eq. (80) can be eval-
uated similarly. The diagonal components provide the dom-
inant contribution, while the non-diagonal ones contribute
via complex ground-state correlations. The latter will be
neglected in this work. Furthermore, the diagonal compo-
nents are connected by the relationship

Kr [22]
µµ′νν′(τ ) = Kr [11]

νν′µµ′(−τ), (84)

so that it is sufficient to explicitly obtainKr [11]
νν′µµ′ . Its T -matrix

counterpart

T r [11]
µµ′νν′(t − t ′) = i〈T [V, Aµµ′ ](t)[V, A†

νν′ ](t ′)〉 (85)

generates a product of eight quasiparticle operators, four at
time t and four at time t ′, i.e., fully correlated two-times
four-quasiparticle propagator, contracted with two matrix
elements of the residual interaction. The appearance of such a
propagator in the dynamical kernel signals about generating
of a hierarchy of coupled EOMs for growing-rank propaga-
tors also in the two-fermionic sector. Again, various approxi-
mations of increasing accuracy constructed by a factorization
procedure are possible, and here we narrow the discussion
to the factorizations, which keep all the possible contribu-
tions with two-fermion propagators (73). After dropping the
complex ground state correlation contributions, the Kr [11]

component takes the form

Kr [11]cc
µµ′νν′ (ω) =

∑

γ δnm

[
2
(11)n
µγ Xm

µ′γX
m∗
ν′δ 2

(11)n∗
νδ

ω − ωnm + iδ

−
2
(11)n∗
γµ Ym∗

µ′γY
m
ν′δ2

(11)n
δν

ω + ωnm − iδ

]
− AS, (86)

where AS includes all the antisymmetrizations and the addi-
tional upper index “cc” indicates the approximation, where
two fully correlated two-fermion propagators are retained.
The diagrammatic interpretation of Eq. (86) is illustrated in
Fig. 5. One can notice that, although two two-fermion CFs
are figuring in this kernel, only one of them forms a phonon,
because only two matrix elements of the NN interaction are
entering the initial expression (80), and thus only one CF
contracted with these matrix elements can be mapped to the
PVC according to Eqs. (36, 39). This is at variance with
the QPM, see, for instance, the QPM kernels analyzed in
Ref. [101], which contain the two-phonon and, in principle,
further multiphonon contributions. These contributions are
practically postulated in the ansatz of the excited state wave
function, whose coefficients are then found variationally. It is
not straightforwardly clear, therefore, if the n-phonon QPM
with n > 1 can be obtained as a cluster approximation to
the dynamical kernel (80). This may be possible in further
approximation to the phonons where they are confined by the
(Q)RPA as in this case the quasiparticle pair operators can be
expressed via the phonon operators, however, we leave this
as a conjecture here for a future more accurate investigation.

We note also that the two-quasiparticle CFs and phonons
appearing in the dynamical kernel (86) are formally exact
and, therefore, are not associated with any partial resumma-
tions or perturbative expansions. This indicates that the clus-
ter approaches discussed in this section can include arbitrarily
complex 2n-quasiparticle configurations. However, approxi-
mations can always be applied to calculations of the phonons.
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Fig. 5 The leading approximations to the superfluid dynamical kernel
taking into account the qPVC effects. The shaded rectangular block
denotes the generic two-quasiparticle correlation function (73). Top:

the kernel with two two-quasiparticle correlation functions (86); bot-
tom: the kernel with one two-quasiparticle correlation function (88)

Finally, by relaxing the correlations in the intermediate
two-quasiparticle propagator, which is not associated with a
phonon, in Eq. (86), one obtains its qPVC-NFT approxima-
tion:

Kr [11]c
µµ′νν′(ω) =

{[
δµ′ν′

∑

γ n

2
(11)n
µγ 2

(11)n∗
νγ

ω − ωn − Eµ′ − Eγ

−
∑

n

2
(11)n
µν′ 2

(11)n∗
νµ′

ω − ωn − Eµ′ − Eν′

]
−

[
µ ↔ µ′

]}

−
{
ν ↔ ν′

}
,

(87)

where we indicated by the index “c” that only one two-
quasiparticle correlation function is retained in the dynamical
kernel. To bring this kernel to the form, which corresponds
to the superfluid generalization of the NFT, one can recast
Eq. (87) by performing the explicit antisymmetrizations and
rearranging the resulting terms as follows:

