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Abstract: Infinite-order U-statistics (IOUS) have been used extensively in
subbagging ensemble learning algorithms such as random forests to quantify
its uncertainty. While normality results of IOUS have been studied exten-
sively, its variance estimation and theoretical properties remain mostly un-
explored. Existing approaches mainly utilize the leading term dominance
property in the Hoeffding decomposition. However, such a view usually
leads to biased estimation when the kernel size is large relative to sam-
ple size. On the other hand, while several unbiased estimators exist in the
literature, their relationships and theoretical properties, (e.g., ratio consis-
tency), have never been studied. These limitations lead to unguaranteed
asymptotic coverage of constructed confidence intervals. To bridge these
gaps in the literature, we propose a new view of the Hoeffding decompo-
sition for variance estimation that leads to an unbiased estimator. Instead
of leading term dominance, our view utilizes the dominance of the peak
region. Moreover, we establish the connection and equivalence of our es-
timator with several existing unbiased variance estimators. Theoretically,
we are the first to establish the ratio consistency of such a variance esti-
mator, which justifies the coverage rate of confidence intervals constructed
from random forests. Numerically, we further propose a local smoothing
procedure to improve the estimator’s finite sample performance. Extensive
simulation studies show that our estimators enjoy lower bias and achieve
targeted coverage rates.
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1. Introduction

Given a set of n i.i.d. observations D, = {X;}}_; and an unbiased estimator,
h(X1,...,X}y), of the parameter of interest 6 with k < n, the U-statistic [14]
defined in the following is a minimum-variance unbiased estimator of 6:

Un=<Z)_l 3 h(Si)=<Z)_l N (XX, (L)

S;cDp 1<ji<--<jp<n

where each S; is a subset of k samples from the original D,,, k is called the kernel
size and h is a symmetric kernel function. When k grows with n, U, becomes
an Infinite-Order U-statistic (IOUS) [11]. U-statistics are used extensively in
problems such as non-parametric testing [17], empirical risk minimization in
large-scale machine learning [21, 6], distributed computing and inference for big-
data [19, 18, 5] and many others. In recent years, there has been an increasing
interest in statistical inference with IOUS, particularly with their application
on ensemble approaches, such as random forests [3, 13]. Random forest models
for survival analysis [16], estimating heterogeneous treatment effect [28] can all
benefit from such developments.

It is easy to see that large (Z) renders the computational challenge to exhaust
all subsamples. Instead, random forests sample B subsamples from D,, to build
trees and average. This leads to incomplete U-statistics [17]. Further incorpo-
rating randomness in the kernel function h, Mentch and Hooker [20] first show
the asymptotic normality of random forests under the U-statistics framework
when k grows at the rate of o(4/n). DiCiccio and Romano [8] further relax its
assumptions. Zhou, Mentch and Hooker [35] set the connection between U- and
V-statistics. Peng, Coleman and Mentch [22] extend the kernel size to k = o(n)
under a generalized U-statistic framework. We also note that there is a large
literature outside the applications of random forests. For example, for incom-
plete high-dimensional U-statistics, where h € R?, Chen and Kato [4] and Song,
Chen and Kato [27] study the asymptotic normality for fixed and growing k,
respectively.

With the normality of random forest estimators established under the U-
statistics [20] or other frameworks [28, 1], another line of the topic is the vari-
ance estimation. Wager, Hastie and Efron [29] propose to use jackknife and
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infinitesimal jackknife (IJ [9]). Mentch and Hooker [20] use Monte Carlo meth-
ods to estimate the leading term in the Hoeffding decomposition of Var(U,).
Recent developments include Zhou, Mentch and Hooker [35], who propose a
computationally efficient approach and set the connection with the 1J estima-
tor. Peng, Mentch and Stefanski [23] further study the bias and consistency of
the IJ estimator.

However, an essential practical issue is that these estimators can display a
significant amount of bias when the sample size n is small or & is large compared
to n. In practice, it is common to use a fixed proportion of the total sample size
[13] as the kernel size k. Variance estimators in the aforementioned literature
often suffer from this bias issue because they all rely on some form of leading
term dominance phenomenon. However, when k is large compared to n, such
dominance is weak. Searching through the literature, several unbiased estimators
have been proposed in different forms and motivated from different perspectives
based on the U-statistics view. Some of them can handle a subsampling size k as
large as n/2. Folsom [10] propose a variance estimator of complete U-statistics
following a sequence of literature on sampling design [15, 34, 25]. Schucany
and Bankson [24] propose to estimate all terms in the Hoeffding decomposition
[14] of the variance of an order-2 complete U-statistic. However, they do not
extend the estimator to a general case with k < n/2. Note that Folsom [10],
Schucany and Bankson [24] do not consider the incomplete case; hence their
estimators are computationally infeasible for large k or large n. More recently,
Wang and Lindsay [31] propose partition-based, unbiased variance estimators of
both complete and incomplete U-statistics motivated from the second-moment
expression E(U2) — E?(U,). Wang and Wei [33] further apply this estimator
to random forest variance estimation. However, there is a lack of theoretical
justification for these estimators in terms of their ratio consistency, which is
crucial for achieving a proper coverage rate based on the derived confidence
interval. Moreover, there is a lack of understanding of their connections and
differences with the estimators mentioned previously.

To address these limitations in the literature, the major contribution of our
paper is three-fold. First, we re-analyze the Hoeffding decomposition and pro-
pose a peak region dominance view of the variance estimation of U-statistics to
address the bias issue. This leads to a class of unbiased estimation approaches
for both complete and incomplete U-statistics, called Matched Sample Variance
Estimator, which can handle a subsampling size k as large as n/2. Computation-
ally, our incomplete variance estimator is efficient and can be directly applied to
random forests. Besides, we discuss two extensions of our estimators. One is a
local smoothing strategy to mitigate negative variance estimation [24, 31|, and
the other extends our method to k > n/2. Secondly, we are the first to establish
the connection and equivalence of the three existing estimators [10, 24, 31]. We
show that our proposed estimator coincides with each under specific settings
(see Section 3.5 for a detailed discussion). Thirdly, we establish the ratio consis-
tency for our complete variance estimator under k = o(y/n). To the best of our
knowledge, this is the first result for such estimators, even for fixed k. This is a
crucial step to achieve the nominal coverage level when we plug in the variance
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estimator in constructing a confidence interval. To this end, we fill a significant
gap in the literature by proposing a set of interpretable conditions.

We proceed with additional notation and preliminaries of U-statistics to mo-
tivate the proposed variance estimator and establish the peak region dominance
view.

2. Variance of U-statistics

Our analysis starts with a classical result of the variance of U-statistics. We first
review the Hoeffding decomposition of the variance of a complete U-statistic.
Then, we present the connection between the complete and incomplete ver-
sions. In particular, the variance of an order-k complete U-statistic is given by

Hoeffding [14]:
vewo = (1) 3 () (0 h) e (21)

d=1
where £7 ;. is the covariance between two kernels 2(S1) and h(S2) with S and Sy
sharing d overlapping observations, i.e., £, = Cov (h(S1),h(S2)), with [S1 N
Sa| = d. Here both S; and Sy are size-k subsamples. Alternatively, we can
represent £7 ;. as [17]

€2, = Var [E (h(S)| X1, ..., X4)] - (2.2)

This form will be utilized later.

When k grows with n, it is computationally almost infeasible to exhaust
all subsamples due to large (Z) Instead, it is typical in random forests and
other ensemble algorithms to build incomplete infinite-order U-statistics [17] by

sampling B many S;’s, which gives

B
Uns = 5 2 h(S). (2.3)

The gap between variances of an incomplete U-statistic and its complete coun-
terpart can be understood as
Var(U, g) = Var [E(U, g|X,)] + E[Var(U, 5|X,)] (2.4)
= Var(U,) + E [Var(U,, 5| X,)],
where &, = (X1, ..., Xp,) and the additional term E[Var(U,, g|X,)] depends on

the subsampling scheme. In particular, when all subsamples are drawn indepen-
dently from the collection of all such subsamples [17], we have

Var(U, ) = (1 — %)Var(Un) + ég,ik. (2.5)

This suggests that we can close the gap by using a large B. Hence, we will first
discuss the complete U-statistics setting and then propose the incomplete one.
We also note that for applications to random forests, random kernels (trees) are
involved. However, the difference can be negligible when using a large B [20].
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3. Methodology

The main technical challenge for estimating the variance is when k is relatively
large compared with n. Besides the aforementioned obvious computational issue
in the complete version, most existing methods will also encounter a significant
bias due to only estimating the leading term in the Hoeffding decomposition.
By establishing a peak region dominance view, we develop a new unbiased esti-
mator for Var(U,) in both complete and incomplete forms whenever k < 4. Its
connection with existing methods will be discussed in Section 3.5. Its extension
to n/2 < k < n setting will be presented in Section 5.1. We demonstrate the
application to random forests in Section 5, where we also introduce a locally
smoothed version for better numerical performances.

3.1. Existing methods and limitations

Continuing from the decomposition of Var(U,) in Equation (2.1), we define

Yd,kn = (Z)_l(g) (Z:S) for convenience. Then Var(U,,) = ZZ=1 Vd,k,ngik- It is
easy to see that 74, corresponds to the probability mass function of a hyper-
geometric distribution with parameters n, k and d. A graphical demonstration
of such coefficients under different k£ and d settings, with n = 100, is provided in
Figure 1. Many existing methods [20, 8] rely on the asymptotic approximation
of Var(U,) when k is small, e.g., k = o(n'/?). Under such settings, the first
coefficient v1 g, = [1 + 0(1)]% dominates all remaining ones, as we can see in
Figure 1 when k& = 10. In this case, to estimate Var(U,), it suffices to estimate

the leading covariance term f%,k if §£7k/(k£ik) is bounded.

Hypergeometric Prob. Mass (n = 100)

— k=10
--- k=20
k=50

F1G 1. Probability mass function of hypergeometric distribution with n = 100 for different k.

However, as k becomes larger, the density of the hypergeometric distribution
concentrates around d = (3%n instead of d = 1, where 3 denotes ratio k/n.
Hence, the variance will be mainly determined by terms in a range of large d
values, which we refer to as the peak region. In comparison, estimating just
5%7 © Will introduce a significant bias even if we are able to exhaust all possible
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subsamples. Also note that when considering incomplete U statistics, most of
the overlaping counts would fall into this region.

Another source of bias for using the leading term dominance property is the
lack of samples to estimate fik realistically. Note that the definition involves
approximating the Var and E operations in Equation (2.2) [20, 35]. A natural
strategy is to hold one shared sample, e.g., X(1), and vary the remaining samples
in S among existing observations D,, to approximate E [h(S)|X1]. However, this
causes trouble for the variance estimator since we won’t have enough samples
to independently produce estimators of E[h(S)|X;] with varying X; when k
becomes slightly larger. Overall, a new strategy is needed to better utilize the
Hoeffding decomposition.

We also note that another theoretical strategy proposed by Wager and Athey
[28], Peng, Coleman and Mentch [22] can be used for k = o(n) if the U-statistic
can be understood through the Hajek projection with additional regularity con-
ditions. In this case, the variance of a U-statistic can be well approximated by
the variance of a linearised version, while the infinitesimal jackknife procedure
provides a valid estimator. However, it is difficult to assess whether the ker-
nel function satisfies these assumptions. In practice, a significant bias can still
occur, as seen in the simulation section.

3.2. An alternative view

At this point, estimating fﬁy i s for some d values seems inevitable. However, we
may utilize the law of total variance to change the estimation procedure, which
could gain a significant computational advantage. Note that for any given d,

& x =Var [E (h(S)| X1, ..., Xa)]
=Var(h(S)) — E [Var(h(S)| X1, ..., X4)]
=V — &, (3.1)

)

where we define gﬁk := E[Var(h(S)| X1, ..., X4)]. In this representation, V") is
equivalent to 5137 «» the variance of a single kernel. It is also equivalent to ég & since

58’ x = 0. Incorporating these into the decomposition formula in Equation (2.1),
we obtain an interesting connection:

k
VaI'(Un) = Z Yd,k,n (V(h) - gﬁ,k)
d:l
~Y
d=

k
a V" — Z Vi k€ k
0 d=0
—y) ), (3.2)

where we define V() asg ZS:O 'yd,k,nfgjk.
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While this alternative view is valid for all k, the difficulty lies in finding a
computationally feasible estimator, especially when we have to deal with incom-
plete U-statistics, instead of the complete version. In particular, when k < n/2,
both terms can be unbiasedly estimated with a proper sampling design. In the
following, we first present a straightforward formula for estimating V» and
V() in a complete U-statistics version. The main result is Theorem 3.1, which
shows that V(*) can be estimated using sample variance of all trees. Section 3.4
extends these estimators to incomplete versions.

3.3. Variance estimation for complete U-statistics

Our goal is to create estimators of V(*) and V(") such that they can be directly
computed from the trees (kernels) fitted in the random forest itself. This seems to
be a challenging task given that we are estimating an infinite sum V (%), However,
the fundamental idea we will utilize is to estimate Var[h(S)|X7, ..., X4]| using
pairs of trees. We proceed with the complete case when all trees are already
available.

3.8.1. Joint estimation of the infinite sum V()

Suppose we pair subsamples S; and S; among (Z) subsamples and let d = |S; N
Sj| =0,1,...,k. Then for each d, there exist Ngxn = (Z) 27(1,;6)” = (Z) (S) (Z:Z)
pairs of subsamples S;, S; such that |S; N .S} = d. Note that for any such pair,
(h(Si) — h(S;))?/2 is an unbiased estimator of £, = Var[h(S)[X1, ..., X4]. We
may then construct an unbiased estimator of 53 Dy averaging them:

[h(S:) — h(S;)]? /2. (3.3)

€8 = T
(w) (@) Gi=2) |SinS;|=d

This motivates us to combine all such terms in the infinite sum, which sur-
prisingly leads to the sample variance of all kernels. The result is given in the
following proposition, with its proof collected in Appendix D.

Proposition 3.1. Given a complete U-statistic U, and the estimator 53,1@ de-
fined in Equation (3.3), when k < n/2, we have the following unbiased estimator
of V(s);

-1 k .
= (1) D) -0 = X sl (3.4
d=0

. . k
Furthermore, when k > n/2, the first 2k —n terms in the summation Y,;_,
is removed, since corresponding Yq. . terms are zero.

Since V() enjoys a sample variance form, its incomplete version would also be
easy to calculate. The advantage is that it can be computed without any hassle



On variance estimation of random forests with Infinite-order U-statistics 2143

because all h(S;)’s are ready to use when we calculate U,,. However, additional
consideration may facilitate the estimation of V(") so that both V(%) and V()
can be done using the same set of h(S;)’s.

3.8.2. Estimation of kernel variance V")

Estimating V(®) may follow the same idea using [h(S;) — h(Sj)]2/2 if the pair .S;
and S; are disjoint. However, this is only possible when k < n/2, given a finite
sample. In this case, following Equation (3.3), we have an unbiased estimator
of V(M.

PO gz =L N (s — (ST (3.5)
(k)( k )|5m5.1\:0

Therefore, we combine estimators V(*) (3.4) and V) (3.5) to get an unbiased
estimator of Var(U,):

A~

Var(U,) = VW — 7)., (3.6)

3.4. Variance estimation for incomplete U-statistics

In random forests and other ensemble learning models, we often construct in-
complete U-statistics by drawing random subsamples instead of exhausting all
(Z) subsamples. This creates difficulties in calculating V(" since very few of
these subsamples would be mutually exclusive (d = 0). Hence, a new subsam-
pling strategy is needed to allow sufficient pairs of subsamples to estimate both
V") and V),

The following “matched sample” sampling scheme is proposed to have enough
disjoint samples to estimate V). For any 2 < M < |n/k|, we can sample a set
of the matched sample group that consists M mutually exclusive subsamples
{S1,...,Su} from D,,. This enables us to estimate V) by the sample variance
of {h(S1),...,h(Sa)}. Then, we repeat this procedure B times to average the
estimator. To be precise, denote the subsamples in the b-th matched sample

group as S§b), Séb)7 . S](\Z)7 such that Sl-(b) N SZ-(/b) = (f for any i # ¢'. Define

Un ot = —— f i h(s®). (3.7)
- MB 1=1b=1 '

This differs from the conventional incomplete U-statistic due to the new sam-
pling scheme. Though M = 2 is enough for estimating V"), we recommend
using M = |n/k| for a smaller variance. This is guaranteed by the following
proposition.

Proposition 3.2. For an incomplete U-statistic with M - B samples obtained
using the matched sample sampling scheme,

1 1
Var(Un.p.ar) = (1 - E) Var(U,) + Wv@ (3.8)



2144 T. Xu et al.

The proof is collected in Appendix D.1. We should note that when fixing
the total number of kernels, M - B and let M > 2, the variance of U, g is
always smaller than the variance of U, p given in (2.5). However, these two are
identical when M = 1. R

Based on this new sampling scheme, we can propose estimators Vé{t])w and
‘A/ésgw as analogs to V) and V), respectively. Denote the collection of kernels
as {h(Si(b))}i,b, fori =1,2,...,M, b =1,2,...,B. A sample variance within
each group b, 57—+ Z?il[h(Si(b)) —h(®]? is an unbiased estimator of V"), Here
h(®) = = Zi\il h(Si(b)) is the group mean. Hence, the average over all groups

becomes Véhj)w

) :li ! f[h(s@))—h“’)] (3.9)
BM B 4 M 1 - ‘ ' '

Similarly, with some algebra, we can define Vésgw as

B M 2
b= = 2 2 [ = U] (310)

o
Il
—
~
Il
—

Note that V]éh])w is still an unbiased estimator of V(") while ‘A/ésaw introduces a
small bias when estimating V(%) because these subsamples are not randomly ob-
tained — there is an over-representation of non-overlapping pairs. The following
proposition quantifies this bias.

