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Abstract: Infinite-order U-statistics (IOUS) have been used extensively in
subbagging ensemble learning algorithms such as random forests to quantify
its uncertainty. While normality results of IOUS have been studied exten-
sively, its variance estimation and theoretical properties remain mostly un-
explored. Existing approaches mainly utilize the leading term dominance
property in the Hoeffding decomposition. However, such a view usually
leads to biased estimation when the kernel size is large relative to sam-
ple size. On the other hand, while several unbiased estimators exist in the
literature, their relationships and theoretical properties, (e.g., ratio consis-
tency), have never been studied. These limitations lead to unguaranteed
asymptotic coverage of constructed confidence intervals. To bridge these
gaps in the literature, we propose a new view of the Hoeffding decompo-
sition for variance estimation that leads to an unbiased estimator. Instead
of leading term dominance, our view utilizes the dominance of the peak
region. Moreover, we establish the connection and equivalence of our es-
timator with several existing unbiased variance estimators. Theoretically,
we are the first to establish the ratio consistency of such a variance esti-
mator, which justifies the coverage rate of confidence intervals constructed
from random forests. Numerically, we further propose a local smoothing
procedure to improve the estimator’s finite sample performance. Extensive
simulation studies show that our estimators enjoy lower bias and achieve
targeted coverage rates.
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1. Introduction

Given a set of n i.i.d. observations Dn < tXiun
i“1 and an unbiased estimator,

hpX1, . . . , Xkq, of the parameter of interest ¸ with k ď n, the U-statistic [14]
defined in the following is a minimum-variance unbiased estimator of ¸:

Un <
ˆ

n

k

˙´1 ÿ

SiĂDn

hpSiq <
ˆ

n

k

˙´1 ÿ

1ďj1ă¨¨¨ăjkďn

h pXj1
, . . . , Xjk

q , (1.1)

where each Si is a subset of k samples from the original Dn, k is called the kernel
size and h is a symmetric kernel function. When k grows with n, Un becomes
an Infinite-Order U-statistic (IOUS) [11]. U-statistics are used extensively in
problems such as non-parametric testing [17], empirical risk minimization in
large-scale machine learning [21, 6], distributed computing and inference for big-
data [19, 18, 5] and many others. In recent years, there has been an increasing
interest in statistical inference with IOUS, particularly with their application
on ensemble approaches, such as random forests [3, 13]. Random forest models
for survival analysis [16], estimating heterogeneous treatment effect [28] can all
benefit from such developments.

It is easy to see that large
`

n
k

˘
renders the computational challenge to exhaust

all subsamples. Instead, random forests sample B subsamples from Dn to build
trees and average. This leads to incomplete U-statistics [17]. Further incorpo-
rating randomness in the kernel function h, Mentch and Hooker [20] first show
the asymptotic normality of random forests under the U-statistics framework
when k grows at the rate of op?

nq. DiCiccio and Romano [8] further relax its
assumptions. Zhou, Mentch and Hooker [35] set the connection between U- and
V-statistics. Peng, Coleman and Mentch [22] extend the kernel size to k < opnq
under a generalized U-statistic framework. We also note that there is a large
literature outside the applications of random forests. For example, for incom-
plete high-dimensional U-statistics, where h P R

d, Chen and Kato [4] and Song,
Chen and Kato [27] study the asymptotic normality for fixed and growing k,
respectively.

With the normality of random forest estimators established under the U-
statistics [20] or other frameworks [28, 1], another line of the topic is the vari-
ance estimation. Wager, Hastie and Efron [29] propose to use jackknife and
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infinitesimal jackknife (IJ [9]). Mentch and Hooker [20] use Monte Carlo meth-
ods to estimate the leading term in the Hoeffding decomposition of VarpUnq.
Recent developments include Zhou, Mentch and Hooker [35], who propose a
computationally efficient approach and set the connection with the IJ estima-
tor. Peng, Mentch and Stefanski [23] further study the bias and consistency of
the IJ estimator.

However, an essential practical issue is that these estimators can display a
significant amount of bias when the sample size n is small or k is large compared
to n. In practice, it is common to use a fixed proportion of the total sample size
[13] as the kernel size k. Variance estimators in the aforementioned literature
often suffer from this bias issue because they all rely on some form of leading
term dominance phenomenon. However, when k is large compared to n, such
dominance is weak. Searching through the literature, several unbiased estimators
have been proposed in different forms and motivated from different perspectives
based on the U-statistics view. Some of them can handle a subsampling size k as
large as n{2. Folsom [10] propose a variance estimator of complete U-statistics
following a sequence of literature on sampling design [15, 34, 25]. Schucany
and Bankson [24] propose to estimate all terms in the Hoeffding decomposition
[14] of the variance of an order-2 complete U-statistic. However, they do not
extend the estimator to a general case with k ď n{2. Note that Folsom [10],
Schucany and Bankson [24] do not consider the incomplete case; hence their
estimators are computationally infeasible for large k or large n. More recently,
Wang and Lindsay [31] propose partition-based, unbiased variance estimators of
both complete and incomplete U-statistics motivated from the second-moment
expression EpU2

nq ´ E2pUnq. Wang and Wei [33] further apply this estimator
to random forest variance estimation. However, there is a lack of theoretical
justification for these estimators in terms of their ratio consistency, which is
crucial for achieving a proper coverage rate based on the derived confidence
interval. Moreover, there is a lack of understanding of their connections and
differences with the estimators mentioned previously.

To address these limitations in the literature, the major contribution of our
paper is three-fold. First, we re-analyze the Hoeffding decomposition and pro-
pose a peak region dominance view of the variance estimation of U-statistics to
address the bias issue. This leads to a class of unbiased estimation approaches
for both complete and incomplete U-statistics, called Matched Sample Variance

Estimator, which can handle a subsampling size k as large as n{2. Computation-
ally, our incomplete variance estimator is efficient and can be directly applied to
random forests. Besides, we discuss two extensions of our estimators. One is a
local smoothing strategy to mitigate negative variance estimation [24, 31], and
the other extends our method to k ą n{2. Secondly, we are the first to establish
the connection and equivalence of the three existing estimators [10, 24, 31]. We
show that our proposed estimator coincides with each under specific settings
(see Section 3.5 for a detailed discussion). Thirdly, we establish the ratio consis-
tency for our complete variance estimator under k < op?

nq. To the best of our
knowledge, this is the first result for such estimators, even for fixed k. This is a
crucial step to achieve the nominal coverage level when we plug in the variance
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estimator in constructing a confidence interval. To this end, we fill a significant
gap in the literature by proposing a set of interpretable conditions.

We proceed with additional notation and preliminaries of U-statistics to mo-
tivate the proposed variance estimator and establish the peak region dominance
view.

2. Variance of U-statistics

Our analysis starts with a classical result of the variance of U-statistics. We first
review the Hoeffding decomposition of the variance of a complete U-statistic.
Then, we present the connection between the complete and incomplete ver-
sions. In particular, the variance of an order-k complete U-statistic is given by
Hoeffding [14]:

Var pUnq <
ˆ

n

k

˙´1 kÿ

d“1

ˆ
k

d

˙ˆ
n ´ k

k ´ d

˙
ξ2

d,k, (2.1)

where ξ2
d,k is the covariance between two kernels hpS1q and hpS2q with S1 and S2

sharing d overlapping observations, i.e., ξ2
d,k < Cov phpS1q, hpS2qq, with |S1 X

S2| < d. Here both S1 and S2 are size-k subsamples. Alternatively, we can
represent ξ2

d,k as [17]

ξ2
d,k < Var rE phpSq|X1, ..., Xdqs . (2.2)

This form will be utilized later.
When k grows with n, it is computationally almost infeasible to exhaust

all subsamples due to large
`

n
k

˘
. Instead, it is typical in random forests and

other ensemble algorithms to build incomplete infinite-order U-statistics [17] by
sampling B many Si’s, which gives

Un,B < 1

B

Bÿ

i“1

hpSiq. (2.3)

The gap between variances of an incomplete U-statistic and its complete coun-
terpart can be understood as

VarpUn,Bq < Var rEpUn,B |Xnqs ` E rVarpUn,B |Xnqs (2.4)

< VarpUnq ` E rVarpUn,B |Xnqs ,

where Xn < pX1, ..., Xnq and the additional term ErVarpUn,B |Xnqs depends on
the subsampling scheme. In particular, when all subsamples are drawn indepen-
dently from the collection of all such subsamples [17], we have

VarpUn,Bq < p1 ´ 1

B
qVarpUnq ` 1

B
ξ2

k,k. (2.5)

This suggests that we can close the gap by using a large B. Hence, we will first
discuss the complete U-statistics setting and then propose the incomplete one.
We also note that for applications to random forests, random kernels (trees) are
involved. However, the difference can be negligible when using a large B [20].
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3. Methodology

The main technical challenge for estimating the variance is when k is relatively
large compared with n. Besides the aforementioned obvious computational issue
in the complete version, most existing methods will also encounter a significant
bias due to only estimating the leading term in the Hoeffding decomposition.
By establishing a peak region dominance view, we develop a new unbiased esti-
mator for VarpUnq in both complete and incomplete forms whenever k ď n

2
. Its

connection with existing methods will be discussed in Section 3.5. Its extension
to n{2 ă k ă n setting will be presented in Section 5.1. We demonstrate the
application to random forests in Section 5, where we also introduce a locally
smoothed version for better numerical performances.

3.1. Existing methods and limitations

Continuing from the decomposition of VarpUnq in Equation (2.1), we define

γd,k,n <
`

n
k

˘´1`
k
d

˘`
n´k
k´d

˘
for convenience. Then VarpUnq < řk

d“1 γd,k,nξ2
d,k. It is

easy to see that γd,k,n corresponds to the probability mass function of a hyper-
geometric distribution with parameters n, k and d. A graphical demonstration
of such coefficients under different k and d settings, with n < 100, is provided in
Figure 1. Many existing methods [20, 8] rely on the asymptotic approximation
of VarpUnq when k is small, e.g., k < opn1{2q. Under such settings, the first

coefficient γ1,k,n < r1 ` op1qs k2

n
dominates all remaining ones, as we can see in

Figure 1 when k < 10. In this case, to estimate VarpUnq, it suffices to estimate
the leading covariance term ξ2

1,k if ξ2
k,k{pkξ2

1,kq is bounded.

Fig 1. Probability mass function of hypergeometric distribution with n = 100 for different k.

However, as k becomes larger, the density of the hypergeometric distribution
concentrates around d < β2n instead of d < 1, where β denotes ratio k{n.
Hence, the variance will be mainly determined by terms in a range of large d

values, which we refer to as the peak region. In comparison, estimating just
ξ2

1,k will introduce a significant bias even if we are able to exhaust all possible
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subsamples. Also note that when considering incomplete U statistics, most of
the overlaping counts would fall into this region.

Another source of bias for using the leading term dominance property is the
lack of samples to estimate ξ2

1,k realistically. Note that the definition involves
approximating the Var and E operations in Equation (2.2) [20, 35]. A natural
strategy is to hold one shared sample, e.g., Xp1q, and vary the remaining samples
in S among existing observations Dn to approximate E rhpSq|X1s. However, this
causes trouble for the variance estimator since we won’t have enough samples
to independently produce estimators of E rhpSq|Xis with varying Xi when k

becomes slightly larger. Overall, a new strategy is needed to better utilize the
Hoeffding decomposition.

We also note that another theoretical strategy proposed by Wager and Athey
[28], Peng, Coleman and Mentch [22] can be used for k < opnq if the U -statistic
can be understood through the Hajek projection with additional regularity con-
ditions. In this case, the variance of a U-statistic can be well approximated by
the variance of a linearised version, while the infinitesimal jackknife procedure
provides a valid estimator. However, it is difficult to assess whether the ker-
nel function satisfies these assumptions. In practice, a significant bias can still
occur, as seen in the simulation section.

3.2. An alternative view

At this point, estimating ξ2
d,k’s for some d values seems inevitable. However, we

may utilize the law of total variance to change the estimation procedure, which
could gain a significant computational advantage. Note that for any given d,

ξ2
d,k <Var rE phpSq|X1, ..., Xdqs

<VarphpSqq ´ E rVarphpSq|X1, ..., Xdqs
:<V phq ´ ξ̃2

d,k, (3.1)

where we define ξ̃2
d,k :< ErVarphpSq|X1, ..., Xdqs. In this representation, V phq is

equivalent to ξ2
k,k, the variance of a single kernel. It is also equivalent to ξ̃2

0,k since

ξ2
0,k < 0. Incorporating these into the decomposition formula in Equation (2.1),

we obtain an interesting connection:

VarpUnq <
kÿ

d“1

γd,k,n

´
V phq ´ ξ̃2

d,k

¯

<
kÿ

d“0

γd,k,nV phq ´
kÿ

d“0

γd,k,nξ̃2
d,k

:<V phq ´ V psq, (3.2)

where we define V psq as
řk

d“0 γd,k,nξ̃2
d,k.
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While this alternative view is valid for all k, the difficulty lies in finding a
computationally feasible estimator, especially when we have to deal with incom-
plete U-statistics, instead of the complete version. In particular, when k ď n{2,
both terms can be unbiasedly estimated with a proper sampling design. In the
following, we first present a straightforward formula for estimating V phq and
V psq in a complete U-statistics version. The main result is Theorem 3.1, which
shows that V psq can be estimated using sample variance of all trees. Section 3.4
extends these estimators to incomplete versions.

3.3. Variance estimation for complete U-statistics

Our goal is to create estimators of V psq and V phq such that they can be directly
computed from the trees (kernels) fitted in the random forest itself. This seems to
be a challenging task given that we are estimating an infinite sum V psq. However,
the fundamental idea we will utilize is to estimate VarrhpSq|X1, ..., Xds using
pairs of trees. We proceed with the complete case when all trees are already
available.

3.3.1. Joint estimation of the infinite sum V psq

Suppose we pair subsamples Si and Sj among
`

n
k

˘
subsamples and let d < |Si X

Sj | < 0, 1, ..., k. Then for each d, there exist Nd,k,n <
`

n
k

˘2
γd,k,n <

`
n
k

˘`
k
d

˘`
n´k
k´d

˘

pairs of subsamples Si, Sj such that |Si X Sj | < d. Note that for any such pair,
phpSiq ´ hpSjqq2{2 is an unbiased estimator of ξ̃2

d,k < VarrhpSq|X1, ..., Xds. We

may then construct an unbiased estimator of ξ̃2
d,k by averaging them:

ˆ̃ξ2
d,k < 1`

n
k

˘`
k
d

˘`
n´k
k´d

˘
ÿ

|SiXSj |“d

rhpSiq ´ hpSjqs2 {2. (3.3)

This motivates us to combine all such terms in the infinite sum, which sur-
prisingly leads to the sample variance of all kernels. The result is given in the
following proposition, with its proof collected in Appendix D.

Proposition 3.1. Given a complete U-statistic Un, and the estimator
ˆ̃ξ2
d,k de-

fined in Equation (3.3), when k ď n{2, we have the following unbiased estimator

of V psq:

V̂ psq :<
ˆ

n

k

˙´1 ÿ

i

phpSiq ´ Unq2 <
kÿ

d“0

γd,k,n
ˆ̃ξ2
d,k. (3.4)

Furthermore, when k ą n{2, the first 2k ´ n terms in the summation
řk

d“0

is removed, since corresponding γd,k,n terms are zero.

Since V̂ psq enjoys a sample variance form, its incomplete version would also be
easy to calculate. The advantage is that it can be computed without any hassle
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because all hpSiq’s are ready to use when we calculate Un. However, additional
consideration may facilitate the estimation of V phq so that both V psq and V phq

can be done using the same set of hpSiq’s.

3.3.2. Estimation of kernel variance V phq

Estimating V phq may follow the same idea using
<
hpSiq´hpSjq

‰2{2 if the pair Si

and Sj are disjoint. However, this is only possible when k ď n{2, given a finite
sample. In this case, following Equation (3.3), we have an unbiased estimator
of V phq:

V̂ phq < ˆ̃ξ2
0,k < 1`

n
k

˘`
n´k

k

˘
ÿ

|SiXSj |“0

rhpSiq ´ hpSjqs2 {2. (3.5)

Therefore, we combine estimators V̂ psq (3.4) and V̂ phq (3.5) to get an unbiased
estimator of VarpUnq:

yVarpUnq < V̂ phq ´ V̂ psq. (3.6)

3.4. Variance estimation for incomplete U-statistics

In random forests and other ensemble learning models, we often construct in-
complete U-statistics by drawing random subsamples instead of exhausting all`

n
k

˘
subsamples. This creates difficulties in calculating V̂ phq since very few of

these subsamples would be mutually exclusive (d < 0). Hence, a new subsam-
pling strategy is needed to allow sufficient pairs of subsamples to estimate both
V phq and V psq.

The following “matched sample” sampling scheme is proposed to have enough
disjoint samples to estimate V̂ phq. For any 2 ď M ď tn{ku, we can sample a set
of the matched sample group that consists M mutually exclusive subsamples
tS1, . . . , SM u from Dn. This enables us to estimate V phq by the sample variance
of thpS1q, . . . , hpSM qu. Then, we repeat this procedure B times to average the
estimator. To be precise, denote the subsamples in the b-th matched sample

group as S
pbq
1 , S

pbq
2 , ..., S

pbq
M , such that S

pbq
i X S

pbq
i1 < H for any i ‰ i1. Define

Un,B,M < 1

MB

Mÿ

i“1

Bÿ

b“1

hpSpbq
i q. (3.7)

This differs from the conventional incomplete U-statistic due to the new sam-
pling scheme. Though M < 2 is enough for estimating V phq, we recommend
using M < tn{ku for a smaller variance. This is guaranteed by the following
proposition.

Proposition 3.2. For an incomplete U-statistic with M ¨ B samples obtained

using the matched sample sampling scheme,

VarpUn,B,M q <
ˆ

1 ´ 1

B

˙
V arpUnq ` 1

MB
V phq. (3.8)
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The proof is collected in Appendix D.1. We should note that when fixing
the total number of kernels, M ¨ B and let M ě 2, the variance of Un,B,M is
always smaller than the variance of Un,B given in (2.5). However, these two are
identical when M < 1.

Based on this new sampling scheme, we can propose estimators V̂
phq

B,M and

V̂
psq

B,M as analogs to V̂ phq and V̂ psq, respectively. Denote the collection of kernels

as thpSpbq
i qui,b, for i < 1, 2, . . . , M , b < 1, 2, . . . , B. A sample variance within

each group b, 1
M´1

řM
i“1rhpSpbq

i q ´ h̄pbqs2, is an unbiased estimator of V phq. Here

h̄pbq < 1
M

řM
i“1 hpSpbq

i q is the group mean. Hence, the average over all groups

becomes V̂
phq

B,M .

V̂
phq

B,M < 1

B

Bÿ

b“1

1

M ´ 1

Mÿ

i“1

=
hpSpbq

i q ´ h̄pbq
ı2

. (3.9)

Similarly, with some algebra, we can define V̂
psq

B,M as

V̂
psq

B,M < 1

MB ´ 1

Bÿ

b“1

Mÿ

i“1

=
hpSpbq

i q ´ Un,B,M

ı2

. (3.10)

Note that V̂
phq

B,M is still an unbiased estimator of V phq while V̂
psq

B,M introduces a

small bias when estimating V psq because these subsamples are not randomly ob-
tained — there is an over-representation of non-overlapping pairs. The following
proposition quantifies this bias.

Proposition 3.3. For the sample variance estimator V̂
psq

B,M defined on the

matched sample groups subsamples with M ¨ B ě 2, we denote δM,B :< M´1
MB´1

.

Then,

E
´

V̂
psq

B,M

¯
< p1 ´ δM,BqV psq ` δM,BV phq. (3.11)

This proposition leads to the following unbiased estimator of VarpUn,B,M q.
The proofs of both Propositions 3.3 and 3.4 are collected in Appendix D.

Proposition 3.4. Given M ¨ B subsamples from the matched sample sampling

scheme, with B ě 1 and M ě 2, the “Matched Sample Variance Estimator”

given below is an unbiased estimator of VarpUn,B,M q:

yVarpUn,B,M q < V̂
phq

B,M ´ MB ´ 1

MB
V̂

psq
B,M . (3.12)

3.5. Unifying existing unbiased estimators

To conclude this section, we discuss the relationships and differences between
our view of the variance decomposition versus existing approaches. As noted
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in the introduction, various variance estimators appeared in the literature to
correct the bias when the leading term does not dominate. Folsom [10] and
Schucany and Bankson [24] primarily focus on unbiased estimators for complete
U-statistics with a very small sample. In particular, Schucany and Bankson [24]

propose two estimators of ξ2
1,2 in the Hoeffding decomposition (denoted as ζ̂2

1

and ζ̃2
1 in their page 418 and 422, respectively). Interestingly, the estimators of

ξ2
1,k introduced by Mentch and Hooker [20] and Zhou, Mentch and Hooker [35]

are efficient incomplete approximations of the former, ζ̂2
1 :< 1

n´1

ř
i“1rĥ1pXiq ´

Uns2, where ĥ1pXiq <
`

n´1
k´1

˘´1 ř
Sj :XiPSj

hpSjq. Meanwhile, our estimator V̂ phq´
ˆ̃ξ2
1,k is equivalent to the latter, ζ̃2

1 . A comprehensive derivation is provided in
Appendix D.3.

Wang and Lindsay [31] propose an unbiased estimator motivated by EpU2
nq´

E2pUnq. Their complete variance estimator [31, page 1120] is,

N´1
k

ÿ

Pk

hpSiqhpSjq ´ N´1
0

ÿ

P0

hpS0qhpS0q,

where Pc < tpSi, Sjq s.t. |Si X Sj | ď cu, and Nc is the cardinality of Pc. Moti-
vated by this formulation, they further propose an ANOVA form of the estimator
and its corresponding incomplete version.

Although various unbiased estimators exist in the literature, they are all moti-
vated by entirely different perspectives. The unique motivation of our estimator
is its peak-region dominance phenomenon and the corresponding conditional
variance view, which allows unbiased estimation. While we are not restricting
the estimating of covariance terms with d values within a certain region, this
is automatically done through resamplings. In the incomplete version, the over-
laps are dominated by terms from the peak-region. This is in contrast with
the traditional leading term dominance notation, which forces the estimator
to concentrate on a single term. On the other hand, it is interesting that the
connections among existing estimators have never been investigated. To com-
plete our analysis, we further established several connections. In Appendix D.3
and D.4 we show that all existing unbiased complete estimators are essentially
the same estimator, presented in different formats and settings. In particular,
we show that Folsom [10]’s formula is identical to our complete version and also
equivalent to Wang and Lindsay [31]’s version. We further restrict a setting with
k < 2 for a direct comparison with the estimator proposed by Schucany and
Bankson [24]. In Appendix D.4, we show the equivalence between our incomplete
estimators and Wang and Lindsay [31]’s.

4. Theoretical results

To the best of our knowledge, ratio consistency of variance estimator in the
context of infinite-order U-statistics has not been investigated. In this section,
we attempt to fill some gaps in the literature by establishing the results of our
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proposed estimator, meaning that we want to show

yVarpUnq
EryVarpUnqs

PÝÑ 1.

where
PÝÑ denotes convergence in probability. The notion of ratio consistency

is important here since the variance of U-statistics would naturally converge to
0 as n grows. Hence any variance estimator that converges to 0 is consistent.
However, a consistent estimator does not guarantee nominal coverage. In the

following, we shall rewrite yVarpUnq as V̂u, and show a sufficient condition of the
above

VarpV̂uq{E2pV̂uq < VarpV̂uq{Var2pUnq Ñ 0, as n Ñ 8.