Kr [11]c
µµ′νν′(ω)

=
[
δµ′ν′

∑

γ n

2
(11)n
µγ 2

(11)n∗
νγ

ω − ωn − Eµ′γ
+ δµν

∑

γ n

2
(11)n
µ′γ 2

(11)n∗
ν′γ

ω − ωn − Eµγ

+
∑

n

2
(11)n
µν 2

(11)n∗
ν′µ′

ω − ωn − Eµ′ν
+

∑

n

2
(11)n
µ′ν′ 2

(11)n∗
νµ

ω − ωn − Eµν′

]

−
[
ν ↔ ν′

]
. (88)

This form of the dynamical kernel can be further sim-
plified if the pairing correlations are approximated by the
BCS theory, see for instance, Ref. [95]. It is essentially an
analog of the resonant kernel obtained in phenomenological
approaches of the NFT [102] and quasiparticle time blocking
approximation [32,48]. Finally, we note that on the way to
Eqs. (86–88) a number of correlations were neglected in the
versions Kr [11]cc and Kr [11]c of the kernel, which are consid-
ered to be the leading, sometimes called resonant, approxima-
tions. The major subleading contributions are then associated

with the 〈0|α†
µαµ′ |n〉 amplitudes, the terms of the residual

interaction other than H31, and the off-diagonal Kr [12] and
Kr [21] contributions. They can be straightforwardly included
due to the universality and completeness of the presented
framework, which thus offers a number of extensions beyond
the qPVC approaches Kr [11]cc and Kr [11]c given explicitly in
this section.

2.5 Self-consistent implementations of the qPVC
approaches for nuclear response

The simplest resonant qPVC dynamical kernel Kr [11]c has
been a subject of self-consistent implementations based on
the effective in-medium NN interactions derived from the
DFT. The applications to the nuclear response include, for
instance, the ones with the zero-range phenomenological
Skyrme interaction [40,102–104]. The self-consistency in
this context means that (i) the static kernels of the one-
fermion and two-fermion EOMs are approximated by the
first and second variational derivatives of the EDF, respec-
tively, (ii) the phonons’ characteristics are obtained with the
same interaction, and (iii) the subtraction of the static limit of
the dynamical kernel [35] is applied to eliminate the double
counting of its admixture to the effective interaction.

The fully self-consistent qPVC approaches to the nuclear
response with the more fundamental background of the
relativistic meson-nucleon Lagrangian are available since
Ref. [37] under the relativistic time blocking approxima-
tion (RQTBA) in the more general context of the relativis-
tic nuclear field theory (RNFT) and include calculations
for both the neutral [38,41,105–112] and charge-exchange
[62,63,113,114] excitations. Important improvements due
to the inclusion of the qPVC dynamical kernel have been
found already in the leading approximation (88). The widths
of the giant resonances, the isospin character of the low-
energy soft modes and overall strength distributions, beta
decay, nuclear compressibility, and other nuclear structure
properties were described in a single framework with uni-
versal parameters across the nuclear chart. The complete
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self-consistency, the covariant nature of the RNFT, and its
background in the microscopic NN interaction, only slightly
adjusted to the nuclear medium, provide a good balance of
fundamentality and accuracy, making this theory most pre-
dictive, transferrable across the energy scales and systemati-
cally improvable. The latter two features were enabled after
the recent completion of the ab-initio EOM qPVC framework
[16,24,42,57] outlined in the previous sections. Other recent
developments extend the RNFT to finite temperature [115–
118], making it the theory of choice for predictive astrophysi-
cal applications, and include correlations of higher complex-
ity, [16,63,119], heading toward spectroscopically accurate
calculations in large model spaces.