Proposition 3.3. For the sample variance estimator V]észw defined on the

matched sample groups subsamples with M - B > 2, we denote 6y, = I%Bfl,
Then,
B (Vé%) = (1= 0u.p)V® + a5V ™. (3.11)

This proposition leads to the following unbiased estimator of Var(U,, g ar)-
The proofs of both Propositions 3.3 and 3.4 are collected in Appendix D.

Proposition 3.4. Given M - B subsamples from the matched sample sampling
scheme, with B = 1 and M > 2, the “Matched Sample Variance Estimator”
given below is an unbiased estimator of Var(Uy, g.a):

h) _MB—I

Var(Un,g.1) = V', B e (3.12)

3.5. Unifying existing unbiased estimators

To conclude this section, we discuss the relationships and differences between
our view of the variance decomposition versus existing approaches. As noted
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in the introduction, various variance estimators appeared in the literature to
correct the bias when the leading term does not dominate. Folsom [10] and
Schucany and Bankson [24] primarily focus on unbiased estimators for complete
U-statistics with a very small sample. In particular, Schucany and Bankson [24]
propose two estimators of 5%’2 in the Hoeffding decomposition (denoted as 512
and 512 in their page 418 and 422, respectively). Interestingly, the estimators of
&1 . introduced by Mentch and Hooker [20] and Zhou, Mentch and Hooker [35]

are efficient incomplete approximations of the former, (2 := b Zizl[ﬁl(Xi) —

U,]?, where hy (X;) = (Zj)_l 25, x,e5, 1(S;). Meanwhile, our estimator v

{? . is equivalent to the latter, (. A comprehensive derivation is provided in
Appendix D.3.

Wang and Lindsay [31] propose an unbiased estimator motivated by E(U2) —
E?(U,,). Their complete variance estimator [31, page 1120] is,

N TR(S)R(S;) = No ot Y h(S0)h(So),
Py, Py

where P, = {(5;,5;) s.t. [S; 0S| < ¢}, and N, is the cardinality of P.. Moti-
vated by this formulation, they further propose an ANOVA form of the estimator
and its corresponding incomplete version.

Although various unbiased estimators exist in the literature, they are all moti-
vated by entirely different perspectives. The unique motivation of our estimator
is its peak-region dominance phenomenon and the corresponding conditional
variance view, which allows unbiased estimation. While we are not restricting
the estimating of covariance terms with d values within a certain region, this
is automatically done through resamplings. In the incomplete version, the over-
laps are dominated by terms from the peak-region. This is in contrast with
the traditional leading term dominance notation, which forces the estimator
to concentrate on a single term. On the other hand, it is interesting that the
connections among existing estimators have never been investigated. To com-
plete our analysis, we further established several connections. In Appendix D.3
and D.4 we show that all existing unbiased complete estimators are essentially
the same estimator, presented in different formats and settings. In particular,
we show that Folsom [10]’s formula is identical to our complete version and also
equivalent to Wang and Lindsay [31]’s version. We further restrict a setting with
k = 2 for a direct comparison with the estimator proposed by Schucany and
Bankson [24]. In Appendix D.4, we show the equivalence between our incomplete
estimators and Wang and Lindsay [31]’s.

4. Theoretical results

To the best of our knowledge, ratio consistency of variance estimator in the
context of infinite-order U-statistics has not been investigated. In this section,
we attempt to fill some gaps in the literature by establishing the results of our
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proposed estimator, meaning that we want to show

7@[]’1) L
E[Var(U,)]

where ©> denotes convergence in probability. The notion of ratio consistency
is important here since the variance of U-statistics would naturally converge to
0 as n grows. Hence any variance estimator that converges to 0 is consistent.
However, a consistent estimator does not guarantee nominal coverage. In the
following, we shall rewrite \//a\r(Un) as V,, and show a sufficient condition of the
above

Var(V,,)/E*(V,) = Var(V,)/Var?(U,,) — 0, asn — 0.

We want to note that such a result under general £ settings is likely impossible
without strong assumptions or knowledge of the specific form of the kernel
h. The main difficulty in the proof is caused by the fourth-order term in the
form of Cov[h(S1)h(S2),h(Ss5)h(S4)] which naturally appears in the variance
of V.. Untangling the dependencies of the fourth-order term under large k is a
difficult task. Hence, we focus on the k = o(y/n) setting in which the result is
more attainable, although computationally, the estimator can still be applied
whenever k < n/2. Even though the k = o(4/n) setting is somewhat restrictive,
it is still the first in the literature under the context of this paper. And further
investigations may be established by extending the proposed strategy to higher
orders.

Our main strategy can be summarized as follows. First, we observe that the
proposed estimator V, = V™ — V() can be written an order-2k U-statistic:

-1
(@) ZoE
S cx,

where S*) is a size-2k subsample set and ) (S(zk)) is the corresponding size-2k
kernel, defined as

(59) = (57) = 5]

Here ¥ (S(Qk)) for k' =0,1,2,...,k satisfies

k/
1
b (S®) = Noww Y- D, h(S)A(S), (4.2)
d=0 dsl,sﬁs(%)
|51 Sz |=d
where N, jp = (27}6) (Z)_l("7i+k/)7 and Ny = ("72dk+d) is the number of

different size-2k sets such that its two size-k subsets S; and Sy share d overlaps.
We remark that in this paper, S refers to a size-k set, and S*) refers to a
size-2k set.
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Similar to a regular U-statistic, the variance of an order-2k U-statistic V,, can
be decomposed as

(i) () 8 () (%)t "

1

where 07 ,, is the covariance between w(Sf%)) and w(Sé%)) for |S§2k) N Sé%)| =
cand c=1,2,...,2k:

o2 a1 1= Cov [B(S), w(sP)] . (4.4)

If we follow the existing literature, it is common to impose high-level assump-
tions on the kernel ¢ and also bound the ratio of the last term, a%k’% over the
first term Uizk [8]. However, not only such assumptions are difficult to verify
and can be possibly violated (see discussion in Appendix B.4), but also ¢ is
viewed as some form of a “black box”, which does not help in analyzing the
convergence of Var(V,)/Var®(U,).

Hence, the key strategy of our approach is to avoid explicit assumptions on
V.’s kernel 1) and 0372 &> instead only impose assumptions on a fourth-order term
of h: Cov[h(S1)h(S2), h(S3)h(S4)]. This leads to the main technical challenge
in this work, Cov[h(S1)h(S2),h(S3)h(S4)] involves the 4-way overlaps among
S1,82,55,.5,, although it shares similar intuition as 53’,@ = Cov[h(S71),h(S2)]

which involves the overlaps between Sy, So. However, since Var(V;,) is the vari-
ance of variance estimator of U-statistics, it becomes inevitable to study the
fourth-order term of h instead of a second-order term.

We first establish the Double U-statistics notion of Vu in Section 4.1. The dou-
ble U-statistic structure in Proposition 4.2 shows a cancellation effect (see Ap-
pendix E) inside of V,,, which helps accelerate the convergence rate of Var(V},).
Using this structure, we can further decompose each 03% in the Hoeffding
decomposition (4.3) into 7727% (d1,dg) terms (see Proposition 4.3). Then, we
bound all n?,, (d1,ds)’s by decomposing each term into a basic covariance term
Cov[h(S1)R(Ss), h(S3)h(S4)]. Hence, it suffices to impose primitive assumptions
on Cov[h(S1)h(S2), h(S3)h(S4)] to analyze the behavior of V,,. We should high-
light the challenge that we need to use 11 parameters to describe the 4-way over-
lapping among S7,S2, S3, S4. Details are left in the discussion in the assumption
section (Section 4.2). We also note that it is easier to understand the difficulties
and strategies related to the nature of Double U-statistic structure through a
simplified example, the linear average kernel, presented in Appendix H. And
finally, in Section 4.3, we present the ratio consistency. Section 4.4 is used to
summarize a roadmap of the proof.

4.1. Double U-statistic structure

We define a notion of Double U-statistic to facilitate our discussion and show
that V, is a Double U-statistic. The advantage of this tool is to break down
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our variance estimator into lower-order terms, which alleviates the difficulty
involved in analyzing O'g ok

Definition 4.1 (Double U-statistic). For an order-k U-statistic, we call it Dou-
ble U-statistic if its kernel function h is a weighted average of U-statistics.

Essentially, a Double U-statistic is a “U-statistic of U-statistic”. By (4.1),
V., = (272)_1 Yisencx, ¥ (5@R)). V,, involves a size-2k kernel 1. However, by
Equation (4.2), the kernel ¢ has a complicated form. The following proposition
shows that we can further decompose 1 into linear combinations of ¢g’s, which
are still U-statistics.

Proposition 4.2 (V, is a Double U-statistic). The order-2k U-statistic V,
defined in Equation (4.1) is a Double U-statistic. Its kernel v (S(Qk)) can be
represented as a weighted average of U-statistics, such that

0 (5 = 3 waia (5% = g (5. 5

Here, ford = 0,1, ..., k, @q is the U-statistic with size-(2k—d) asymmetric kernel
as following

®d (5(%)) = My, Z h(S1)h(S2); (4.6)

81,5, 82k

|Slﬁ52|=d
Mgy = (2;“) (%d_d) (22:3‘1), which is the number of pairs Si,S, < S@K | s.t.
[S00 Sa| = d; and wa = (3) (2) 7 C) ) CRzg/ (3, vd = 1, wo =

((Z)_l - (n;k)il) (Z)_l (27}@) (Qkk). The wy’s defined above satisfy the following.
Sk wa = 0.avg > 0, Vd > 0.

k2d
Wq = ) (W) ,fO’I’d: 1,2,...,]{1. (47)
Particularly, for fized d,
2d
wq = (1+0(1)) T (4.8)

The proof is collected in Appendix C.1. We observe that given k& = o(4/n),
wy decays with d at a speed even faster than the geometric series. In our later
analysis, we can show that the first term, wy[p;(S®F) — e S3¥))], can be a
dominating term in ¢(S*)). Moreover, with kernel pq(S*)), we introduce the
following decomposition of 03%.

Proposition 4.3 (Decomposition of 037%). For any size-2k subsample sets
S SR st 1S A PR ¢ and 1 < e < 2k,1 < dy,dy <k, we define

W onlds, ) = Covlipu, (5177) = g0 (1) 0 (S57) = o0 (557) ]
(4.9)
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2 ; 2 )
Then, we can represent o7 o, as a weighted sum of 7 5y (d1,d2)’s.

k

k
Uz,Qk = Z wdlwd2n2,2k(d1’d2)' (410)
di=1do=1

This proposition can be directly concluded by combining the alternative form
of Up’s kernel ¢ in Equation (4.5) and the definition of 72, (d1,dz). With the
help of the Double U-statistic structure, upper bounding Uizk can be boiled
down to analyzing na%(dl,dg). Detailed analysis of this connection is pro-
vided in Section 4.4 and Appendix E. Note that we can further decompose
1295 (d1,d2) (see Appendix F.5), so 075, can be viewed as a weighted sum of

COV[h(SQ)h(SQ), h(Sg)h(S;;)]’S

4.2. Assumptions

Assumption 1 limits the kernel size k as a lower-order of 4/n, while Assumption 2
controls the growth rate of 53’ x with d. Assumption 3, 4, and 5 are related to
Cov[h(S1)h(S2), h(S3)h(Ss)]. As previously mentioned, Cov[h(S1)h(S2),
h(S3)h(S4)] can be viewed as an extension of &7, = Cov[h(S1), h(S2)], the
classical covariance of two kernels. While 52’,6 only depends on one parameter,
i.e., d =151 nSs|, 11 parameters are needed to fully determine Cov[h(S1)h(S2),
h(S3)h(S4)], since it involves a 4-way overlapping structure. This can be visu-
alized in Figure 4 in Appendix. We denote the number of parameters as “De-
gree of Freedom (DoF)” of the covariance. Essentially, Assumptions 3, 4, and 5
are about reducing this DoF and controlling the growth of Cov[h(S1)h(S2),
h(S3)h(Sy4)] with overlapping samples.

In Appendix B, we provide further discussion and examples of our assump-
tions. In Appendix G, we propose a relaxation of Assumption 3 and present the
proof of the main results under the new assumptions.

Assumption 1. There exist a constant € € (0,1/2), so that the growth rate of
kernel size k regarding sample size n is bounded as k = O(n1/2’6).

Assumption 2. Yk € NT, fik > 0 and {%k < o0. There exist a universal constant
a1 = 1 independent of k, satisfying that

sup i =0(1)
d=2,3,..k A&7

Note that a smaller a; in Assumption 2 implies a stronger assumption. It is
well known that kffl) b < df,%’k [17], the smallest possible value of a; is 1, which
is used in the existing literature [20, 8, 35, 22]. Hence, if we force a; = 1 and
only focus on the upper bound of Var(U,,), the growth rate of k in Assumption 1
can be relaxed to o(n). However, this trade-off between Assumptions 1 and 2
cannot be applied to ratio consistency directly.

To motivate our other assumptions, we provide a brief discussion on the 4-
way overlap of Cov[h(S1)h(S2), h(S3)h(S41)]. As we mentioned before, the goal
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is to avoid direct assumptions of ¢/(S(")) and its covariance 02, and study the
fourth-moment term Cov[h(S1)h(Sz2), h(S3)h(Ss)]. To simplify the notation, we
let

p = Cov [h(Sl)h(Sg), h(S3)h(S4)] . (4.11)
Then p involves 11 different overlap schemes,

2-set: |Sl M SQ|, |51 M Sg‘, ‘Sl N S4|, |SQ N Sg|, |SQ (@) 54‘, ‘Sg N S4|;
3-set: |Sl NSy N Sg|, |Sl NSy N S4|, |Sl N S3N S4|, |SQ N S3N 54‘;
4-set: |S1 N Sa N S3 N Syl

Hence, 11 parameters are needed to describe p. We denote the number of
these parameters as the “Degrees of Freedom” (DoF) of p. Furthermore, there
are two types of these parameters: d; = |S; n S2| and dy = |S3 n S4| describes

the overlapping within S§2k) and Sé%) respectively; while other 9 overlapping

sets are subsets of S%Qk) N Sé%), so they describe the overlapping between ka)

and Sé%). We can describe these 9 overlapping sets by a 9-dimensional vector
7, whose definition is collected in Appendix B.1. Hence, the 11 DoF can be
denoted by tuple (r,d;,ds).

However, it may not be necessary to know all r,d;,ds values to calculate
this covariance p. For example, in the linear average kernel (Example B.2 in
Appendix B.2), p only depends on r. This may be expected for an estimator
that is approximately linear. Hence, we propose the following assumption.

Assumption 3. p only depends on the 9 DoF vector r. Hence, without the risk
of ambiguity, we define a function p(r)(:) with

p(r) = p. (4.12)

The assumption implies that the within Si%) or Sg%) overlapping counts
have no impact on p. This simplifies a cancellation pattern when analyzing
Ne,2k(d1,d2) (4.9). A comprehensive discussion of this assumption can be found
in Appendix B. We first demonstrate that this assumption is valid for the lin-
ear average kernel, as previously mentioned. Next, we provide an example to
illustrate the challenges of reducing DoF below 9 by only considering two-way
overlaps, indicating that further simplification of this assumption may require
specific assumptions about the kernel functions. In addition, in Appendix G, we
suggest a relaxation of this assumption and provide an alternative proof of the
main results based on this relaxed assumption.

Assumption 4 (Ordinal Covariance). For all size-k subsets 57,53, 53,54 and

1,55,55,54, let p and p’ denote the corresponding covariance as defined in
Equation 4.11 with DOFs r and 1’ (defined in Appendix B.1), respectively.
Then, we have:

p=p, ifry=r,Vij=01,2
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Moreover, given size-k sets S’, S”, and r such that |S" n S”| = ¢ and |r| = ¢,
we have:

p < Cov[h(S")2, h(S")?] =: F®. (4.13)

Assumption 4 implies that more overlapping leads to larger p. This is a rea-
sonable result to expect. For every ¢ = |S£2k) N Sé%) |, it also provides an upper

bound of p, where Fc(k) refers to p with “maximum possible overlaps” given ¢
such that S; = S, S3 = S4. The overlapping associated with F(*) is visualized
in Figure 5 in Appendix B. It’s easy to see that p > 0, an analog to §§7k =>01in
a regular U-statistics setting [17].

Assumption 5. For Fc(k) defined in Assumption 4, when ¢ = |S1 N So| = 1, we
have
F® Cov[h(S1)%, h(S2)?