We want to note that such a result under general k settings is likely impossible
without strong assumptions or knowledge of the specific form of the kernel
h. The main difficulty in the proof is caused by the fourth-order term in the
form of CovrhpS1qhpS2q, hpS3qhpS4qs which naturally appears in the variance
of V̂u. Untangling the dependencies of the fourth-order term under large k is a
difficult task. Hence, we focus on the k < op?

nq setting in which the result is
more attainable, although computationally, the estimator can still be applied
whenever k ď n{2. Even though the k < op?

nq setting is somewhat restrictive,
it is still the first in the literature under the context of this paper. And further
investigations may be established by extending the proposed strategy to higher
orders.

Our main strategy can be summarized as follows. First, we observe that the
proposed estimator V̂u < V̂ phq ´ V̂ psq can be written an order-2k U-statistic:

V̂u <
ˆ

n

2k

˙´1 ÿ

Sp2kqĎXn

ψ
´

Sp2kq
¯

, (4.1)

where Sp2kq is a size-2k subsample set and ψ
`
Sp2kq

˘
is the corresponding size-2k

kernel, defined as

ψ
´

Sp2kq
¯

:< ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯
.

Here ψk1

`
Sp2kq

˘
for k1 < 0, 1, 2, . . . , k satisfies

ψk1

´
Sp2kq

¯
< Nn,k,k1

k1ÿ

d“0

1

Nd

ÿ

S1,S2ĂSp2kq

|S1XS2|“d

h pS1q h pS2q , (4.2)

where Nn,k,k1 <
`

n
2k

˘`
n
k

˘´1`
n´k`k1

k

˘´1
and Nd <

`
n´2k`d

d

˘
is the number of

different size-2k sets such that its two size-k subsets S1 and S2 share d overlaps.
We remark that in this paper, S refers to a size-k set, and Sp2kq refers to a
size-2k set.
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Similar to a regular U-statistic, the variance of an order-2k U-statistic V̂u can
be decomposed as

Var
´

V̂u

¯
<

ˆ
n

2k

˙´1 2kÿ

c“1

ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
σ2

c,2k, (4.3)

where σ2
c,2k is the covariance between ψpSp2kq

1 q and ψpSp2kq
2 q for |Sp2kq

1 XS
p2kq
2 | <

c and c < 1, 2, . . . , 2k:

σ2
c,2k :< Cov

=
ψpSp2kq

1 q, ψpSp2kq
2 q

ı
. (4.4)

If we follow the existing literature, it is common to impose high-level assump-
tions on the kernel ψ and also bound the ratio of the last term, σ2

2k,2k over the

first term σ2
1,2k [8]. However, not only such assumptions are difficult to verify

and can be possibly violated (see discussion in Appendix B.4), but also ψ is
viewed as some form of a “black box”, which does not help in analyzing the
convergence of VarpV̂uq{Var2pUnq.

Hence, the key strategy of our approach is to avoid explicit assumptions on
V̂u’s kernel ψ and σ2

c,2k, instead only impose assumptions on a fourth-order term
of h: CovrhpS1qhpS2q, hpS3qhpS4qs. This leads to the main technical challenge
in this work, CovrhpS1qhpS2q, hpS3qhpS4qs involves the 4-way overlaps among
S1, S2, S3, S4, although it shares similar intuition as ξ2

d,k < CovrhpS1q, hpS2qs
which involves the overlaps between S1, S2. However, since VarpV̂uq is the vari-
ance of variance estimator of U-statistics, it becomes inevitable to study the
fourth-order term of h instead of a second-order term.

We first establish the Double U-statistics notion of V̂u in Section 4.1. The dou-
ble U-statistic structure in Proposition 4.2 shows a cancellation effect (see Ap-
pendix E) inside of V̂u, which helps accelerate the convergence rate of VarpV̂uq.
Using this structure, we can further decompose each σ2

c,2k in the Hoeffding

decomposition (4.3) into ·2
c,2kpd1, d2q terms (see Proposition 4.3). Then, we

bound all ·2
c,2kpd1, d2q’s by decomposing each term into a basic covariance term

CovrhpS1qhpS2q, hpS3qhpS4qs. Hence, it suffices to impose primitive assumptions
on CovrhpS1qhpS2q, hpS3qhpS4qs to analyze the behavior of V̂u. We should high-
light the challenge that we need to use 11 parameters to describe the 4-way over-
lapping among S1, S2, S3, S4. Details are left in the discussion in the assumption
section (Section 4.2). We also note that it is easier to understand the difficulties
and strategies related to the nature of Double U-statistic structure through a
simplified example, the linear average kernel, presented in Appendix H. And
finally, in Section 4.3, we present the ratio consistency. Section 4.4 is used to
summarize a roadmap of the proof.

4.1. Double U-statistic structure

We define a notion of Double U-statistic to facilitate our discussion and show
that V̂u is a Double U-statistic. The advantage of this tool is to break down
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our variance estimator into lower-order terms, which alleviates the difficulty
involved in analyzing σ2

c,2k.

Definition 4.1 (Double U-statistic). For an order-k U-statistic, we call it Dou-

ble U-statistic if its kernel function h is a weighted average of U-statistics.

Essentially, a Double U-statistic is a “U-statistic of U-statistic”. By (4.1),

V̂u <
`

n
2k

˘´1 ř
Sp2kqĎXn

ψ
`
Sp2kq

˘
. V̂u involves a size-2k kernel ψ. However, by

Equation (4.2), the kernel ψ has a complicated form. The following proposition
shows that we can further decompose ψ into linear combinations of ϕd’s, which
are still U-statistics.

Proposition 4.2 (V̂u is a Double U-statistic). The order-2k U-statistic V̂u

defined in Equation (4.1) is a Double U-statistic. Its kernel ψ
`
Sp2kq

˘
can be

represented as a weighted average of U-statistics, such that

ψ
´

Sp2kq
¯

:<
kÿ

d“1

wd

=
ϕd

´
Sp2kq

¯
´ ϕ0

´
Sp2kq

¯ı
. (4.5)

Here, for d < 0, 1, ..., k, ϕd is the U-statistic with size-p2k´dq asymmetric kernel

as following

ϕd

´
Sp2kq

¯
< M´1

d,k

ÿ

S1,S2ĂSp2kq

|S1XS2|“d

hpS1qhpS2q; (4.6)

Md,k :<
`

2k
d

˘`
2k´d

d

˘`
2k´2d

k´d

˘
, which is the number of pairs S1, S2 Ă Sp2kq, s.t.

|S1 X S2| < d; and wd :<
`

n
2k

˘`
n
k

˘´2`
2k
d

˘`
2k´d

d

˘`
2k´2d

k´d

˘
{
`

n´2k`d
d

˘
, @d ě 1, w0 <´`

n
k

˘´1 ´
`

n´k
k

˘´1
¯ `

n
k

˘´1`
n
2k

˘`
2k
k

˘
. The wd’s defined above satisfy the following.

řk
d“0 wd < 0.wd ą 0, @d ą 0.

wd < O

ˆ
k2d

d! nd

˙
, for d < 1, 2, ..., k. (4.7)

Particularly, for fixed d,

wd < p1 ` op1qq k2d

d! nd
. (4.8)

The proof is collected in Appendix C.1. We observe that given k < op?
nq,

wd decays with d at a speed even faster than the geometric series. In our later
analysis, we can show that the first term, w1rϕ1pSp2kqq ´ ϕ0Sp2kqqs, can be a
dominating term in ψpSp2kqq. Moreover, with kernel ϕdpSp2kqq, we introduce the
following decomposition of σ2

c,2k.

Proposition 4.3 (Decomposition of σ2
c,2k). For any size-2k subsample sets

S
p2kq
1 , S

p2kq
2 , s.t. |Sp2kq

1 X S
p2kq
2 | < c and 1 ď c ď 2k, 1 ď d1, d2 ď k, we define

·2
c,2kpd1, d2q :< Cov

<
ϕd1

´
S

p2kq
1

¯
´ ϕ0

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯
´ ϕ0

´
S

p2kq
2

¯ ‰
.

(4.9)
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Then, we can represent σ2
c,2k as a weighted sum of ·2

c,2kpd1, d2q’s.

σ2
c,2k <

kÿ

d1“1

kÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q. (4.10)

This proposition can be directly concluded by combining the alternative form
of Un’s kernel ψ in Equation (4.5) and the definition of ·2

c,2kpd1, d2q. With the

help of the Double U-statistic structure, upper bounding σ2
c,2k can be boiled

down to analyzing ·2
c,2kpd1, d2q. Detailed analysis of this connection is pro-

vided in Section 4.4 and Appendix E. Note that we can further decompose
·2

c,2kpd1, d2q (see Appendix F.5), so σ2
c,2k can be viewed as a weighted sum of

CovrhpS2qhpS2q, hpS3qhpS4qs’s.

4.2. Assumptions

Assumption 1 limits the kernel size k as a lower-order of
?

n, while Assumption 2
controls the growth rate of ξ2

d,k with d. Assumption 3, 4, and 5 are related to
CovrhpS1qhpS2q, hpS3qhpS4qs. As previously mentioned, CovrhpS1qhpS2q,
hpS3qhpS4qs can be viewed as an extension of ξ2

d,k < CovrhpS1q, hpS2qs, the

classical covariance of two kernels. While ξ2
d,k only depends on one parameter,

i.e., d < |S1 XS2|, 11 parameters are needed to fully determine CovrhpS1qhpS2q,
hpS3qhpS4qs, since it involves a 4-way overlapping structure. This can be visu-
alized in Figure 4 in Appendix. We denote the number of parameters as “De-
gree of Freedom (DoF)” of the covariance. Essentially, Assumptions 3, 4, and 5
are about reducing this DoF and controlling the growth of CovrhpS1qhpS2q,
hpS3qhpS4qs with overlapping samples.

In Appendix B, we provide further discussion and examples of our assump-
tions. In Appendix G, we propose a relaxation of Assumption 3 and present the
proof of the main results under the new assumptions.

Assumption 1. There exist a constant ε P p0, 1{2q, so that the growth rate of
kernel size k regarding sample size n is bounded as k < Opn1{2´εq.
Assumption 2. @k P N

`, ξ2
1,k ą 0 and ξ2

k,k ă 8. There exist a universal constant
a1 ě 1 independent of k, satisfying that

sup
d“2,3,...,k

ξ2
d,k

da1ξ2
1,k

< Op1q.

Note that a smaller a1 in Assumption 2 implies a stronger assumption. It is
well known that kξ2

d,k ď dξ2
k,k [17], the smallest possible value of a1 is 1, which

is used in the existing literature [20, 8, 35, 22]. Hence, if we force a1 < 1 and
only focus on the upper bound of VarpUnq, the growth rate of k in Assumption 1
can be relaxed to opnq. However, this trade-off between Assumptions 1 and 2
cannot be applied to ratio consistency directly.

To motivate our other assumptions, we provide a brief discussion on the 4-
way overlap of CovrhpS1qhpS2q, hpS3qhpS4qs. As we mentioned before, the goal
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is to avoid direct assumptions of ψpSp2kqq and its covariance σ2
c,2k and study the

fourth-moment term CovrhpS1qhpS2q, hpS3qhpS4qs. To simplify the notation, we
let

ρ :< Cov rhpS1qhpS2q, hpS3qhpS4qs . (4.11)

Then ρ involves 11 different overlap schemes,

2-set: |S1 X S2|, |S1 X S3|, |S1 X S4|, |S2 X S3|, |S2 X S4|, |S3 X S4|;
3-set: |S1 X S2 X S3|, |S1 X S2 X S4|, |S1 X S3 X S4|, |S2 X S3 X S4|;
4-set: |S1 X S2 X S3 X S4|.

Hence, 11 parameters are needed to describe ρ. We denote the number of
these parameters as the “Degrees of Freedom” (DoF) of ρ. Furthermore, there
are two types of these parameters: d1 < |S1 X S2| and d2 < |S3 X S4| describes

the overlapping within S
p2kq
1 and S

p2kq
2 respectively; while other 9 overlapping

sets are subsets of S
p2kq
1 X S

p2kq
2 , so they describe the overlapping between S

p2kq
1

and S
p2kq
2 . We can describe these 9 overlapping sets by a 9-dimensional vector

r, whose definition is collected in Appendix B.1. Hence, the 11 DoF can be
denoted by tuple pr, d1, d2q.

However, it may not be necessary to know all r, d1, d2 values to calculate
this covariance ρ. For example, in the linear average kernel (Example B.2 in
Appendix B.2), ρ only depends on r. This may be expected for an estimator
that is approximately linear. Hence, we propose the following assumption.

Assumption 3. ρ only depends on the 9 DoF vector r. Hence, without the risk
of ambiguity, we define a function ρprqp¨q with

ρprq < ρ. (4.12)

The assumption implies that the within S
p2kq
1 or S

p2kq
2 overlapping counts

have no impact on ρ. This simplifies a cancellation pattern when analyzing
·c,2kpd1, d2q (4.9). A comprehensive discussion of this assumption can be found
in Appendix B. We first demonstrate that this assumption is valid for the lin-
ear average kernel, as previously mentioned. Next, we provide an example to
illustrate the challenges of reducing DoF below 9 by only considering two-way
overlaps, indicating that further simplification of this assumption may require
specific assumptions about the kernel functions. In addition, in Appendix G, we
suggest a relaxation of this assumption and provide an alternative proof of the
main results based on this relaxed assumption.

Assumption 4 (Ordinal Covariance). For all size-k subsets S1, S2, S3, S4 and
S1

1, S1
2, S1

3, S1
4, let ρ and ρ1 denote the corresponding covariance as defined in

Equation 4.11 with DOFs r and r1 (defined in Appendix B.1), respectively.
Then, we have:

ρ ě ρ1, if rij ě r1
ij , @i, j < 0, 1, 2.
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Moreover, given size-k sets S1, S2, and r such that |S1 X S2| < c and |r| < c,
we have:

ρ ď CovrhpS1q2, hpS2q2s <: F pkq
c . (4.13)

Assumption 4 implies that more overlapping leads to larger ρ. This is a rea-

sonable result to expect. For every c < |Sp2kq
1 X S

p2kq
2 |, it also provides an upper

bound of ρ, where F
pkq
c refers to ρ with “maximum possible overlaps” given c

such that S1 < S2, S3 < S4. The overlapping associated with F pkq is visualized
in Figure 5 in Appendix B. It’s easy to see that ρ ě 0, an analog to ξ2

d,k ě 0 in
a regular U-statistics setting [17].

Assumption 5. For F
pkq
c defined in Assumption 4, when c < |S1 X S2| < 1, we

have

F
pkq
1

ξ4
1,k

< CovrhpS1q2, hpS2q2s
pCovrhpS1q, hpS2qsq2

< Op1q (4.14)

In addition, there exist a universal constant a2 ě 1 independent of k, satis-
fying

sup
c“2,3,...,2k

F
pkq
c

ca2 F
pkq
1

< Op1q. (4.15)

Equation (4.14) states that a fourth-moment term cannot exceed a second-
moment term ξ2

1,k. This can be verified for the linear average kernel with basic

moment conditions. Similarly to the polynomial growth rate of ξ2
d,k specified

in Assumption 2, Equation (4.15) controls a polynomial growth rate of ρ with
respect to c, as F pkq is an upper bound of ρ. It is worth noting that Assumption 5
can be implied by Assumption 2 for certain specific kernels (see Example B.4
in Appendix B).

4.3. Main results

We now present our main results. As a direct consequence of the following
theorem, the ratio consistency property is provided in Corollary 4.6.

Theorem 4.4 (Asymptotic variance of Un and V̂u). Under Assumptions 1-5,

we can bound VarpUnq (2.1) and VarpV̂uq (4.3) as

VarpUnq < p1 ` op1qq
k2ξ2

1,k

n
, (4.16)

VarpV̂uq < O

˜
k2σ̌2

1,2k

n

¸
, (4.17)

where σ̌2
1,2k — k2ξ4

1,k

n2 is the upper bound of σ2
1,2k given by Proposition E.2 in

Appendix E. Here, “f — g” implies f < Opgq and g < Opfq.
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The proof of the results is provided in Appendix C.3. The calculation of
VarpUnq in (4.16) and VarpV̂uq in (4.17) requires controlling the growth of ξ2

d,k

and σ2
c,2k. In particular, (4.16) can be derived from a general proposition (Propo-

sition 4.5) provided below. However, the proof of (4.17) is more complex, as it
relies on the double U-statistic structure of V̂u. A proof roadmap is presented in
Section 4.4, and technical lemmas to upper bound ·2

c,2kpd1, d2q (4.9) and σ2
c,2k

are provided in Appendix E.

Proposition 4.5 (Leading covariance domination). For a complete U-statistic

Un with size-k kernel and k < op?
nq, assume that ξ2

1,k ą 0 and there exists a

non-negative constant C such that

lim sup
kÑ8,2ďdďk

ξ2
d,k{

`
d!ξ2

1,k

˘
< C.

Then,

lim
nÑ8

VarpUnq{
`
k2ξ2

1,k{n
˘

< 1.

The proof of this proposition can be found in Appendix C.4. This proposition
relaxes the conditions from Theorem 3.1 used by DiCiccio and Romano [8] and
provides a foundation for our approach to bounding VarpV̂uq. Specifically, our
condition allows for the ratio ξ2

d,k{ξ2
1,k to grow at a factorial rate of d, whereas

the conditions in [20, 35, 8] only allow for linear growth. A comparison between
our assumption on ξ2

d,k{ξ2
1,k and existing literature is provided in Section 4.2.

Corollary 4.6 (Ratio consistency of V̂u). Under Assumptions 1-5,

VarpV̂uq
=
EpV̂uq

ı2
< O

ˆ
1

n

˙
,

which implies that V̂u{EpV̂uq PÝÑ 1.

This result is a corollary of Theorem 4.4 and demonstrates the consistency
of the variance estimator V̂u in terms of ratios. The proof can be found in
Appendix C.2. To the best of our knowledge, this is the first proof of the ratio
consistency of an unbiased variance estimator for growing order U-statistics.

4.4. Proof roadmap

The roadmap to upper bound VarpV̂uq (4.17) in Theorem 4.4 is provided in
Equation (4.18). The relevant technical lemmas are summarized in Appendix E.

VarpV̂uq <
2kÿ

c“1

vcσ2
c,2k ď

2kÿ

c“1

vcqσ2
c,2k

p˚q—
T1ÿ

c“1

vcqσ2
c,2k

p:q— v1qσ2
1,2k

p;q— k4

n3
F

pkq
1 . (4.18)

The quantity vc :<
`

n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
represents the coefficients in the Ho-

effding decomposition of VarpV̂uq (4.3); qσ2
c,2k is the upper bound of σ2

c,2k given
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by Propositions E.2 and E.3; and “f — g” means that f < Opgq and g < Opfq.
The inequalities in (4.18) should be interpreted as follows.

• The first inequality ď is a result of replacing σ2
c,2k with either its tighter

bound for c < 1, 2, ..., T1 (Proposition E.2) or its looser bound for c <
T1 ` 1, 2, ..., 2k (Proposition E.3). Each σ2

c,2k can be decomposed into

·2
c,2kpd1, d2q’s (4.10). Propositions E.2 and E.3 are based on the tighter

and looser upper bounds of ·2
c,2kpd1, d2q (Lemma E.5 and E.6).

• The first asymptotic notation — (denoted with ˚) is concluded from
Lemma E.4. The value of T1 <

X
1
ε

\
` 1 only depends on the growth rate

of k, not n, as we assume k < opn1{2´εq in Assumption 1.
• The second asymptotic notation — (denoted with :) is a result of compar-

ing the finite qσ2
c,2k terms for c < 1, 2, ..., T1.

• The last asymptotic notation — (denoted with ;) is concluded from
Lemma E.2.

5. Application to random forests

Random forests can be viewed as an incomplete infinite-order U-statistic with
a random kernel [20]. The purpose of this section is to present a comprehensive
algorithm, as well as two extensions: one for the case when k ą n{2 and another
one that uses local smoothing to address the issue of negative estimation values.

Notation-wise, we present the algorithm in the context of regression, where
we observe a vector of covariates xi P R

p and yi P R for observations i. Hence,
define Xi < pxi, yiq, and the kernel function hpSiq can be viewed as the tree
prediction on a given target point x˚ with subsample Si. The implementation of
the variance estimator is straightforward using this setting and is summarized
in Algorithm 1. We want to make a few comments. First, the original random
forest [3] uses bootstrap samples, i.e., sampling with replacement, to build each
tree. However, sampling without replacement [13] is also prevalent and achieves
similar performances. Secondly, most random forest models utilize a random
kernel instead of fixed ones. This is mainly due to the random feature selection
[3] and random splitting point [13] when fitting each tree. Mentch and Hooker
[20] show that U-statistics with random kernel converge in probability to its
fixed kernel counterpart by viewing the fixed kernel version as the expectation
of the random version. Under suitable conditions, given B large enough, the the-
oretical analysis of random U-statistic can be reasonably reduced to analyzing
the non-random counterpart, allowing our method to be applied. It is possible
that both our estimators of V phq and V psq are inflated by the influence of the
randomness due to their U statistic representation. However, such inflations are
likely canceled out by the difference, and our simulation results in Section 6
confirm this speculation by showing that the estimator is mostly unbiased.
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Algorithm 1: Matched Sample Variance Estimator (k ď n{2)

Input: n, k, M, B, training set Xn, and testing sample x˚

Output: yVarpUn,B,M q
1 Construct matched samples:

2 for b “ 1, 2, . . . , B do

3 Sequentially sample tS
pbq
1

, S
pbq
2

, ..., S
pbq
M u from Xn such that S

pbq
i s are mutually

exclusive, i.e., S
pbq
i X S

pbq
i1 “ H for i ‰ i1.

4 end

5 Fit trees and obtain predictions:

6 Fit random trees for each subsample S
pbq
i and obtain prediction hpS

pbq
i q on the

target point x˚.
7 Calculate the variance estimator components:

8 Forest average: Un,B,M “ 1

MB

řM
i“1

řB
b“1

hpS
pbq
i q

9 Within-group average: h̄pbq “ 1

M

řM
i“1

hpS
pbq
i q

10 Tree variance (3.9): V̂
phq

B,M “ 1

B

řB
b“1

1

M´1

řM
i“1

phpS
pbq
i q ´ h̄pbqq2

11 Tree sample variance (3.10): V̂
psq

B,M “ 1

MB´1

řM
i“1

řB
b“1

phpS
pbq
i q ´ Un,B,M q2

12 The final variance estimator (3.12)

13
yVarpUn,B,M q “ V̂

phq
B,M ´ p1 ´ 1

MB
qV̂

psq
B,M

5.1. Extension to k ą n{2

The previous estimator yVarpUn,B,M q (3.12) is restricted to k ď n{2 due to the
sampling scheme. However, this does not prevent the application of formula-
tion (3.2), VarpUnq < V phq ´ V psq. To the best of our knowledge, the existing
literature does not provide further discussion under k ą n{2 for general kernels,
while some theoretical strategies such as Wang and Lindsay [32] simplify the
kernel into a low-order approximation. Alternatively, the infinitesimal jackknife
[28] has been shown to be almost equivalent to the leading term estimator in
V-statistics by Zhou, Mentch and Hooker [35]. Here, we discuss a generaliza-
tion of our formulation for k ą n{2. Re-applying Propositions (3.2) and (3.2)
with M < 1, we can obtain the variance of an incomplete U statistic sampled
randomly with replacement:

VarpUn,B,M“1q < V phq ´ B ´ 1

B
V psq.

By Proposition 3.3, V̂
pSq

B,M“1 is still an unbiased estimator of V psq. However, V phq

has to be estimated with a different approach, since any pair of subsamples
would share at least some overlapping samples. A simple strategy is to use
bootstrapping. Hence, we generate another set of size-k samples, sampled with
replacement, and evaluate the kernel, using their sample variance as an estimator
of V phq. We remark that the bootstrap procedure introduced will introduce an
additional computational burden.
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5.2. Locally smoothed variance estimator for random forest

Even though the proposed estimator is unbiased, large variance of this estima-
tor may still result in possible under-coverage of the corresponding confidence
interval (CI). Note that due to its variation, our variance estimator might be
negative, though this rarely happens in our simulations. A similar phenomenon
is also noticed by Schucany and Bankson [24], and Wang and Lindsay [31]. To
alleviate this issue, we propose a local smoothing estimator, namely Matched
Sample Smoothing Variance Estimator (MS-s). The improvement is especially
effective when the number of trees is small. This will be demonstrated in the
simulation study, see, e.g., Table 1 and Figure 2.