Most of the RNFT studies up until now were performed
with the finite-range non-linear meson-exchange interaction
of the previous generation, NL3 [120] and NL3∗ [121]. This
interaction adjusted in the framework of the covariant DFT
(CDFT) [122] provides a very good description of the nuclear
matter bulk properties as saturation, incompressibility, sym-
metry energy, and pressure, with a slightly better perfor-
mance of the NL3∗ in the nuclear incompressibility sector
[41,121]. An improved parametrization of this interaction
was proposed recently in Ref. [123], where a global anal-
ysis of the CDFT is presented. The technical advantage of
the finite-range meson-exchange interaction is its analytical
structure in the momentum representation, where it is com-
prised of a few separable terms corresponding to the complete
set of meson channels. This allows an exceptionally econom-
ical computation of the response without compromising the
quality of the description [36,37]. The conceptual advantage
of this interaction is its transparent physical nature, funda-
mentality, and direct connection to particle physics. How-
ever, with the appearance of the finite amplitude method,
RNFT implementations with density-dependent interactions
also become available [98].

As the time blocking [48] applied to the four-point corre-
lation functions is not relevant for the two-point response, the
qPVC approaches presented in this work are dubbed as rel-
ativistic EOM (REOMn) with the upper index indicating the
maximal configuration complexity of the dynamical kernel.

3 Nuclear response in RNFT framework

The response function is commonly actualized via its con-
volution with the operators, which are associated with exter-
nal probes of the system under study. The resulting quantity
which describes the observed spectra is the strength func-
tion, which for the given external field operator F can be
expressed as

SF (ω) = − 1
π

lim
4→0

,
∑

121′2′
F12R12,1′2′(ω + i4)F∗

1′2′ , (89)
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Fig. 6 Electromagnetic dipole response of 68,70Ni in approximations
of growing complexity derived within the EOM framework. The exper-
imental data for 68Ni are adopted from Ref. [124], see text for details
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Fig. 7 Low-energy fraction of the electromagnetic dipole response of
68,70Ni obtained in the same approximations as in Fig. 6 compared to
data of Ref. [125]. The results for 68Ni shown in the left panel are
adopted from Ref. [16]

while its form in the quasiparticle basis is given in subsection
2.4. In this work, we consider the response to the electromag-
netic dipole and quadrupole operators, respectively,

F (EME1)
1M = eN

A

Z∑

i=1

riY1M (r̂i ) − eZ
A

N∑

i=1

riY1M (r̂i ),

F (EME2)
2M = e

Z∑

i=1

r2
i Y2M (r̂i ) (90)

where Z and N are the numbers of protons and neutrons,
respectively, A = N + Z , and e is the proton charge, which
is taken e = 1. The sums in Eq. (90) are performed over the
corresponding nucleonic degrees of freedom.

Figures 6 and 7 illustrate the RNFT calculations of the
dipole response of the two neutron-rich nickel isotopes
68,70Ni. The theoretical results are obtained in the three rel-
ativistic approaches: (i) Relativistic QRPA (RQRPA) [126]
confined by the 2q configurations, (ii) relativistic EOM con-
fined by correlated 2p2h, or four-quasiparticle, configura-
tions 2q ⊗ phonon, employing the dynamical kernel (88)
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illustrated in the lower part of Fig. 5 and dubbed as REOM2,
and (iii) relativistic EOM confined by correlated 3p3h, or
six-quasiparticle, configurations 2q ⊗ 2phonon, employing
the dynamical kernel (86) illustrated in the upper part of
Fig. 5 and dubbed as REOM3. In the latter approximation,
the 2q ⊗ 2phonon configuration complexity is achieved by
recycling the 2q⊗ phonon correlated propagators in the ker-
nel of Eq. (86). The following multi-step calculation scheme
is implemented:

• The closed set of the relativistic mean field (RMF)
Hartree-Bogoliubov equations [122,127,128] is solved
with the NL3 effective interaction following Refs. [120,
129], with the monopole pairing forces adjusted to repro-
duce empirical pairing gaps. The resulting single-particle
Dirac spinors and single-nucleon energies form the work-
ing basis for subsequent calculations. No further param-
eters are introduced.

• The RQRPA equation [126], which is equivalent to Eq.
(75) with the only static kernel (79) approximated by
Eq. (83) with the effective interaction matrix elements,
is solved to obtain the phonon vertices 2n and their fre-
quencies ωn . The phonons with the Jπn

n = 2+, 3−, 4+,
5−, 6+ and frequencies ωn ≤ 15 MeV coupled to the
RMF quasiparticle states form the 2q ⊗ phonon config-
uration space for the qPVC kernels. The phonon space
was additionally truncated: the modes with the values
of the reduced transition probabilities B(EL) less than
5% of the maximal one (for each Jπn

n ) were neglected.
These are the common truncation criteria for the qPVC
models based on the RMF, see, for instance, [130], where
a convergence study was presented. The convergence is
further reinforced by the subtraction procedure [35].