= ] =01 4.14
fil,k (COV[h(Sl)ah(52>])2 ® ( )

In addition, there exist a universal constant as > 1 independent of k, satis-
fying
M

WP s g O 4.15
C=2,3,P.,2}c %2 Fl(k) ( ) ( )

Equation (4.14) states that a fourth-moment term cannot exceed a second-
moment term 5% .- This can be verified for the linear average kernel with basic
moment conditions. Similarly to the polynomial growth rate of 53, . specified
in Assumption 2, Equation (4.15) controls a polynomial growth rate of p with
respect to ¢, as F*) is an upper bound of p. It is worth noting that Assumption 5
can be implied by Assumption 2 for certain specific kernels (see Example B.4
in Appendix B).

4.3. Main results

We now present our main results. As a direct consequence of the following
theorem, the ratio consistency property is provided in Corollary 4.6.

Theorem 4.4 (Asymptotic variance of U,, and Vu) Under Assumptions 1-5,

A~

we can bound Var(Uy,) (2.1) and Var(V,,) (4.3) as

k27,
Var(U,) = (1 + o(1)) T’, (4.16)
N k252
Var(V,) = O (%) , (4.17)
244
where 6%% = ks;’“ is the upper bound of Ji% given by Proposition E.2 in

Appendiz E. Here, “f = g” implies f = O(g) and g = O(f).
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The proof of the results is provided in Appendix C.3. The calculation of
Var(U,) in (4.16) and Var(V,,) in (4.17) requires controlling the growth of 52,1@
and 032 - In particular, (4.16) can be derived from a general proposition (Propo-
sition 4.5) provided below. However, the proof of (4.17) is more complex, as it
relies on the double U-statistic structure of V. A proof roadmap is presented in
Section 4.4, and technical lemmas to upper bound 77372,€(d1, dz) (4.9) and Uf,%
are provided in Appendix E.

Proposition 4.5 (Leading covariance domination). For a complete U-statistic
U, with size-k kernel and k = o(\/n), assume that §ik > 0 and there exists a
non-negative constant C' such that

lim sup §d o/ (d'§1 k) C.

k—00,2<d<k

Then,
hm Var(U,)/ (K*& /n) = 1.

The proof of this proposition can be found in Appendix C.4. This proposition
relaxes the conditions from Theorem 3.1 used by DiCiccio and Romano [8] and
provides a foundation for our approach to bounding Var(Vu). Specifically, our
condition allows for the ratio fik /ff . to grow at a factorial rate of d, whereas
the conditions in [20, 35, 8] only allow for linear growth. A comparison between
our assumption on &7, /€7, and existing literature is provided in Section 4.2.

Corollary 4.6 (Ratio consistency of Vu) Under Assumptions 1-5,

e o(2)

which implies that V, /E(V,,) 1

This result is a corollary of Theorem 4.4 and demonstrates the consistency
of the variance estimator V, in terms of ratios. The proof can be found in
Appendix C.2. To the best of our knowledge, this is the first proof of the ratio
consistency of an unbiased variance estimator for growing order U-statistics.

4.-4. Proof roadmap

The roadmap to upper bound Var(V,) (4.17) in Theorem 4.4 is provided in
Equation (4.18). The relevant technical lemmas are summarized in Appendix E.

(*) @ ® k*
Var(V, 2”0 Ocok S Uc ok = Uc Sok = V10T g = F(k)- (4.18)

)(gk 2’2) represents the coefficients in the Ho-

The quantity v, := ( ) (
effding decomposition of Var(V ) (4.3); 5 f,% is the upper bound of Ji% given
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by Propositions E.2 and E.3; and “f = g” means that f = O(g) and g = O(f).
The inequalities in (4.18) should be interpreted as follows.

e The first inequality < is a result of replacing ai% with either its tighter
bound for ¢ = 1,2,...,77 (Proposition E.2) or its looser bound for ¢ =
Ty + 1,2,...,2k (Proposition E.3). Each Ua% can be decomposed into
77372k(d1,d2)’s (4.10). Propositions E.2 and E.3 are based on the tighter
and looser upper bounds of 72 5, (d1,dz) (Lemma E.5 and E.6).

e The first asymptotic notation = (denoted with *) is concluded from
Lemma E.4. The value of T7 = EJ + 1 only depends on the growth rate
of k, not n, as we assume k = o(n'/27¢) in Assumption 1.

e The second asymptotic notation = (denoted with 1) is a result of compar-
ing the finite 572, terms for ¢ = 1,2,..., .

e The last asymptotic notation = (denoted with f) is concluded from
Lemma E.2.

5. Application to random forests

Random forests can be viewed as an incomplete infinite-order U-statistic with
a random kernel [20]. The purpose of this section is to present a comprehensive
algorithm, as well as two extensions: one for the case when k > n/2 and another
one that uses local smoothing to address the issue of negative estimation values.
Notation-wise, we present the algorithm in the context of regression, where
we observe a vector of covariates x; € RP and y; € R for observations i. Hence,
define X; = (x;,y;), and the kernel function h(S;) can be viewed as the tree
prediction on a given target point * with subsample S;. The implementation of
the variance estimator is straightforward using this setting and is summarized
in Algorithm 1. We want to make a few comments. First, the original random
forest [3] uses bootstrap samples, i.e., sampling with replacement, to build each
tree. However, sampling without replacement [13] is also prevalent and achieves
similar performances. Secondly, most random forest models utilize a random
kernel instead of fixed ones. This is mainly due to the random feature selection
[3] and random splitting point [13] when fitting each tree. Mentch and Hooker
[20] show that U-statistics with random kernel converge in probability to its
fixed kernel counterpart by viewing the fixed kernel version as the expectation
of the random version. Under suitable conditions, given B large enough, the the-
oretical analysis of random U-statistic can be reasonably reduced to analyzing
the non-random counterpart, allowing our method to be applied. It is possible
that both our estimators of V(® and V(%) are inflated by the influence of the
randomness due to their U statistic representation. However, such inflations are
likely canceled out by the difference, and our simulation results in Section 6
confirm this speculation by showing that the estimator is mostly unbiased.
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Algorithm 1: Matched Sample Variance Estimator (k < n/2)
Input: n, k, M, B, training set X,,, and testing sample z*
Output: Var(U,, B, m)
1 Construct matched samples:
2 forb=1,2,...,Bdo
3 Sequentially sample {Sgb),Séb), ey Sx;)} from A, such that Sfb) s are mutually
exclusive, i.e., Sgb) N Si(,b) = f for i # .
4 end
5 Fit trees and obtain predictions:

6 Fit random trees for each subsample Sfb) and obtain prediction h(Sgb)) on the
target point z*.

7 Calculate the variance estimator components:

8  Forest average: U, g .m = ﬁ sMosE h(Si(b))

9  Within-group average: h(®) = ﬁ Zfil h(SZ@)
10 Tree variance (3.9): ng})w = % P ﬁ ?il(h(S§b>) — h(0))2
11 Tree sample variance (3.10): Vésg\/[ = ﬁ M 5:1(h(51(b)) —Un,B,m)?
12 The final variance estimator (3.12)

13 Var(Un,pr) = Vi, — (U= 525V

5.1. Extension to k > n/2

The previous estimator @(UmB,M) (3.12) is restricted to k < n/2 due to the
sampling scheme. However, this does not prevent the application of formula-
tion (3.2), Var(U,) = V" — V), To the best of our knowledge, the existing
literature does not provide further discussion under k& > n/2 for general kernels,
while some theoretical strategies such as Wang and Lindsay [32] simplify the
kernel into a low-order approximation. Alternatively, the infinitesimal jackknife
[28] has been shown to be almost equivalent to the leading term estimator in
V-statistics by Zhou, Mentch and Hooker [35]. Here, we discuss a generaliza-
tion of our formulation for & > n/2. Re-applying Propositions (3.2) and (3.2)
with M = 1, we can obtain the variance of an incomplete U statistic sampled
randomly with replacement:

B-1
Var(Up,p,a—1) = VI — TV(S)'

By Proposition 3.3, ‘A/E(;S&:l is still an unbiased estimator of V(*). However, V(*)

has to be estimated with a different approach, since any pair of subsamples
would share at least some overlapping samples. A simple strategy is to use
bootstrapping. Hence, we generate another set of size-k samples, sampled with
replacement, and evaluate the kernel, using their sample variance as an estimator
of V(" We remark that the bootstrap procedure introduced will introduce an
additional computational burden.
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5.2. Locally smoothed variance estimator for random forest

Even though the proposed estimator is unbiased, large variance of this estima-
tor may still result in possible under-coverage of the corresponding confidence
interval (CI). Note that due to its variation, our variance estimator might be
negative, though this rarely happens in our simulations. A similar phenomenon
is also noticed by Schucany and Bankson [24], and Wang and Lindsay [31]. To
alleviate this issue, we propose a local smoothing estimator, namely Matched
Sample Smoothing Variance Estimator (MS-s). The improvement is especially
effective when the number of trees is small. This will be demonstrated in the
simulation study, see, e.g., Table 1 and Figure 2.

Denote a variance estimator on a future test sample * as 6% (z*). We ran-
domly generate N neighbor points x7,...,z% and obtain their variance esti-
mators 6%, (x¥), ..., 6% (x%). Then, the locally smoothed estimator is defined
as the average:

1 N
ohr(@") = 7 |ohe 9+ 2 ke (D) )| (5.1)

The algorithm is presented as follows.

Algorithm 2: Matched Sample Smoothing Variance Estimator (k <
n/2)

Input: n, k, M, B, training set Xj,-qin, testing sample £* and number of neighbors N

Output: Smooth Variance estimator 6% ;. (x*)
1 Find the closed distance Dynin = mingex,,.,,, d(@*,x) ;
2 Randomly generate N neighbors m’lk, . mﬁ that satisfy « : d(z,*) < Dynipn or
z:d(x,z*) = Dpmin ;
3 Obtain variance estimators 6% (z*), 6% (zF), ..., 6%z (2%;) by Algorithm 1 ;

1 6% (@*) = T [6hp(x*) + XN, 630 (2F)] (5.1).

In Algorithm 2, d(-,-) can be Euclidean distance for continuous covariates
and other metrics for categorical covariates. In practice, we can pre-process
data before fitting random forest models, such as performing standardization
and feature selection. Due to the averaging with local target samples, there is
naturally a bias-variance trade-off in choosing D,,;, and neighbors. This is a
rather classical topic, and there can be various ways to improve such an estima-
tor based on the literature. Our goal here is to provide a simple illustration. In
the simulation section, we consider generating 10 neighbors on an ¢5 ball cen-
tered at x*. The radius of the ball is set to be the Euclidean distance from x* to
the closest training sample. We found that the performance is not very sensitive
to the choice of neighbor distance. Also, the computational cost of this smooth-
ing estimator only involves new predictions, which is also minor compared to
fitting random forests.
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5.3. A discussion on existing normality theories of random forests

Before demonstrating the simulation results, we would like to discuss the nor-
mality theories of random forests briefly. The main concern is that there is no
universal guarantee of normality for random forests, and a variance estimator
may not ensure the desired coverage rate. Hence, the use of any variance esti-
mators should be done with a reasonable understanding of the random forest
itself, especially by considering the impact of its tuning parameters.

Many existing works in the literature have studied the asymptotic normality
of U,, given k = o(y/n) to o(n) under various regularity conditions [20, 28, 8,
35, 22, 1]. Existing empirical study also shows that the normality usually holds
when k is small while begins to break down for certain cases [35, Table 2]. As
we will see in the following, there are both examples and counter-examples for
the asymptotic normality of U, with a large k, depending on the specific form
of the kernel.

Essentially, when a kernel h(+) is very adaptive to local observations without
much randomness, e.g., 1-nearest neighbors and the kernel size is at the same
order of n, there is too much dependency across different i(S;)’s. This prevents
the normality of U,,. On the other hand, when the kernel size is relatively small,
there is enough variation across different kernel functions to establish normality.
This is the main strategy used in the literature for establishing normality. The
following example demonstrates these ideas.

Example. Given covariate-response pairs: 71 = (21,Y1), ..., Zn, = (Zpn, Yn) as
training samples, where z;’s are unique and deterministic numbers and Y;’s i.i.d.
F such that E(Y;) = p > 0, Var(Y;) = 02, for i = 1,2,...,n. We want to predict
the response for a given testing sample z*.

Suppose we have two size-k (k = fn) kernels: 1) a simple (linear) average
kernel: h(S) = £ szes Y;; 2) a 1-nearest neighbor (1-NN) kernel, which predicts
using the closest training sample of x* based on the distance of z. Without loss
of generality, we assume that z;’s are ordered such that z; is the i-th nearest
sample to z*. We denote corresponding sub-bagging estimator as Upean and
Uy.nN respectively. It is trivial to show that

1 n n—k+1
Umcan = - § Yna Ul—NN = E aima
n « ‘
i=1 =1

where a; = (,:‘:i) / (Z) and Z;:lkﬂ a; = 1. Accordingly, we have Var(Umpean) =

142 and Var(Ui—nn) > afVar(Yy) = 2—202 = %202 Since Upean is a sample
average, we still obtain asymptotic normality after scaling by 1/n. However,
B = k/n > 0, a; makes a significant proportion in the sum of all a;’s and
Var(U;_nn) does not decay to 0 as n grows. Hence, asymptotic normality is

not satisfied for U;.nN.

In practice, it is difficult to know apriori what type of data dependence struc-
ture these h(S;)’s may satisfy. Thus, the normality of a random forest with a
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large subsampling size is still an open question and requires further understand-
ing of its kernel. In our simulation study, we observe that the confidence intervals
constructed with normal quantiles work well, given that data are generated with
Gaussian noise (see Section 6.1).

6. Simulation study

We present simulation studies to compare our variance estimator with exist-
ing methods [35, 28] on random forests. We consider both the smoothed and
non-smoothed versions, denoted as “MS-s” and “MS”, respectively. The balance
estimator and its bias-corrected version proposed by Zhou, Mentch and Hooker
[35] are denoted as “BM” and “BM-cor”. The infinitesimal jackknife [28] is de-
noted as “IJ”. Our simulation does not include the Internal Estimator and the
External Estimator [20], since the BM method has been shown to be superior
to these estimators [35]. Note that the BM estimator works for both U-statistics
and V-statistics [35, Sectiond, paragraph 1]. However, the V-statistics version is
almost equivalent to IJ [35, Theroem 3.3 and 3.4]. Hence, in our simulation, we
only include the U-statistics version.

6.1. Simulation settings

We consider two regression settings:

1. MARS: f(z) = 10sin(rz122) + 20(x3 — 0.05)% + 1024 + 5x5
2. MLR: f(:B) =2x1+ 322 —br3—24 +1

The first setting, MARS (multivariate adaptive regression splines), is proposed
by Friedman [12]. It has been used previously by Biau [2], Mentch and Hooker
[20]. The second setting, MLR, refers to multivariate linear regression. In both
settings, we generate a six-dimensional feature & = (x1,...,x¢) with indepen-
dent entries uniformly from [0,1], and responses are generated by f(x) + e,
where € 4 N (0,1). Note that f(x) only depends on a subset of 6 variables.

We use n = 200 as the total training sample size and pick different subsample
sizes: k = 100, 50,25 when k < n/2 and k = 160 when k > n/2. The numbers
of trees are nTrees = B - M = 2000, 10000, 20000. For tuning parameters, we
set mtry as 3, which is half of the dimension, and set nodesize parameter
to 2[log(n)] = 8. We repeat the simulation Ny, = 1000 times to evaluate the
performance of different estimators. Our proposed methods (MS, MS-s), BM and
BM-cor estimators are implemented using the RLT package available on GitHub.
The IJ estimators are implemented using grf and ranger. Each estimation
method and its corresponding ground truth (see details in the following) is
generated by the same package. Note that we do not use the honest tree setting
by Wager and Athey [28], since it is not essential for estimating the variance.
However, it may affect the coverage rate due to the normality behavior.

The performance of the variance estimator is evaluated in terms of its bias
and the coverage rate of its corresponding confidence interval. We denote the
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~

random forest estimator as f(x) and evaluate the coverage based on the mean

~

of the random forest estimator, E[f(x)], instead of the true model value, f(x),
as our focus is the variance estimation of f(a:) and the random forest itself may
be a biased model. To obtain the ground truth of the variance, we generate the
training dataset 10000 times and fit a random forest to each, using the mean
and variance of the 10000 forest predictions as approximations of E[f(x)] and
Var| 7 (z)]. The relative bias and the confidence interval (CI) convergence are
the evaluation criteria, with the relative bias defined as the ratio of the bias to

the ground truth of the variance estimation. The 1 — « CI is constructed using
f + ZQ/Q\/V—U , where Z, is the standard normal quantile.

We evaluate the variance estimation on two types of testing samples for both
MARS and MLR data. The first is a central sample with * = (0.5,...,0.5) and
the second includes 50 random samples whose coordinates are independently
sampled from a uniform distribution between [0, 1]. These testing samples are
fixed for all experiments. The central sample is used to show the distribution of
variance estimators over 1000 simulations, while the 50 random samples are used
to evaluate the average bias and CI coverage rate. The results of the evaluation
are presented in Figure 2 and Tables 1 and 2. A small difference in the ground
truth generated by different packages is noted in Appendix I due to subtle
differences in the packages’ implementations.