Denote a variance estimator on a future test sample x˚ as σ̂2
RF px˚q. We ran-

domly generate N neighbor points x˚
1 , . . . , x˚

N and obtain their variance esti-
mators σ̂2

RF px˚
1 q, . . . , σ̂2

RF px˚
N q. Then, the locally smoothed estimator is defined

as the average:

σ̂2
RF px˚q < 1

N ` 1

=
σ̂2

RF px˚q `
Nÿ

i“1

σ̂2
RF px˚

i q
ı
. (5.1)

The algorithm is presented as follows.

Algorithm 2: Matched Sample Smoothing Variance Estimator (k ď
n{2)

Input: n, k, M, B, training set Xtrain, testing sample x˚ and number of neighbors N

Output: Smooth Variance estimator σ̂2

RF px˚q
1 Find the closed distance Dmin “ minxPXtrain

dpx˚, xq ;
2 Randomly generate N neighbors x˚

1
, ..., x˚

N that satisfy x : dpx, x˚q ď Dmin or
x : dpx, x˚q “ Dmin ;

3 Obtain variance estimators σ̂2

RF px˚q, σ̂2

RF px˚
1

q, ..., σ̂2

RF px˚
N q by Algorithm 1 ;

4 σ̂2

RF px˚q “ 1

N`1
rσ̂2

RF px˚q `
řN

i“1
σ̂2

RF px˚
i qs (5.1).

In Algorithm 2, dp¨, ¨q can be Euclidean distance for continuous covariates
and other metrics for categorical covariates. In practice, we can pre-process
data before fitting random forest models, such as performing standardization
and feature selection. Due to the averaging with local target samples, there is
naturally a bias-variance trade-off in choosing Dmin and neighbors. This is a
rather classical topic, and there can be various ways to improve such an estima-
tor based on the literature. Our goal here is to provide a simple illustration. In
the simulation section, we consider generating 10 neighbors on an �2 ball cen-
tered at x˚. The radius of the ball is set to be the Euclidean distance from x˚ to
the closest training sample. We found that the performance is not very sensitive
to the choice of neighbor distance. Also, the computational cost of this smooth-
ing estimator only involves new predictions, which is also minor compared to
fitting random forests.
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5.3. A discussion on existing normality theories of random forests

Before demonstrating the simulation results, we would like to discuss the nor-
mality theories of random forests briefly. The main concern is that there is no
universal guarantee of normality for random forests, and a variance estimator
may not ensure the desired coverage rate. Hence, the use of any variance esti-
mators should be done with a reasonable understanding of the random forest
itself, especially by considering the impact of its tuning parameters.

Many existing works in the literature have studied the asymptotic normality
of Un given k < op?

nq to opnq under various regularity conditions [20, 28, 8,
35, 22, 1]. Existing empirical study also shows that the normality usually holds
when k is small while begins to break down for certain cases [35, Table 2]. As
we will see in the following, there are both examples and counter-examples for
the asymptotic normality of Un with a large k, depending on the specific form
of the kernel.

Essentially, when a kernel hp¨q is very adaptive to local observations without
much randomness, e.g., 1-nearest neighbors and the kernel size is at the same
order of n, there is too much dependency across different hpSiq’s. This prevents
the normality of Un. On the other hand, when the kernel size is relatively small,
there is enough variation across different kernel functions to establish normality.
This is the main strategy used in the literature for establishing normality. The
following example demonstrates these ideas.

Example. Given covariate-response pairs: Z1 < px1, Y1q, ...., Zn < pxn, Ynq as
training samples, where xi’s are unique and deterministic numbers and Yi’s i.i.d.
F such that EpYiq < μ ą 0, VarpYiq < σ2, for i < 1, 2, ..., n. We want to predict
the response for a given testing sample x˚.

Suppose we have two size-k (k < βn) kernels: 1) a simple (linear) average
kernel: hpSq < 1

k

ř
ZjPS Yj ; 2) a 1-nearest neighbor (1-NN) kernel, which predicts

using the closest training sample of x˚ based on the distance of x. Without loss
of generality, we assume that xi’s are ordered such that xi is the i-th nearest
sample to x˚. We denote corresponding sub-bagging estimator as Umean and
U1-NN respectively. It is trivial to show that

Umean < 1

n

nÿ

i“1

Yn, U1-NN <
n´k`1ÿ

i“1

aiYi,

where ai <
`

n´i
k´1

˘
{
`

n
k

˘
and

řn´k`1

i“1 ai < 1. Accordingly, we have VarpUmeanq <
1
n

σ2 and VarpU1´NN q ě a2
1VarpY1q < k2

n2 σ2 < β2σ2. Since Umean is a sample
average, we still obtain asymptotic normality after scaling by

?
n. However,

β < k{n ą 0, a1 makes a significant proportion in the sum of all ai’s and
VarpU1´NN q does not decay to 0 as n grows. Hence, asymptotic normality is
not satisfied for U1-NN.

In practice, it is difficult to know apriori what type of data dependence struc-
ture these hpSiq’s may satisfy. Thus, the normality of a random forest with a
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large subsampling size is still an open question and requires further understand-
ing of its kernel. In our simulation study, we observe that the confidence intervals
constructed with normal quantiles work well, given that data are generated with
Gaussian noise (see Section 6.1).

6. Simulation study

We present simulation studies to compare our variance estimator with exist-
ing methods [35, 28] on random forests. We consider both the smoothed and
non-smoothed versions, denoted as “MS-s” and “MS”, respectively. The balance
estimator and its bias-corrected version proposed by Zhou, Mentch and Hooker
[35] are denoted as “BM” and “BM-cor”. The infinitesimal jackknife [28] is de-
noted as “IJ”. Our simulation does not include the Internal Estimator and the
External Estimator [20], since the BM method has been shown to be superior
to these estimators [35]. Note that the BM estimator works for both U-statistics
and V-statistics [35, Section4, paragraph 1]. However, the V-statistics version is
almost equivalent to IJ [35, Theroem 3.3 and 3.4]. Hence, in our simulation, we
only include the U-statistics version.

6.1. Simulation settings

We consider two regression settings:

1. MARS: fpxq < 10 sinpπx1x2q ` 20px3 ´ 0.05q2 ` 10x4 ` 5x5

2. MLR: fpxq < 2x1 ` 3x2 ´ 5x3 ´ x4 ` 1

The first setting, MARS (multivariate adaptive regression splines), is proposed
by Friedman [12]. It has been used previously by Biau [2], Mentch and Hooker
[20]. The second setting, MLR, refers to multivariate linear regression. In both
settings, we generate a six-dimensional feature x < px1, . . . , x6q with indepen-
dent entries uniformly from r0, 1s, and responses are generated by fpxq ` ε,

where ε
iid„ N p0, 1q. Note that fpxq only depends on a subset of 6 variables.

We use n < 200 as the total training sample size and pick different subsample
sizes: k < 100, 50, 25 when k ď n{2 and k < 160 when k ą n{2. The numbers
of trees are nTrees < B ¨ M < 2000, 10000, 20000. For tuning parameters, we
set mtry as 3, which is half of the dimension, and set nodesize parameter
to 2tlogpnqu < 8. We repeat the simulation Nmc < 1000 times to evaluate the
performance of different estimators. Our proposed methods (MS, MS-s), BM and
BM-cor estimators are implemented using the RLT package available on GitHub.
The IJ estimators are implemented using grf and ranger. Each estimation
method and its corresponding ground truth (see details in the following) is
generated by the same package. Note that we do not use the honest tree setting
by Wager and Athey [28], since it is not essential for estimating the variance.
However, it may affect the coverage rate due to the normality behavior.

The performance of the variance estimator is evaluated in terms of its bias
and the coverage rate of its corresponding confidence interval. We denote the
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random forest estimator as pfpxq and evaluate the coverage based on the mean

of the random forest estimator, Er pfpxqs, instead of the true model value, fpxq,
as our focus is the variance estimation of pfpxq and the random forest itself may
be a biased model. To obtain the ground truth of the variance, we generate the
training dataset 10000 times and fit a random forest to each, using the mean
and variance of the 10000 forest predictions as approximations of Er pfpxqs and

Varr pfpxqs. The relative bias and the confidence interval (CI) convergence are
the evaluation criteria, with the relative bias defined as the ratio of the bias to
the ground truth of the variance estimation. The 1 ´ α CI is constructed using

f̂ ˘ Zα{2

a
V̂u, where Zα{2 is the standard normal quantile.

We evaluate the variance estimation on two types of testing samples for both
MARS and MLR data. The first is a central sample with x˚ < p0.5, . . . , 0.5q and
the second includes 50 random samples whose coordinates are independently
sampled from a uniform distribution between r0, 1s. These testing samples are
fixed for all experiments. The central sample is used to show the distribution of
variance estimators over 1000 simulations, while the 50 random samples are used
to evaluate the average bias and CI coverage rate. The results of the evaluation
are presented in Figure 2 and Tables 1 and 2. A small difference in the ground
truth generated by different packages is noted in Appendix I due to subtle
differences in the packages’ implementations.

6.2. Results for k ď n{2

Table 1

90% CI Coverage Rate averaged on 50 testing samples. The number in the bracket is the
standard deviation of coverage over 50 testing samples.

k “ n{2 k “ n{4 k “ n{8
nTrees 2000 20000 2000 20000 2000 20000
MARS

MS 81.5% (2.1%) 85.9% (1.6%) 82.2% (2.6%) 88.3% (1.1%) 82.5% (2.4%) 88.2% (1.4%)
MS-s 88.2% (2.9%) 89.3% (2.9%) 87.8% (2.6%) 89.9% (2.4%) 87.5% (1.8%) 89.3% (2.2%)
BM 80.8% (3.0%) 65.7% (1.8%) 91.4% (1.8%) 81.2% (1.5%) 93.8% (1.3%) 86.7% (1.1%)
BM-cor 13.9% (9.2%) 60.1% (1.6%) 70.6% (3.0%) 78.7% (1.4%) 82.9% (1.2%) 85.2% (1.1%)
IJ 95.5% (1.0%) 96.7% (1.0%) 89.8% (1.6%) 91.1% (1.0%) 92.3% (1.3%) 88.4% (1.1%)
MLR

MS 83.3% (1.1%) 86.7% (1.1%) 84.1% (1.5%) 88.2% (0.8%) 84.1% (1.5%) 88.2% (0.8%)
MS-s 89.5% (1.7%) 89.9% (1.4%) 89.1% (1.4%) 90.2% (1.4%) 88.6% (1.4%) 90.5% (1.0%)
BM 78.6% (1.6%) 64.4% (1.8%) 90.1% (1.2%) 81.2% (1.3%) 93.3% (1.0%) 86.2% (0.9%)
BM-cor 19.0% (5.5%) 59.4% (1.8%) 72.0% (1.5%) 78.9% (1.3%) 83.3% (1.2%) 84.8% (0.9%)
IJ 95.7% (0.9%) 96.6% (0.7%) 89.6% (1.0%) 91.6% (0.7%) 91.4% (1.1%) 88.7% (1.0%)

Figure 2 presents the evaluation results for the MARS data. The subfigures
show the distribution of variance estimators on the central test sample and the
corresponding 90% confidence interval (CI) coverage on 50 testing samples. As
previously mentioned, the bias of each estimator is compared to its population
mean, eliminating the influence from different packages. The results for the
MLR data are provided in Appendix I and show similar patterns. Tables 1 and 2
present the 90% CI coverage rate and relative bias of the variance estimation,
respectively. The coverage for each method is calculated as the average over
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Fig 2. A comparison of different methods on the MARS data is presented. Each column in
the figure represents a different tree size: k “ n{2, n{4, n{8 respectively. The first row displays
boxplots of the relative variance estimators on a central test sample, evaluated over 1000
simulations. The range of y-coordinate is restricted within r´1, 3s. The mean is represented
by the red diamond symbol in each boxplot. The second row displays boxplots of the 90 %
confidence interval (CI) coverage for 50 testing samples. The third row displays the average
coverage rate over 50 testing samples, with nTrees “ 20000. The black reference line, y “ x,
represents the desired coverage rate.

Table 2

Relative bias (standard deviation) over 50 testing samples. For each method and testing
sample, the relative bias is evaluated over 1000 simulations.

k “ n{2 k “ n{4 k “ n{8
nTrees 2000 20000 2000 20000 2000 20000
MARS

MS 0.9% (2.6%) 0.3% (2.3%) 0.3% (2.3%) 0.7% (1.8%) ´0.5% (2.2%) ´0.4% (1.5%)
MS-s 3.8% (14.2%) 3.6% (13.9%) 3.6% (13.1%) 3.8% (13.2%) 2.1% ( 8.8%) 2.2% ( 8.8%)
BM ´31.5% (8.7%) ´64.3% (1.2%) 17.1% (12.2%) ´31.9% (2.0%) 38.4% (9.3%) ´12.3% (1.8%)
BM-cor ´103.1% (8.3%) ´71.5% (1.1%) ´54.4% (3.9%) ´39.1% (1.1%) ´25.5% (1.9%) ´18.8% (1.3%)
IJ 108.9% (15.3%) 111.1% (15.5%) 44.6% (12.8%) 25.2% ( 3.9%) 73.8% (19.3%) 15.9% ( 3.8%)
MLR

MS ´0.3% (2.3%) 0.8% (2.1%) ´0.4% (2.5%) ´0.9% (2.1%) ´0.5% (2.3%) 0.1% (1.6%)
MS-s 5.8% (7.6%) 6.6% (7.9%) 5.2% (6.7%) 4.7% (6.7%) 3.9% (4.9%) 4.1% (4.8%)
BM ´38.9% (3.4%) ´65.6% (0.9%) 8.0% (5.7%) ´33.3% (1.4%) 31.4% (5.3%) ´14.5% (1.5%)
BM-cor ´97.3% (3.5%) ´71.4% (0.9%) ´52.5% (2.1%) ´39.4% (1.1%) ´25.1% (1.6%) ´20.2% (1.5%)
IJ 98.4% (11.5%) 101.0% (11.5%) 34.1% ( 4.2%) 22.9% ( 3.1%) 61.5% ( 9.4%) 11.1% ( 3.2%)
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50 testing samples, and the standard deviation, indicated within the bracket,
reflects the variation among these samples. Our simulation results show that
the random forest estimators are approximately normally distributed, as the
CIs constructed using the true variance achieve the desired confidence level
(see Appendix I). In summary, MS and MS-s demonstrate consistently better
performance compared to other methods, especially when the tree size k is large,
i.e., k < n{2. The improved performance can be seen in terms of accurate CI
coverage and reduced bias.

First, the third row of Figure 2 shows that the MS-s method achieves the
best CI coverage under every k, i.e., the corresponding line is nearest to the
reference line: y < x. The MS method performs the second best when k < n{2
and n{8. Furthermore, the CI coverages of the proposed methods are stable over
different testing samples with a small standard deviation (less than 3%), as seen
in Table 1. Secondly, with regards to the bias of the variance estimation, our
methods show a much smaller bias than all other approaches (Figure 2, first
row). More details of the relative bias are summarized in Table 2. The average
bias of MS is smaller than 0.5% with a small standard deviation, mainly due to
the Monte Carlo error. The MS-s method has a slightly positive average bias (0%
to 6.2%), but it is still much smaller than the competing methods. The standard
deviation of bias for MS-s is around 4.3% to 13.6%, which is comparable to IJ.

On the other hand, the performance of the competing methods varies. When
the tree size is k < n{2, the BM, BM-cor, and IJ methods show a large bias,
but their performance improves for smaller tree sizes. It is worth noting that
these methods are theoretically designed for small k. BM and BM-cor tend to
underestimate the variance in most settings, while IJ tends to overestimate.
In Table 2, on the MARS data with 20000 nTrees, the bias of both BM and
BM-cor is more than ´50%, resulting in severe under-coverage (65.4%, 59.8%),
while IJ leads to over-coverage. Even when the tree size is as small as k < n{8,
these methods still display a noticeable bias. However, the proposed methods
still outperform them when more trees (nTrees < 20000) are used, as shown in
the last column of Table 2.

The results indicate that the choice of the number of trees has a significant
effect on the performance of the estimators. This is to be expected due to the in-
fluence of the random kernels, the variation involved in incomplete U-statistics,
and other theoretical aspects. As the number of trees increases, the variation
of all estimators decreases, as can be seen in the first row of Figure 2. Our
estimators, being mostly unbiased, benefit from larger nTrees values. For in-
stance, the 90% CI coverages of the MS method on the MARS data increase
from 81.5% (k < n{2) and 85.9% (k < n{8) with nTrees < 2000 to 82.5% and
88.2% respectively with nTrees < 20000. On the other hand, the performance
of competing methods does not necessarily improve with an increase in nTrees.
For example, BM shows over-coverage with nTrees < 2000 but under-coverage
with nTrees < 20000 when k < n{4 or n{8. This phenomenon, known as es-
timation inflation, has been discussed by Zhou, Mentch and Hooker [35] and
is addressed by the BM-cor method, which reduces the bias. When k < n{8,
the gap between BM and BM-cor decreases as nTrees increases. However, this
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trend is no longer evident when k is large, as the dominating term used in their
theory is no longer applicable.

We also present the computational cost for variance estimation methods in
Appendix I. In short, once these tree predictions are obtained, the variance
estimation is done immediately at little cost for all methods. After all predictions
are done, the cost of MS is OpnTreesq per testing sample. BM, BM-corr (bias-
corrected BM) and IJ estimators add additional cost to this. They all involve
using the number of training samples in each tree (see, e.g., Section 4.2 in [35])
and hence the total cost is at OpnTrees ¨ nTrainq. On the other hand, our MS-
s estimator adds additional computational cost based on predicting additional
neighboring samples for each testing sample, which will increase the cost in a
different way. An additional set of analysis under a different tuning parameter
(mtry < 2) is presented in Appendix I. Overall, our method is not significantly
affected by this change.

Finally, we would like to emphasize the relationship between the bias of the es-
timator and the coverage rate of the confidence interval. Even though a random
forest predictor is normally distributed and the variance estimator is unbiased,
large fluctuations of the variance estimator can still lead to under-coverage. The
same also applies to the IJ estimator. For example, on MARS data with k < n{8
and nTrees < 20000, IJ has a positive bias (11.5%), but its confidence interval
is still under-coverage and even more severe than the proposed methods. In-
creasing the number of trees can improve this performance to some extend. An
alternative strategy is to perform local averaging as implemented in the MS-s
method, especially when nTrees is relatively small. The heights of the boxplots
in the figure clearly demonstrate the variance reduction effect. As a result, the
MS-s method with 2000 trees shows better coverage than the MS method with
20000 trees when k < n{2 (see Table 1). However, this maybe at the cost of
larger bias. Hence, we still recommend using a larger number of trees whenever
it is computationally feasible.

6.3. Results for k ą n{2

As discussed in Section 5.1, when n{2 ă k ă n, we cannot jointly estimate
V phq and V psq. Additional computational cost is introduced using the bootstrap
approach for estimating V phq. In this simulation study, we attempt to fit addi-
tional nTrees with bootstrapping (sampling with replacement) subsamples to
estimate V phq so we denote our proposed estimator and smoothing estimator
as “MS(bs)” and “MS-s(bs)”. We note that the grf package does not provide
IJ estimator when k ą n{2 so we generate the IJ estimator and corresponding
ground truth by the ranger package.

As seen from Table 3, all methods suffer from severe bias, but our methods
and IJ are comparable and better than BM and BM-cor. More specifically,
our proposed method generally over-covers due to overestimating the variance.
The IJ method shows good accuracy on MARS data but has more severe over-
coverage than our methods on MLR. Overall, to obtain a reliable conclusion
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Table 3

90 % CI coverage, relative bias, and standard deviation averaged on 50 testing samples.
Tree size k “ 0.8n. The calculation follows previous tables.

90% CI Coverage Relative Bias
Model Method z nTrees 2000 20000 2000 20000
MARS MS(bs) 94.2% (2.8%) 95.4% (2.4%) 128.4% (64.8%) 136.6% (67.2%)

MS-s(bs) 97.7% (1.5%) 98.1% (1.3%) 132.2% (66.7%) 140.6% (69.1%)
BM 51.4% (3.8%) 33.9% (1.7%) ´80.4% (3.1%) ´92.1% (0.5%)
BM-cor 0.0% (0.0%) 13.5% (4.5%) ´143.0% (12.1%) ´98.3% (1.3%)
IJ 88.0% (4.6%) 87.1% (3.7%) ´0.8% (25.2%) ´5.6% (16.3%)

MLR MS(bs) 94.3% (1.9%) 95.2% (1.7%) 98.4% (24.7%) 103.9% (25.4%)
MS-s(bs) 96.6% (1.3%) 97.0% (1.2%) 104.8% (24.9%) 110.3% (25.6%)
BM 47.9% (2.3%) 32.4% (1.5%) ´83.4% (1.2%) ´92.6% (0.3%)
BM-cor 0.0% (0.0%) 15.9% (2.4%) ´132.7% (4.3%) ´97.5% (0.5%)
IJ 99.4% (0.3%) 99.2% (0.3%) 182.8% (21.7%) 175.8% (16.7%)

of statistical inference, we recommend avoiding using k ą n{2. This can be a
reasonable setting when n is relatively large, and k < n{2 can already provide
an accurate model.

7. Real data illustration

We use the Seattle Airbnb Listings dataset, which was obtained from Kaggle1.
The purpose of this analysis is to predict the price of Airbnb units in Seattle.
The dataset consists of 7515 samples and nine covariates, including latitude,
longitude, room type, number of bedrooms, number of bathrooms, number of
accommodates, number of reviews, presence of a rating, and the rating score.
Further information about the dataset, including the missing value processing,
can be found in Appendix J.

Given the large sample size, we fit 40000 trees to obtain a variance estima-
tor. The tree size is fixed as half of the sample size: k < 3757. We construct
12 testing samples at 3 locations: Seattle-Tacoma International Airport (SEA
Airport), Seattle downtown, and Mercer Island. We further consider four bed-
room/bathroom settings as 1B1B, 2B1B, 2B2B, and 3B2B. Details of the
latitude and longitude of these locations and other covariates are described in
Appendix J. The price predictions, along with 95% confidence intervals, are
presented in Figure 3. Overall, the predictions match our intuitions. In particu-
lar, we can observe that the confidence interval of 1B1B units at SEA Airport
does not overlap with those corresponding to the same unit type at the other
two locations. This is possible because the accommodations around an airport
usually have lower prices due to stronger competition. We also observe that
2-bathroom units at SEA Airport and downtown have higher prices than 1-
bathroom units. However, the difference between 2B2B and 3B2B units at SEA
Airport is insignificant.

1https://www.kaggle.com/shanelev/seattle-airbnb-listings
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Fig 3. Random Forest prediction on Airbnb testing data. The 95% confidence error bar is
generated with our variance estimator, Matched Sample Variance Estimator. “2B1B” denotes
the house/apartment has two bedrooms and one bathroom.

8. Discussion

From the perspective of U -statistics, we have proposed a new framework of
variance estimator for infinite-order U statistics. In contrast to estimating only
the leading term, we establish a peak region dominance notion that utilize the
hypergeometric density of the overlapping mechanism. This addresses the bias
issue under large subsampling size k or small training size n. Additionally, new
tools and strategies have been developed to study the ratio consistency behavior
which is crucial for obtaining a proper coverage rate. Here, we discuss several
open issues and possible extensions for future research.