• Additional step for the REOM 3 approach: Eq. (75) for
the response function is solved in the truncated configura-
tion space, which includes excitations within the energy
window of interest 0–25 MeV, for spins and parities Jπ

= 0± - 6±. As in Ref. [16], the static part of the ker-
nel is neglected in the internal correlation functions as
it does not induce fragmentation. The resulting response
functions are inserted into the kernel (86).

• The obtained dynamical kernels (88) REOM2 and (86)
REOM3 are used in solving Eq. (75) for the main chan-
nels under study Jπ = 1− and Jπ = 2+. The subtraction
[35] is applied in both REOM2 and REOM3 calculations
to eliminate the double counting of the qPVC from the
effective interaction.

• Finally, the strength functions are found according to Eq.
(70).

Further details of the calculation scheme can be found in Ref.
[16], where the REOM3 was presented for the first time and
applied to the dipole response of calcium isotopes. Here we

focus on the dipole transitions of the neutron-rich unstable
nickel isotopes, which are extensively studied both theoret-
ically and experimentally and which are of special signifi-
cance for astrophysics.

The NL3 mean-field calculations of the ground states of
68,70Ni return the following values for the binding ener-
gies Bn and root mean square radii 〈R〉: Bn(

68Ni) = 591.2
MeV, Bn(

70Ni) = 603.50 MeV, and 〈R(68Ni)〉 = 3.98
fm, 〈R(70Ni)〉 = 4.03 fm. These ground states were implied
in the correlation functions under study. In the left panel
of Fig. 6 the dipole strength distributions in 68Ni obtained in
the three many-body approaches with the same parameter set
and with 4 = 200 keV illustrate the hierarchy of approxi-
mations of growing complexity. Experimental data from Ref.
[124] are plotted for comparison after scaling to accommo-
date the enhancement of the Thomas-Reiche-Kuhn sum rule.
Remarkably, the REOM2, which includes the leading effects
of emergent collectivity, provides a major improvement of the
description. The REOM3 including more complex qPVC cor-
relations in the dynamical kernel further refines the strength
distribution, but the overall effect on the smeared strength
is less drastic. Similar results are obtained for 70Ni (right
panel), for which the experimental data are available only at
low energies, see Fig. 7 and discussion below.

Calculations in the REOM3 approach are significantly
heavier than those in REOM2 because a large, ideally com-
plete, set of the internal CFs enters the doubly correlated
kernel of REOM3. The set of phonons coupled to those CFs
in the kernel of Eq. (86) is also formally complete, how-
ever, the CFs in the phonons enter in the form of contraction
with the interaction matrix elements, i.e., with the phonons’
vertices 2n . As it follows from numerous previous RQTBA
studies, these vertices behave as emergent order parameters,
which enables reasonably accurate truncation schemes of the
phonon model subspaces. Moreover, as the most significant
phonons are well reproduced within RQRPA, reiterating their
CFs does not bring significant improvements. However, reit-
erating and keeping a sufficiently complete set of the inter-
nal non-contracted CFs appears to be quantitatively impor-
tant. This is the major factor that makes large-scale stud-
ies difficult, however, simple parallelization algorithms can
be implemented to improve the time scaling of the REOM3

approach.
The cases of 68,70Ni can be compared to those of

42,48Ca presented in Ref. [16]. Similarly, configurations 2q⊗
2phonon included in REOM3 induce a stronger fragmenta-
tion of the GDR and its additional spreading toward both
higher and lower energies. Visible shifts of the main peaks
of the giant dipole resonance (GDR) toward higher energies
were obtained in 42,48Ca due to these high-complexity con-
figurations. This observation was related to the appearance
of the new higher-energy complex configurations and, con-
sequently, the additional higher-energy poles in the result-
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ing response functions. However, it was unclear whether or
not the shift of the main peak is a generic feature of the
2q⊗2phonon configurations. The results for the 68,70Ni iso-
topes indicate that this effect is selective as no pronounced
shifts are observed. As noted in [16], the energy-weighted
sum rule is conserved in REOM3 because the analytical
form of its dynamical kernel does not change as compared
to REOM2.