6.2. Results for k < n/2

TABLE 1
90% CI Coverage Rate averaged on 50 testing samples. The number in the bracket is the
standard deviation of coverage over 50 testing samples.

k=mn/2 k=mn/4 k=n/8
nTrees 2000 20000 2000 20000 2000 20000
MARS
MS 81.5% (2.1%)  85.9% (1.6%) | 82.2% (2.6%) 88.3% (1.1%) | 82.5% (2.4%) 88.2% (1.4%)
MS-s 88.2% (2.9%) 89.3% (2.9%) | 87.8% (2.6%) 89.9% (2.4%) | 87.5% (1.8%) 89.3% (2.2%)
BM 80.8% (3.0%) 65.7% (1.8%) | 91.4% (1.8%) 81.2% (1.5%) | 93.8% (1.3%) 86.7% (1.1%)
BM-cor  13.9% (9.2%) 60.1% (1.6%) | 70.6% (3.0%) 78.7% (1.4%) | 82.9% (1.2%) 85.2% (1.1%)
1J 95.5% (1.0%)  96.7% (1.0%) | 89.8% (1.6%) 91.1% (1.0%) | 92.3% (1.3%) 88.4% (1.1%)
MLR
MS 83.3% (1.1%)  86.7% (1.1%) | 84.1% (1.5%) 88.2% (0.8%) | 84.1% (1.5%) 88.2% (0.8%)
MS-s 89.5% (1.7%)  89.9% (1.4%) | 89.1% (1.4%) 90.2% (1.4%) | 88.6% (1.4%) 90.5% (1.0%)
BM 78.6% (1.6%)  64.4% (1.8%) | 90.1% (1.2%)  81.2% (1.3%) | 93.3% (1.0%)  86.2% (0.9%)
BM-cor  19.0% (5.5%) 59.4% (1.8%) | 72.0% (1.5%) 78.9% (1.3%) | 83.3% (1.2%) 84.8% (0.9%)
1J 95.7% (0.9%)  96.6% (0.7%) | 89.6% (1.0%) 91.6% (0.7%) | 91.4% (1.1%) 88.7% (1.0%)

Figure 2 presents the evaluation results for the MARS data. The subfigures
show the distribution of variance estimators on the central test sample and the
corresponding 90% confidence interval (CI) coverage on 50 testing samples. As
previously mentioned, the bias of each estimator is compared to its population
mean, eliminating the influence from different packages. The results for the
MLR data are provided in Appendix I and show similar patterns. Tables 1 and 2
present the 90% CI coverage rate and relative bias of the variance estimation,
respectively. The coverage for each method is calculated as the average over
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Fic 2. A comparison of different methods on the MARS data is presented. Each column in
the figure represents a different tree size: k = n/2,n/4,n/8 respectively. The first row displays
bozxplots of the relative variance estimators on a central test sample, evaluated over 1000
stmulations. The range of y-coordinate is restricted within [—1,3]. The mean is represented
by the red diamond symbol in each bozplot. The second row displays boxplots of the 90 %
confidence interval (CI) coverage for 50 testing samples. The third row displays the average
coverage rate over 50 testing samples, with nTrees = 20000. The black reference line, y = x,
represents the desired coverage rate.

TABLE 2

Relative bias (standard deviation) over 50 testing samples. For each method and testing
sample, the relative bias is evaluated over 1000 simulations.

k=n/2 k=mn/4 k=n/8
nTrees 2000 20000 2000 20000 2000 20000
MARS
MS 0.9% (2.6%) 0.3% (2.3%) 0.3% (2.3%) 0.7% (1.8%) —0.5% (2.2%) —0.4% (1.5%)
MS-s 3.8% (14.2%) 3.6% (13.9%) 3.6% (13.1%)  3.8% (13.2%) | 2.1% ( 8.8%) 2.2% ( 8.8%)
BM —31.5% (8.7%)  —64.3% (1.2%) | 17.1% (12.2%)  —31.9% (2.0%) | 38.4% (9.3%)  —12.3% (1.8%)
BM-cor —103.1% (8.3%) —71.5% (1.1%) | —54.4% (3.9%) —39.1% (1.1%) | —25.5% (1.9%) —18.8% (1.3%)
1J 108.9% (15.3%) 111.1% (15.5%) | 44.6% (12.8%) 25.2% ( 3.9%) 73.8% (19.3%) 15.9% ( 3.8%)
MLR
MS —0.3% (2.3%) 0.8% (2.1%) —0.4% (2.5%) —0.9% (2.1%) —0.5% (2.3%) 0.1% (1.6%)
MS-s 5.8% (7.6%) 6.6% (7.9%) 5.2% (6.7%) 4.7% (6.7%) 3.9% (4.9%) 4.1% (4.8%)
BM —38.9% (3.4%)  —65.6% (0.9%) | 8.0% (5.7%) —33.3% (1.4%) | 31.4% (5.3%)  —14.5% (1.5%)
BM-cor —97.3% (3.5%)  —71.4% (0.9%) | —52.5% (2.1%) —39.4% (1.1%) | —25.1% (1.6%) —20.2% (1.5%)
1J 98.4% (11.5%)  101.0% (11.5%) | 34.1% (4.2%)  22.9% ( 3.1%)

61.5% (9.4%)  11.1% ( 3.2%)
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50 testing samples, and the standard deviation, indicated within the bracket,
reflects the variation among these samples. Our simulation results show that
the random forest estimators are approximately normally distributed, as the
CIs constructed using the true variance achieve the desired confidence level
(see Appendix I). In summary, MS and MS-s demonstrate consistently better
performance compared to other methods, especially when the tree size k is large,
i.e., k = n/2. The improved performance can be seen in terms of accurate CI
coverage and reduced bias.

First, the third row of Figure 2 shows that the MS-s method achieves the
best CI coverage under every k, i.e., the corresponding line is nearest to the
reference line: y = . The MS method performs the second best when k = n/2
and n/8. Furthermore, the CI coverages of the proposed methods are stable over
different testing samples with a small standard deviation (less than 3%), as seen
in Table 1. Secondly, with regards to the bias of the variance estimation, our
methods show a much smaller bias than all other approaches (Figure 2, first
row). More details of the relative bias are summarized in Table 2. The average
bias of MS is smaller than 0.5% with a small standard deviation, mainly due to
the Monte Carlo error. The MS-s method has a slightly positive average bias (0%
t0 6.2%), but it is still much smaller than the competing methods. The standard
deviation of bias for MS-s is around 4.3% to 13.6%, which is comparable to 1J.

On the other hand, the performance of the competing methods varies. When
the tree size is k = n/2, the BM, BM-cor, and 1J methods show a large bias,
but their performance improves for smaller tree sizes. It is worth noting that
these methods are theoretically designed for small k. BM and BM-cor tend to
underestimate the variance in most settings, while IJ tends to overestimate.
In Table 2, on the MARS data with 20000 nTrees, the bias of both BM and
BM-cor is more than —50%, resulting in severe under-coverage (65.4%, 59.8%),
while 1J leads to over-coverage. Even when the tree size is as small as k = n/8,
these methods still display a noticeable bias. However, the proposed methods
still outperform them when more trees (nTrees = 20000) are used, as shown in
the last column of Table 2.

The results indicate that the choice of the number of trees has a significant
effect on the performance of the estimators. This is to be expected due to the in-
fluence of the random kernels, the variation involved in incomplete U-statistics,
and other theoretical aspects. As the number of trees increases, the variation
of all estimators decreases, as can be seen in the first row of Figure 2. Our
estimators, being mostly unbiased, benefit from larger nTrees values. For in-
stance, the 90% CI coverages of the MS method on the MARS data increase
from 81.5% (k = n/2) and 85.9% (k = n/8) with nTrees = 2000 to 82.5% and
88.2% respectively with nTrees = 20000. On the other hand, the performance
of competing methods does not necessarily improve with an increase in nTrees.
For example, BM shows over-coverage with nTrees = 2000 but under-coverage
with nTrees = 20000 when k& = n/4 or n/8. This phenomenon, known as es-
timation inflation, has been discussed by Zhou, Mentch and Hooker [35] and
is addressed by the BM-cor method, which reduces the bias. When k = n/8,
the gap between BM and BM-cor decreases as nTrees increases. However, this
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trend is no longer evident when k is large, as the dominating term used in their
theory is no longer applicable.

We also present the computational cost for variance estimation methods in
Appendix I. In short, once these tree predictions are obtained, the variance
estimation is done immediately at little cost for all methods. After all predictions
are done, the cost of MS is O(nTrees) per testing sample. BM, BM-corr (bias-
corrected BM) and 1J estimators add additional cost to this. They all involve
using the number of training samples in each tree (see, e.g., Section 4.2 in [35])
and hence the total cost is at O(nTrees - nTrain). On the other hand, our MS-
s estimator adds additional computational cost based on predicting additional
neighboring samples for each testing sample, which will increase the cost in a
different way. An additional set of analysis under a different tuning parameter
(mtry = 2) is presented in Appendix I. Overall, our method is not significantly
affected by this change.

Finally, we would like to emphasize the relationship between the bias of the es-
timator and the coverage rate of the confidence interval. Even though a random
forest predictor is normally distributed and the variance estimator is unbiased,
large fluctuations of the variance estimator can still lead to under-coverage. The
same also applies to the 1J estimator. For example, on MARS data with k = n/8
and nTrees = 20000, IJ has a positive bias (11.5%), but its confidence interval
is still under-coverage and even more severe than the proposed methods. In-
creasing the number of trees can improve this performance to some extend. An
alternative strategy is to perform local averaging as implemented in the MS-s
method, especially when nTrees is relatively small. The heights of the boxplots
in the figure clearly demonstrate the variance reduction effect. As a result, the
MS-s method with 2000 trees shows better coverage than the MS method with
20000 trees when k = n/2 (see Table 1). However, this maybe at the cost of
larger bias. Hence, we still recommend using a larger number of trees whenever
it is computationally feasible.

6.3. Results for k> n/2

As discussed in Section 5.1, when n/2 < k < n, we cannot jointly estimate
V() and V(*). Additional computational cost is introduced using the bootstrap
approach for estimating V(") In this simulation study, we attempt to fit addi-
tional nTrees with bootstrapping (sampling with replacement) subsamples to
estimate V(") so we denote our proposed estimator and smoothing estimator
as “MS(bs)” and “MS-s(bs)”. We note that the grf package does not provide
1J estimator when k > n/2 so we generate the 1J estimator and corresponding
ground truth by the ranger package.

As seen from Table 3, all methods suffer from severe bias, but our methods
and IJ are comparable and better than BM and BM-cor. More specifically,
our proposed method generally over-covers due to overestimating the variance.
The 1J method shows good accuracy on MARS data but has more severe over-
coverage than our methods on MLR. Overall, to obtain a reliable conclusion
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TABLE 3
90 % CI coverage, relative bias, and standard deviation averaged on 50 testing samples.
Tree size k = 0.8n. The calculation follows previous tables.

90% CI Coverage Relative Bias
Model Method \ nTrees 2000 20000 2000 20000

MARS  MS(bs) 94.2% (2.8%) 95.4% (2.4%) | 128.4% (64.8%) 136.6% (67.2%)
MS-s(bs) 97.7% (1.5%)  98.1% (1.3%) | 132.2% (66.7%) 140.6% (69.1%)
BM 51.4% (3.8%) 33.9% (1.7%) | —80.4% (3.1%) —92.1% (0.5%)
BM-cor 0.0% (0.0%) 13.5% (4.5%) | —143.0% (12.1%) —98.3% (1.3%)
1J 88.0% (4.6%) 87.1% (3.7%) | —0.8% (25.2%) —5.6% (16.3%)
MLR MS(bs) 94.3% (1.9%) 95.2% (1.7%) | 98.4% (24.7%) 103.9% (25.4%)
MS-s(bs) 96.6% (1.3%) 97.0% (1.2%) | 104.8% (24.9%) 110.3% (25.6%)
BM 47.9% (2.3%)  32.4% (1.5%) | —83.4% (1.2%) —92.6% (0.3%)
BM-cor 0.0% (0.0%) 15.9% (2.4%) | —132.7% (4.3%) —97.5% (0.5%)
1J 99.4% (0.3%)  99.2% (0.3%) | 182.8% (21.7%) 175.8% (16.7%)

of statistical inference, we recommend avoiding using k > n/2. This can be a
reasonable setting when n is relatively large, and k = n/2 can already provide
an accurate model.

7. Real data illustration

We use the Seattle Airbnb Listings dataset, which was obtained from Kaggle!.
The purpose of this analysis is to predict the price of Airbnb units in Seattle.
The dataset consists of 7515 samples and nine covariates, including latitude,
longitude, room type, number of bedrooms, number of bathrooms, number of
accommodates, number of reviews, presence of a rating, and the rating score.
Further information about the dataset, including the missing value processing,
can be found in Appendix J.

Given the large sample size, we fit 40000 trees to obtain a variance estima-
tor. The tree size is fixed as half of the sample size: k = 3757. We construct
12 testing samples at 3 locations: Seattle-Tacoma International Airport (SEA
Airport), Seattle downtown, and Mercer Island. We further consider four bed-
room/bathroom settings as 1B1B, 2B1B, 2B2B, and 3B2B. Details of the
latitude and longitude of these locations and other covariates are described in
Appendix J. The price predictions, along with 95% confidence intervals, are
presented in Figure 3. Overall, the predictions match our intuitions. In particu-
lar, we can observe that the confidence interval of 1B1B units at SEA Airport
does not overlap with those corresponding to the same unit type at the other
two locations. This is possible because the accommodations around an airport
usually have lower prices due to stronger competition. We also observe that
2-bathroom units at SEA Airport and downtown have higher prices than 1-
bathroom units. However, the difference between 2B2B and 3B2B units at SEA
Airport is insignificant.

Thttps://www.kaggle.com/shanelev/seattle—airbnb-listings
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Fic 3. Random Forest prediction on Airbnb testing data. The 95% confidence error bar is
generated with our variance estimator, Matched Sample Variance Estimator. “2B1B” denotes
the house/apartment has two bedrooms and one bathroom.

8. Discussion

From the perspective of U-statistics, we have proposed a new framework of
variance estimator for infinite-order U statistics. In contrast to estimating only
the leading term, we establish a peak region dominance notion that utilize the
hypergeometric density of the overlapping mechanism. This addresses the bias
issue under large subsampling size k or small training size n. Additionally, new
tools and strategies have been developed to study the ratio consistency behavior
which is crucial for obtaining a proper coverage rate. Here, we discuss several
open issues and possible extensions for future research.

First, our current methods are computationally valid for k < n/2. The diffi-
culty of extending to the k > n/2 region is to estimate the tree variance, i.e.,
V(") We proposed to use bootstrapped trees to extend the method to k > n/2.
However, this could introduce additional bias and also leads to large variation, as
we can see in the simulation study. We suspect Bootstrapping may be sensitive
to the randomness involved in fitting trees. Since we estimate V® and V()
separately, the randomness of the tree kernel could introduce different added
variances, which leads to non-negligible bias. When k& > n/2, Wang and Lind-
say [32] propose an asymptotic unbiased variance estimator for the U-statistic
estimator of a Kullback-Leibler risk in the k-fold cross-validation. However, this
depends on a specific approximation of the kernel of Kullback-Leibler risk. The
problem remains open for a general kernel.

Secondly, we developed a new double-U statistics tool to prove ratio consis-
tency. This is the first work that analyzes the ratio consistency of a minimum-
variance unbiased estimator (UMVUE) of a U-statistic’s variance. The tool can
be potentially applied to theoretical analyses of a general family of U-statistic
problems. However, our ratio consistency result is still limited to k = o(nl/ 2=,
introducing a gap between theoretical and practical versions. The limitation
comes from the procedure we used to drive the Hoeffding decomposition of the
variance estimator’s variance. In particular, we want the leading term to domi-
nate the variance while allowing a super-linear growth rate of each o, in terms
of c¢. Hence, the extension to the k = fn setting is still open and may require
further assumptions on the overlapping structures of double-U statistics.
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Thirdly, in our smoothed estimator, the choice of testing sample neighbors
can be data-dependent and relies on the forest-defined distance. It is worth
considering more robust smoothing methods for future work. Lastly, this paper
focuses on the regression problem using random forest. This variance estimator
can also be applied to the general family of subbagging estimators. Besides,
we may further investigate the uncertainty quantification for variable impor-
tance, the confidence interval for classification probability, the confidence band
of survival analysis, etc.

Appendix A: Notation table

TABLE 4
Summary of Notations.

Notations  Description

@) a = 0O(b): exists C > 0, s.t. a < Cb..

Q, = a=Q0b) < b=0(a). a=b<=a=0(b) and a = Q(b).

Un, h U, is the U-statistic with size-k kernel h.

Vi, ¥ V., denotes the estimator (4.1) of Var(U,), which is a U-statistic with
size-2k kernel 1.

S S denotes the size-k subsample set associated with kernel h.

S(2F) S(%) denotes the size-2k subsample set associated with kernel .

¢, dy,dy Given 51,59, <« S 85,5, < S8 ¢ =[S A S| dy = |51 A S,
and d2 = ‘53 M S4‘

Pd, W4 See 1h(SH)) = ZZ:D Wapd (S(zk)) (4.6). @a(S®*)) is still a U-statistic.

Wy wa = O(k**/(d!n?)) is the upper bound of wq given by Equation (4.7).

Eix €1 x = Cov[h(S1), h(S2)] is first used in (2.1).

02 ok olok = Cov[zb(S?M)7 ¢(S§2k>)] is first used in (4.3).