First, our current methods are computationally valid for k ď n{2. The diffi-
culty of extending to the k ą n{2 region is to estimate the tree variance, i.e.,
V phq. We proposed to use bootstrapped trees to extend the method to k ą n{2.
However, this could introduce additional bias and also leads to large variation, as
we can see in the simulation study. We suspect Bootstrapping may be sensitive
to the randomness involved in fitting trees. Since we estimate V phq and V psq

separately, the randomness of the tree kernel could introduce different added
variances, which leads to non-negligible bias. When k ą n{2, Wang and Lind-
say [32] propose an asymptotic unbiased variance estimator for the U-statistic
estimator of a Kullback-Leibler risk in the k-fold cross-validation. However, this
depends on a specific approximation of the kernel of Kullback-Leibler risk. The
problem remains open for a general kernel.

Secondly, we developed a new double-U statistics tool to prove ratio consis-
tency. This is the first work that analyzes the ratio consistency of a minimum-
variance unbiased estimator (UMVUE) of a U-statistic’s variance. The tool can
be potentially applied to theoretical analyses of a general family of U-statistic
problems. However, our ratio consistency result is still limited to k < opn1{2´εq,
introducing a gap between theoretical and practical versions. The limitation
comes from the procedure we used to drive the Hoeffding decomposition of the
variance estimator’s variance. In particular, we want the leading term to domi-
nate the variance while allowing a super-linear growth rate of each σ2

c,2k in terms
of c. Hence, the extension to the k < βn setting is still open and may require
further assumptions on the overlapping structures of double-U statistics.
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Thirdly, in our smoothed estimator, the choice of testing sample neighbors
can be data-dependent and relies on the forest-defined distance. It is worth
considering more robust smoothing methods for future work. Lastly, this paper
focuses on the regression problem using random forest. This variance estimator
can also be applied to the general family of subbagging estimators. Besides,
we may further investigate the uncertainty quantification for variable impor-
tance, the confidence interval for classification probability, the confidence band
of survival analysis, etc.

Appendix A: Notation table

Table 4

Summary of Notations.

Notations Description

O a “ Opbq: exists C ą 0, s.t. a ď Cb..

Ω, — a “ Ωpbq ðñ b “ Opaq. a — b ðñ a “ Opbq and a “ Ωpbq.

Un, h Un is the U-statistic with size-k kernel h.

V̂u, ψ V̂u denotes the estimator (4.1) of VarpUnq, which is a U-statistic with
size-2k kernel ψ.

S S denotes the size-k subsample set associated with kernel h.

Sp2kq Sp2kq denotes the size-2k subsample set associated with kernel ψ.

c, d1, d2 Given S1, S2 Ă S
p2kq
1

, S3, S4 Ă S
p2kq
2

, c “ |S
p2kq
1

X S
p2kq
2

|, d1 “ |S1 X S2|,
and d2 “ |S3 X S4|.

ϕd, wd See ψpSp2kqq “
řk

d“0
wdϕd

´
Sp2kq

¯
(4.6). ϕdpSp2kqq is still a U-statistic.

w̌d w̌d “ Opk2d{pd!ndqq is the upper bound of wd given by Equation (4.7).

ξ2

d,k ξ2

d,k “ CovrhpS1q, hpS2qs is first used in (2.1).

σ2

c,2k σ2

c,2k “ CovrψpSp2kq
1

q, ψpSp2kq
2

qs is first used in (4.3).

η2

c,2kpd1, d2q η2

c,2kpd1, d2q is introduced by further decomposing σ2

c,2k in (4.9).

qσ2

c,2k qσ2

c,2k is an upper bound of σ2

c,2k given by Propositions E.2 and E.3.

ρ ρ :“ CovrhpS1qhpS2q, hpS3qhpS4qs (4.11).

DoF The number of free parameters to determine
CovrhpS1qhpS2q, hpS3qhpS4qs.

r, |r| r is a 9-dimensional vector defined in (B.1), describing the 4-way over-
lapping among S1, S2, S3, S4. |r| is the �1 vector norm of r.

ri˚, r˚j , r˚ ri˚ “
ř

2

j“0
rij , r˚j “

ř
2

i“0
rij , and r˚ “ pr0˚, r1˚, r2˚, r˚0, r˚1, r˚2q.

ρprq ρprq is the 9 DoF representation of ρ (see Assumption 3).

F
pkq
c F

pkq
c (4.13) is the upper bound of ρ, given that |Sp2kq

1
X S

p2kq
2

| “ c.

ρpr, d1, d2q This is a notation emphasizing 11 DoF of ρ used in Appendix G.

ρ̃prq ρ̃prq is the 9 DoF benchmark of used in Assumption 6.

Influential

Overlaps

The samples in S
p2kq
1

X S
p2kq
2

.
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Appendix B: Discussion of assumptions

We present discussion and examples for Assumption 3-5, which are related to
the covariance term ρ < CovrhpS1qhpS2q, hpS3qhpS4qs (4.11).

B.1. Definition of r

We first define a 9-dimensional vector r to quantify ρ, which characterizes the

overlaps between S
p2kq
1 , S

p2kq
2 .

Definition B.1 (r). Given size-2k subsample sets S
p2kq
1 , S

p2kq
2 , and size-k sub-

sample sets S1, S2 Ă S
p2kq
1 , S3, S4 Ă S

p2kq
2 , such that c < |Sp2kq

1 X S
p2kq
2 |, d1 <

|S1 X S2|, d2 < |S3 X S4|. Denote T0 < S1 X S2, T1 < S1zS2, T2 < S2zS1,
T 1

0 < S3 X S4, T 1
1 < S3zS4, and T 1

2 < S3zS4 (see Figure 4).

Based on this, we denote the samples in S
p2kq
1 XS

p2kq
2 as Influential Overlaps of

ρ (4.11).In addition, we denote Rij :< Ti X T 1
j , and rij :< |Rij |, for i, j < 0, 1, 2.

Then, a 9-dimensional vector r is defined as follows:

r :< pr00, r01, r02, r10, r11, r12, r20, r21, r22qT . (B.1)

We define the norm of r as |r| < ř2

i“0

ř2

j“0 rij . Note that each sample in

pS1 Y S2 Y S3 Y S4q X pSp2kq
1 X S

p2kq
2 q is counted exactly once in r so |r| ď c.

Fig 4. Relationships among S1, S2, S3, S4, S
p2kq
1

, and S
p2kq
2

. Here, R :“ S
p2kq
1

X S
p2kq
2

.

We note that the value of rij is naturally bounded by the sample size in the
corresponding overlapping sets. For example, r0˚ < |pS1 X S2q X pS3 Y S4q| ď
|pS1 X S2q| < d1. The 11 DoF of ρ can also be illustrated by the left panel of
Figure 4. The figure shows 15 blocks, but given constraints |S1| < |S2| < |S3| <
|S4| < k, we have 11 < 15 ´ 4 DoF.

B.2. Discussion of Assumption 3

Assumption 3 reduces the DoF of ρ from 11 to 9 by dropping d1 < |S1 XS2| and
d2 < S3 X S4. The main reason being that, given the 9-dimensional vector r, d1
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and d2 only describe the overlap within S
p2kq
1 and S

p2kq
2 , respectively, without

adding new information for the overlap between them. This is illustrated using
the following linear kernel example.

Example. Suppose h is a linear average kernel, hpX1, ..., Xkq < 1
k

řk
i“1 Xi,

where X1, ..., Xn i.i.d. X, where EX < 0, EX2 < μ2, EX3 < μ3, EX4 < μ4.
Notice that

EpX1X2X3X4q <

$
999&
999%

μ2
2, if Xi < Xj , Xk < Xl, Xi ‰ Xk,

where ti, j, k, lu < t1, 2, 3, 4u;

μ4, if X1 < X2 < X3 < X4;

0, otherwise.

Hence, we have

CovpX1X2, X3X4q <

$
999&
999%

cov1 :< μ2
2, if X1 < X3 ‰ X2 < X4;

or X1 < X4 ‰ X2 < X3;

cov2 :< μ4 ´ μ2
2, if X1 < X2 < X3 < X4;

cov3 :< 0, otherwise.

Hence, ρ can be represented as a weighted average in the form of a1,ncov1 `
a2,ncov2 ` a3,ncov3, where cov3 is 0. Furthermore, by the definition of cov1 and
cov2, a1,n only depends on rij for pi, jq ‰ p0, 0q and a2,n only depends on r0,0.
Besides, we can also show that F pkq in (4.13) (see Assumption 4) is a quadratic
function of c for this kernel.

We also shows that we may not be able to further reduce the DoF. When
EphpSqq < 0, it is natural to consider the following fourth cumulant of ρ:

cum4rhpS1q, hpS2q, hpS3q, hpS4qs <ρ ´ CovrhpS1q, hpS3qsCovrhpS2q, hpS4qs
´CovrhpS1q, hpS4qsCovrhpS2q, hpS3qs. (B.2)

If cum4rhpS1q, hpS2q, hpS3q, hpS4qqs in (B.2) is a lower order term of ρ, the DoF
can be reduced to 4, i.e., |S1 X S3|, |S1 X S4|, |S2 X S3|, and |S2 X S4|. However,
the following example shows that this does not hold even for a linear average
kernel. We can further verify this under a quadratic average kernel hpS1q <
hpX1, .., Xkq < 1

k2 rřk
i“1 Xis2, if Xi’s are i.i.d. standard Gaussian.

Example. Given size-k sets S1, S2, S3, S4 s.t. Sl < pX1, Y
plq

1 , ..., Y
plq

k´1q, X1, Y
plq

j

are i.i.d. EpX1q < 0, VarpX1q ą 0, for j < 1, 2, .., k´1 and l < 1, 2, 3, 4. By (B.2)

and some direct calculations, we have ρ < VarpX2

1
q

k4 , CovrhpS1q, hpS3qs < VarpX1q
k2 .

Plugging in the above equations, we have

cum4rhpX1q, hpX2q, hpX3q, hpX4qs
2CovrhpS1q, hpS3qs2

< VarpX2
1 q ´ 2Var2pX1q

2Var2pX1q
. (B.3)

As long as VarpX2
1 q ´ 2Var2pX1q ą 0, which is common for non-Gaussian X1,

Equation (B.3) is larger than op1q.
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B.3. Discussion of Assumption 4

In Equation (4.13), F
pkq
c is defined as an upper bound for ρ for a given c. As

illustrated in Figure 5: hpS1qhpS2q goes to hpS1q2 as more samples are shared

between S1 and S2. Therefore, given that |Sp2kq
1 X S

p2kq
2 | < c, Fc has the most

overlap among all ρ.

Fig 5. An example of ordinal covariance assumption.

We can verify this assumption on the linear average kernel again: hpSlq <
1
k

řk
i“1 X

plq
i , for l < 1, 2, 3, 4. In particular, considering pS1, S2, S3, S4q s.t. |S1 X

S2 X S3 X S4| < |pXp1q
1 , ..., X

p1q
c q| < c and pS1, S2q s.t. |S1 X S2| < c, the equality

in Equation (4.13) attains:

ρ < k´4Var
=
pXp1q

1 ` ... ` Xp1q
c q2

ı
< Cov

<
hpS1q2, hpS2q2

‰
. (B.4)

It is also straightforward to verify the assumption under simple quadratic aver-
age kernel function hpS1q < 1

k2 přk
i“1 Xiq2

B.4. Discussion of Assumption 5

Assumption 2 imposes a polynomial growth rate of the second moment term
ξ2

d,k. Assumption 5 imposes a polynomial growth rate of the fourth moment

term F pkq. The following example helps illustrate the idea of Assumption 5.

Example. Suppose that there is no fourth-order cumulant term in Equation (B.2),
which is valid for a linear kernel as average of i.i.d. standard Gaussian Xi’s.

Then, by Equation (B.4), F
pkq
c can be simplified as ξ2

r22,kξ2
r22,k ` ξ2

r22,kξ2
r22,k <

2ξ4
r22,k < 2ξ4

c,k. This also implies (4.14): F
pkq
1 {ξ4

1,k < Op1q. We further remark
that given this example, Assumption 5 can be implied by Assumption 2.

F
pkq
c

F
pkq
1

<
2ξ4

c,k

ξ4
1,k

< 2

˜
ξ2

c,k

ξ2
1,k

¸2

< Opc2a1 q, for c < 1, 2, ..., k. (B.5)

Here, given a1 from Assumption 2, we can derive a2 in Assumption 5 as a2 < 2a1.
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We conclude the discussion by commenting on why we do not simply assume
σ2

2k,2k{p2kσ2
1,2kq < Op1q. In the recent literature, a similar assumption is used

for ξ2
d,k [20, 35, 8]. By Lemma E.3 (see Appendix E), a natural upper bound

for σ2
c,2k is F

pkq
c (4.13), which can still grow at a quadratic rate of c (see (B.5))

even if ξ2
d,k has a linear growth rate in relation to d. This leads to a potential

violation of σ2
2k,2k{p2kσ2

1,2kq < Op1q.

Appendix C: Proof of results in theoretical section

C.1. Proof of Proposition 4.2 (Double U-statistic property)

Proof of Proposition 4.2.

Proof of Equation (4.5).

We first show the following equation.

ψ
´

Sp2kq
¯

<
kÿ

d“0

wdϕd

´
Sp2kq

¯
(C.1)

Wang and Lindsay [31] have demonstrated that V̂u is an U-statistic with size-2k
kernel (Equation (4.1)):

V̂u < Qpkq ´ Qp0q <
ˆ

n

2k

˙´1 ÿ

Sp2kqĎXn

=
ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯ı
,

ψk

´
Sp2kq

¯
<

ˆ
n

2k

˙ˆ
n

k

˙´1ˆ
n

k

˙´1

loooooooooooomoooooooooooon
A1

kÿ

d“0

1

Nd

ÿ

S1,S2ĂSp2kq

|S1XS2|“d

h pS1q h pS2q ,

ψ0

´
Sp2kq

¯
<

ˆ
n

2k

˙ˆ
n

k

˙´1ˆ
n ´ k

k

˙´1

looooooooooooooomooooooooooooooon
A1,0

1

N0

ÿ

S1,S2ĂSp2kq

|S1XS2|“0

h pS1q h pS2q ,

where Nd <
`

n´2k`d
d

˘
.

Denote

A1 :<
ˆ

n

2k

˙ˆ
n

k

˙´2

, A1,0 :<
ˆ

n

2k

˙ˆ
n

k

˙´1ˆ
n ´ k

k

˙´1

. (C.2)

Rewrite ψk

`
Sp2kq

˘
´ψ0

`
Sp2kq

˘
by the order of d. Notice that there is a

řk
d“0

in ψk

`
Sp2kq

˘
but d can only be 0 in ψ0

`
Sp2kq

˘
. Hence, there is a cancellation
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for hpS1qhpS2q s.t. d < |S1 X S2| < 0, thus we have

ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯
< A1

kÿ

d“1

1

Nd

ÿ

S1,S2ĂSp2kq

|S1XS2|“d

h pS1q h pS2q

` pA1 ´ A1,0q 1

N0

ÿ

S1,S2ĂSp2kq

|S1XS2|“0

h pS1q h pS2q .

For the RHS of above equation, multiply and divide Md,k (4.6) inside
řk

d“1:

ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯

<
kÿ

d“1

„
A1

1

Nd

Md,k

j

looooooomooooooon
wd

1

Md,k

ÿ

S1,S2ĂSp2kq, |S1XS2|“d

h pS1q h pS2q
looooooooooooooooooooooooomooooooooooooooooooooooooon

ϕdpSp2kqq

`
„

pA1 ´ A1,0q 1

N0

M0,k

j

looooooooooooomooooooooooooon
w0

1

M0,k

ÿ

S1,S2ĂSp2kq, |S1XS2|“0

h pS1q h pS2q
looooooooooooooooooooooooomooooooooooooooooooooooooon

ϕ0pSp2kqq

.

We denote

w0 :< pA1 ´ A1,0qM0,k

N0

; wd :< A1

Nd

Md,k, for d < 1, 2, ..., k;

ϕdpSp2kqq :< 1

Md,k

ÿ

S1,S2ĂSp2kq

|S1XS2|“d

h pS1q h pS2q , for d < 0, 1, 2, ..., k.

Given that w0 < ´ řk
d“1 wd, which will be proved later, we have

ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯
<

kÿ

d“0

wdϕdpSp2kqq <
kÿ

d“1

wd

=
ϕd

´
Sp2kq

¯
´ ϕ0

´
Sp2kq

¯ı
.

Proof of Equation Equation (4.7).

First, we show that
řk

d“0 wd < 0. As discussed above, wd is a product of three

normalization constants: A1 <
`

n
2k

˘`
n
k

˘´2
and A1,0 <

`
n
2k

˘`
n
k

˘´1`
n´k

k

˘´1
are

the normalization constant to rewrite Qpkq and Qp0q as a U-statistic; Md,k :<`
2k
d

˘`
2k´d

d

˘`
2k´2d

k´d

˘
is the number of pairs S1, S2 Ă Sp2kq s.t. |S1 X S2| < d;

Nd <
`

n´2k`d
d

˘
is defined in Equation (4.2).

w0 < pA1 ´ A1,0qM0,k

N0

; wd < A1Md,k

Nd

, for d < 1, 2, ..., k.
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Since A1,0 ą A1 ą 0, Md,k ą 0, Nd ą 0, we have wd ą 0, @d ě 1 and w0 ă 0.

Then we show
řk

d“0 wd < 0. Though this can be justified by direct calculation,

we present a more intuitive proof. Recall V̂u < Qpkq ´ Qp0q. By the defini-
tion of Qpkq, Qpkq can be represented as a weighted sum of hpS1qhpS2q, i.e.,ř

1ďi,jďn aijhpSiqhpSjq, where
ř

1ďiăjďn aij < 1. Thus, Qpkq ´ Qp0q can be
represented in a similar way:

Qpkq ´ Qp0q <
ÿ

1ďiăjďn

a1
ijhpSiqhpSjq,

where
ř

1ďi,jďn a1
ij < 0. Therefore ψk

`
Sp2kq

˘
´ ψ0

`
Sp2kq

˘
, as the kernel of U-

statistic Qpkq ´ Qp0q, can also be represented in the form of a weighted sum:

ψk

´
Sp2kq

¯
´ ψ0

´
Sp2kq

¯
<

ÿ

1ďiăjďn

bijhpSiqhpSjq, (C.3)

where
ř

1ďiăjďn bij < 0 since ψk

`
Sp2kq

˘
´ ψ0

`
Sp2kq

˘
is an unbiased estimator

of Qpkq ´ Qp0q. On the other hand, for d < 0, 1, 2, ..., k, ϕdpSp2kqq is still a
U-statistic, which can be represented in the form of a weighted sum:

ϕd

´
Sp2kq

¯
<

ÿ

1ďiăjďn

c
pdq
ij hpSiqhpSjq, (C.4)

where
ř

1ďiăjďn c
pdq
ij < 1. Since ψk

`
Sp2kq

˘
´ ψ0

`
Sp2kq

˘
< řk

d“0 wdϕd

`
Sp2kq

˘
,

by comparing Equation (C.3) and (C.4), we have
řk

d“1 wd

ř
1ďiăjďn c

pdq
ij <

ř
1ďiăjďn bij . Since

ř
1ďiăjďn c

pdq
ij < 1 and

ř
1ďiăjďn bij < 0, we can take

hpSiq < 1 for i < 1, 2, ..., n and conclude that
řk

d“0 wd < 0.
Secondly, we present the details to bound wd < A1Md,k{Nd, for d < 1, 2, ..., k.

Plug in the expression of A1, Md,k, Nd, we have

wd “

„´ n

2k

¯´n

k

¯´2
j „´2k

d

¯´2k ´ d

d

¯´2k ´ 2d

k ´ d

¯j
{
´n ´ 2k ` d

d

¯

“

„
n!

pn ´ 2kq!p2kq!

pn ´ kq!pn ´ kq!k!k!

n!n!

j

ˆ

„
p2kq!p2k ´ dq!p2k ´ 2dq!

p2k ´ dq!d!p2k ´ 2dq!d!pk ´ dq!pk ´ dq!

j „
d!pn ´ 2kq!

pn ´ 2k ` dq!

j
.

After direct cancellation of the same factorials, we have

wd < pn ´ kq!pn ´ kq!
n!pn ´ 2k ` dq!looooooooomooooooooon

Part I

k!k!

pk ´ dq!pk ´ dq!looooooooomooooooooon
part II

1

d!loomoon
part III

. (C.5)

For Part I in Equation (C.5),

pn ´ kq!pn ´ kq!
n!pn ´ 2k ` dq! <

śk´d´1

i“0 pn ´ k ´ iq
śk´1

i“0 pn ´ iq
< r1 ` op1qs 1

nd
.
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The last equality is because for any k < op?
nq, d ď k, we have

śk´d´1

i“0 pn ´ k ´ iq
śk´1

i“0 pn ´ iq
ď

śk´d´1

i“0 pn ´ iq
śk´1

i“0 pn ´ iq
< 1

śd´1

i“0 pn ´ k ` d ´ iq

ď 1

pn ´ kqd
< r1 ` op1qs 1

nd
.

On the other hand,
śk´d´1

i“0
pn´k´iqśk´1

i“0
pn´iq

ě 1
nd . Thus, we have < r1 ` op1qs 1

nd .

For Part II in Equation (C.5),

k!k!

pk ´ dq!pk ´ dq! < rkpk ´ 1q...pk ´ d ` 1qs2s ď k2d.

Particularly, when d is fixed, we have k!k!
pk´dq!pk´dq!

< kpk ´ 1q...pk ´ d ` 1qs2 <
r1 ` op1qsk2d. Combining Part I, II, III in (C.5), we have

wd <

$
&
%

r1 ` op1qs
=

1
d!

p k2

n
qd

ı
@ finite d;

O

=
1
d!

p k2

n
qd

ı
@d < 1, 2, ..., k.

C.2. Proof of Corollary 4.6

Proof of Corollary 4.6. To show V̂u

EpV̂uq

PÝÑ 1 as n Ñ 8, it suffice to show the L2

convergence of V̂u{EpV̂uq, i.e., VarpV̂uq{
´

EpV̂uq
¯2

Ñ 0 as n Ñ 8.

By plugging Equation (4.16) and (4.17) from Theorem 4.4, we have

VarpV̂uq
´

EpV̂uq
¯2

<
O

´
k2

n
σ̌2

1,2k

¯

=
p1 ` op1qq k2

n
ξ2

1,k

ı2
< O

˜
n

k2

σ̌2
1,2k

ξ4
1,k

¸
< O

ˆ
1

n

˙
. (C.6)

Here σ̌2
1,2k — k2

n2 F
pkq
1 is the upper bound of σ2

1,2k given by Proposition E.2. By

Assumption 5, F
pkq
1 < Opξ4

1,kq. The last equality is by plugging in σ̌2
1,2k.

C.3. Proof of Theorem 4.4

We first present a technical proposition.

Proposition C.1. For any integer c, s.t. 1 ď c ď k and k < op?
nq,

ˆ
n

k

˙´1ˆ
k

c

˙ˆ
n ´ k

k ´ c

˙
ď 1

c!

ˆ
k2

n ´ k ´ 1

˙c

.
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Proof of Proposition C.1. This proof is provided by DiCiccio and Romano [8].
We first write the combinatorial numbers as factorial numbers

ˆ
n

k

˙´1ˆ
k

c

˙ˆ
n ´ k

k ´ c

˙
< pn ´ kq!k!

n!

k!

pk ´ cq!c!

pn ´ kq!
pk ´ cq!pn ´ 2k ` cq!

< 1

c!

„
k!k!

pk ´ cq!pk ´ cq!

j „ pn ´ kq!pn ´ k!q
n!pn ´ 2k ` cq!

j

ď 1

c!
pk2cq

„
1

n ´ k ` 1

jc

. (C.7)

Proof of Theorem 4.4. First, we show Equation (4.16). By Proposition 4.5 and
Assumption 2, we can conclude that

lim
nÑ8

VarpUnq
k2

n
ξ2

1,k

< 1.