The low-energy dipole response of the unstable neutron-
rich 68,70Ni nuclei is of special significance as they are
located on the r-process nucleosynthesis path. Because of its
relevance to astrophysics, it has been investigated both exper-
imentally [124,125,131] and theoretically [38,39,132]. The
results of the RQRPA, REOM2 and REOM3 calculations for
the low-energy dipole response of 68,70Ni are displayed in
Fig. 7 with the same curve and color-coding as in Fig. 6. In
particular, one can see how richer spectra of REOM2 and
REOM3 emerge from a relatively poor one of RQRPA. The
latter is essentially the single strong and relatively collective
state at 9.5 MeV in both nuclei with more strength in the
case of 70Ni because of its larger neutron excess. The addi-
tion of 2q ⊗ phonon configurations of REOM2 results in
the fragmentation of this state over a broader energy region.
Finally, with the 2q ⊗ 2phonon configurations, the frag-
mentation effect is further reinforced resulting in a distri-
bution without a clear dominance of a single state but is
rather spread uniformly over the 7−15 MeV energy interval
with a smooth strength increase toward the GDR. One can
notice also the appearance of excited states at lower ener-
gies. Thus, these examples illustrate how the three models
with the increasing complexity of the dynamical kernel form
a hierarchy that translates to the hierarchy of spectral func-
tions with the increasing richness of their fine structure. The
results in this energy region are compared to experimental
data of Ref. [125], where the two parts of the strength dis-
tribution in 70Ni were obtained by different methods, that
are indicated by different colors. One can see that a sequen-
tial increase of configuration complexity in the response the-
ory improves the description, while the highest-complexity
2q ⊗ 2phonon configurations still bring significant changes
to the low-energy spectra. This suggests that such configu-
rations are important for the quantities, which are sensitive
to the details of the low-energy strength distributions, in par-
ticular, the radiative neutron capture rates in the r-process.
Similar effects for the isospin-flip transitions and thus fur-
ther refinements of the beta decay rates as compared to, e.g.,
Refs. [62,117] are expected.

The agreement of REOM3 to experimental data, although
improved compared to REOM2, is still imperfect. This indi-
cates that some mechanisms of the strength formation are
yet to be included to achieve spectroscopic accuracy. A com-
plete response theory should take into account the contin-
uum, including the multiparticle escape, a more extended

set of phonons (in particular, those of unnatural parity and
isospin-flip), and complex ground state correlations induced
by qPVC. While these aspects are to be addressed in future
work, note here that more benchmarks of the REOM3 on sta-
ble nuclei, where highly accurate experimental data are avail-
able, will be released in upcoming publications. The effective
interaction employed in this work is also far from perfec-
tion, and it is known that different choices of the effective
interaction generate notably different spectra on the QRPA
level, see for instance the FSUgold calculations of Ref. [124].
Having a spectroscopically accurate many-body theory, in
combination with fine-resolution data, will help find optimal
forms and parametrizations of the underlying DFTs. The lat-
ter is particularly important for quantifying the parameters
of the nuclear equation of state, such as the symmetry energy
extracted from the electric dipole polarizability [133].

The low-energy dipole strength, associated with the neu-
tron skin oscillation and also known as pygmy dipole res-
onance (PDR), attracts active attention from both theory
and experiment [134,135]. Its fine structure and relevance
for astrophysics were addressed in numerous RNFT stud-
ies [105–110,136–139]. The detailed knowledge on the low-
energy strength of quadrupole character is limited, but also
represents an interesting subject [67,68,140,141]. In particu-
lar, in Ref. [140] the electric quadrupole response was inves-
tigated theoretically within the QPM along the Sn isotopic
chain with special emphasis on excitations above the first
collective state and below the particle emission threshold.
This study has reported that depending on the asymmetry, a
quadrupole strength clustering similar to the known PDR is
found. The authors concluded from analyzing the transition
densities of low-energy quadrupole states that the obtained
results are compatible with oscillations of neutron or proton
skins against the isospin-saturated core and with experimen-
tal data [67,141].