772,% (di,d2) 7](2;,% (di,d2) is introduced by further decomposing 03,2,C in (4.9).

Ef,% Ef,% is an upper bound of O'iQ,C given by Propositions E.2 and E.3.

p p := Cov[h(S1)h(S2), h(S3)h(S4)] (4.11).

DoF The number of free parameters to determine
Cov[h(S1)h(S2), h(S3)h(S4)].

r, |r| r is a 9-dimensional vector defined in (B.1), describing the 4-way over-

lapping among St, S2, Ss, S4. |r| is the ¢; vector norm of r.
Tis, Tj, I Tig = 25:0 Tijy Taj = Do Tigs A0d % = (Fos, T1s, T2, T50, Tl T2)-
p(r) p(r) is the 9 DoF representation of p (see Assumption 3).
F® F*) (4.13) is the upper bound of p, given that |S£2k> A S§2k)| =c.
p(r,di,d2) This is a notation emphasizing 11 DoF of p used in Appendix G.
p(r) p(r) is the 9 DoF benchmark of used in Assumption 6.

Influential  The samples in S;Qk) N S;Qk).
Overlaps
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Appendix B: Discussion of assumptions

We present discussion and examples for Assumption 3-5, which are related to
the covariance term p = Cov[h(S1)h(S2), h(S3)h(Ss)] (4.11).

B.1. Definition of r

We first define a 9-dimensional vector r to quantify p, which characterizes the
(2k)  o(2k)
overlaps between S;™, 857

Definition B.1 (r). Given size-2k subsample sets S%Zk), Sé%), and size-k sub-
sample sets 51,52 < S£2k),53,S4 c Sézk), such that ¢ = |S§2k) N Sé%)|,d1 =
|Sl [ SQ|,d2 = |S3 M S4| Denote T() = Sl M SQ, T1 = Sl\SQ,TQ = 52\51,
Ty = S3 0 Sy, T] = S3\Sy4, and Ty = S5\S4 (see Figure 4).

Based on this, we denote the samples in S%Qk) mSéZk) as Influential Overlaps of
p (4.11).In addition, we denote R;; :=T; N TJ'-, and 7;; 1= | Ry, for i,5 =0,1,2.
Then, a 9-dimensional vector r is defined as follows:

._ T
ri= (7"0077”01, T02,710, 711,712,720, 721, 7”22) . (B~1)

We define the norm of r as |r| = Z?:o Z?:o ri;. Note that each sample in

(S1uS2uUS;U SN (S?k) N Ségk)) is counted exactly once in r so |r| < c.

S, (2K
S TlI T;\R Ri1 | Ruo R T, Sy S T,
TDI To\R Rot | Roo | Ro RigU R1iU Ry» [ RooU RoiU Ros } { RaoU R31U Ryy
Sz
TzI T2\R Ra1 | Ry | Ra2

T,

RoiU R1iU Ry } { RgoU RmU:Rzo:] [ RopURpU Ry,

FiG 4. Relationships among S1, S2, S3, S4,S£2k), and Sg%). Here, R := S§2k) N Sg%).

We note that the value of r;; is naturally bounded by the sample size in the
corresponding overlapping sets. For example, 1o, = [(S1 N S2) N (S3 U Sy)| <
[(S1 N S2)| = di. The 11 DoF of p can also be illustrated by the left panel of
Figure 4. The figure shows 15 blocks, but given constraints |S1| = | S| = |S3| =
|S4| = k, we have 11 = 15 — 4 DoF.

B.2. Discussion of Assumption 3

Assumption 3 reduces the DoF of p from 11 to 9 by dropping d; = |S1 N Sa| and
dy = S3 N S4. The main reason being that, given the 9-dimensional vector r, d;
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and ds only describe the overlap within Sf%) and Sézk), respectively, without
adding new information for the overlap between them. This is illustrated using
the following linear kernel example.

Example. Suppose h is a linear average kernel, h(Xy,...,Xy) = %Zle X,
where X1,...,X,, i.i.d. X, where EX = 0,EX? = /L27EX3 = 3, EX?* = 4.
Notice that
,u%, ifX; = Xj,Xk = X, X; # X,

where {7, j, k,1} = {1,2,3,4};
pa, Xy =Xy = X3 = Xy;
0, otherwise.

E(X1 X5 X3X,) =

Hence, we have

covy = i3, ifX; = Xz # Xo = Xy;

X1 =Xy # Xy = X5
Cov(X1 Xy, Xs Xy) = , AT A7 A A
covg 1= g — 5, X1 = Xo =Xz = Xy;
covs := 0, otherwise.

Hence, p can be represented as a weighted average in the form of ay ,cov, +
a2,,COV2 + a3 ,covs, where covs is 0. Furthermore, by the definition of cov; and
covy, ai,, only depends on r;; for (i,7) # (0,0) and as, only depends on 7.
Besides, we can also show that F(*) in (4.13) (see Assumption 4) is a quadratic
function of ¢ for this kernel.

We also shows that we may not be able to further reduce the DoF. When
E(h(S)) = 0, it is natural to consider the following fourth cumulant of p:

cumy [h(Sl), h(SQ), h(S3)7 h<S4)] =p — COV[h(Sl), h(Sg)]COV[h(SQ), h(S4)]
—Cov[h(S1), h(S4)]Cov[h(S2), h(Ss)]. (B.2)

If cumy[h(S1), h(S2), h(S3), h(S4))] in (B.2) is a lower order term of p, the DoF
can be reduced to 4, i.e., |S1 N S5, [S1 N S4l, |S2 n S3], and Sz n S4|. However,
the following example shows that this does not hold even for a linear average
kernel. We can further verify this under a quadratic average kernel h(S;) =
hXy,..,Xg) = ;—Q[Zle X;]?, if X;’s are i.i.d. standard Gaussian.

Example. Given size-k sets S1, Sa, S5, Sy s.t. S = (X1, Yl(l), ...,Y,C(i)l), Xl,Yj(l)
areiid. E(X;) =0, Var(X;) > 0, for j = 1,2,...,k—1and = 1,2,3,4. By (B.2)

and some direct calculations, we have p = %, Cov[h(S1), h(S3)] = %
Plugging in the above equations, we have

cum4[h(X1), h(Xz), h(X3), h(X4)] I Var(XIQ) - 2Var2(X1)
2COV[h(Sl),h(Sg)]2 B QVarQ(Xl) '

(B.3)

As long as Var(X?) — 2Var®(X;) > 0, which is common for non-Gaussian X7,
Equation (B.3) is larger than o(1).
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B.3. Discussion of Assumption 4

In Equation (4.13), Fc(k) is defined as an upper bound for p for a given c. As
illustrated in Figure 5: h(S1)h(S2) goes to h(S’)? as more samples are shared
between S7 and Sy. Therefore, given that |S£2k) N Sé%)\ = ¢, F, has the most
overlap among all p.

S3
Y s
S, % c§ S, s § c}\\ s”
NS NS
Sa

F1a 5. An example of ordinal covariance assumption.

We can verify this assumption on the linear average kernel again: h(S;) =
%Zi;l Xi(l), for I =1,2,3,4. In particular, considering (S, S2, S3, S4) s.t. [S1 M
Son S5 Syl = |(X£1), ...7Xc(-1))| = cand (5',59") s.t. |S" nS”| = ¢, the equality
in Equation (4.13) attains:

p = k~Var [(Xf” Fot XC(”)?] — Cov[h(S)%h(S")?]. (B4

It is also straightforward to verify the assumption under simple quadratic aver-
age kernel function h(Sy) = 1%2(25:1 X;)?

B.J. Discussion of Assumption 5

Assumption 2 imposes a polynomial growth rate of the second moment term
fik. Assumption 5 imposes a polynomial growth rate of the fourth moment

term F*). The following example helps illustrate the idea of Assumption 5.

Example. Suppose that there is no fourth-order cumulant term in Equation (B.2),

which is valid for a linear kernel as average of i.i.d. standard Gaussian X;’s.
Then, by Equation (B.4), Fc(k) can be simplified as ffmk&f%k + 5322),65322),6 =

264, = 26!, This also implies (4.14): /¢, = O(1). We further remark
that given this example, Assumption 5 can be implied by Assumption 2.

Fék) _ 25§,k _9 g,k
Fl(k) fik fik

2
> = O(c*™), forc = 1,2, ..., k. (B.5)

Here, given a1 from Assumption 2, we can derive ay in Assumption 5 as ag = 2a;.
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We conclude the discussion by commenting on why we do not simply assume
J%k’%/(Zlmi%) = O(1). In the recent literature, a similar assumption is used
for fg,k [20, 35, 8]. By Lemma E.3 (see Appendix E), a natural upper bound

for o2 4, is £ (4.13), which can still grow at a quadratic rate of ¢ (see (B.5))
even if 53,;: has a linear growth rate in relation to d. This leads to a potential
violation of 03, 5./(2k07 4;,) = O(1).

Appendix C: Proof of results in theoretical section
C.1. Proof of Proposition 4.2 (Double U-statistic property)

Proof of Proposition 4.2.
Proof of Equation (4.5).

We first show the following equation.
k
b (S@k)) = 3 wapa (s@’“)) (C.1)
d=0

Wang and Lindsay [31] have demonstrated that V,, is an U-statistic with size-2k
kernel (Equation (4.1)):

Vi = Q(k) — Q(0) = <27;)_1 D [W (5(%)) — o (S(2k))] :

Sk cx,

o) =@ 0 Zw, T e,

d=0 51’52C5(2k)

Al |Slﬁ52|=d
n\ /m\ t/m—k\"t 1
(2k)\ — o _
Yo (S ) (%) <k) < i ) 0, SZS(%) h(S1)h(S2),
Ay \19’1"352\:0

where N, = (n_%ik+d).

Denote
a= () =) () e

Rewrite ¥y (5(2’“)) — 1y (S(%)) by the order of d. Notice that there is a 25:0
in 9 (S(2k)) but d can only be 0 in 1) (5(2’“)). Hence, there is a cancellation
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for h(S1)h(S2) s.t. d = |S; n S3| = 0, thus we have

k
0 (599) i (SB) — 4 Y Y h(SHh(S)
d=1 dsl,52cs(2k>
|51f\52|:d

+ (A1 — 141,0)i Z h(S1)h(S2).

Ny
81,5582k
|Sl ﬁSQlZO

For the RHS of above equation, multiply and divide My (4.6) inside Z];:l:

dr (S9) = wo (S)

S [AlNide,k} - 3 h(S)h(S2)
-—

d=1 ’k Sl,SQCS(2k>, |Slﬁ52|:d
o pa(520)
+[(A A )IM] 1 D h(S1) h(Ss)
1— A10) Mok 1 2)-
No | Mo,k 51,5252k |S1 A Sa]|=0
o po(S@H)
We denote
(A= Ay o) Moy A B ,
wo = No ; Wq = Nde’k’ for d = 1,2,...,k,
1
0a(S3R)) = i D1 h(S1)h(Sy), ford=0,1,2,.... k.
ks 51,8250
‘Slﬁ82‘=d
Given that wy = — 22:1 wg, which will be proved later, we have
k
U, (5(%)) — o (5(%)) = D wapa(SH) = D wq [@d (5(2k)) — %o (5(%))] :
d=0 d=1

Proof of Equation Equation (4.7).

First, we show that ZS=O wg = 0. As discussed above, wy is a product of three

. . . -2 —1 iy —1
normalization constants: A; = (272) (Z) and A9 = (272) (Z) ("k ) are
the normalization constant to rewrite Q(k) and Q(0) as a U-statistic; Mgy :=

(2;) (ch?d) (2::?) is the number of pairs 51,9 < S st. [S; N S = d;
Ng = (n_Qkord) is defined in Equation (4.2).

_ A1 Mg
Ng;

(Ay — Ay o) Moy
Ny '

wo = Wy ford=1,2,... k.
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Since A1,0 > A1 > 0, Mgy > 0, Ng > 0, we have wg > 0,Vd > 1 and wy < 0.
Then we show ZZ:O wq = 0. Though this can be justified by direct calculation,

we present a more intuitive proof. Recall V,, = Q(k) — Q(0). By the defini-
tion of Q(k), Q(k) can be represented as a weighted sum of h(S1)h(S2), i.e.,

Z1<i,j<n a;jh(S;)h(S;), where Zl$i<j<n a;; = 1. Thus, Q(k) — Q(0) can be

represented in a similar way:

Qk) —Q(0) = > ai;h(S)A(S)),

1<i<j<n

where ¥, _, ., aj; = 0. Therefore ¢, (S*)) — 4 (S®M), as the kernel of U-
statistic Q(k) — Q(0), can also be represented in the form of a weighted sum:

Ui (SC9) = (SE) = 31 bigh(SR(S)), (C:3)

1<i<j<n

where ZKKK” bi; = 0 since ¥y, (S(Qk)) ) (S(%)) is an unbiased estimator
of Q(k) — Q(0). On the other hand, for d = 0,1,2,...,k, pa(S?*) is still a
U-statistic, which can be represented in the form of a weighted sum:

pa(S) = Y APR(SIA(S)), (C4)

1<i<j<n

where Zl<i<j<n cg;i) = 1. Since ¥y, (S(Zk)) — g (S(Qk)) = Z’;:O WaPq (S(Qk)),

by comparing Equation (C.3) and (C.4), we have 22:1 Wa D <izj<n cgj) =
. d
lei<j<n bi;. Since Zl<i<]<n Cz(’j) = 1 and ZKKK” bi; = 0, we can take
h(S;) =1 fori=1,2,...,n and conclude that Z’;:O wq = 0.
Secondly, we present the details to bound wg = A1 Mg /Ny, ford =1,2,..., k.
Plug in the expression of Ay, My, Ng, we have

ny /m\—2 2kN\ 2k — d\ 12k — 2d n—2k+d
wd:[(zk)(k) H(d)( d )( k—d )]/( d )
3 n! (n — k)!(n — k)!k!k!
a {(n — 2k)!(2k)! nln! ]
(2K)!(2k — d)!(2k — 2d)! dl(n — 2k)!
x [(Qk—d)!d!(Qk:—Qd)!d!(k—d)!(k—d)!} [(n—2k+d)!]‘

After direct cancellation of the same factorials, we have

(n —k)!(n — k)! k! 1
Yd =" — U (e —dl d - (C.5)
nlin—2k +d)! (k—d)!(k—d)! _d
Part I part II part III

For Part I in Equation (C.5),

(n=kln—k)! _ Tl (n—k—i) _ [1+o(1)]i~

nl(n —2k +d)! Hi:ol (n—1) nd
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The last equality is because for any k = o(y/n),d < k, we have

M -k —i) I i) _ .
Hi:ol (n—1) Hi:ol (n—1) H;tol (n—k+d—i)

1 1
g T Nd 7.
(n— k)d [T+ 0(1)]nd

On the other hand, % > . Thus, we have = [1 + o(1)]-7.

For Part IT in Equati(;l (C.5),
k!
G ange—ay = B = D= d+ DF] < B

Particularly, when d is fixed, we have % =k(k—1)..(k—d+1)]? =
[1 + o(1)]k%¢. Combining Part I, IT, III in (C.5), we have

[1+0(1)] %(%)d] V finite d;

wq =
o[i(ﬁ)d Vd=1,2, ... k.

dl'\'n

C.2. Proof of Corollary 4.6

Proof of Corollary 4.6. To show Ez/‘j ) Pilasn— 0, it suffice to show the Lo

. . . N2
convergence of V,,/E(V,,), i.e., Var(V,)/ (E(VU)> — 0 as n — oo.
By plugging Equation (4.16) and (4.17) from Theorem 4.4, we have

N k? ~2 .
Var(V,,) _ @ (701,21@) _0 ( n Ji%) -0 (l) . (C.6)
Vi

(E( )2 [(1 +0o(1)) kffikr k2 & "

Here 5%21@ = Z—zFl(k) is the upper bound of ai% given by Proposition E.2. By

Assumption 5, Fl(k) = O(&] 1) The last equality is by plugging in 57 5. O

C.3. Proof of Theorem 4.4

We first present a technical proposition.