Secondly, we show Equation (4.17).

VarpV̂uq — VarpT1qpV̂uq <
T1ÿ

c“1

ˆ
n

2k

˙´1ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
σ2

c,2k (C.8)

<
T1ÿ

c“1

ˆ
n

2k

˙´1ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
Op k2

n2
F pkq

c q (C.9)

<
T1ÿ

c“1

Opk2c`2

nc`2
F pkq

c q (C.10)

<Op k4

n3
F

pkq
1 q. (C.11)

Here, (C.8) is concluded by Lemma E.4. (C.9) is concluded by σ2
c,2k < Op k2

n2 F
pkq
c q

(Proposition E.2). (C.10) is concluded by
`

n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
< r1 ` op1qs k2c

nc for
c < 1, 2, ..., T1 (Proposition C.1). (C.11) is concluded by the bounded growth

rate of F pkq in Assumption 5 and finite T1. By denoting k2

n2 F
pkq
1 as qσ2

1,2k, we

conclude that VarpV̂uq < Op k2

n
qσ2

1,2kq.

C.4. Proof of Proposition 4.5

Proof of Proposition 4.5. For k < op?
nq, we want to show limnÑ8

VarpUnq
k2

n
ξ2

1,k

< 1.

First notice that for the coefficient leading term
`

n
k

˘´1`
k
1

˘`
n´k
k´1

˘
ξ2

1,k, we have

`
n
k

˘´1`
k
1

˘`
n´k
k´1

˘

k2

n

< pn ´ kq!pn ´ kq!
pn ´ 1q!pn ´ 2k ` 1q! Ñ 1, as n Ñ 8. (C.12)
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Therefore, it suffices to show that the rest part of VarpUnq is dominated by the
leading term:

lim
nÑ8

`
n
k

˘´1 řk
d“2

`
k
d

˘`
n´k
k´d

˘
ξ2

d,k

k2

n
ξ2

1,k

< 0.

By Proposition C.1, the numerator of the above can be bounded as

ˆ
n

k

˙´1 kÿ

d“2

ˆ
k

d

˙ˆ
n ´ k

k ´ d

˙
ξ2

d,k ď
kÿ

d“2

k2d

d!pn ´ k ` 1qd
ξ2

d,k :
kÿ

d“2

pd!q´1bd
nξ2

d,k,

(C.13)

where bn < k2

n´k´1
. Notice that n ă 2pn ´ k ` 1q, so we have

`
n
k

˘´1 řk
d“2

`
k
d

˘`
n´k
k´d

˘
ξ2

d,k

k2

n
ξ2

1,k

ď n

n ´ k ` 1

kÿ

d“2

1

d!
bd´1

n

ξ2
d,k

ξ2
1,k

ď
kÿ

d“2

2

d!
bd´1

n

ξ2
d,k

ξ2
1,k

.

(C.14)

By Assumption 2, the growth rate of ξ2
d,k is bounded, there exists a uniform con-

stant C s.t.
ξ2

d,k

ξ2

1,k

ď Cd! for d < 2, 3, ..., k. Therefore, the RHS of Equation (C.14)

is bounded as

kÿ

d“2

1

d!
bd´1

n

ξ2
d,k

ξ2
1,k

ď
kÿ

d“2

1

d!
bd´1

n

Cd!ξ2
1,k

ξ2
1,k

ď C

kÿ

d“2

bd´1
n < Cbn

1 ´ bk´1
n

1 ´ bn

ď C
bn

1 ´ bn

.

(C.15)

The RHS of (C.15) goes to 0 when n Ñ 8, since bn < k2

n´k´1
Ñ 0. This

completes the proof.

Appendix D: Proof of results in methodology section

D.1. Variance of incomplete U-statistics Un,B,M

Proof of Proposition 3.2. This is an extension of the results by Wang [30, Sec-
tion 4.1.1] and Wang and Lindsay [31].

Comparing VarpUn,B,M q < p1´ 1
B

qV arpUnq` 1
MB

V phq (3.8) with VarpUn,Bq <
VarpUnq ` ErVarpUn,B |Xnqs (2.4) , it suffices to show that

E rVarpUn,B |Xnqs < 1

MB
V phq ´ 1

B
VarpUnq.

Here we adopt an alternative view of a complete U-statistic Un with k ď n{2
by Wang and Lindsay [31]. Follow our notation of “matched group”, we can al-
ways take M < tn{ku mutually disjoint subsamples S1, ..., SM from pX1, ..., Xnq,
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such that |Si X Sj | < 0 for 1 ď i ă j ď M . Wang and Lindsay [31] take in-

teger M < n{k while we allow 2 ď M ď tn{ku. Recall such pSpbq
1 , ..., S

pbq
M q as a

“matched group”, where b is the index of group. Let Gn,k,M be the collection of
all such matched groups constructed from n samples, i.e.,

Gn,k,M <
�

pSpbq
1 , . . . , S

pbq
M q : YjS

pbq
j Ă Xn, and S

pbq
i X S

pbq
j < H, @1 ď i, j ď M

(
.

(D.1)

Then, an alternative representation of Un is

Un < 1

M |Gn,k,M |

|Gn,k,M |ÿ

b“1

Mÿ

i“1

S
pbq
i . (D.2)

This form seems redundant because there are some replicate subsample among

all S
pbq
i ’s. However, for incomplete U-statistic Un,B,M , each pSpbq

1 , ..., S
pbq
M q can be

viewed as a sample from Gn,k,M . Hence, Wang [30] show that B ¨VarpUn,B |Xnq <
1

|Gn,k,M |

ř|Gn,k,M |
b“1 ph̄pbq ´ Unq2, where h̄pbq < 1

M

řM
i“1 hpSpbq

i q, S
pbq
i ’s are all sub-

samples associated with the complete U-statistic Un on X . However, Wang [30]
and Wang and Lindsay [31] do not provide a simple expression in the form of
V phq and VarpUnq. We further simplify BVarpUn,B |Xnq as follows,

B ¨ E rVarpUn,B |Xnqs < E

¨
˝ 1

|Gn,k,M |

|Gn,k,M |ÿ

b“1

ph̄pbq ´ Unq2

˛
:

< E

»
– 1

|Gn,k,M |

|Gn,k,M |ÿ

b“1

´
ph̄pbq ´ EpUnqq ´ pUn ´ EpUnqq

¯2

û
ü

< 1

|Gn,k,M |

»
–

|Gn,k,M |ÿ

b“1

E

ˆ´
h̄pbq ´ EpUnq

¯2
˙û

ü

` 1

|Gn,k,M |

»
–

|Gn,k,M |ÿ

b“1

E
´

pUn ´ EpUnqq2
¯

û
ü

´ 2E

¨
˝ 1

|Gn,k,M |

|Gn,k,M |ÿ

b“1

ph̄pbq ´ EpUnqqpUn ´ EpUnq

˛
:

< Var
´

h̄p1q
¯

´ VarpUnq

< 1

M
V phq ´ VarpUnq.

In the above equations, the first equality is the conclusion by Wang [30]; the

next-to-last equality holds since 1
|Gn,k,M |

ř|Gn,k,M |
b“1 h̄pbq < Un; the last equality

holds since hpSp1q
1 q, ..., hpSp1q

M q are independent.
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D.2. Unbiasedness of variance estimators

Proof of Proposition 3.1. First, we restrict the discussion given k ď n{2. We

first show that V̂ psq < řk
d“0 γd,k,n

ˆ̃ξ2
d,k. By the discussion in Section 3.3.1, we

have Nd,k,n <
`

n
k

˘2
γd,k,n. For a complete U-statistic with k ď n{2, Nd,k,n <`

n
k

˘`
n´k
k´d

˘`
k
d

˘
and we denote N <

`
n
k

˘
ą 0. Then,

kÿ

d“0

γd,k,n
ˆ̃ξ2
d,k <N´2

«
2

ÿ

1ďiăjďN

k´1ÿ

d“0

1t|Si X Sj | < durhpSiq ´ hpSjqs2{2

ff

<NpN´ 1q
N2

«ˆ
N

2

˙´1 ÿ

1ďiăjďN

rhpSiq ´ hpSjqs2{2

ff

<N´ 1

N

«
1

N´ 1

Nÿ

i“1

rhpSiq ´ Uns2

ff

< 1

N

Nÿ

i“1

rhpSiq ´ Uns2 < V̂ psq.

Here, the second equality holds by plugging in the definition of Nd,k,n and
interchanging the finite summation

ř
dPD

with
ř

1ďiăjďB. The third equality
omits the cases with i < j, where hpSiq ´ hpSjq < 0. The second to last equality
holds because the sample variance is essentially an order-2 U-statistic, with
kernel phpSiq ´ hpSjqq2{2.

Then, as we demonstrated in Section 3.3.1, Ep ˆ̃ξ2
d,kq < ξ̃2

d,k for d < 0, 1, ..., k.
Hence we conclude that

E
´

V̂ psq
¯

<
kÿ

d“0

γd,k,nE
´

ˆ̃ξ2
d,k

¯
<

kÿ

d“0

γd,k,nξ̃2
d,k < V psq.

Secondly, we extend the previous argument to the setting n{2 ă k ă n.
We denote D < td P N˚|0 ď d ď k, γd,k,n ą 0u. We can define V̂ psq <
ř

dPD
γd,k,n

ˆ̃ξ2
d,k. We want to show that

V̂ psq < 1

N

Nÿ

i“1

rhpSiq ´ Uns2, (D.3)

EpV̂ psqq < V psq. (D.4)

Similar to previous proof

V̂ pSq1 <N´2

»
–2

ÿ

1ďiăjďN

ÿ

dPDztku

1t|Si X Sj | < durhpSiq ´ hpSjqs2{2

û
ü

<NpN´ 1qq
N2

«ˆ
N

2

˙´1 ÿ

1ďiăjďN

rhpSiq ´ hpSjqs2{2

ff
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<N´ 1

N

«
1

N´ 1

Nÿ

i“1

rhpSiq ´ Uns2

ff
< 1

N

Nÿ

i“1

rhpSiq ´ Uns2

Since each ˆ̃ξ2
d,k is still an unbiased estimator of ξ̃2

d,k, similarly, we have

EpV̂ pSq1 q < V psq. Remark that the summation in Equation (D.3) is over d P D

instead of d < 0, 1, 2, ..., n. This is because γd,k,n is 0 for small d, given k ą n{2.
In other words, when k ą n{2, several terms of γd,k,nξ2

d,k in the Hoeffding de-
composition (2.1) is already 0.

Proof of Proposition 3.3. Since a sample variance is an order-2 U-statistics and

we denote v̂pi,j,i1,j1q < rhpSpjq
i q ´ hpSpj1q

i1 qs2{2:

V̂
psq

B,M <rpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

ÿ

pi1,j1q‰pi,jq

=
hpSpjq

i q ´ hpSpj1q
i1 q

ı2

{2

<rpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

¨
˝ ÿ

pi1,j1qPApi,jq

`
ÿ

pi1,j1qPBpi,jq

˛
: v̂pi,j,i1,j1q,

where Api, jq < tpi1, j1q|i1 ‰ i, j1 < j, 1 ď i1 ď M, 1 ď j1 ď Bu; Bpi, jq <
tpi1, j1q|j1 ‰ j, 1 ď i1 ď M, 1 ď j1 ď Bu. We note that |Api, jq| < M ´ 1 and
|Bpi, jq| < rpB ´ 1qpM ´ 1qs for any pi, jq.

Fixing pi, jq, for any pi1, j1q P Api, jq, S
pj1q
i1 and S

pjq
i are the same j but not

identical. Hence, v̂pi,j,i1,j1q is an unbiased estimator of V̂ phq. Furthermore, the
sample variance within group j is also a U-statistic, which can be alternatively
represented as an order-2 U-statistic: rMpM ´ 1qs´1

řM
i“1

ř
i1‰i v̂pi,j,i1,j1q. Thus,

let δM,B < M´1
MB´1

, by summation over all j and the symmetry, we have

rpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

ÿ

pi1,j1qPApi,jq

Epv̂pi,j,i1,j1qq

< rpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

|Api, jq|V phq

< δM,BV phq. (D.5)

Fixing pi, jq, for any pi1, j1q P Bpi, jq, S
pjq
i and S

pj1q
i1 are in different matched

group. Since each matched group are sampled independently, S
pjq
i and S

pj1q
i1 are

independently sampled from Xn. By the theory of finite population sampling
[7], for pi1, j1q P Bpi, jq,

Epv̂pi,j,i1,j1qq < ErEpv̂pi,j,i1,j1q|Xnqs < E

«ˆ
n

k

˙´1 ÿ

SiPXn

phpSiq ´ Unq2

ff
< V psq
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Thus, the normalized summation over all such v̂pi,j,i1,j1q satisfies that

rrpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

ÿ

pi1,j1qPBpi,jq

Epv̂pi,j,i1,j1qq

< rpBM ´ 1qBM s´1
Mÿ

i“1

Bÿ

j“1

|Bpi, jq|V psq

< p1 ´ δM,BqV psq. (D.6)

Combining Equations (D.5) and (D.6), we conclude that

E
´

V̂
psq

B,M

¯
< p1 ´ δM,BqV psq ` δM,BV phq.

Proof of Proposition 3.4. On one hand, by Proposition 3.3

E
´

yVarpUn,B,M q
¯

<EpV̂ phq
B,M q ´ MB ´ 1

MB
EpV̂ psq

B,M q

<V phq ´ MB ´ 1

MB

„
p1 ´ M ´ 1

MB ´ 1
qV psq ` M ´ 1

MB ´ 1
V phq

j

<MB ´ M ` 1

MB
V phq ´ B ´ 1

B
V psq.

On the other hand, by VarpUnq < V phq ´ V psq (3.2) and Proposition and 3.2,

VarpUn,B,M q < B ´ 1

B
V arpUnq ` 1

MB
V phq < MB ´ M ` 1

MB
V phq ´ B ´ 1

B
V psq.

Hence, we conclude the unbiasedness of our incomplete variance estimator:

E
´

yVarpUn,B,M q
¯

< VarpUn,B,M q.

D.3. Equivalence of complete variance estimators

We denote the complete variance estimator by us, Schucany and Bankson [24],

and Wang and Lindsay [31] as V̂u (3.6), V̂
pS&Bq

u , and V̂
pW &Lq

u respectively.
First, our complete U-statistic variance estimator is identical to the estimator

in page 79 of Folsom [10]’s work.

Secondly, we restrict k < 2 and show that V̂u < V̂
pS&Bq

u . Schucany and
Bankson [24] estimate two terms, ξ2

1,2 and ξ2
2,2 in the Hoeffding decomposition as

ζ̃2
1 and ζ̃2

2,2 respectively as follows. We adapt their notation to simplify hpXi, Xjq
as hij .

ζ̃2
1,2 <

ˆ
n

3

˙´1 ÿ

iăjăl

h˚
0 pXi, Xj , Xlq ´

ˆ
n

4

˙´1 ÿ

iăjălăm

h˚
1 pXi, Xj , Xl, Xmq,

ζ̃2
2,2 <

ˆ
n

4

˙´1 ÿ

iăjălăm

g˚pXi, Xj , Xl, Xmq,
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where

h˚
0 pXi, Xj , Xlq < 1

3
rhijhil ` hijhjl ` hilhjls

h˚
1 pXi, Xj , Xl, Xmq < 1

3
rhijhlm ` hilhjm ` himhjls ,

g˚pXi, Xj , Xl, Xmq < 1

6

<
phij ´ hlmq2 ` phil ´ hjmq2 ` phim ´ hjlq2

‰
.

Then, by estimating corresponding terms in the Hoeffding decomposition (2.1),

V̂ pS&Bq
u <

ˆ
n

2

˙´1ˆ
2

1

˙ˆ
n ´ 1

1

˙
ζ̃2

1,2 `
ˆ

n

2

˙´1

ζ̃2
2,2.

By our proposed decomposition, VarpUnq < V phq ´ V psq and Proposition 3.1,

our estimation approach is equivalent to estimate ξ2
1,2 and ξ2

2,2 by V̂ phq ´ ˆ̃ξ2
1,2 and

V̂ phq respectively. When k < 2, V̂ phq < p
`

n
2

˘`
n´2

2

˘
q´1

ř
|SiXSj |“0 phpSiq ´ hpSjqq2

{2 and ˆ̃ξ2
1,2 < p2

`
n
2

˘`
n´2

1

˘
q´1

ř
|SiXSj |“1 phpSiq ´ hpSjqq2 {2. Hence, to show that

V̂u < V̂
pS&Bq

u , it suffices to show that V̂ phq´ ˆ̃ξ2
1,2 < ζ̃2

1 and V̂ phq < ζ̃2
2 respectively.

For the first equality, we can simplify these terms as follows.

ζ̃2
1,2 <

ˆ
3

ˆ
n

3

˙˙´1 nÿ

i“1

ÿ

j:jąi.

ÿ

l:l‰i,j.

hijhjl

´
ˆˆ

n

2

˙ˆ
n ´ 2

2

˙˙´1 nÿ

i“1

ÿ

j:jąi.

ÿ

l:l‰i,j.

ÿ

m:m‰i,j;mąl.

hijhlm,

V̂ phq <
ˆ

n

2

˙´1 nÿ

i“1

ÿ

j:jąi.

h2
ij

´
ˆˆ

n

2

˙ˆ
n ´ 2

2

˙˙´1 nÿ

i“1

ÿ

j:jąi

ÿ

l:l‰i,j.

ÿ

m:m‰i,j;mąl.

hijhlm,

ˆ̃ξ2
1,2 <

ˆ
n

2

˙´1 nÿ

i“1

ÿ

j:jąi.

h2
ij ´

ˆ
3

ˆ
n

3

˙˙´1 nÿ

i“1

ÿ

j:jąi.

ÿ

l:l‰i,j.

hijhjl.

Therefore, ζ̃2
1,2 < V̂ phq ´ ˆ̃ξ2

1,2. For the latter equality, ζ̃2
2 ’s kernel g˚ is composed

by sample variance between two kernels with disjoint subsamples, such as hij

and hlm, ζ̃2
2,2 is a redundant version of our V̂ phq, which implies that V̂ phq < ζ̃2

2,2.
This, concludes the equivalence.

We remark that Schucany and Bankson [24] consider an alternative estimator

of ξ2
1,2, denoted as ζ̂2

1 [26]. However, that one shows connection to the work of
Mentch and Hooker [20] and Zhou, Mentch and Hooker [35] (see Section 3.5)
but is not the focus of this appendix.

Thirdly, note that Wang and Lindsay [31]’s estimator involves the definition
of their partitioning scheme and we use the notation of our matching group
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and assume M < n{k to present their estimator (see Gn,k,M (D.1) and in
Appendix D.1). Here we present Wang and Lindsay [31]’s estimator in their
ANOVA form, which is the alternative to their second-moment view. This alter-
native form uses the within and between-variances of the groups [see 31, page
1122]. However, the form is still different from ours. To simplify the notation,

we denoteB < |Gn,k,M | and h̄pbq < 1
M

řM
i“1 hpSpbq

i q, for b < 1, 2, ...,B. Under this

notation, the alternative form (with Gn,k,M ) of Un (D.2) is 1
MB

řM
i“1

ř
B

b“1 hpSpbq
i q.

Then our estimator, V̂u, and Wang and Lindsay [31]’s estimator, V̂
pW &Lq

u , can
be represented as follows.

V̂u < V̂ phq ´ V̂ psq,

V̂ pW &Lq
u < σ2

W P {M ´ σ2
BP ,

where V̂ psq <
`

n
k

˘´1 řpn

k
q

i“1phpSiq´Unq2 (3.4); V̂ phq <
`

n
k

˘`
n´k

d

˘ ř
|SiXSj |“0rhpSiq´

hpSjqs2{2 (3.5); σ2
W P < 1

B

ř
B

b“1
1

M´1

řM
i“1phpSpbq

i q ´ h̄pbqq2; σ2
BP < 1

B
ph̄pbq ´

Unq2.

Proposition D.1. Our complete variance estimator V̂u is equivalent to the

estimator V̂
pW &Lq

u proposed by Wang and Lindsay [31].

Proof. To simplify the notation, we denote

A1 :< 1

MB

Bÿ

b“1

Mÿ

i“1

phpSpbq
i qq2, A2 :< U2

n, A3 :< 1

B

Bÿ

b“1

ph̄pbqq2. (D.7)

To show the equivalence between V̂u and V̂
pW &Lq

u , we will show that they are
the same linear combination of A1, A2, A3. First, it is trivial to verify that σ2

W P

and σ2
BP are linear combinations of A1, A2, A3:

σ2
W P < M

M ´ 1
pA1 ´ A3q, and σ2

BP < A3 ´ A2. (D.8)

Secondly, we show that V̂ phq < σ2
W P by showing that V̂ phq also equals to

M
M´1

pA1 ´ A3q. Considering the summation 1
M´1

řM
i“1phpSpbq

i q ´ h̄pbqq2 in σ2
W P ,

it can be represented as

ˆ
M

2

˙´1 Mÿ

i“1

ÿ

j‰i

phpSpbq
i q ´ hpSpbq

j qq2{2.

Since Gn,k,M is a set of all permutation of disjoint pSpbq
1 , ..., S

pbq
M q, we have

σ2
W P < 1

B

Bÿ

b“1

ˆ
M

2

˙´1 Mÿ

i“1

ÿ

j‰i

phpSpbq
i q ´ hpSpbq

j qq2{2

<
ˆ

n

k

˙´1ˆ
n ´ k

k

˙´1 ÿ

|SiXSj |“0

rhpSiq ´ hpSjqs2{2 < V̂ phq.
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Thirdly, we show that V̂ psq is also a linear combination of A1, A2, A3. We start

with V̂ psq <
`

n
k

˘´1 řpn

k
q

i“1 hpSiq2 ´ U2
n. Due to the definition of Gn,k,M , the collec-

tion tS
pbq
i ui,b are basically replications of tSiupn

k
q

i“1. Hence,
`

n
k

˘´1 řpn

k
q

i“1 hpSiq2 <
A1, which implies that

V̂ psq < A1 ´ A2. (D.9)

Therefore, we can represent both V̂u and V̂
pW &Lq

u with A1, A2, A3 by (D.8)
and (D.9) as follows:

V̂u < V̂ phq ´ V̂ psq < M

M ´ 1
pA1 ´ A3q ´ pA1 ´ A2q

< 1

M ´ 1
A1 ` A2 ´ M

M ´ 1
A3,

V̂ pW &Lq
u < σ2

W P {M ´ σ2
BP < 1

M ´ 1
pA1 ´ A3q ´ pA3 ´ A2q

< 1

M ´ 1
A1 ` A2 ´ M

M ´ 1
A3.

This conclude that V̂u < V̂
pW &Lq

u . Note that V̂ phq ´ V̂ psq < σ2
W P {M ´ σ2

BP ,

however, V̂ phq ‰ σ2
W P {M and V̂ psq ‰ σ2

BP . Our and Wang and Lindsay [31]’s
estimators are proposed under different perspectives.

D.4. Equivalence of incomplete variance estimators

Only Wang and Lindsay [31] and our paper propose variance estimator for in
complete U-statistics. Similar to the analysis in Appendix D.3, we will show
that our incomplete Variance estimator (3.12) is equivalent to the counterpart
in Wang and Lindsay [31, page 1124]. Given B matching groups and M subsam-

ples in each group, we denote the above estimators as V̂
pincq

u and V̂
pinc,W &Lq

u

respectively:

V̂ pincq
u :< V̂

phq
B,M ´ MB ´ 1

MB
V̂

psq
B,M , V̂ pinc,W &Lq

u :< σ̃2
W P {M ´ σ̃2

BP , (D.10)

where σ̃2
W P :< 1

pM´1qB

řB
b“1

řM
i“1phpSpbq

i q ´ h̃pbqq2, σ̃2
BP :< 1

B

řB
b“1ph̃pbq ´ Unq2,

and h̃pbq < 1
M

řM
i“1 hpSpbq

i q.
As analogues to A1, A2, A3 (D.7) in Appendix D.3, we denote

Ã1 :< 1

MB

Bÿ

b“1

Mÿ

i“1

phpSpbq
i qq2, Ã2 :< U2

n,B,M , Ã3 :< 1

B

Bÿ

b“1

ph̄pbqq2.