Figures 8, 9 and 10 demonstrates the capability of RNFT
to describe the quadrupole strength displaying the REOM2

results for the 2+ electromagnetic (EME2) excitations in
three even-even tin isotopes 114,116,124Sn below 8 MeV, i.e.,
below their particle emission thresholds (10.3, 9.6, and 8.5
MeV, respectively). From the long tin isotopic chain, the
114,116Sn isotopes were selected for this study as the two typ-
ical mid-shell nuclei with similar moderate neutron excess,
to investigate how the minimal difference in the neutron
number translated to the differences and similarities in their
2+ strength distributions. The 124Sn was chosen as the iso-
tope with a significantly larger neutron number, potentially
forming a prominent neutron skin. The NL3∗ interaction
was used for the study of tin isotopes, which is a mini-
mally modified version of the NL3 one [121]. The mean-
field calculations of the ground states of 114,116,124Sn give
the following binding energies Bn and root mean square
radii 〈R〉: Bn(

114Sn) = 969.20 MeV, Bn(
116Sn) = 986.19
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Fig. 8 Quadrupole strength
below 4 MeV in 114,116,124Sn
isotopes calculated in REOM2

approach (left panels) and the
proton and neutron transition
densities for the most prominent
peaks
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MeV, Bn(
124Sn) = 1047.25 MeV, and 〈R(114Sn)〉 = 4.61

fm, 〈R(116Sn)〉 = 4.65 fm, 〈R(124Sn)〉 = 4.77 fm. The
structure of the obtained quadrupole spectra in the consid-
ered energy region is qualitatively similar in all three nuclei:
there is a strong collective lowest state at around 1 MeV and a
group of states at higher energies with varying strength. The
giant quadrupole resonance in these nuclei is located above
20 MeV and is not examined here. The RQRPA results for the
lowest collective 2+ state are given and discussed in Ref. [51].
The major effect of adding 2q ⊗ phonon configurations on
this state is a minor downward shift, which brings its position
closer to the experimental values, and a slight reduction of
the transition probability. In the studies of Refs. [67,140,141]
the lowest 2+ state is interpreted as a phenomenon, which is
structurally separated from the other quadrupole excitations
at higher energies, while the latter ones were associated with
pygmy quadrupole resonance.

Note here that superfluid pairing correlations are extremely
important for the description of the lowest quadrupole col-
lective state, and the choice of the pairing interaction is a
major factor in its placement and transition probability, as
discussed in Ref. [51]. While correlations beyond (Q)RPA
have only a minor impact on the lowest quadrupole collective
state, qPVC turns increasingly more important with the exci-
tation energy increase, while the superfluid pairing becomes
expressed indirectly via the qPVC of the high-lying modes
to the lowest collective vibrations.

The REOM2 EME2 spectra in 114,116,124Sn below 4 MeV
are shown in the left panels of Fig. 8, while the transition den-
sities of the most pronounced excited states are given on the

right-hand side of the respective strength distributions. The
latter is calculated with a small value of the smearing param-
eter 4 = 2 keV to resolve the fine structure of the strength.
The reduced transition probabilities Bn(E2) ↑ can be related
to the values of the strength functions at the peaks at E = ωn
as Bn(E2) ↑= SE2(ωn)π4. The transition densities of the
lowest 2+ state are prevailed by the in-phase surface oscil-
lation of the neutron and proton Fermi liquids with some
neutron dominance and in the case of 114,116Sn show out-of-
phase overtones in the bulk. While moving toward the upper
bound of the 0 ≤ E ≤ 4 MeV energy interval, the next
general trend is the weakening of the surface oscillations,
which remain in phase, and the reduction of the neutron dom-
inance. The next part of the spectrum illustrated in Fig. 9 in
the same manner shows a significant increase of the density
of states. The trends in the behavior of the transition densities
of the strongest 2+ excitations change showing the growth of
the surface oscillation amplitudes and, interestingly, a proton
dominance in all the nuclei for the majority of states in the
4 ≤ E ≤ 6 MeV energy interval. When moving beyond this
energy interval, the density of states further increases and the
transition densities change back to mainly neutron-dominant
character, except for one state at E = 6.24 MeV in 124Sn. The
reduction of amplitudes of the oscillations reflects stronger
qPVC effects in the formation of the corresponding states in
the 6 ≤ E ≤ 8 MeV energy interval as the qPVC takes away
considerable parts of the total normalization of the transition
densities [36]. Some enhancement in the surface oscillation
intensity is noted in 124Sn that can be attributed to its neutron
richness. At variance with Refs. [68,141], REOM2 calcula-
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Fig. 9 Same as in Fig. 8, but
for the quadrupole strength in
the 4–6 MeV energy interval
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Fig. 10 Same as in Fig. 8, but
for the quadrupole strength in
the 6–8 MeV energy interval
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tions do not show a dominance of out-of-phase oscillations
of neutrons vs protons below 5 MeV. However, the transition
densities for the 2+ state at E = 6.24 MeV in 124Sn indicate
that such oscillations can be present in the energy region
under study. The near absence of such states, which are typi-
cal for the energies between the PDR and GDR, is consistent
with the fact that the giant quadrupole resonance represents
a 2h̄ω oscillation mode and therefore is located at a much
higher energy than the GDR. This means, in particular, that