Proposition C.1. For any integer ¢, s.t. 1 < ¢ <k and k = o(y/n),

() (G0 <464
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Proof of Proposition C.1. This proof is provided by DiCiccio and Romano [8].
We first write the combinatorial numbers as factorial numbers

<Z> : ('Z) (Z . ]Z) - _n]:)!k! (k —k !c)!c! (k — c)(!T(Ln_—k)Q!k; + o)l

B % [(k‘ - c];:?l'c — C)!] [(nn!(”]i)gZJrf;!)]
< Ly [#] (C.7)

c! n—k+1

O

Proof of Theorem /.4. First, we show Equation (4.16). By Proposition 4.5 and
Assumption 2, we can conclude that

lim 7\/3;([2]") =1.
now Tk
Secondly, we show Equation (4.17).
T —1
o\ (T) (T \ — n 2k\ (n—2k\ ,
Var(V,,) = Vart"*/(V,,) ;1 <2k) ( . ) <2k )Tk (C.8)

) ) el o

Ty k2e+2

_ (k)

_c=1<9< e ) (C.10)
ki4

=0($ka>). (C.11)

Here, (C.8) is concluded by Lemma E.4. (C.9) is concluded by Ji% = O(fL—EFC(k))
(Proposition E.2). (C.10) is concluded by (27}6)71(2’“) (22F) = [1+ o(1)] B for

c 2k—c ne

¢ =1,2,...,T1 (Proposition C.1). (C.11) is concluded by the bounded growth
k)

rate of F*) in Assumption 5 and finite 7}. By denoting Q—ZFl(
conclude that Var(V,) = O(%&izk). O

~2
as 07 o, We

C.4. Proof of Proposition 4.5

Var(Un
arUn) _ 1,

Proof of Proposition 4.5. For k = o(4/n), we want to show lim,,_, 4

n S1,k
First notice that for the coefficient leading term (2)71 (]f) (Z:’f)fik, we have

n\—1/k\ (n—k
() (ké)(kfl) _ (n(ill)!l(g:(f%?!l)! — 1, as n — c0. (C.12)

n
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Therefore, it suffices to show that the rest part of Var(U,) is dominated by the
leading term:

i () Xis () (06

=0.
e e,

By Proposition C.1, the numerator of the above can be bounded as

() 260 = Dt po e
Sak < ——————=8at ) (d) TG ks
k) = \d)\k-d di(n—k+1) =
(C.13)
where b, = nfk—qu Notice that n < 2(n — k + 1), so we have
(k) Zd=2 (fl) (kfs)gik < n u 1 d 1§d k i z c2i_
Bea Tn—k+1 & d'” “adat &gy
(C.14)

By Assumption 2, the growth rate of 537 i is bounded, there exists a uniform con-

2
stant C' s.t. g‘;—k < Cd! for d = 2,3, ..., k. Therefore, the RHS of Equation (C.14)
1,k

is bounded as

k 2 k 1£2 k k—1
Log_18ak 1, ,CdlET, -1 _ 1-0b7 bn,
Z—!bn ng—!bn = <C ) bl —C’bnl_bn <Cl_bn.
d=2 ; d=2 d=2
(C.15)
The RHS of (C.15) goes to 0 when n — oo, since b, = n,k—kz,l — 0. This
completes the proof. O

Appendix D: Proof of results in methodology section
D.1. Variance of incomplete U-statistics U, B, m

Proof of Proposition 3.2. This is an extension of the results by Wang [30, Sec-
tion 4.1.1] and Wang and Lindsay [31].

Comparing Var(U, p,u) = (1—%)Var(Uy,)+ 515 V™ (3.8) with Var(U, p) =
Var(U,,) + E[Var(U,,,5|X,)] (2.4) , it suffices to show that

1
E [Var(U, g|X,)] = MBV — EVar(Un).
Here we adopt an alternative view of a complete U-statistic U,, with k < n/2
by Wang and Lindsay [31]. Follow our notation of “matched group”, we can al-
ways take M = |n/k| mutually disjoint subsamples Sy, ..., Sps from (X7, ..., X,,),
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such that [S; nS;| = 0for 1 <i < ] < M. Wang and Lindsay [31] take in-
teger M = n/k while we allow 2 < M < |n/k]. Recall such (Sf’), .. 7SJ(VI})) as a
“matched group”, where b is the index of group. Let G,, . ar be the collection of
all such matched groups constructed from n samples, i.e.,

Goorr = {(S7,...,80)) 08" < &, and S A S = @ v1 <, j < MY,

(D.1)
Then, an alternative representation of U, is
|Gk, v | M b
U = M|gn v Z 2 s, (D.2)

This form seems redundant because there are some replicate subsample among
all Si(b)’s. However, for incomplete U-statistic Uy, 5, a, each (S§b), e S](\Z)) can be

viewed as a sample from G, 1, ar. Hence, Wang [30] show that B-Var(U, g|X,) =
|gn vl Zlg" ks Ml(h(b) Uy,)?, where h(®) = i Zle h(Si(b))7 Si(b)’s are all sub-
samples associated with the complete U-statistic U, on X. However, Wang [30]

and Wang and Lindsay [31] do not provide a simple expression in the form of
V") and Var(U,,). We further simplify BVar(U,, 5|X,) as follows,

Gn.k,m
E [Var(Uy 5/ %,)] = B ﬁl Z (e
gL (b~ B(U,) - (W, ~ W)

Gn | A

Gn,k,M
1 1Gn ke, 0] )

G b; E ((Un —E(U,)) )

L Gl
_9F T b; (h®) — E(U)) (U, — E(U,)

— Var (ﬁ“)) — Var(U,)
= %V(’” — Var(U,).

In the above equations, the first equality is the conclusion by Wang [30]; the
&, MI Z‘g" el () = U,; the last equality
holds since h(Sil)), e h(S](\})) are mdependent. O

next-to-last equality holds since
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D.2. Unbiasedness of variance estimators

Proof of Proposition 3.1. First, we restrict the discussion given k < n/2. We
first show that V() = Z];:O vd,k7n§§7k. By the discussion in Section 3.3.1, we

have Nggn = (2)27d7k7n. For a complete U-statistic with k < n/2, Ngg., =
(Z) (2:5) (2) and we denote N = (Z) > 0. Then,

k A
Y Vaknéar =N lQ > Z L{|Si n 55| = d}[n(Si) — (5}-)]2/21
d=0

<i<j<N d=0

[A(S3) = h(5j>]2/21

l 1<Z<j<N

N
Z . 4ON

Here, the second equality holds by plugging in the definition of Ny, and
interchanging the finite summation >}, 5 with >3, _; ., p. The third equality
omits the cases with ¢ = j, where h(S;) —h(S;) = 0. The second to last equality
holds because the sample variance is essentially an order-2 U-statistic, with

kernel (h(S;) — h(S;))?/2.

Then, as we demonstrated in Section 3.3.1, E(gsk) = 53’,6 ford =0,1,..., k.
Hence we conclude that

k R k .
B(V) = 3 vabn (81) = D5 vaknéis =V
d=0 d=0

Secondly, we extend the previous argument to the setting n/2 < k < n.
We denote D = {d € N*|0 < d < k,v4xn > 0}. We can define Vi) =

D deD ’ydk,ngik. We want to show that
. 1 &
Ve =< Z[h(Si) —U,]%, (D.3)
E(V®) =v®), (D.4)
Similar to previous proof

VS N2 |2 Z Z 1{|S; n S;| = d}[1(S:) — h(S;)]?/2

1<i<j<N deD\{k}

NE-b) l@) S [ — (S22

1<i<j<N
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N — al 1
N NSl | = g e

Since each gik is still an unbiased estimator of §§7k, similarly, we have
E(V®)') = V(). Remark that the summation in Equation (D.3) is over d € D
instead of d = 0, 1,2, ..., n. This is because g4, is 0 for small d, given k > n/2.
In other words, when k > n/2, several terms of yd,k,ngg’k in the Hoeffding de-
composition (2.1) is already 0. O

Proof of Proposition 3.3. Since a sample variance is an order-2 U-statistics and

we denote ¥, j i j1) = [h(Si(j)) - h(Si(/j/))]Q/QI

Vi =[(BM ~ 1)BM] [n(s) —n(sE ] /2

M:
Mm

i=1j=1(",5")#(i.])
M B
=[(BM —1)BM]™" Y ) oo+ D] Vig ')
i=1j=1 \(¢,j)eA(5) (¥.5)€B(i.5)
whore AG,5) = (7)1 # .3 = 51 < < M1 < 7 < B Blig) =
{(@, 05" # ]71 < i < M,1 < j < B}. We note that |A(i,j)| = M — 1 and

i
B, )| = (B —=1)(M — 1)] for any (i,j).

Fixing (,j), for any (¢/,5') € A(i, 5), SZ-(,j) and Si(j) are the same j but not
identical. Hence, ©(; j i ) is an unbiased estimator of V(™ Furthermore, the
sample variance within group j is also a U-statistic, which can be alternatively
represented as an order-2 U-statistic: [M (M —1)]~! wal vz Vi gir gy Thus,
let dpr, = 1\%3 7, by summation over all j and the symmetry, we have

M B
[(BM —1)BM]™' Y Z Z E(0(;,3,11,51))
i=17=1 -A( J)
M B
— [(BM —1)BM]~ Z Z (i, )V
= 6V, (D.5)

Fixing (7,7), for any (i',5") € B(3, J), SZ.(j) and Si(,j/) are in different matched
group. Since each matched group are sampled independently, Sl-(] ) and Si(,] ) are
independently sampled from &),. By the theory of finite population sampling

(7], for (i', ") € B(i, j),

E(0Gi,j0,5) = BIE(D 0,5 Xn)] = El(:) D) (A(S) = Uw? | =V
S

iEXn
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Thus, the normalized summation over all such ©(; ; ;+ ;) satisfies that

[[(BM—l)BM]_l‘ 2 | 2 lE(@(i,j,i',j'))

= (1= 0n,B) V™. (D.6)
Combining Equations (D.5) and (D.6), we conclude that
B (V) = (0= 0mm)Ve + o0,V ™. O

Proof of Proposition 3.4. On one hand, by Proposition 3.3

. Sy MB—1_
B (Var(Un,z.ar)) =BV, = 5~ E(VE)

MB -1 M-1 M-1
=y® _ — (8) 4 2~ (b
Vv B [(1 i 1)V + Vv ]
_MB-M+1,4) B-1
MB B
On the other hand, by Var(U,,) = V(" — V(%) (3.2) and Proposition and 3.2,

B-1 1 MB—M +1 B-1
Var(Un,pur) = —5—Var(Un) + WVW = E v _ 5 Ve,

Hence, we conclude the unbiasedness of our incomplete variance estimator:

V().

E (@(Un,B,M)) = Var(Un,B,M)~ 0

D.3. Equivalence of complete variance estimators

We denote the complete variance estimator by us, Schucany and Bankson [24],
and Wang and Lindsay [31] as V, (3.6), . SEB) and YAV ER) respectively.

First, our complete U-statistic variance estimator is identical to the estimator
in page 79 of Folsom [10]’s work.

Secondly, we restrict ¥ = 2 and show that V, = VU(S&B). Schucany and
Bankson [24] estimate two terms, ffz and 53,2 in the Hoeffding decomposition as
512 and 5222 respectively as follows. We adapt their notation to simplify h(X;, X;)
as h”

—1 -1
~ n n
<12,2 = (3> Z hg(XivvaXl) - (4> Z hT(XivvaXl’Xm)v

i<j<l i<j<l<m

1
~ n
C22,2 = (4> Z g*(Xianle,Xm)v

i<j<l<m
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where
1
he(Xs, X5, X)) = 3 [hijhir + hijhji + hihj]

1
=3 [hijhim + hithjm + himhbji]
1
6

(X, X5, X0, X))

¥ (X5, X5, X0, X)) = = [(hij — hum)® + (hit — hjm)? + (him — hi1)?] -

Then, by estimating corresponding terms in the Hoeffding decomposition (2.1),

v(seB) _ (7 T2\ (n=1\ 5 n\ " 5
u =9 1 1 Giot 9 (30

By our proposed decomposition, Var(U,,) = V") — V(%) and Proposition 3.1,
our estimation approach is equivalent to estimate £7 , and &5 , by 142 —55)2 and
V" respectively. When k = 2, VW = ((3) (") ™" Xs,ns, 10 (A(S:) — 1(S))”

/2 and 5%2 =N 2SinS;]= 1( (S) h(S ))2/2 Hence, to show that

Vi = Vu(S&B) it suffices to show that V(" 51 9 =C(f 2 and V' C;Q respectively.
For the first equality, we can simplify these terms as follows

e-00) '§.8.5 0

i=1j:j>0. l:1#,5.

-1 n
(( )(nQ )) Z Z Z Z hijhim,
i=1j:5>4. l:l#4,5. m:m#i,5;m>1.
-1 n
() B o
i=17j:7>1.

O("‘ N'HY Y 8 e

i=1g:5>1 l:1#4,5. m:m+#i,j;m>1.

S0 SR b)) 2z

i=1jij>i. l:1#4,5.

D‘

Therefore, 5122 52 1 o. For the latter equahty, 2’s kernel g* is composed
by sample Variance between two kernels with dlsJ01nt subsamples, such as h;;
and hyy,, 5222 is a redundant version of our V(h), which implies that 4R 5222
This, concludes the equivalence.

We remark that Schucany and Bankson [24] consider an alternative estimator
of fiz, denoted as 512 [26]. However, that one shows connection to the work of
Mentch and Hooker [20] and Zhou, Mentch and Hooker [35] (see Section 3.5)
but is not the focus of this appendix.

Thirdly, note that Wang and Lindsay [31]’s estimator involves the definition
of their partitioning scheme and we use the notation of our matching group
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and assume M = n/k to present their estimator (see G,k am (D.1) and in
Appendix D.1). Here we present Wang and Lindsay [31]’s estimator in their
ANOVA form, which is the alternative to their second-moment view. This alter-
native form uses the within and between-variances of the groups [see 31, page
1122]. However, the form is still different from ours. To simplify the notation,
we denote B = |Gy, ar| and by = 37 ZM ( ®) ) for b = 1 2,...,B. Under this

notation, the alternative form (with G, x,a7) of U, (D.2) is 575 Zz 1 b 1 h(S(b ).
Then our estimator, Vu7 and Wang and Lindsay [31]’s estimator, V(W 2

be represented as follows.

, can

7, = 7 e,

ViV = oy p/M — o,

where ) = ()7 2 (h(8) -0, P (AT = G)("1) S s ol(50~
h(Sj)]2/2 (3.5); UWP = IBZb 1 M= 121 1 (R ( )* E(b))Q? ohp = %(ﬁ(b) -
Uy,)2.

Proposition D.1. Our complete variance estimator Vu is equivalent to the

estimator V'V <) proposed by Wang and Lindsay [31].

Proof. To simplify the notation, we denote

B
= h(SPN2, Ay = U2, Ay = LS 2. D.7
Ay MIB;;((z )75 Ag 3 ]Bl;l( ) (D.7)

To show the equivalence between V,, and V(W&L)7 we will show that they are

the same linear combination of Ay, Aa, A3. First, it is trivial to verify that o3,
and 0% are linear combinations of Aj, Ay, As:

9 M

Owp = M_l(Al—Ag), and O'2BP:A3—A2. (D8)

Secondly, we show that v = o p by showing that V(h) also equals to

L (A; — A3). Considering the summation ZZ (h ( ) ha)? in o3y p,
it can be represented as

(g)lfz (5P — h(SDY)22.

i=1j#i
Since G, k. a is a set of all permutation of disjoint (Sfb), o SJ(\Z))’ we have
B -1 M . b
=B Z < ) IDNUCREVCHONE
i=1j#i
_1 )
( ) ( > 2 [(S) —h(s)P/2 = v

‘SiﬁSjl:O
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Thirdly, we show that V(%) is also a linear combination of A, Ay, A5. We start
“dﬂlﬁﬂﬁ::(g)‘l§ﬁk1h(5) —UZ. Due to the definition of G,, x,r, the collec-

tion {Si(b)}i’b are basically replications of {51}5:)1 Hence, (})~ ! ZSQ h(S;)? =
Ay, which implies that

Ve = 4 — A, (D.9)

Therefore, we can represent both V,, and ‘A/H(W&L) with Ay, Ay, A3 by (D.8)
and (D.9) as follows:

U= ) =

(A1 = Ag) = (A - Ao)

M
M1 mASa
1
V(W&L) =02 /M —0%p = T 1(A1 — As) — (43 — Ag)

1 M
DY R R v

As.

This conclude that V, = Vi{"“%) Note that VW — V(=) = o p/M — 0% p,
however, V(" # 62, ,/M and V) # ¢%p. Our and Wang and Lindsay [31]’s
estimators are proposed under different perspectives. O

D./. Equivalence of incomplete variance estimators

Only Wang and Lindsay [31] and our paper propose variance estimator for in
complete U-statistics. Similar to the analysis in Appendix D.3, we will show
that our incomplete Variance estimator (3.12) is equivalent to the counterpart
in Wang and Lindsay [31, page 1124]. Given B matching groups and M subsam-
ples in each group, we denote the above estimators as Vu(i"c) and Vu(mc’W&L)
respectively:

oy MB-1

piine) .= V), Py, Ve WEL) L g2 ar g3 (D.10)

MB : v

~ b) - 7
where Gy p 1= (M- 1BZb 121 1% (S( )= hw)? 6hp = 325:1(/1(1))_(]”)2’

and iL(b) = Zi:l (Si(b )-
As analogues to Ay, Ay, A3 (D.7) in Appendix D.3, we denote

| B M " B
i 2 i _
Ay = VB ;;(h‘(‘g@' )?, Az :=U; g s Az = Eg ha)?-

Similarly, it is trivial to verify that ‘A/éhj)w (3.9), VE(, 3\/1 (3.10), 6%, p and 6% p can
be represented as linear combinations of Ay, Ay and Aj as follows:

o - pe MB - - - .
Vi =6%p = 7 1A~ 4s), = w5 1A~ A2), opp = Az — A,.
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By plugging the above into equation (D.10), we have
MB — 1

(7 (inc (r(h A

vy ):Vlg,l)w g VBM = M A1+A2_M*1A3

Ny 1 M
(inc,W&L) _ _ _ .

Hence, we conclude that ‘A/u(mc) = Vu(mc’W&L).

Appendix E: Technical propositions and lemmas

In this section, we present the technical propositions and lemmas. The proofs
of these results are collected in Appendix F.