Similarly, it is trivial to verify that V̂
phq

B,M (3.9), V̂
psq

B,M (3.10), σ̃2
W P and σ̃2

BP can

be represented as linear combinations of Ã1, Ã2 and Ã3 as follows:

V̂
phq

B,M < σ̃2
W P < M

M ´ 1
pÃ1 ´ Ã3q, V̂

psq
B,M < MB

MB ´ 1
pÃ1 ´ Ã2q, σ2

BP < Ã3 ´ Ã2.
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By plugging the above into equation (D.10), we have

V̂ pincq
u < V̂

phq
B,M ´ MB ´ 1

MB
V̂

psq
B,M < 1

M ´ 1
Ã1 ` Ã2 ´ M

M ´ 1
Ã3

V̂ pinc,W &Lq
u < σ̃2

W P {M ´ σ̃2
BP < 1

M ´ 1
Ã1 ` Ã2 ´ M

M ´ 1
Ã3.

Hence, we conclude that V̂
pincq

u < V̂
pinc,W &Lq

u .

Appendix E: Technical propositions and lemmas

In this section, we present the technical propositions and lemmas. The proofs
of these results are collected in Appendix F.

Proposition E.1. The value of ψ
`
Sp2kq

˘
does not depend on E rhpX1, .., Xkqs.

Therefore, WLOG, we can assume the kernel is zero-mean, i.e., E rhpX1, .., Xkqs
< 0

The proof of this proposition is collected in Appendix F.1.

E.1. Results of σ2

c,2k

First, we present Propositions E.2 and E.3. The former provides a precise bound
of σ2

c,2k for some fixed c while the latter provides rough bound for 1 ď c ď 2k.

Proposition E.2 (Bound σ2
c,2k for finite c). Fix T1 <

X
1
ε

\
` 1. Under Assump-

tions 1-5, for any c that 1 ď c ď T1,

σ2
c,2k < O

ˆ
k2

n2
F pkq

c

˙
.

Based on the upper bound, we define σ̌2
c,2k :< Ck2

n2 F
pkq
c , where C is a generic

positive constant. Equivalently, we write it as σ̌2
c,2k — k2F pkq

c

n2 .

Proposition E.3 (Bound σ2
c,2k for any c). Under Assumptions 1-5, for any

1 ď c ď 2k, we have

σ2
c,2k < OpF pkq

c q.

The proof of the above propositions is collected in Appendix F.2 and Ap-
pendix F.3 respectively. Note that the upper bound in Proposition E.2 actually
works for any fixed and finite c but it suffices to restrict c ď T1 to show our main
results. These two propositions depend on the further decomposition of σ2

c,2k

into weighted sum of ·2
c,2kpd1, d2q’s, which is later discussed in Appendix E.2.

In particularly, we can show that ·2
c,2kp1, 1q dominates σ2

c,2k for c < 1, 2, ..., T1.
As a corollary of the above results, we can show the following lemma.
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Lemma E.4 (Truncated Variance Lemma I). Under Assumptions 1-5, there
exists a constant T1 <

X
1
ε

\
` 1, such that

lim
nÑ8

Var
´

V̂u

¯
´ VarpT1q

´
V̂u

¯

}Var
pT1q

´
V̂u

¯ < 0, (E.1)

where

VarpT1q
´

V̂u

¯
:<

ˆ
n

2k

˙´1 T1ÿ

c“1

ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
σ2

c,2k; (E.2)

}Var
pT1q

´
V̂u

¯
:<

ˆ
n

2k

˙´1 T1ÿ

c“1

ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
qσ2

c,2k. (E.3)

Here, we denote qσ2
c,2k as the upper bound of σ2

c,2k given by Proposition E.2.

The proof of Lemma E.4 is collected in Appendix F.4. This implies that
to bound VarpV̂uq, it suffices to bound the weighted average of first T1 terms

of σ2
c,2k, instead of all 2k terms. Note that we use }Var instead of Var in the

denominator of (E.1). Here T1 <
X

1
ε

\
` 1 does not grow with n. It only relies on

ε, which quantifies the growth rate of k with respect to n (see Assumption 1,).
For example, if k < n1{3, i.e., ε < 1{6, then we can choose T1 < 7. Hence, to
show σ2

1,2k dominates in VarpV̂uq when n Ñ 8, it suffices to show that σ2
1,2k

dominates in T1-truncated VarpT1qpV̂uq when n Ñ 8.

E.2. Results of η2

c,2kpd1, d2q

Given the decomposition σ2
c,2k < řk

d1“1

řk
d2“1 wd1

wd2
·2

c,2kpd1, d2q (see (4.10)

in Proposition 4.3). To bound σ2
c,2k, we should study ·2

c,2kpd1, d2q (4.10). The

results of ·2
c,2kpd1, d2q are presented in this section.

Lemma E.5. Under Assumptions 1-5, for 1 ď c ď T1, 1 ď d1, d2 ď T2,

·2
c,2kpd1, d2q < O

ˆ
1

k2
F pkq

c

˙
.

Lemma E.6. Under Assumptions 1-5, for c < 1, 2, ..., 2k, d1, d2 < 1, 2, ..., k,

·2
c,2kpd1, d2q < OpF pkq

c q.

Similar to the “two-type” upper bounds of σ2
c,2k, Lemma E.5 provides a pre-

cise bound of ·2
c,2kpd1, d2q for bounded c and d1, d2 while Lemma E.6 provides

a rough bound of ·2
c,2kpd1, d2q for all c, d1, d2. Again, the result of Lemma E.5

actually holds for any fixed and finite c, d1, d2. The proof of the above lem-
mas are collected in Appendix F.5 and Appendix F.6 respectively. The proof
demonstrates the cancellation pattern by matching ρ (4.11).
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With the above bounds on ·2
c,2kpd1, d2q, we introduce the following truncated

σ2
c,2k and show Lemma E.8, which implies that to bound σ2

c,2k, it suffices to

bound the first finite ·2
c,2kpd1, d2q terms in its decomposition (4.10).

Definition E.7 (Truncated σ2
c,2k). Let T2 <

X
1
ε

\
` 1. We define ψpT2q, a T2-

truncated ψ as

ψpT2qpSp2kq
1 q :<

T2ÿ

d“1

wc

´
ϕd

´
Sp2kq

¯
´ ϕ0

´
Sp2kq

¯¯
. (E.4)

Hence, given two size-2k subsamples S
p2kq
1 and S

p2kq
2 that |Sp2kq

1 X S
p2kq
2 | < c, a

T2-truncated of σ2
c,2k are defined as:

σ2
c,2k,pT2q :< CovpψpT2qpSp2kq

1 q, ψpT2qpSp2kq
2 qq <

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q.

(E.5)

Lemma E.8 (Truncated Variance Lemma II). Under Assumptions 1-5, there
exists a constant T2 <

X
1
ε

\
` 1, such that for any c ď T1,

lim
kÑ8

σ2
c,2k ´ σ2

c,2k,pT2q

qσ2
c,2k

< 0,

where qσ2
c,2k,pT2q is the upper bound of σ2

c,2k,pT2q given in Proposition E.2.

The proof is collected in Appendix F.7. Similar to the idea of Lemma E.4,
by Lemma E.8 the upper bound of σ2

c,2k (4.10) only involves the sum of T 2
2

terms, i.e., σ2
c,2k,pT2q rather than k2 terms. Here T2 is again finite and does not

grow with k. Though T1 and T2 take the same value, we note that T1 is the
truncation constant for VarpV̂uq in (E.2) while T2 is the truncation constant for
σ2

c,2k in (E.5).

Appendix F: Proof of technical propositions and lemmas

F.1. Proof of Proposition E.1

Proof of Proposition E.1. Suppose EphpS1qq < μ and we rewrite hpS1q <
hp0qpS1q ` μ, where Ephp0qpS1qq < 0. Then ϕdpSp2kqq defined in (4.6) can be
written as

ϕd

´
Sp2kq

¯
< 1

Md,k

ÿ

S1,S2ĂSp2kq,|S1XS2|“d

hp0qpS1qhp0qpS2q

` rhp0qpS1q ` hp0qpS2qsμ ` μ2. (F.1)

Plug Equation (F.1) into Equations (4.1) and (4.5). By the fact that
řk

d“0 wd

< 0 and the symmetry of U-statistic, the terms of μ and μ2 are cancelled.
Consequently, V̂u does not depend on μ, so W.L.O G., we assume that μ < 0
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F.2. Proof of Proposition E.2

Proof of Proposition E.2. This proof relies on the technical lemmas in
Appendix E.2. First, by Lemma E.8, to upper bound σ2

c,2k, it suffices to up-

per bound the following σ2
c,2k,pT2q (E.5)

σ2
c,2k,pT2q <

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q,

where wd < r1 ` op1qs
=

1
d!

p k2

n
qd

ı
, @d ď T2.

By Lemma E.5: fixing any c s.t. 1 ď c ď T2, ·2
c,2kpd1, d2q < Op F pkq

c

k2 q, @d1, d2 ď
T2. Besides, since d1 and d2 are bounded by a constant T2. w2

1 dominates the

summation
řT2

d1“1

řT2

d2“1 wd1
wd2

. We have

σ2
c,2k,pT2q <

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q < OpF

pkq
c

k2
q

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

< OpF
pkq
c

k2
qr1 ` op1qsw2

1 < Op k2

n2
qF pkq

c .

Here, the last equality is derived by plugging in w1 < r1 ` op1qs k2

n
.

F.3. Proof of Proposition E.3

Proof of Proposition E.3. This lemma again relies on the upper bound of
·2

c,2kpd1, d2q in Appendix E.2. By Proposition 4.3, we can decompose σ2
c,2k as

σ2
c,2k <

kÿ

d1“1

kÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q,

First, we investigate the coefficient of ·2
c,2kpd1, d2q. By Proposition 4.2, we haveřk

d1“1 wd1
ă 1. Thus, we attain

kÿ

d1“1

kÿ

d2“1

wd1
wd2

< p
kÿ

d1“1

wd1
qp

kÿ

d2“1

wd2
q ă 1.

By Lemma E.6, we have ·2
c,2kpd1, d2q < OpFcq for c < 1, 2, 3, ..., 2k. Hence,

combining the bounds on wd and ·2
c,2kpd1, d2q, we conclude that σ2

c,2k < OpF pkq
c q.

We remark that the summation
řk

d1“1 wd1 can attain a lower order of 1, which

may imply a tighter bound of σ2
c,2k.
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F.4. Proof of Lemma E.4

Proof. Let T1 <
X

1
ε

\
` 1. Recall Equation (4.3)

Var
´

V̂u

¯
<

ˆ
n

2k

˙´1 2kÿ

c“1

ˆ
2k

c

˙ˆ
n ´ 2k

2k ´ c

˙
σ2

c,2k.

We first present the intuition of this lemma. VarpV̂uq is a weighted sum of σ2
c,2k,

where the coefficient of σ2
c,2k decays with c at a rate even faster than a geometric

rate. If the growth rate of σ2
c,2k is not too fast, then the tail terms can be

negligible. This involves both the precise upper bound of σ1,2k2 (Proposition E.2)
and the rough upper bound of σ2

c,2k for c ě T1 ` 1 (Proposition E.3).

First,
`

n
2k

˘´1`
2k
1

˘`
n´2k
2k´1

˘
qσ2

1,2k ď }Var
pT1q

´
V̂u

¯
since the former is the first tern

in the latter and all the other terms are positive. Therefore, it suffices to show

Var
´

V̂u

¯
´ VarpT1q

´
V̂u

¯

`
n
2k

˘´1`
2k
1

˘`
n´2k
2k´1

˘
qσ2

1,2k

<
ř2k

c“T1`1

`
n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
σ2

c,2k`
n
2k

˘´1`
2k
1

˘`
n´2k
2k´1

˘
qσ2

1,2k

Ñ 0. (F.2)

We bound the numerator and denominator in Equation (F.2) separately. For
the denominator, by the analysis of Equation (C.12), we have

ˆ
n

2k

˙´1ˆ
2k

1

˙ˆ
n ´ 2k

2k ´ 1

˙
qσ2

1,2k < r1 ` op1qs4k2

n
qσ2

1,2k. (F.3)

For the numerator, by Proposition E.3 and assumption 5, σ2
c,2k < OpF pkq

c q <
opca2F

pkq
1 q. Therefore, it suffices to show that

ř2k
c“T1`1

`
n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
opca2F

pkq
1 q

4k2

n
qσ2

1,2k

<
O

´
t
`

n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
opca2F

pkq
1 quc“T1`1

¯

4k2

n
qσ2

1,2k

nÑ8ÝÝÝÑ 0.

(F.4)

The equality in (F.4) is given by Proposition F.1. The followed
nÑ8ÝÝÝÑ 0 in (F.4)

is given by Proposition F.2. This completes the proof.

Proposition F.1. Under Assumptions 1-5,

ř2k
c“T1`2

`
n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
ca2F

pkq
1`

n
2k

˘´1`
2k

T1`1

˘`
n´2k

2k´T1´1

˘
pT1 ` 1qa2F

pkq
1

Ñ 0, as n Ñ 8 (F.5)

.
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Proof. The proof of Proposition F.1 is similar to the proof of Proposition 4.5.
The idea is that the sum of tail coefficients is a geometric sum and thus domi-
nates the growth rate of moments.

First we consider the coefficient
ř

2k
c“T1`2

p n

2k
q´1p2k

c
qpn´2k

2k´c
q

p n

2k
q´1p 2k

T1`1
qp n´2k

2k´T1´1
q . By Proposition C.1

and our analysis in Equation (C.13) and (C.14), let bn < 4k2

n´2k`1
which is the

common ratio in the geometric sequence.

ř2k
c“T1`2

`
n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
`

n
2k

˘´1`
2k

T1`1

˘`
n´2k

2k´T1´1

˘ ď
2kÿ

c“T1`2

r1 ` op1qs pT1 ` 1q!
c!

bc´pT1`1q
n . (F.6)

Second, combining ca1 with (F.6), it’s again the problem of geometric series
with common ratio bn < op1q. We have

LHS of (F.5) ď
2kÿ

c“T1`2

O

ˆ
ca2

c!

˙
bc´pT1`1q

n

ď
2kÿ

c“T1`2

Op1qbc´pT1`1q
n

ď
8ÿ

c“1

Op1qbc
n < Op1qbn Ñ 0, (F.7)

where the last equality is concluded by the sum of geometric series.

Proposition F.2. Under Assumptions 1-5,

`
n
2k

˘´1`
2k

T1`1

˘`
n´2k

2k´T1´1

˘
C 1pT1 ` 1qa2F

pkq
1

k2

n
qσ2

1,2k

< op 1

k2
q Ñ 0. (F.8)

In Equation (F.8), the upper bound of c < T1 ` 1 term of the numerator is a
lower order term compared to the denominator.

Proof. It suffices bound two separate parts in Equation (F.8),

`
n
2k

˘´1`
2k

T1`1

˘`
n´2k

2k´T1´1

˘

k2

n

< op 1

n2
q, (F.9)

C 1pT1 ` 1qa2F
pkq
1

qσ2
1,2k

< Opn2

k2
q. (F.10)

Then, combining Equation (F.9) and (F.10), we have

LHS of (F.8) ď o

ˆ
1

n2

˙
Opn2

k2
q < o

ˆ
1

k2

˙
Ñ 0.
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We first show Equation (F.9), i.e., bound the ratio of coefficient. Similar to
the analysis for Equation (C.14), by Proposition C.1, we have

ˆ
n

2k

˙´1ˆ
2k

T1 ` 1

˙ˆ
n ´ 2k

2k ´ T1 ´ 1

˙
ď p2kq2pT1`1q

pT1 ` 1q!
1

pn ´ 2k ` 1qT1`1

ď 1

pT1 ` 1q!b
T1`1
n ,

where bn < 4k2

n´2k`1
. Therefore the ratio of coefficient,

`
n
2k

˘´1`
2k

T1`1

˘`
n´2k

2k´T1´1

˘

4k2

n

ď r1 ` op1qs 1

pT1 ` 1q!b
T1

n .

It remains to show bT1

n < op 1
n2 q. By T1 <

X
1
ε

\
` 1 and k < Opn1{2´εq, we have

bT1

n ď p4k2

n
qt1{εu`1 < Oppn´2εqt1{εu`1q < op 1

n2
q. (F.11)

Second, we show (F.10), i.e., bound the ratio of moments. By Lemma E.8

and E.2, σ2
1,2k < Opk2{n2F

pkq
1 q and qσ2

1,2k — k2{n2F
pkq
1 . We have

C 1pT1 ` 1qa2F
pkq
1

qσ2
1,2k

< O
`
n2{k2pT1 ` 1qa2

˘
< Opn2

k2
q. (F.12)

F.5. Proof of Lemma E.5

Proof of Lemma E.5. First, we present a sketch of this proof. Given S
p2kq
1 and

S
p2kq
2 , our strategy tracks the distribution of Influential Overlaps, i.e., the sam-

ples in S
p2kq
1 X S

p2kq
2 . We will decompose ·2

c,2kpd1, d2q as a finite weighted sum:

·2
c,2kpd1, d2q <

ÿ

i

aibi, (F.13)

where i is the summation index to be specified later. Based on this form, we will

show ai < Op 1
k2 q and bi < OpF pkq

c q for each i. Since (F.13) is a finite sum, we can

conclude ·2
c,2kpd1, d2q < O

´
1

k2 F
pkq
c

¯
. Details of (F.13) will be presented later.

We remark that it is straightforward to upper bound ·2
1,2kpd1, d2q by enumer-

ating all the possible 4-way overlapping cases of S1, S2, S3, S4 given c, d1, d2 for
small c. However, the growth of c from 1 to 2, 3, 4, ..., T2 makes “enumerating”
impossible.

We start the proof by reviewing the definition of ·2
c,2kpd1, d2q (4.9):

·2
c,2kpd1, d2q < Cov

=
ϕd1

´
S

p2kq
1

¯
´ ϕ0

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯
´ ϕ0

´
S

p2kq
2

¯ı
,
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where ϕd

`
Sp2kq

˘
< r

`
2k
d

˘`
2k´d

d

˘`
2k´2d

k´d

˘
s´1

ř
S1,S2ĂSp2kq,|S1XS2|“d hpS1qhpS2q (4.6).

The following proof is organized in two parts. First, we propose an alternative

representation of the covariance Covrϕd1
pSp2kq

1 q, ϕd2
pSp2kq

2 qs, which helps dis-
cover the cancellation pattern of ·2

c,2kpd1, d2q (4.9). Secondly, we derive Equa-
tion (F.13) and specify ai’s and bi’s.

First, we notice that ϕd

`
Sp2kq

˘
(4.6) is a weighted average of the product of

two kernels hpS1qhpS2q:

ϕd

´
Sp2kq

¯
<

„ˆ
2k

d

˙ˆ
2k ´ d

d

˙ˆ
2k ´ 2d

k ´ d

˙j´1 ÿ

S1,S2ĂSp2kq,|S1XS2|“d

hpS1qhpS2q.

Denote
ř

P12
as summation over all pairs of S1, S2, s.t. S1, S2 Ă Sp2kq, |S1XS2| <

d2. Similarly, we can also denote
ř

P34
. Then, we can represent the covariance

Covrϕd1
pSp2kq

1 q, ϕd2
pSp2kq

2 qs as

Cov
=
ϕd1

pSp2kq
1 q, ϕd2

pSp2kq
2 q

ı
< Cov

«
M´1

d1

ÿ

P12

hpS1qhpS2q, M´1
d2

ÿ

P34

hpS3qhpS4q
ff

(F.14)

< M´1
d1

M´1
d2

ÿ

P12

ÿ

P34

ρ (F.15)

<
ÿ

feasible r

ppr,d1,d2,cqρ. (F.16)

In the above equations,

ppr,d1,d2,cq:“M
´1

d1
M

´1

d2

ÿ

pS1,S2,S3,S4q

1toverlapping structure of S1, S2, S3, S4 satisfies pr, d1, d2qu;

Md <
`

2k
d

˘`
2k´d

d

˘`
2k´2d

k´d

˘
is the number of pairs of sets in the summation.

The equality in (F.16) holds by combining the ρ terms with the same r (see
definition of r in Appendix B.1). Since it is difficult to figure out the exact value
of ppr,d1,d2,cq, we further propose the following proposition to show an alternative

representation of Covrϕd1
pSp2kq

1 q, ϕd2
pSp2kq

2 qs.

Lemma F.3. Denote ri˚ < ř2

j“0 rij and r˚j < ř2

i“0 rij, for i, j < 0, 1, 2 and

vector r˚ :< pr0˚, r1˚, r2˚, r˚0, r˚1, r˚2q, we have

Cov
=
ϕd1

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯ı
“

ÿ

feasible r˚

ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqgpr
˚

, d1, d2q.

(F.17)

Here ppr0˚,r1˚,r2˚,d1,cq and ppr˚0,r˚1,r˚2,d2,cq are non-negative and satisfy the
following. For non-negative integers x0, x1, x2 that x0 ` x1 ` x2 ď c,

ppx0,x1,x2,d,cq :“

˜
d

x0

¸˜
k ´ d

x1

¸˜
k ´ d

x2

¸˜
d

c ´ x0 ´ x1 ´ x2

¸˜
2k

c

¸´1

“ Opk
x1`x2´c

q.

(F.18)
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gpr˚, d1, d2q is the following weighted average of ρ, where the weight is some
constant ppr, r˚q satisfying that

ř
r˚ ppr, r˚q < 1.

gpr
˚

, d1, d2q :“
ÿ

r

ppr, r˚qρ. (F.19)

The proof of Lemma F.3 is deferred to the end of Appendix F.5. Under
Assumption 3, ρ does not depend on d1, d2. Hence, gpr˚, d1, d2q also does not
depend on d1, d2. We further denote Gpr˚q < gpr˚, d1, d2q. Then,

Cov
=
ϕd1

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯ı
<

ÿ

feasible r˚

ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqGpr˚q.

(F.20)

We remark that ppr0˚,r1˚,r2˚,d1,cq and ppr˚0,r˚1,r˚2,d2,cq can be viewed as some
probability mass function with parameters c, d1, d2 (see the proof of Lemma F.3).
As a corollary of (F.18), when c ´ x1 ´ x2 ą d, ppx0,x1,x2,d,cq < 0. In particular,
when d < 0 and x1 ` x2 ď c ´ 1, ppx0,x1,x2,d,cq is always 0.

Notice that since S
p2kq
1 is independent of S

p2kq
2 ,

ř
feasible r˚ can be written

as two sequential sums:
ř

pr0˚,r1˚,r2˚q

ř
pr˚0,r˚1,r˚2q. Therefore, by plugging the

expression of Covrϕd1
pSp2kq

1 q, ϕd2
pSp2kq

2 qs (F.20) into ·2
c,2kpd1, d2q (4.9), we have

η
2

c,2kpd1, d2q “ Cov
=
ϕd1

´
S

p2kq
1

¯
´ ϕ0

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯
´ ϕ0

´
S

p2kq
2

¯ı

“
ÿ

feasible r˚

<
ppr0˚,r1˚,r2˚,d1,cq ´ ppr0˚,r1˚,r2˚,0,cq

‰ <
ppr˚0,r˚1,r˚2,d2,cq ´ ppr˚0,r˚1,r˚2,0,cq

‰
looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

ai

ˆ Gpr
˚

qloomoon
bi

(F.21)

We have two observations on the above Equation (F.21). First, this ·2
c,2kpd1, d2q

< ř
i aibi is a finite summation because c ď T1. Hence, to show ·2

c,2k <
OpF pkq

c {k2q, it suffices to bound every term ai ¨bi. Secondly, by Lemma F.3, bi <
Gpr˚q is a weighted average of ρ where the non-negative weights

ř
r˚ ppr, r˚q < 1.