the “pygmy quadrupole” mode may be spread over a wider
energy interval toward higher energy, which calls for further
detailed studies of this phenomenon.

Implementations of the method for other types of nuclear
response are anticipated in the near future. Beyond-QRPA
studies of the magnetic transitions are seldom [142], while
detailed knowledge about such transitions is important for
many applications, from nuclear data to astrophysics. The
charge-exchange excitations are of great interest because
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they empower the domain of nuclear weak processes, which
is at the precision frontier of fundamental physics. While a
number of REOM2 studies were reported for the spin-isospin
response [62,63,113,114,117,118], in particular, the qPVC-
induced ground state correlations were investigated [63,118],
REOM3 is still awaiting its implementation in the nuclear
weak sector.

4 Summary

A theoretical framework for the low-rank fermionic propa-
gators, most relevant to the observables in strongly-coupled
superfluid fermionic many-body systems, is presented. The
equations of motion for the two-times one-fermion and two-
fermion superfluid propagators are obtained continuously
with the only input of the bare two-fermion interaction. The
EOM for the one-fermion propagator is worked out in the
single-particle space and shown to simplify after the trans-
formation to the HFB basis. This operation reveals impor-
tant relationships between the two representations, scales the
computational effort down considerably for realistic imple-
mentations and paves the way to the superfluid response the-
ory, which is obtained in the HFB basis from the start.

The exact forms of the interaction kernels containing
higher-rank propagators in their dynamical components are
discussed. These propagators are approximated by factor-
izations into the possible products of two-fermion and one-
fermion propagators in the superfluid regime, thereby intro-
ducing the truncation of the many-body problem on the two-
body level keeping the leading effects of emergent collectiv-
ity. It is thus and further shown how with gradually relaxing
correlations the exact theory is reduced to the known approx-
imations.

The major focus is then directed on the quasiparticle-
vibration coupling in the dynamical kernels, where the nor-
mal and pairing phonons become components of the unified
superfluid phonons. Self-consistent implementations are pre-
sented in the framework of the relativistic nuclear field the-
ory for the dipole and quadrupole responses of the neutron-
rich nickel and tin isotopes, respectively. The analysis of
the obtained results is concentrated on the qPVC effects,
which modify considerably the strength distributions, intro-
ducing their fragmentation and shifting the positions of the
major peaks. Comparison of the strength distributions for
the electromagnetic dipole response in 68,70Ni computed
with configurations up to 2q ⊗ 2phonon with experimen-
tal data indicates that increasing the configuration complex-
ity of the dynamical kernel brings the theoretical results
in better agreement with the data. At the same time, the
resulting strength functions show saturation of its general
features, so that the higher-complexity configurations may
appear to be more important for the fine structure of the

obtained spectra than for their gross structure. A study of
the low-energy electromagnetic quadrupole strength was per-
formed for the first time within the RNFT response theory
confined by 2q ⊗ phonon configurations for 114,116,124Sn
and revealed some new insights in the underlying structure
of the individual states forming this strength. The obtained
results accentuate the importance of further advancing the
quantum many-body theory in the segment of complex con-
figurations which, in turn, give feedback on the static kernels
of the fermionic EOMs. Addressing the latter aspect of the
many-body problem is also necessary for heading toward
spectroscopically accurate nuclear theory respecting special
relativity and rooted in the standard model of particle physics.
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