Proposition E.1. The value of v (S’(%)) does not depend on E [h(X71, .., Xt)].
Therefore, WLOG, we can assume the kernel is zero-mean, i.e., E[h(X1, .., Xi)]
=0

The proof of this proposition is collected in Appendix F.1.

E.1. Results of o2 ,,

First, we present Propositions E.2 and E.3. The former provides a precise bound
of 07 5, for some fixed ¢ while the latter provides rough bound for 1 < ¢ < 2k.

Proposition E.2 (Bound af)% for finite ¢). Fiz Ty = | 1|+ 1. Under Assump-
tions 1-5, for any c that 1 < ¢ < T1,

2 k2 k
O-C,Qk =0 <7’12F(‘§ )> .

Based on the upper bound, we define 6272,6 = Cn—IZZFC(k), where C is a generic

.- . oo ) kK2 FR)
positive constant. Equivalently, we write it as Opok = —pp—-
Proposition E.3 (Bound ai% for any c). Under Assumptions 1-5, for any
1 < ¢ <2k, we have
2 k
0c,2k = O(F( ))

c

The proof of the above propositions is collected in Appendix F.2 and Ap-
pendix F.3 respectively. Note that the upper bound in Proposition E.2 actually
works for any fixed and finite ¢ but it suffices to restrict ¢ < T3 to show our main
results. These two propositions depend on the further decomposition of o7,
into weighted sum of nz 2k(dl,dg)’s which is later discussed in Appendix E.2.
In particularly, we can show that 7 2k(l 1) dominates o2 co fore=1,2,...T.
As a corollary of the above results, we can show the followmg lemma.
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Lemma E.4 (Truncated Variance Lemma I). Under Assumptions 1-5, there
exists a constant T} = HJ + 1, such that

Var (V) — Var(™ (7,
et (\73;@) (Vu) ( ) =0, (E.1)

where

-1 717
Ty (). (™ 2k\ (n—2k\ 5
Var (V“) . (Qk) Z ( c > (2k — )02k (E2)

1

-1 T
(1) (N (n L2k (n—2k\ .o
V(%) = <2k) 3 ( ) (Qk_c)%%. (E.3)

1

Here, we denote Ef’% as the upper bound of af)% given by Proposition E.2.

The proof of Lemma E.4 is collected in Appendix F.4. This implies that

A~

to bound Var(V,), it suffices to bound the weighted average of first T} terms
of 02, instead of all 2k terms. Note that we use Var instead of Var in the

denominator of (E.1). Here T = || + 1 does not grow with n. It only relies on
€, which quantifies the growth rate of k with respect to n (see Assumption 1,).
For example, if k = n!/3, ie., € = 1/6, then we can choose T7 = 7. Hence, to
show o7 5, dominates in Var(V,,) when n — oo, it suffices to show that 07 ok

dominates in T’ -truncated Var(Tl)(Vu) when n — oo.

E.2. Results of n2,,(d1,d2)

Given the decomposition o7, = 251:1 252:1 W, Way Mz o (d1, da) (see (4.10)
in Proposition 4.3). To bound o7 5, we should study 7?2 ,,(d1,dz) (4.10). The
results of ni% (d1,ds) are presented in this section.

Lemma E.5. Under Assumptions 1-5, for 1 < ¢ <T1,1 < di,dy < Th,

1
Nz op(dy,d2) = O <ﬁFc(k)> .

Lemma E.6. Under Assumptions 1-5, for c =1,2,...,2k, dy,ds = 1,2, ..., k,
Nz ok (d1, dz) = O(FM).

Similar to the “two-type” upper bounds of 0272 &> Lemma E.5 provides a pre-
cise bound of 7]2,2k(d1, ds) for bounded ¢ and dy, ds while Lemma E.6 provides
a rough bound of nfﬁQk(dl, dy) for all ¢,dy,ds. Again, the result of Lemma E.5
actually holds for any fixed and finite ¢,dy,ds. The proof of the above lem-
mas are collected in Appendix F.5 and Appendix F.6 respectively. The proof
demonstrates the cancellation pattern by matching p (4.11).
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With the above bounds on 7?2 5. (d1, d2), we introduce the following truncated
03% and show Lemma E.8, which implies that to bound oi%, it suffices to
bound the first finite 77(2;,21: (d1,d2) terms in its decomposition (4.10).

Definition E.7 (Truncated o2,,). Let Tp = |1] + 1. We define (™), a T5-
truncated v as

s S (5) (). e

Hence, given two size-2k subsamples Si%) and Sézk) that |S£2k) N S§2k)| =c¢a
Ty-truncated of crf’zk are defined as:

T> Ts
k 2k‘
02 o1 (1) 7= Cov(p T (SFEH)) 4p(T2) () dz dz Wa, W, i o1, (1, da).
1=1d2=1

(E.5)

Lemma E.8 (Truncated Variance Lemma II). Under Assumptions 1-5, there
exists a constant Ty = [%J + 1, such that for any ¢ < T1,

2 o2
Oc2k — 9¢ 2k, (Ts)

lim =

=0,
k—o0 c 2k

where 53’%7@2) is the upper bound of UC’2k7(T2) given in Proposition E.2.

The proof is collected in Appendix F.7. Similar to the idea of Lemma E.4,
by Lemma E.8 the upper bound of Uan (4.10) only involves the sum of 7%
terms, i.e., 03 ok (T> rather than k% terms. Here T, is again finite and does not
grow with k. Though T an(Ai T, take the same value, we note that T is the
truncation constant for Var(V;,) in (E.2) while T5 is the truncation constant for

2 .
oo g in (E.5).

Appendix F: Proof of technical propositions and lemmas
F.1. Proof of Proposition E.1

Proof of Proposition E.1. Suppose E(h(S1)) = u and we rewrite h(S;) =
ho)(S1) + p, where E(h()(S1)) = 0. Then ¢q4(S*) defined in (4.6) can be

written as

1
©d (S(ZH) — M. Z h(o)(sl)h(o) (SQ)
K G182 5(28) |81 A Ss|=d
+ [h0)(S1) + h(o)(S2)p + 1. (F.1)

Plug Equation (F.1) into Equations (4.1) and (4.5). By the fact that ZZ:O wq
= 0 and the symmetry of U-statistic, the terms of p and p? are cancelled.
Consequently, V,, does not depend on y, so W.L.O G., we assume that p =0 O
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F.2. Proof of Proposition E.2

Proof of Proposition E.2. This proof relies on the technical lemmas in
Appendix E.2. First, by Lemma E.8, to upper bound 037%, it suffices to up-

per bound the following o7 5, 7,y (E.5)

T> 15
2 2
Oc2k,(Ts) — Z Z wdlwdznc,2k(d17d2)7
di=1ds=1

where wg = [1 + o(1)] [%(%)d] Vd < T
(k)
By Lemma E.5: fixing any ¢s.t. 1 < ¢ < Tb, 77372k(d1,d2) = O(FIQ—:), Vdy,dy <
Ty. Besides, since d; and dy are bounded by a constant Ty. w} dominates the

. T T
summation »,,°_; > ;° | wa, wa,. We have

Ty T k) T
Ol ok () = D, D, WayWayTooy(d1, da) = O(ﬁ) D17 wawa,
di=1dy=1 di=1dy=1
(k) 2
Fy. k
= O+ o(1)]u} = O(5) FM).
Here, the last equality is derived by plugging in wy = [1 + 0(1)]%. |

F.3. Proof of Proposition E.3

Proof of Proposition E.3. This lemma again relies on the upper bound of
7737219((11, d2) in Appendix E.2. By Proposition 4.3, we can decompose 0(2:7219 as

k k

2 2
Toon = D) D, Wiy wanaok(di, da),
di1=1dy=1

First, we investigate the coefficient of 77?,% (d1,ds2). By Proposition 4.2, we have

Z’;Fl wq, < 1. Thus, we attain

k k

ko k
Z Z Wd, Wd, = ( Z wd1)( Z wdz) <L
di=1ds=1 di=1 dz=1
By Lemma E.6, we have 7]372k(d17d2) = O(F.) for ¢ = 1,2,3,...,2k. Hence,
combining the bounds on wy and 1737%((117 dsy), we conclude that O'igk = O(Fc(k)).

We remark that the summation 251=1 wgq1 can attain a lower order of 1, which
may imply a tighter bound of UZ,%' O
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F.4. Proof of Lemma E.}

Proof. Let Ty = | 1] 4 1. Recall Equation (4.3)

N LK kN (n— 2k
Var (Vu> - (22) ; < c) <Zkz — c>03’2k'

=1

We first present the intuition of this lemma. Var(V,) is a weighted sum of ai%,
where the coefficient of Ji% decays with c at a rate even faster than a geometric
rate. If the growth rate of aizk is not too fast, then the tail terms can be
negligible. This involves both the precise upper bound of o1 952 (Proposition E.2)
and the rough upper bound of 03’2,@ for ¢ = T1 + 1 (Proposition E.3).

. - 9K\« S (T1) [~ . .
First, () ! (21]“) (gk_glf) Ui% < Var (V) since the former is the first tern

in the latter and all the other terms are positive. Therefore, it suffices to show

) (1) (1 - _
Var (V) —Var™ (V) 320 GGG e,
ny—1 2\ (n—2k\ > ny\—1 2\ (n—2k\ >~ : :
(Qk) (21k) (QkE]{) U%,Qk (Zk) (21k) (zkflf) Ui2k

We bound the numerator and denominator in Equation (F.2) separately. For
the denominator, by the analysis of Equation (C.12), we have

-1
n 2K\ (n—2k\ . 1+ o(1)]4k> _
<2k> ( 1 ) (Zk - 1)"%1% B %Gi% (F.3)

For the numerator, by Proposition E.3 and assumption 5, Ji% = O Fc(k)) =
o(c‘”Fl(k)). Therefore, it suffices to show that

St () CH GaZt)ole Fi™)
4k2 2
n - 1,2k

0 (1) ) () ole F)omr 1)

n—aoo
- 4k2 <2 0.

n 01,2k

(F.4)

The equality in (F.4) is given by Proposition F.1. The followed “=25 0 in (F.4)
is given by Proposition F.2. This completes the proof. O

Proposition F.1. Under Assumptions 1-5,

n -1 n— a
ZiiTﬁQ (2k) (25) (zkff)c 2Fl(k)

n -1 n— a
(1) () ) (T + )2y

— 0, asn — © (F.5)
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Proof. The proof of Proposition F.1 is similar to the proof of Proposition 4.5.
The idea is that the sum of tail coefficients is a geometric sum and thus domi-
nates the growth rate of moments.

% e (5) () (5:2)
(Zk)_l(Tfil)(an—TI?lk—l)
and our analysis in Equation (C.13) and (C.14), let b, =
common ratio in the geometric sequence.

First we consider the coefficient

. By Proposition C.1

2—k+1 which is the

S o ()T () (52 2% T+ 1)
nT_Jr12 (2212) ( nzgik ) < Z [1 + 0(1)] ( 1 ' ) bn (T1+1). (F6)
(2k) (T1+1) <2k7T171) c=T1+2 ¢

Second, combining ¢** with (F.6), it’s again the problem of geometric series
with common ratio b,, = o(1). We have

LHS of ( Z 0( ) (D

c=T1+2

Z O(1)b T+

C-Tl +2

Z o1 O(1)b, — 0, (F.7)

where the last equality is concluded by the sum of geometric series. O

Proposition F.2. Under Assumptions 1-5,

ny—1/ 2k n—2k ’ az (k)
C + 1) F;
(Qk) (T1+1) (Qk k;’jlv;) (7 ) = o(i) — 0. (F.8)
01,2k

In Equation (F.8), the upper bound of ¢ = Ty + 1 term of the numerator is a
lower order term compared to the denominator.

Proof. 1t suffices bound two separate parts in Equation (F.8),

n\—1/ 2k n—2k
(o) (Tﬁré) (2k7T1*1) _ O(%)’ (F.9)
C/ T + 1 a2F(k) n2
( i )RR o). (F.10)
01,2k k

Then, combining Equation (F.9) and (F.10), we have

1 n? 1
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We first show Equation (F.9), i.e., bound the ratio of coefficient. Similar to
the analysis for Equation (C.14), by Proposition C.1, we have

n\ "'/ 2k n—2k \ _ (2k)2T+D 1
2k T +1)\2k-T1—1) = (Ty +1)! (n—2k+1)T2+1

< ]' Tr+1
(Ty + 1) 7
where b,, = #,:H. Therefore the ratio of coefficient,
n\—1l/ 2k n—2k
T — 1
(2k) (T1+1) (2k T 1) < [1 + 0(1)] le.

4k?
n

(Ty+1)1"
It remains to show bl! = o(%). By Ty = || + 1 and k = O(n'/*~¢), we have

7 _ AR e “2ey|1/e]+1 1

byt < (—)HT = O((n)H ) = o(—). (F.11)
n n

Second, we show (F.10), i.e., bound the ratio of moments. By Lemma E.8

and E.2, 07 5, = O(k2/n2F1(k)) and 57 5, = k2/n2F1(k). We have

C'(Ty +1)a2F1(k) B 9,9 a1
o =0 (n*/K*(Ty +1)*) = O(k—). (F.12)

O

F.5. Proof of Lemma E.5

Proof of Lemma E.5. First, we present a sketch of this proof. Given S’§2k) and
Sézk), our strategy tracks the distribution of Influential Overlaps, i.e., the sam-

ples in Sg%) N Sé%). We will decompose 77 5. (d1, d2) as a finite weighted sum:
Mo (dr, d2) = Zaibiv (F.13)

where 7 is the summation index to be specified later. Based on this form, we will
show a; = O(7%) and b; = O(F§k)) for each i. Since (F.13) is a finite sum, we can
conclude nf’%(dl, dy) = 0O (kLch(k)) Details of (F.13) will be presented later.
We remark that it is straightforward to upper bound 77%,21« (d1,ds) by enumer-
ating all the possible 4-way overlapping cases of S1, Ss,S3,.54 given ¢, d;, ds for
small ¢. However, the growth of ¢ from 1 to 2,3,4,...,T5 makes “enumerating”
impossible.
We start the proof by reviewing the definition of 772)% (d1,d2) (4.9):

() = Cox [, () = g (1) o (56) — o (552 .



2188 T. Xu et al.

where pq (S@F) = [(5) (*"7) CRZ201 7" Us, sucs@0) 15, nsaf—a HS)A(S2) (4.6).
The following proof is organized in two parts. First, we propose an alternative
representation of the covariance Cov[tpdl(ka)),<pd2(S§2k))], which helps dis-
cover the cancellation pattern of ’72,% (d1,dz) (4.9). Secondly, we derive Equa-
tion (F.13) and specify a;’s and b;’s.

First, we notice that ¢q4 (S(2k)) (4.6) is a weighted average of the product of
two kernels h(S7)h(S2):

2%\ [2k —d\ /2k —2d\ "
wd(sw):[(d)( : )(k_d)] ) B(S1)H(S2).
S1,82C8(2F) |81 A Sa|=d

Denote me as summation over all pairs of S, So, s.t. S1, Sy = SF) |1 nSy| =
dy. Similarly, we can also denote Y, p,,- Lhen, we can represent the covariance

Covlpa, (S°M), g, (S$)] as

Cov [a, (S7), 4 (S7)| = Cov [Mdf D h(S(S) My 3 h(S5)h(S4)

Py Py
(F.14)
_ar—1las—1
=M M Y D (F.15)
P12 P3q
= Z p(ﬂ,dl,dz,c)p' (F16)
feasible r
In the above equations,
p(Ldl7612’6):=M(1_11Md_21 Z 1{overlapping structure of S1, S2, S3, S4 satisfies (r,d1,d2)};
(81,52,53,54)
My = (25) (%d_d) (2::3‘1) is the number of pairs of sets in the summation.

The equality in (F.16) holds by combining the p terms with the same r (see
definition of r in Appendix B.1). Since it is difficult to figure out the exact value
of P(r.dy ds,c), We further propose the following proposition to show an alternative
representation of Cov[pg, (S%zk)), Ods (Sg%))].

Lemma F.3. Denote r;y = Z?:o rij and ry; = Zf:o i, fori,j =0,1,2 and
vector ¥ 1= (T0s, 1%, T25, T50, T 1, Tx2), we have

2k 2k
Cov [SOdl (Si )) Pz (Sé ))] - Z p(’”O*J‘l*”‘Q*adl7C)p(7’*0a7"*117‘*27d2,0)g(£*’d17d2)'

feasible r¥

(F.17)

Here P(ros,ris ras.di o) qnd P(rso,rsr rgada,c) OTC non-negative and satisfy the
following. For non-negative integers xg, x1,x2 that xo + x1 + 2 < c,

—1
d k—d\[(k—d d 2k -
z0,T1,T c) ‘= - kzlJrzz %)
P(zo,21,22,d,c) <x0>< 1 )( To )(C—$0—$1—$2><C> o )

(F.18)
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g(r*,dy1,ds) is the following weighted average of p, where the weight is some
constant p(y, px) satisfying that Zz* Dir,rx) = 1.

g(r*,di,d2) == ) piy, iy p- (F.19)

The proof of Lemma F.3 is deferred to the end of Appendix F.5. Under
Assumption 3, p does not depend on dy,ds. Hence, g(r*,d;,ds) also does not
depend on dy, ds. We further denote G(r*) = g(r*, dy, dz2). Then,

2k 2k
Cov [(pﬂh <S§ )> ) Pds (Sé ))] = 2 p(m*,7“1*,Tz*,dl,c)p(r*o,r*l,T*g,dQ,c)G(f*)-

feasible r¥

(F.20)

We remark that perg, i ros.dise) A Dro rr rya,da,e) CaN be viewed as some
probability mass function with parameters ¢, dy, ds (see the proof of Lemma F.3).
As a corollary of (F.18), when ¢ — 1 — 22 > d, P(zg.,2,,22.,d,c) = 0- In particular,
when d = 0 and 21 + 2 < ¢ — 1, P(oy,a;,20.d,c) 1S always 0.