Hence, each bi is naturally bounded by the upper bound of ρ. We conclude that

bi < OpF pkq
c q. Therefore, it remains to show that ai < Opk´2q for every i. This

is provided by the following lemma.

Lemma F.4. Fixing integer d, c ě 0, for any tuple of non-negative integers
px0, x1, x2q s.t.

ř2

i“0 xi ď c,

ppx0,x1,x2,d,cq ´ ppx0,x1,x2,0,cq < Op 1

k
q. (F.22)

The proof is collected later in Appendix F.5. This completes the proof of
Lemma E.5. We remark that though there exists ppx0,x1,x2,d,cq — 1 for some

px0, x1, x2q, ppx0,x1,x2,d,cq ´ ppx0,x1,x2,0,cq is always at the order of Op 1
k

q.
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Remark F.5. This proof has proceeded under Assumption 3. It can be adapted
to a weaker assumption: Assumption 6.The according proof using this new as-
sumption will be present in Appendix G, where we cannot exactly cancel two ρ

with the same r but different d.

We present the proof of two important technical facts in the above proof:
Lemma F.3 and Lemma F.4.

Proof of Lemma F.3. First, we derive Equation (F.17) from Equation (F.16):

Cov
=
ϕd1

pSp2kq
1 q, ϕd2

pSp2kq
2 q

ı
<

ÿ

feasible r

ppr,d1,d2,cqρ.

Given that c < |Sp2kq
1 , S

p2kq
2 |, d1 < |S1 X S2| and d2 < |S3 X S4|, suppose we

randomly sample a feasible S1, S2, S3, S4 from all possible cases, we can use a
9-dimension random variable R to denote the 4-way overlapping structure of
S1, S2, S3, S4. Hence, the the coefficient ppr,d1,d2,cq in (F.16) is P pR < r|d1, d2, cq.
Then, denote a 6-dimension random variable R˚ < pR0˚, R1˚, R2˚, R˚0, R˚1,

R˚2q, taking all possible values of r˚ given d1, d2, c. By Bayesian rule,

P pR < r|d1, d2, cq < P pR < r|R˚ < r˚, d1, d2, cqP pR˚ < r˚|d1, d2, cq. (F.23)

Since S1, S2 Ă S
p2kq
1 , S3, S4 Ă S

p2kq
2 and S

p2kq
1 is independent from S

p2kq
2 ,

pR0˚, R1˚, R2˚q are independent from pR˚0, R˚1, R˚2qq. Hence, we can fur-
ther decompose P pR˚ < r˚|d1, d2, cq as P pR0˚ < r0˚, R1˚ < r1˚, R2˚ <
r2˚q|d1, cq ¨ P pR˚0 < r˚0, R˚1 < r˚1, R˚2 < r˚2q|d2, cq. To simplify the no-
tations, we denote

ppr,d1,d2,cq :< P pR˚ < r˚|d1, d2, cq,
ppr, r˚q :< P pR < r|R˚ < r˚, d1, d2, cq,
ppr0˚,r1˚,r2˚,d1,cq :< P pR0˚ < r0˚, R1˚ < r1˚, R2˚ < r2˚q|d1, cq,
ppr˚0,r˚1,r˚2,d2,cq :< P pR˚0 < r˚0, R˚1 < r˚1, R˚2 < r˚2q|d2, cq.

Given R˚, the distribution of R does not depend on d1, d2, c so we omit the
subscript d1, d2, c in ppr, r˚q. We also remark that

ř
r˚ ppr, r˚q < 1 since R|R˚

can be viewed as a random variable. Based on these notations and (F.23), we
can rewrite Equation (F.16) as

ÿ

feasible r˚

ÿ

feasible r

ppr, r˚qppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqρ

<
ÿ

feasible r˚

ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cq

ÿ

feasible r

ppr, r˚qρs
looooooooomooooooooon

denote as gpr˚, d1, d2q

.

This justifies both Equations (F.17) and (F.19).
Secondly, we show Equation (F.18). Since ppr0˚,r1˚,r2˚,d1,cq and ppr˚0,r˚1,r˚2,d2,cq

can be analyzed in the same way, our discussion focuses on ppr0˚,r1˚,r2˚,d1,cq,
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which is boiled down to the distribution of pR0˚, R1˚, R2˚q. Given c and d1, c

Influential Overlaps can fall into 4 different “boxes” in S
p2kq
1 : S1 X S2, S1zS2,

S2zS2, and S
p2kq
1 zpS1 YS2q, with “box size” as d1, k ´d1, k ´d1, d1 respectively.

The number of samples in each “box” follows a hypergeometric distribution.
This is illustrated by the following table.

Table 5
The distribution of Influential Overlaps in S

p2kq
1

.

Index 0 1 2 3

“box” S1 X S2 S1zS2 S2zS1 S
p2kq
1

zpS1 Y S2q

“box size” d1 k ´ d1 k ´ d1 d1

# of Influential Overlaps r0˚ r1˚ r2˚ c ´ |r|

Hence, the probability mass function of pR0˚, R1˚, R2˚q: P pR0˚ < r0˚,

R1˚ < r1˚, R2˚ < r2˚|d1, cq is

ppr0˚,r1˚,r2˚,d1,cq <
ˆ

d1

r0˚

˙ˆ
k ´ d1

r1˚

˙ˆ
k ´ d1

r2˚

˙ˆ
d1

c ´ r0˚ ´ r1˚ ´ r2˚

˙ˆ
2k

c

˙´1

.

(F.24)

It remains to show that ppr0˚,r1˚,r2˚,d1,cq < Opkr1˚`r2˚´cq for any fixed c, d1.
In the following, to simplify the notation, we denote xi < ri˚ for i < 0, 1, 2 and
x3 < c ´ r0˚ ´ r1˚ ´ r1˚. Then Equation (F.18) can be written as

c!

x0!x1!x2!x3!

d1!

pd1 ´ x0q!
pk ´ d1q!

pk ´ d1 ´ x1q!
pk ´ d1q!

pk ´ d1 ´ x2q!
d1!

pd1 ´ x3q!{ p2kq!
p2k ´ cq! .

(F.25)

Before the formal justification, we remark that (F.25) looks similar to the prob-

ability mass function of a multinomial distribution: c!
x0!x1!x2!x3!

`
d1

2k

˘x0
`

k´d1

2k

˘x1

`
k´d1

2k

˘x2
`

d1

2k

˘x3

, which is obviously Opkx1`x2´cq.
We decompose Equation (F.25) as a production of three parts, denoting

Part I :< c!
x0!x1!x2!x3!

, Part II :< d1!
pd1´x0q!

pk´d1q!

pk´d1´x1q!

pk´d1q!

pk´d1´x2q!
d1!

pd1´x3q!
, Part III :<

p2kq!

p2k´cq!
. Since x0, x1, x2, x3, c are finite, Part I can be viewed as a constant in

the asymptotic analysis. For Part II, again, d1!
pd1´x0q!

d1!
pd1´x3q!

does not depend on

k and thus can be treated as a constant. For the rest part:

pk ´ d1q!
pk ´ d1 ´ x1q!

pk ´ d1q!
pk ´ d1 ´ x2q! <

«
x1´1ź

i“0

pk ´ d1 ´ iq
ff «

x2´1ź

i“0

pk ´ d1 ´ iq
ff

ď pk ´ d1qx1`x2 .

For Part III,

p2kq!
p2k ´ cq! <

c´1ź

i“0

p2k ´ iq ě kc.
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Combining Part I, II, III, we have

ppx0,x1,x2,d1,cq < O
<
pk ´ d1qx1`x2 {kc

‰
< Opk´c`x1`x2 q.

This completes the proof.

Proof of Lemma F.4. To show ppx0,x1,x2,d,cq ´ ppx0,x1,x2,0,cq < Op 1
k

q, we study
two cases separately, where case I is x1`x2 ď c´1 and case II is x1`x2 < c. This
is motivated by the conclusion of Proposition F.3, ppx0,x1,x2,d,cq < Opkx1`x2´cq.

We first study case I. For any finite c, d, since x1 ` x2 ď c ´ 1, by (F.18),
ppx0,x1,x2,d,cq < Op1{kq. In particular, ppx0,x1,x2,0,cq < 0. Therefore,

ppx0,x1,x2,d,cq ´ ppx0,x1,x2,0,cq < Op 1

k
q ´ 0 < Op 1

k
q.

Secondly, we study case II. For any finite c, d, since x1`x2 < c, ppx0,x1,x2,d,cq —
1 and ppx0,x1,x2,0,cq — 1. Hence, we can not conclude the order of ppx0,x1,x2,d,cq ´
ppx0,x1,x2,0,cq directly from the order of each term. We need to study ppx0,x1,x2,d,cq

<
`

d
x0

˘`
k´d
x1

˘`
k´d
x2

˘`
d1

c´x0´x1´x2

˘`
2k
c

˘´1
a bit more carefully. It is equivalent to

showing that
<
ppx0,x1,x2,d,cq ´ ppx0,x1,x2,0,cq

‰
{ppx0,x1,x2,d,cq < ppx0,x1,x2,d,cq{ppx0,x1,x2,d,cq ´ 1

< Op 1

k
q.

To prove the above, we denote qpdq :< ppx0,x1,x2,d,cq{ppx0,x1,x2,0,cq. It suffices to
show that

qpdq < ppx0,x1,x2,d,cq{ppx0,x1,x2,0,cq < 1 ` Op 1

k
q.

Since x0 `x1 `x2 `x3 < c and x1 `x2 < c, we have x0 < x3 < 0 in ppx0,x1,x2,d,cq.
Therefore,

qpdq <
`

d
0

˘`
k´d
x1

˘`
k´d
x2

˘`
d
0

˘
`

2k
c

˘ {
`

0
0

˘`
k

x1

˘`
k

x2

˘`
0
0

˘
`

2k
c

˘

<
„ pk ´ dq!

pk ´ d ´ x1q!x1!

pk ´ dq!
pk ´ d ´ x2q!x2!

j
{

„
k!

pk ´ x1q!x1!
{ k!

pk ´ x2q!x2!

j
.

(F.26)

By direct cancellations of factorials, the above equation can be simplified as

qpdq <
śd´1

i“0 pk ´ x1 ´ iq śd´1

i“0 pk ´ x2 ´ iq
śd´1

i“0 pk ´ iq śd´1

i“0 pk ´ iq
<

«
d´1ź

i“0

k ´ x1 ´ i

k ´ i

ff «
d´1ź

i“0

k ´ x2 ´ i

k ´ i

ff
.

(F.27)

To upper bound these two products in Equation (F.27), we consider a general
argument. For any integer b ě a ě x ě 0, we have

a ´ x

b ´ x
ď ... ď a ´ 1

b ´ 1
ď a

b
.
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Therefore,

ˆ
a ´ x

b ´ x

˙x

ď apa ´ 1q...pa ´ x ` 1q
bpb ´ 1q...pb ´ x ` 1q ď

´a

b

¯x

Hence, let a < k ´ x1, b < k, x < d ´ 1, we can bound
śd´1

i“0
k´x1´i

k´i
in Equa-

tion (F.27) as

pk ´ d ` 1 ´ x1

k ´ d ` 1
qd ď

d´1ź

i“0

k ´ x1 ´ i

k ´ i
ď pk ´ x1

k
qd.

Similarly, we can bound
śd´1

i“0
k´x2´i

k´i
in Equation (F.27) as p k´d`1´x2

k´d`1
qd ďśd´1

i“0
k´x2´i

k´i
ď p k´x2

k
qd. Therefore, the Equation (F.27) can be upper and lower

bounded as

ˆ
k ´ d ` 1 ´ x1

k ´ d ` 1

˙d ˆ
k ´ d ` 1 ´ x2

k ´ d ` 1

˙d

ď qpdq ď
ˆ

k ´ x1

k

˙d ˆ
k ´ x2

k

˙d

.

(F.28)

We will show both LHS and RHS of Equation (F.28) is 1 ` Op 1
k

q. First,
consider the terms in the RHS of Equation (F.28). Recall that d, x1 are finite
compared to k, by binomial theorem

ˆ
k ´ x1

k

˙d

<
´

1 ´ x1

k

¯d

<
dÿ

i“0

ˆ
d

i

˙ ´
´x1

k

¯i

< 1 ` Op 1

k
q.

Similarly, for the other term in the RHS of Equation (F.28), we achieve

ˆ
k ´ x2

k

˙d

< 1 ` Op 1

k
q.

Similarly, for the two terms in the LHS of Equation (F.28), we have

ˆ
k ´ x1 ´ d ` 1

k ´ d ` 1

˙d

< 1 ` Op 1

k ´ d ` 1
q < 1 ` Op 1

k
q,

ˆ
k ´ x2 ´ d ` 1

k ´ d ` 1

˙d

< 1 ` Op 1

k ´ d ` 1
q < 1 ` Op 1

k
q.

Putting the above analysis together for Equation (F.28), we get

„
1 ` Op 1

k
q
j „

1 ` Op 1

k
q
j

ďqpdq ď
„
1 ` Op 1

k
q
j „

1 ` Op 1

k
q
j

ùñ
„
1 ` Op 1

k
q
j

ďqpdq ď
„
1 ` Op 1

k
q
j

.

This completes the proof.
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F.6. Proof of Lemma E.6

Proof of Lemma E.6. By 4.9, given S
p2kq
1 , S

p2kq
2 s.t.|Sp2kq

1 X S
p2kq
2 | < c,

·2
c,2kpd1, d2q < Cov

=
ϕd1

´
S

p2kq
1

¯
´ ϕ0

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯
´ ϕ0

´
S

p2kq
2

¯ı

ď Cov
=
ϕd1

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯ı
` Cov

=
ϕ0

´
S

p2kq
1

¯
, ϕ0

´
S

p2kq
2

¯ı
,

where the last inequality is by the non-negativity of ρ. By the definition of ϕd

in Equation (4.6), the RHS of above equation is upper bounded by

2 max
S1,S2ĂS

p2kq
1

,s.t.|S1XS2|ďd1,S3,S4ĂS
p2kq
2

,s.t.|S3XS4|ďd2

ρ < OpF pkqq.

F.7. Proof of Lemma E.8

Proof of Lemma E.8. We apply the strategies we used in the proof of Lemma E.4.
The truncation parameter is T2 <

X
1
ε

\
` 1. Recall in Lemma E.4, VarpV̂uq <ř2k

c“1

`
n
2k

˘´1`
2k
c

˘`
n´2k
2k´c

˘
σ2

c,2k, where

σ2
c,2k <

kÿ

d1“1

kÿ

d1“1

wd1
wd2

·2
c,2kpd1, d2q, for c < 1, 2, ..., T1.

We decompose σ2
c,2k into three parts:

σ2
c,2k <

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

·2
c,2kpd1, d2q

looooooooooooooooomooooooooooooooooon
A

`2
T2ÿ

d1“1

kÿ

d2“T2`1

wd1
wd2

·2
c,2kpd1, d2q

loooooooooooooooooooomoooooooooooooooooooon
B

`
kÿ

d1“T2`1

kÿ

d2“T2`1

wd1
wd2

·2
c,2kpd1, d2q

loooooooooooooooooooooomoooooooooooooooooooooon
C

. (F.29)

Similarly, denote

Ǎ :< qσ2
c,2k,pT2q <

T2ÿ

d1“1

T2ÿ

d2“1

wd1
wd2

q·2
c,2kpd1, d2q, (F.30)

where q·c,2kpd1, d2q is the upper bound given in Lemma E.5. To prove this lemma,
it suffices to show

lim
kÑ8

2B ` C

Ǎ
< 0. (F.31)

It remains to bound Ǎ, B, C as

Ǎ — w2
1Fc

k2
, B < O pw1w̌T2`1Fcq , C < O

`
w̌2

T2`1Fc

˘
, (F.32)
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where w̌d < Op k2d

d!nd q is the rough upper bound of wd in (4.7). We need to
quantify two parts, the coefficients wd1

wd2
and the covariance ·2

c,2kpd1, d2q. Fix

one c ď T1 and first quantify ·2
c,2kpd1, d2q. By Lemma E.5 and E.6, we have

·2
c,2kpd1, d2q < Op 1

k2
Fcq, for c ď T1, d1, d2 ď T2, (F.33)

·2
c,2kpd1, d2q < OpFcq, for c ď 2k, d1, d2 ď k. (F.34)

By Proposition E.2, we have A < σ2
c,2k,pT2q < Op k2

n2 Fcq. Since Ǎ is the upper

bound of A given in Proposition E.2, Ǎ < Op k2

n2 Fcq. For B, C, we upper bound
·2

c,2kpd1, d2q by OpFcq in Equation (F.34). Hence, we can reduce the analysis for
both coefficients and covariance to the analysis on only coefficients wd, for

B < OpFcq
«

T2ÿ

d1“1

wd1

ff «
kÿ

d2“T2`1

wd2

ff

C < OpFcq
«

kÿ

d1“T2`1

wd1

ff «
kÿ

d2“T2`1

wd2

ff
.

To be more specific, it remains to show that

T2ÿ

d“1

wd < Opw1q,
kÿ

d“T2`1

wd < Opw̌T2`1q.

where w̌d < Op k2d

d!nd q is the rough upper bound of wd in (4.7).

For
řT2

d“1 wd, by Equation (4.7), each wd < r1 ` op1qs k2d

d!nd ď r1 ` op1qs k2d

nd .
The common ratio of geometric decay is k2{n < op1q. Therefore, the first term

w1 dominates
řT2

d“1 wd. For
řk

d“T2`1 wd, by Equation (4.7), we have each wd <
Op k2d

d!nd q < Op k2d

nd q. Similarly, by geometric decay with common ratio k2{n,

kÿ

d“T2`1

wd ď
kÿ

d“T2`1

Opk2d

nd
q < O

ˆ
pk2

n
qT2`1

˙
.

Hence we define w̌T2`1 — k2

n
qT2`1. Then

řk
d“T2`1 wd < Opw̌T2`1).

We have proved the bounds in Equation (F.32). Then plug Equation (F.32)
into the LHS of Equation (F.31), we can conclude that

2B ` C

Ǎ
< O

ˆ
k2pw1w̌T2`1 ` w̌2

T2`1q
w2

1

˙
. (F.35)

For (F.35), plugging in T2 < t1{εu ` 1 and the the upper bound of wd < r1 `
op1qs k2d

d!nd and w̌d < Op k2d

d!nd q from Equation (4.7) and (4.7), we conclude

2B ` C

Ǎ
< O

´
k2n´2εpt1{εu`1q

¯
< O

´
k2n´2εpt1{εu`1q

¯
< opk2n´2q < op1q.

This completes the proof.
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Appendix G: Relaxation of Assumption 3 and according proof

Assumption 3 assumes that ρpr, d1, d2q only depends on r, and therefore it has
9 DoF. This is valid in Example B.2 but still too restrictive in practice. In this
section, we first present Assumption 6 as a relaxation of Assumption 3, Then,
we show that the technical lemmas can be proved under our relaxed assumption.
We denote ρ as ρpr, d1, d2q in this section, since ρ depends on all 11 DoF rather
than only 9 DoF.

G.1. Assumption 6

Assumption 6 (Relaxation of Assumption 3). Given r, for any finite d1, d2, we

have d1 ě r0˚ < ř2

j“0 r0j , d2 ě r˚0 < ř2

i“0 ri0 by their definition. There exist
constant B and Bprq such that Bprq ď B ă 8,

ρpr, d1, d2q <
„
1 ` Bprqd1 ´ r0˚ ` d2 ´ r˚0

k
` Op 1

k2
q
j

ρ̃prq, (G.1)

ρpr, d1, d2q ď Bρ̃prq, (G.2)

where

ρ̃prq :< ρpr, r0˚, r˚0q. (G.3)

In Equation (G.1), we refer to the benchmark ρ̃prq as main effect, capturing

the contribution from the overlap between S
p2kq
1 and S

p2kq
2 ; while we refer to

the rest part, Op 1
k

qρ̃prq, as additional effect, capturing the contribution from

the overlap within S
p2kq
1 and the overlap within S

p2kq
2 . Equation (G.2) bounds

additional effect with respect to main effect. Note that in Example B.2, there
is only the main effect, i.e., Bprq = 0 and thus Assumption 6 degenerates to
Assumption 3.

We interpret main effect and additional effect as follows. First, S1 Y S2 can

be decomposed into two sets: A < pS1 Y S2q X pSp2kq
1 X S

p2kq
2 q, i.e., the set of

Influential Overlaps and B < pS1 Y S2qzpSp2kq
1 X S

p2kq
2 q. Similar analysis holds

for the Op d2

k
q term. When we fix r and increase d1, A does not change while the

structure of B changes with d1, causing ρpr, d1, d2q to deviate from ρ̃prq. Second,
we assume that this deviation has a lower order impact compared to the main
effect, i.e., the order of Op d1

k
q.

G.2. Proof under Assumption 6

In our previous proof, only two fundamental lemmas directly rely on Assump-
tion 3: Lemma E.5 (the precise bound for ·2

c,2kpd1, d2q) and Lemma E.6 (the

rough bound for ·2
c,2kpd1, d2q). Based on these two lemmas, we can derive the

upper bounds of σ2
c,2k and hence upper bound VarpV̂uq (see the proof roadmap
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in Appendix 4.4). Therefore, when Assumption 3 is relaxed to Assumption 6, it
suffices to show the results in Lemma E.5 and E.6.

First, it is trivial to validate a relaxed Lemma E.6 under Assumption 6. As-

sumption 6 does not change the upper bound of ρpr, d1, d2q, which is F
pkq
c <

CovrhpS1q2, hpS2q2s s.t. |S1 X S2| < c (4.13). The proof of Lemma E.6 in Ap-

pendix F.6 only requires the upper bound F
pkq
c , thus it still works.

Second, we need to adapt the proof of Lemma E.5 in Appendix F.5. ρpr, d1, d2q
can no longer be represented as ρprq. Thus, ρpr, d1, d2q ´ ρpr, d1

1, d1
2q is not nec-

essarily 0 for pd1, d2q ‰ pd1
1, d1

2q.

Proof of Lemma E.5 under Assumptions 1, 2, 4 - 6. We adopt the proof in Ap-
pendix F.5 from the beginning to Lemma F.3. We note that Lemma F.3 does
not rely on Assumption 3. Hence, we still have Equation (F.17):

Cov
=
ϕd1

´
S

p2kq
1

¯
, ϕd2

´
S

p2kq
2

¯ı

“
ÿ

feasible r˚

ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqgpr
˚

, d1, d2q,

where gpr˚, d1, d2q is given in Equation (F.19).eq:def:g Since ρpr, d1, d2q in
gpr˚, d1, d2q (F.19) depends d1, d2, we cannot further simplify gpr˚, d1, d2q as
Gpr˚q. Further, we denote

pgpr˚, d1, d2, cq :< ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqgpr˚, d1, d2, cq;
∆pgpr˚, d1, d2, cq :< pgpr˚, d1, d2, cq ´ pgpr˚, 0, d2, cq

´ pgpr˚, d1, 0, cq ` pgpr˚, 0, 0, cq.

Then ·2
c,2kpd1, d2q can be represented as

·2
c,2kpd1, d2q <

ÿ

pr0˚,r1˚,r2˚q

ÿ

pr˚0,r˚1,r˚2q

∆pgpr˚, d1, d2, cq. (G.4)

We apply the strategy used in the proof of Lemma F.4, partitioning the
summation as follows:

·2
c,2kpd1, d2q <

˜ ÿ

r1˚`r2˚“c

`
ÿ

r1˚`r2˚ďc´1

¸

ˆ
˜ ÿ

r˚1`r˚2“c

`
ÿ

r˚1`r˚2ďc´1

¸
∆pgpr˚, d1, d2, cq. (G.5)

There are 4 cases. Case A: r1˚ `r2˚ < c and r˚1 `r˚2 < c; case B: r1˚ `r2˚ < c

and r˚1 ` r˚2 ď c ´ 1; case C: r1˚ ` r2˚ ď c ´ 1 and r˚1 ` r˚2 < c; case D:
r1˚ ` r2˚ ď c ´ 1 and r˚1 ` r˚2 ď c ´ 1. Since c is finite, ri˚’s and r˚j ’s are also

finite. Thus, (G.5) is a finite summation. To show ·2
c,2kpd1, d2q < Op 1

k2 F
pkq
c q, it

suffices to show that the summand ∆pgpr˚, d1, d2, cq < Op 1
k2 F

pkq
c q in all 4 cases.
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First, we study case A. For the gpr˚, d1, d2q defined in Equation (F.19), by ap-

proximation of ρ in Assumption 6: ρpr, d1, d2q <
=
1 ` Bprq d1

1
`d1

2

k
` Op 1

k2 q
ı

ρ̃prq,
we have

gpr˚, d1, d2q < r1 ` d1 ` d2

k
Bprq ` Op 1

k2
qsgpr˚, 0, 0q,

Therefore, ∆pgpr˚, d1, d2, cq can be simplified as

∆pgpr˚, d1, d2, cq
< gpr˚, 0, 0q

�
pppr0˚,r1˚,r2˚,d1,cq ´ ppr0˚,r1˚,r2˚,0,cqq

ˆ pppr˚0,r˚1,r˚2,d2,cq ´ ppr˚0,r˚1,r˚2,0,cqq

` d1Bprq
k

ppr0˚,r1˚,r2˚,d1,cqpppr˚0,r˚1,r˚2,d2,cq ´ ppr˚0,r˚1,r˚2,0,cqq

` d2Bprq
k

ppr˚0,r˚1,r˚2,d2,cqpppr0˚,r1˚,r2˚,d1,cq ´ ppr0˚,r1˚,r2˚,d2,cqq ` Op 1

k2
q
(
.

By Lemma F.4, ppr0˚,r1˚,r2˚,d1,cq ´ppr0˚,r1˚,r2˚,0,cq < Op1{kq, ppr˚0,r˚1,r˚2,d2,cq ´
ppr˚0,r˚1,r˚2,0,cq < Op1{kq. Besides, gpr˚, 0, 0, cq ď F

pkq
c . Thus, ∆pgpr˚, d1, d2, cq

< Op 1
k2 F

pkq
c q.

Secondly, we study case B. Recall that ppr˚0,r˚1,r˚2,0,cq < 0 by (F.18). There-

fore, pgpr˚, d1, 0, cq < pgpr˚, 0, 0, cq < 0. Hence, ∆pgpr˚, d1, d2, cq can be simpli-
fied as

∆pgpr˚, d1, d2, cq < pgpr˚, d1, d2, cq ´ pgpr˚, 0, d2, cq. (G.6)

By Assumption 6, we can approximate gpr˚, d1, d2q as

gpr˚, d1, d2q < r1 ` d1

k
Bprq ` Op 1

k2
qsgpr˚, 0, d2q.

Then, plug the above approximation into Equation (G.6):

∆pgpr˚, d1, d2, cq < gpr˚, 0, d2q
<
ppr˚0,r˚1,r˚2,d2,cq

ˆ pppr0˚,r1˚,r2˚,d1,cq ´ ppr0˚,r1˚,r2˚,0,cqq

` d1Bprq
k

ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cq ` Op 1

k2
q
‰
.

Similarly, we have ppr˚0,r˚1,r˚2,d2,cq < Op1{kq and ppr0˚,r1˚,r2˚,d1,cq ´ p0pxq <
Op1{kq. Given gpr˚, 0, d2, cq ď F

pkq
c , we conclude that ∆pgpr˚, d1, d2, cq

< Op 1
k2 F

pkq
c q.

Thirdly, by a similarly analysis in case B, we can bound ∆pgpr˚, d1, d2, cq <
Op 1

k2 F
pkq
c q in case C.

Finally, we study case D. Since r1˚ ` r2˚ ď c ´ 1 and r˚1 ` r˚2 ď c ´ 1,
ppr0˚,r1˚,r2˚,0,cq < ppr˚0,r˚1,r˚2,0,cq < 0. Therefore,

∆pgpr˚, d1, d2, cqd1d2 < ppr0˚,r1˚,r2˚,d1,cqppr˚0,r˚1,r˚2,d2,cqgpr˚, d1, d2q.
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Since ppr0˚,r1˚,r2˚,d1,cq < Op1{kq, ppr˚0,r˚1,r˚2,d2,cq < Op1{kq, and gpr˚, d1, d2q ď
F

pkq
c . Therefore, we can bound ∆pgpr˚, d1, d2, cq < Op 1

k2 F
pkq
c q in case D.

This completes the proof.

Appendix H: Low order kernel h illustration

This section provides an over-simplified analysis of the behavior of EpV̂uq and
VarpV̂uq assuming that h is a linear kernel. Then, we discuss the difficulty in
generalizing the analysis to a general kernel h, which motivates us to propose
the assumptions for CovrhpS1qhpS2q, hpS3qhpS4qs in Section 4.2.

Proposition H.1. X1, X2, ..., Xn i.i.d., s.t. EpX1q < 0, VarpX1q < γ ą 0.

Suppose kernel function hpX1, ..., Xkq < 1
k

řk
i“1 Xi Then, we have the ratio

consistency of the estimator,

VarpV̂uq´
EpV̂uq

¯ < Op 1

n
q.

This can be concluded by showing that EpV̂uq < Ωp 1
n

q and VarpV̂uq < Op 1
n3 q.

We skip a complete proof of this proposition but remark on three key steps to
upper bound VarpV̂uq: 1) the decomposition of V̂u by a double U-statist structure
(Proposition 4.2); 2) deriving an explicit form of ϕd

`
Sp2kq

˘
´ ϕ0

`
Sp2kq

˘
in the

above decomposition as

d

k2

¨
˝ 1

2k

ÿ

XiPSp2kq

X2
i ´ 2

2kp2k ´ 1q
ÿ

Xi,Xj PSp2kq,jąi

XiXj

˛
: ;

and 3) showing that the leading term in VarpV̂uq dominates VarpV̂uq.
We note that a similar analysis may be performed for an intrinsic low-order

kernel, where hpX1, ..., Xkq <
`

k
l

˘´1 ř
i1ă...ăil

gplqpXi1
, ..., Xil

q for a fixed l and
g is an order l kernel. Because we are still able to derive an explicit form of
ϕdpSp2kqq ´ ϕ0pSp2kqq.

However, for a general kernel h without a low-order structure, difficulties
arise in the above analysis. First, ϕdpSp2kqq ´ ϕ0pSp2kqq no longer has a simple
expression. Our remedy is to quantify the implicit cancellation in covariance

·2
c,2kpd1, d2q :< Covrϕd1

pSp2kq
1 q ´ ϕ0pSp2kq

1 q, ϕd2
pSp2kq

2 q ´ ϕ0pSp2kq
1 qs (see Equa-

tion (4.9)). The further decomposition of ·2
c,2kpd1, d2q involves the following

covariance (4.11)

ρ :< CovrhpS1qhpS2q, hpS3qhpS4qs.

Thus, assumptions are made about this term. In particular, Assumption 3 re-
duces its degree of freedom from 11 to 9. A relaxation of Assumption 3 is
presented in Appendix B. Second, we may not be able to show that σ2

1,2k (or
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its upper bound) dominates VarpV̂uq (4.3) as σ2
2k,2k{σ2

1,2k does not have an ex-

plicit form. Therefore, we adopt a new strategy that bounds all σ2
c,2k with a

tighter upper bound for c < 1, 2, .., T1 (Proposition E.2) and a looser upper
bound for c < T1 ` 1, ..., 2k (Proposition E.3), where T1 is a fixed value de-
pendent on the growth rate of k. A series of technical lemmas are collected in
Appendix E.

Appendix I: Additional simulation results

This section we present additional simulation results.

I.1. Computational cost

We performed additional simulation study to address the concern of computa-
tional cost. It should be noted first that the major cost of variance calculation in
MS is not the part of our proposed estimator, but it is rather the standard pre-
diction mechanism in which we send an observation down each tree. Once these
tree predictions are obtained, the variance estimation is done immediately at lit-
tle cost. On the other hand, BM, BM-corr (bias-corrected BM) and IJ estimators
add burden to this. They all involve using the number of training samples in each
tree (see, e.g., equations mi < řBn

b“1 ωi,bhb and ζ̂BM
1,kn

< 1
n´1

řn
i“1 pmi ´ m̄q2

in
Section 4.2 [35]) and hence the total cost is at OpnTrees ¨nTrainq. Furthermore,
our MS-s estimator adds additional computational cost based on predicting ad-
ditional neighboring samples, but this is not affected by the number of training
samples.

To rigorously compare the computational cost of MS and BM estimators,
we implemented BM and BM-corr under the same C`` parallel computing
framework of our RLT package, which was used to implement our MS and MS-s
methods. We also use the grf package to fit random forests and perform IJ
estimation.

We perform experiments with these settings: subsample size k < n{2 setting
and number of trees (nTrees < 2000). All experiments are performed on an 8-
core AMD Ryzen 7 4800H CPU with 16 GB ram. Each experiment is repeated
1000 times and we summarize the average cost of each experiment with aver-
age’s standard error (in millisecond) in Table 6. The other experimental settings
are the same as the experiments presented in Section 6.2, including using 200
training samples and 55 testing samples. We enable the use of multiple cores
for model fitting and prediction procedures by setting the ncores parameter in
RLT and the num.thread parameter in grf as 8.

Columns in Table 6 can be interpreted as follows. The variance estimation
cost for each testing samples is collected in the last column: “Additional cost
from var est”. For MS, MS-s, and IJ methods, this column is calculated as a dif-
ference between prediction with and without variance estimation since variance
estimation is integrated in their model prediction functions. As references, we
also present the cost of 1) fitting random forest on 200 training samples (column
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Table 6
Computational cost in milliseconds. The cost of time is reported in the form of “average
over 1000 simulations (standard error of the average)”. IJ is implemented in grf and all

other methods are implemented with RLT and Rcpp.

Method
Train Post-train (pred. and var. est. per testing samples)

Model Fit Pred. cost Total cost
Additional cost

var est. “ Total – Pred.

MS
39.8 (0.2) 0.141 (<0.001)

0.151 (<0.001) 0.010 (<0.001)

MS-s 1.830 (0.010) 1.679 (0.010)

BM
37.7 (0.4) 0.143 (<0.001)

0.204 (0.002) 0.060 (0.010)

BM-cor 1.634 (0.005) 1.491 (0.005)

IJ 65.9 (1.1) 0.547 (0.001) 0.596 (0.001) 0.050 (<0.001)

“model fit”), 2) predicting on each testing samples (column “Pred. cost”), and
3) total cost of prediction and variance estimation (column “Total cost”) on
each testing sample.

When comparing the additional variance estimation cost (last column) of all
methods, MS is faster than BM and IJ, which BM and IJ show similar cost.
However, the costs of all 3 methods are much lighter than the cost of model
fitting. The little cost of MS confirms our previous statement that they can be
immediately obtained after standard predictions, i.e., OpnTreesq.

For each testing sample, after obtaining the predictions of nTrees trees, the
variance estimation cost of MS estimator is OpnTreesq (see line 7-13 of Algo-
rithm 1 in Section 6). While for BM method, their estimator of the component
σ2

1 of each testing sample involves using the number of training samples in each

tree (see equations mi < řBn

b“1 ωi,bhb and ζ̂BM
1,kn

< 1
n´1

řn
i“1 pmi ´ m̄q2

in Section
4.2 [35]) and hence the total cost is at least OpnTrees ¨ nTrainq, where nTrain

is the number of training samples. Similarly, IJ’s cost of variance estimation for
each sample is also OpnTrees ¨ nTrainq (see Equation (5) in Wager, Hastie and
Efron [29]). BM-cor estimator is a little more computationally intensive while
we notice there exists an approximate version of this estimator [35, Appendix
E.], whose cost is between BM and BM-cor. In short, given our matched-group
samples, MS estimation is efficient because it does not need to track how many
times each training sample appears in a specific tree.

I.2. Additional experimental results for mtry < 2

We perform the same experiments in Section 6.2 with mtry < 2, i.e., p/3, as
to show that variance estimation is not very sensitive to the choice of tunning
parameters. Experimental results are collected in Table 7 and 8. While we do
observe a slight decrease of coverage across all models, possibly due to the worse
performance and possibly larger variance of random forest itself, the coverage
results and relative bias are not changed significantly compared with Table 1
and Table 2 in Section 6.2.
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Table 7
mtry“2. 90% CI Coverage Rate averaged on 50 testing samples. The number in the bracket

is the standard deviation of coverage over 50 testing samples.

k “ n{2 k “ n{4 k “ n{8
nTrees 2000 20000 2000 20000 2000 20000
MARS

MS 78.0% (3.2%) 86.5% (1.4%) 79.3% (3.6%) 88.2% (1.0%) 79.1% (3.1%) 88.0% (1.4%)
MS-s 87.0% (2.8%) 89.6% (2.6%) 86.7% (2.5%) 90.1% (1.8%) 86.2% (2.4%) 89.4% (1.8%)
BM 85.0% (3.6%) 66.4% (1.9%) 93.4% (1.8%) 81.6% (1.4%) 94.7% (1.1%) 86.9% (1.2%)
BM-cor 3.6% (4.2%) 57.8% (2.1%) 3.6% (4.2%) 57.8% (2.1%) 82.1% (1.3%) 85.0% (1.1%)
IJ 82.1% (1.3%) 85.0% (1.1%) 90.7% (1.5%) 90.4% (0.8%) 93.5% (1.5%) 88.1% (0.9%)
MLR

MS 81.2% (1.8%) 87.1% (1.1%) 81.9% (2.4%) 88.3% (0.9%) 81.9% (2.4%) 88.3% (0.9%)
MS-s 89.2% (1.5%) 90.4% (1.3%) 88.7% (1.3%) 90.3% (1.4%) 87.7% (1.6%) 90.6% (1.1%)
BM 82.7% (1.9%) 64.9% (1.7%) 91.8% (1.2%) 81.5% (1.2%) 94.1% (1.1%) 86.4% (0.9%)
BM-cor 6.0% (3.5%) 57.9% (2.1%) 6.0% (3.5%) 57.9% (2.1%) 82.7% (1.2%) 84.8% (1.0%)
IJ 93.9% (0.9%) 95.7% (0.7%) 90.2% (1.0%) 90.8% (1.0%) 92.5% (1.1%) 88.3% (1.2%)

Table 8
mtry “ 2. Relative bias (standard deviation) over 50 testing samples. For each method and

testing sample, the relative bias is evaluated over 1000 simulations.

k “ n{2 k “ n{4 k “ n{8
nTrees 2000 20000 2000 20000 2000 20000
MARS

MS 0.7% (2.3%) 0.2% (2.3%) 1.4% (2.5%) 0.8% (1.8%) ´1.1% (2.5%) ´0.4% (1.5%)
MS-s 4.6% (13.8%) 4.8% (13.5%) 4.8% (10.6%) 4.6% (10.8%) 2.3% ( 6.3%) 2.8% ( 6.6%)
BM ´15.9% (15.0%) ´63.9% ( 1.6%) 33.4% (16.9%) ´31.2% ( 2.3%) 49.9% (11.5%) ´11.9% ( 1.9%)
BM-cor ´120.6% (14.2%) ´74.4% ( 1.7%) ´60.6% ( 5.4%) ´40.7% ( 1.2%) ´27.7% ( 2.2%) ´19.9% ( 1.4%)
IJ 85.5% (13.8%) 85.0% (13.6%) 52.7% (15.7%) 23.9% ( 3.7%) 91.8% (22.4%) 18.2% ( 5.2%)
MLR

MS 0.0% (2.7%) 0.8% (2.4%) ´0.7% (2.5%) ´1.1% (1.9%) ´0.8% (2.2%) 0.0% (1.5%)
MS-s 8.7% (8.5%) 9.3% (8.8%) 6.8% (6.6%) 6.3% (6.8%) 4.0% (4.1%) 4.9% (3.9%)
BM ´28.0% (5.7%) ´65.3% (0.9%) 19.5% (8.0%) ´33.0% (1.4%) 39.7% (7.1%) ´14.3% (1.3%)
BM-cor ´109.7% (6.0%) ´73.5% (1.1%) ´57.5% (2.8%) ´40.8% (1.0%) ´27.0% (1.7%) ´21.1% (1.4%)
IJ 76.8% ( 8.8%) 78.9% (10.5%) 39.8% ( 7.1%) 20.0% ( 2.8%) 73.9% (14.1%) 12.5% ( 2.8%)

I.3. Ground truth in the simulation

We simulate the ground truth for our experiments in main text: the expec-
tation of forest predictions: Epfpx˚qq and the variance of forest predictions:
Varpfpx˚qq, by 10000 simulations. (see Section 6.1)

Since variance estimators are produced by different packages, we use the cor-
responding package to generate their ground truth. IJ estimator is performed
by grf package when k ď n{2 and ranger package when k ą n{2. Both “RLT
(MS)” and “RLT” use RLT package. However, When k ď n{2, they apply differ-
ent way to sample incomplete U-statistics: matched-group sampling for MS and
MS-s, and independent subsampling (see the description above Equation 2.5)
for BM and BM-cor respectively. When k ą n{2, the sampling schemes are the
same. The result of the central testing sample (see Section 6) is presented in
Table 9 and Table 10. There is a small difference between different packages
though similar tunning parameters are used to train random forests.

In addition, we present the “oracle” CI coverage rate in Table 11, which
matches 1 ´ α. To construct these CIs, we still use the random forest prediction
over 1000 simulations but replace the estimated variance with the “true vari-
ance”, Varpfpx˚qq. This result also shows the normality of the random forest
predictor.
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Table 9
Ground Truth of Epfpx

˚qq evaluated on central testing sample by 10000 simulations.
Reported in the form of “mean (standard deviation of mean)” of Epfpx

˚qq. Standard
deviation pă 0.01q and pă 0.001q are displayed as p0.01q and p0.001q respectively.

MARS MLR
k nTrees RLT (MS) RLT grf/ranger RLT (MS) RLT grf/ranger

n{2
2000 17.81 (0.01) 17.81 (0.01) 18.20 (0.01) 0.497 (0.001) 0.505 (0.001) 0.499 (0.001)
20000 17.81 (0.01) 17.81 (0.01) 18.20 (0.01) 0.497 (0.001) 0.505 (0.001) 0.499 (0.001)

n{4
2000 17.42 (0.01) 17.81 (0.01) 18.01 (0.01) 0.498 (0.001) 0.500 (0.000) 0.463 (0.001)
20000 17.42 (0.01) 17.42 (0.01) 18.00 (0.01) 0.498 (0.001) 0.501 (0.001) 0.464 (0.001)

n{8
2000 17.40 (0.01) 17.40 (0.01) 18.19 (0.01) 0.499 (0.001) 0.500 (0.001) 0.416 (0.001)
20000 17.40 (0.01) 17.40 (0.01) 18.19 (0.01) 0.499 (0.001) 0.500 (0.001) 0.420 (0.001)

4n{5
2000 18.21 (0.01) 18.19 (0.01) 0.499 (0.005) 0.498 (0.005)
20000 18.21 (0.01) 18.19 (0.01) 0.498 (0.005) 0.498 (0.005)

Table 10
Ground Truth of Varpfpx

˚qq evaluated on the central testing sample by 10000 simulations.

MARS MLR
k nTrees RLT (MS) RLT grf/ranger RLT (MS) RLT grf/ranger

n{2
2000 0.847 0.840 0.802 0.135 0.131 0.133
20000 0.844 0.836 0.795 0.135 0.131 0.133

n{4
2000 0.519 0.518 0.527 0.077 0.077 0.076
20000 0.513 0.512 0.509 0.077 0.076 0.077

n{8
2000 0.345 0.345 0.382 0.044 0.043 0.043
20000 0.339 0.339 0.368 0.043 0.042 0.042

4n{5
2000 1.334 1.348 0.214 0.213
20000 1.331 1.341 0.213 0.212

Table 11
90% CI Coverage Rate averaged on 50 testing samples, where the true variance is used in
constructing the CI. The number in the bracket is the standard deviation of coverage over

50 testing samples.

MARS MLR
Tree size nTrees RLT grf/ranger RLT grf/ranger

k ď n{2

k “ n{2
2000 90.12% (0.93%) 90.00% (0.97%) 89.97% (0.86%) 90.04% (0.99%)
20000 90.10% (0.96%) 89.95% (0.97%) 89.97% (0.88%) 89.96% (1.00%)

k “ n{4
2000 89.87% (0.76%) 89.69% (0.84%) 90.07% (1.03%) 90.06% (1.25%)
20000 89.83% (0.78%) 89.63% (0.82%) 90.14% (1.04%) 89.98% (1.21%)

k “ n{8
2000 89.53% (0.78%) 89.35% (0.85%) 90.22% (1.13%) 89.91% (1.17%)
20000 89.38% (0.89%) 89.28% (0.85%) 90.20% (1.12%) 89.78% (1.23%)

k ą n{2 k “ 4

5
n

2000 90.05% (0.94%) 90.02% (0.97%) 89.86% (1.05%) 89.94% (0.98%)
20000 90.05% (1.01%) 90.00% (0.96%) 89.88% (0.98%) 89.86% (0.97%)

I.4. Figures of MLR model

Figure 6 shows the performance of different methods on the MLR model. This
is a counterpart of Figure 2 in Section 6.

Appendix J: Additional information and results for the real data

Table 12 describes the covariates of Airbnb data in Section 7. We use the samples
with the price falling in the interval p0, 500s dollars. The missing values (NA)
in the rating score and bathroom number are replaced. The “having rating”
covariate is created based on the “review number”.
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Fig 6. A comparison of different methods on MLR data. Each column of figure panel cor-
responds to one tree size: k “ n{2, n{4, n{8. The first row: boxplots of relative variance esti-
mators of the central test sample over 1000 simulations. The diamond symbol in the boxplot
indicates the mean. The range of y-coordinate is restricted within r´1, 3s. The second row:
boxplots of 90% CI coverage for 50 testing samples. For each method, three side-by-side box-
plots represent nTrees as 2000, 10000, 20000. The third row: the coverage rate averaged over
50 testing samples with 20000 nTrees and the confidence level (x-axis) from 80% to 95%. The
black reference line y “ x indicates the desired coverage rate.

Table 12
Covariates information of Airbnb data.

Covariate Name Description
latitude Latitude of the Airbnb unit.
longitude Longitude of the Airbnb unit.
room type Three types (with # of samples): Entire home/apt (5547), Private

room (1839) and Shared room (129).
bedroom number Number of bedrooms in this unit.
bathroom number Number of bathrooms in this unit. NA values are replaced by 0.
accommodates Maximum accommodates of this unit.
reviews number The number of reviews of this unit.
having a rating It is 1 if the number of reviews is greater than 0; and is 0 otherwise.
rating score The average rating score. NA is replaced by the average score.

To train the random forest model, we set mtry (number of variables randomly
sampled as candidates at each split) as 3, and set nodesize parameter as 36.
Here we also present the details of testing samples. The latitude and longitude
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of SEA Airport, Seattle downtown, and Mercer Island are (47.4502, ´122.3088),
(47.6050, ´122.3344), and (47.5707, ´122.2221) respectively. The “room type”
“accommodates” and “having a rating” are fixed as “Entire home/apt”, the dou-
ble of “bedroom numbers”, and 1 respectively. We use averages in the training
data as the values of “reviews number” and “rating score”.
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