Notice that since S%zk) is independent of Sé%), D feasible o CAN be written
as two sequential sums: >, .Y €

Txl,
expression of Cov[pg, (S%Qk)), Odsy (Sé%))] (F.20) into 2 o, (d1, d2) (4.9), we have

) = Cov o (5) = (5) e (59) - o (55°)]

= Z [p(ro*ﬂ*yrz*,dlyc) _p(TU*!T1*1T2*v01C)] [p(T*OaT*qu*de21C> _p<7’*0»7’*177'*2107¢3>]
feasible r*

re2)” Therefore, by plugging the

a;

x G(r*) (F.21)
b;

We have two observations on the above Equation (F.21). First, this 773,2 w(d1,d2)
= Zi a;b; is a finite summation because ¢ < Tj. Hence, to show 77?,% =
O(Fc(k)/kZ), it suffices to bound every term a; - b;. Secondly, by Lemma F.3, b; =
G(r*) is a weighted average of p where the non-negative weights > 4« p(y, %) = 1.
Hence, each b; is naturally bounded by the upper bound of p. We conclude that
b; = (’)(Fc(k)). Therefore, it remains to show that a; = O(k~2) for every . This
is provided by the following lemma.

Lemma F.4. Fizing integer d,c = 0, for any tuple of non-negative integers

(xo,x1,x2) S.t. Z?:o z; <c,

P(xo,x1,x2,d,c) — P(xo,x1,22,0,¢) — O(_) (F22)

The proof is collected later in Appendix F.5. This completes the proof of
Lemma E.5. We remark that though there exists p(y;,2,,25,d,c) = 1 for some
(70, T1,72), P(zo,a1,29.dic) — P(zo,z1,2,0,c) 15 always at the order of (9(%) |
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Remark F.5. This proof has proceeded under Assumption 3. It can be adapted
to a weaker assumption: Assumption 6.The according proof using this new as-
sumption will be present in Appendix G, where we cannot exactly cancel two p
with the same r but different d.

We present the proof of two important technical facts in the above proof:
Lemma F.3 and Lemma F.4.

Proof of Lemma F.3. First, we derive Equation (F.17) from Equation (F.16):

Cov [thh (S£2k))7 Pds (S§2k))] = Z p(£7d1 ,d270)p'

feasible r

Given that ¢ = |S§2k),552k)|, dy = |S1 n S2] and dy = |S3 N Sy|, suppose we
randomly sample a feasible S7, .55, 53,54 from all possible cases, we can use a
9-dimension random variable R to denote the 4-way overlapping structure of
S, 82,83, S4. Hence, the the coefficient p(, 4, 4,,¢) in (F.16) is P(R = r|dy, da, c).
Then, denote a 6-dimension random variable R* = (Rgx, R14, Ros, Ryo, Ry,
R.2), taking all possible values of r* given dy, da, c. By Bayesian rule,

PR = rl|dy,dy,c) = P(R = r[R* = r*,dy, ds, c) P(R* = r*|dy,da, ¢). (F.23)

Since 51,5, < S%Qk), S3,84 < 5521@) and S?k) is independent from Sg%),
(Rox, Rix, Roy) are independent from (Ryo, Rs1,Ry2)). Hence, we can fur-
ther decompose P(R* = r*|dj,ds,c) as P(Rox = 704, R1x = 714, Rox =
TQ*)|d170> . P(R*() = 740, Rx1 = 741, Ry = T*Q)‘dz,c). To simplify the no-
tations, we denote

p(z,dl,d27c) = P(R* = f*|d1,d2,6),
p(ﬁvf*) = P(R = E‘R* = £*7d17d27c)a
p(To*,T1*,T2*7d1,c) = P(RO* = TO*;Rl* = Tl*,RQ* = 7'2*)|d1,6),

D(rgorrsr,razda,e) ‘= P(Rxo = 750, Ru1 = 741, Rua = ry2)|da, ©).

Given R*, the distribution of R does not depend on di,ds,c so we omit the
subscript di,da, ¢ in p(,, ). We also remark that »; 4 p(, r+) = 1 since R|R*
can be viewed as a random variable. Based on these notations and (F.23), we
can rewrite Equation (F.16) as

Z Z P(r, r*)P(ros,r15 rase,d1,0)P(ryo,me1,m52,d2,¢) P

feasible r¥ feasible r

= Z P(ros,ris,rox,d1,¢)P(ryo,me1,m52,d2,c) Z P(r, Z*)p] :
feasible r¥ feasible r
[ —
denote as g(z*7 dy,ds)

This justifies both Equations (F.17) and (F.19).
Secondly, we show Equation (F.18). Since p(ro, riy.rox.di,c) A0 Diryo rir gz sda.c)

can be analyzed in the same way, our discussion focuses on p(,, . rox.di,c)s
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which is boiled down to the distribution of (Rgx, Ri4, Ras). Given ¢ and dy, ¢
Influential Overlaps can fall into 4 different “boxes” in S?k): S1 N Sa, S1\Se,
92\ Sa, and S\ (1 U S,), with “box size” as dy, k—dy, k—dy, di respectively.
The number of samples in each “box” follows a hypergeometric distribution.
This is illustrated by the following table.

TABLE 5
The distribution of Influential Overlaps in S%zk).
Index 0 1 2 3
“hox” S1n S Si\S2  S\S1 SPFIN\(S:1 U S,)
“box size” dy k—di k—di di
# of Influential Overlaps Tox 1% Tox c—lr|

Hence, the probability mass function of (Ros,Ris,Rox): P(Ros = 7ox,
Rix =714, Ros = 7‘2*‘d170) is

[\ (k—di\ (k—d dy 2k\ !
P(ros,rix,m2s%,d1,c) = Tox o, Tos C— Tox — T — T2 c ’

(F.24)

It remains to show that p.g. ri. rox.die) = O(krtr2%=¢) for any fixed c,d;.
In the following, to simplify the notation, we denote x; = r;4 for ¢ = 0,1,2 and
XT3 = ¢ —Tox — s — T'1x. Then Equation (F.18) can be written as

.’E()!.’Ellil'z!l'g! (d1 — 1’0)' (/ﬂ — d1 — $1)' (k — d1 — .’Eg)' (dl — .’Eg)' (2]€ — C)'
(F.25)

Before the formal justification, we remark that (F.25) looks similar to the prob-
ability mass function of a multinomial distribution: ——%—— (ﬂ)xo (k*dl )Il

ZEO!$1!ZEQ!I3! 2k 2k
k—di\%2 (d;\%*3 ] 3 3 Tr1t+To—C
(552)"" (&), which is obviously O(k )-

We decompose Equation (F.25) as a production of three parts, denoting

. c! o dy! (k—dy)! (k—di)! dy! .
P(art)ll = m, Part II := (dlfwo)! (k*dlfwl)! (k*dlfwz)! (dljmg)[’ Part IIT :=
2k)!

@Rl Since xg, x1, T2, T3, c are finite, Part I can be viewed as a constant in
the asymptotic analysis. For Part II, again, (dld_—lio)l wf_il;g)! does not depend on
k and thus can be treated as a constant. For the rest part:

k—d)l (k—dy)! =”“‘1,€_d_iH”_1k_d_¢1
L [H)( [ [T
< (k _ dl)w1+m2.

For Part III,

c—1
% = H(zk—i) > k°.
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Combining Part I, II, III, we have
Plao,ar,eadre) = O [(k = dy)™F72 [k°] = O(k~Hmtee),
This completes the proof. O

Proof of Lemma F.4. To ShoW D (2 21 ,22,d,c) = P(wo,m1,m2,0,c) = O(%), we study
two cases separately, where case I is 1 +x2 < c—1 and case Il is z1+x2 = c¢. This
is motivated by the conclusion of Proposition F.3, p(z, 21 25.d,c) = O F727¢).
We first study case 1. For any finite ¢, d, since 1 + z2 < ¢ — 1, by (F.18),
P(zo,a1,20,d,c) = O(1/k). In particular, p(zg 21 s,0,c) = 0. Therefore,

1 1

p(wo,zl,zg,d,c) - p(mo,xl,wz,o,c) = O(E) —-0= O(E)

Secondly, we study case I1. For any finite ¢, d, since z1+z2 = ¢, P(2g.,2,,29,d,c) =
L and pag,2,,25,0,c) = 1. Hence, we can not conclude the order of p(y 2, 25.d,c) —
D(z0,21,22,0,¢) directly from the order of each term. We need to study p(zo 1 ,20,d,c)

- (d)(’f—d) (k_d)( 4 )(Qk)_l a bit more carefully. It is equivalent to

xo Xy xro C—To—T1—T2 (&
showing that

[p(aco,xl,xz,d,c) - p(acg,xl,xz,o,c)] /p(xo,;cl,acg,d,c) = p(;co,acl,mg,d,c)/p(oco,x1,:c2,d,c) -1
1
—0(=).
()

To prove the above, we denote q(d) := P(zg,01,02,d,c)/P(o,1,22,0,c)- 1t suffices to
show that

1
Q(d) = p(mg,wl,:cg,d,c)/p(zo,a:l,a:g,o,c) =1+ O(E)

Since xg+x1 +x2+x3 = cand 1 +x2 = ¢, we have g = 23 = 0 in D(wo,w1,a2,d,c) -
Therefore,

(6) (L) 0,0 ) )6
) (%)

B (k — d)! (k — d)! ! k!
(F.26)

q(d) =

/

By direct cancellations of factorials, the above equation can be simplified as

[T (k — a1 — ) [T (k — @z — 1) lk—x—] lk—x—]
1 10 (k — i) T, (k — ) H k—i H k—i
(F.27)

To upper bound these two products in Equation (F.27), we consider a general
argument. For any integer b > a > z > 0, we have

a—T a—1 a
<. < < -
b—x b—1 b
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Therefore,

a—2x x< afa—1)..(a—x+1) _ (g)w

b—xz) ~bb—1)..(b—x+1)  \b
Hence, let a = k — x1,b = k,x = d — 1, we can bound Hd 1k$—ji in Equa-
tion (F27)

k—d+1—m , Shk—zi—i k-
7T C Plyd ¢ < )
a1 ) 11) ke — i (=)

Similarly, we can bound Hd ! koza—i in Equation (F.27) as (ﬁdf—dlgfz)d <

Hf 01 kozami < (E=22)d, Therefore, the Equation (F.27) can be upper and lower
bounded as

d d d d
k—d+1—x k—d+1—29 < q(d) < k—xq k — xq
k—d+1 k—d+1 k k

(F.28)

We will show both LHS and RHS of Equation (F.28) is 1 + O(3). First,
consider the terms in the RHS of Equation (F.28). Recall that d,z; are finite
compared to k, by binomial theorem

(2) -3 -5 ) b

Similarly, for the other term in the RHS of Equation (F.28), we achieve

(’“_]f“')d 4 +0(%).

Similarly, for the two terms in the LHS of Equation (F.28), we have

k—ay—d+1\* 1 1
<—k—d+1 ) _1+O(7k—d+1)_1+0(ﬁ)’
k—ao—d+1\* 1 1
( k—d+1 )‘HO(de)_HO(E)'

Putting the above analysis together for Equation (F.28), we get

Jl-od
|

This completes the proof. O

[1 + 0(%)] [1 + 0(%)] <q(d) < [1 + O

El =l e

— [1 + O(H <q(d) < [1 Lo
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F.6. Proof of Lemma E.6

Proof of Lemma E.6. By 4.9, given S(% , 55 (20) g ¢. |S(2}7C Sé%)| =c,

M ai(da,dz) = Cov |a, (SP) = 0 (S 0, (S8) = o (55))|

o (5. (5] oo (52) 0 (57

where the last inequality is by the non-negativity of p. By the definition of ¢y
in Equation (4.6), the RHS of above equation is upper bounded by

2 max p=0O(F®), O
51,52 S*M) s.t.|81 1S5 |<d1,S3,54= S5 s.t.|S5n 84 |<ds

F.7. Proof of Lemma E.8

Proof of Lemma E.S8. We apply the strategies we used in the proof of Lemma E.4.
The truncation parameter is To = [%J + 1. Recall in Lemma E.4, Var(V,) =

Ziil (272) o (2ck) (gk 25) Oc2k> where
ko k
= Z Z dlwd2n02k: (dy,dg), for ¢ =1,2,...,Ty.
di=1d;=1

We decompose 0372,6 into three parts:

SRS W TR CNUNARED D YRR RO

di=1dz2=1 di=1dy=Ts+1 )
A 5
k k
+ Y wawamox(di, da) . (F.29)
dy=To+1 do=Ts+1
c
Similarly, denote
T, T
A= 2 ok (1) = Z Z Wa, Way o o1, (d1, da), (F.30)
dy=1dy=1

where 7 25 (d1, d2) is the upper bound given in Lemma E.5. To prove this lemma,
it suffices to show

2B
im 2210, (F.31)
k—o0 A
It remains to bound ]l, B,(C as
v F .9
A= ,B = O (wp,1F.),C =0 (0f, 1 F.), (F.32)

k2
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where Wy = O(%) is the rough upper bound of wy in (4.7). We need to
quantify two parts, the coefficients wq, wq, and the covariance 772,% (d1,ds). Fix
one ¢ < Ty and first quantify nf’%(dl, d3). By Lemma E.5 and E.6, we have

1
N2 o (dy, da) = O(zF

Negp(d1, do) = O(Fy), for ¢ < 2k,dy,dy < k. (F.34)

) for c< Tl, d17 d2 TQ, (F33)

n

By Proposition E.2, we have A = 03 ok (Ts) = O(k2 +). Since A is the upper

bound of A given in Proposition E.2, 4 = O( F.). For B,C, we upper bound
77072,€(d1, dz) by O(F,) in Equation (F 34). Hence we can reduce the analysis for
both coefficients and covariance to the analysis on only coefficients wyg, for

g .

di=1 =Ts+1
k k
C= O(Fc) Z wdl] l Z wd21 .
dy=T>+1 do=T>+1

To be more specific, it remains to show that

T> k
DMwg=0@w), > wg=O(tr,41).
d=1

d=T>+1

2d

where Wy = O(2—) is the rough upper bound of wg in (4.7).
For 252:1 wq, by Equation (4.7), each wg = [1 + 0(1)];“!22 < [1+o0(1)]%7
The common ratio of geometric decay is k/n = o(1). Therefore, the first term

k2d

w; dominates ZdTil wq. For ZS:TQH wgq, by Equation (4.7), we have each wgq =
O(%) = (9(’;—2;) Similarly, by geometric decay with common ratio k?/n,

2=, X, o0 -0 (6m),

d=T>+1 d=T>+1

k v
Hence we define wr, 1 = & )Tt Then Yy g,y wa = O(Wp, 41).

We have proved the bounds in Equation (F.32). Then plug Equation (F.32)
into the LHS of Equation (F.31), we can conclude that

2B + C _0 (kQ(wleﬁl + ﬁ’%ﬁl))

F.
- (F.35)

For (F.35), plugging in T = [1/¢| + 1 and the the upper bound of wg = [1 +

o(l)]éﬁidd and Wy = O(d,j;

2B+C _ 2, —2e([1/e]+1) _ 2, —2e([1/e]+1) _ (1.2, -2y _
b —O(kn )—O(kn )—o(kn ) = o(1).

This completes the proof. O

) from Equation (4.7) and (4.7), we conclude
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Appendix G: Relaxation of Assumption 3 and according proof

Assumption 3 assumes that p(r,d;,ds) only depends on r, and therefore it has
9 DoF. This is valid in Example B.2 but still too restrictive in practice. In this
section, we first present Assumption 6 as a relaxation of Assumption 3, Then,
we show that the technical lemmas can be proved under our relaxed assumption.
We denote p as p(r,d1,ds) in this section, since p depends on all 11 DoF rather
than only 9 DoF.

G.1. Assumption 6

Assumption 6 (Relaxation of Assumption 3). Given r, for any finite dy, ds, we
have dy = royx = Z?:o T, do = Two = Z?:o r;0 by their definition. There exist
constant B and B(r) such that B(r) < B < o,

plesdnsdo) = 14+ B@ AR EI0 L 000y ), (@)
p(r, dy, d2) < Bp(r), (G.2)

where
p(r) == p(r,70x, Tx0)- (G.3)

In Equation (G.1), we refer to the benchmark 5(r) as main effect, capturing

the contribution from the overlap between S%Qk) and Sé%); while we refer to
the rest part, O(%)ﬁ(z), as additional effect, capturing the contribution from

the overlap within S;Qk) and the overlap within Sé%). Equation (G.2) bounds
additional effect with respect to main effect. Note that in Example B.2, there
is only the main effect, i.e., B(r) = 0 and thus Assumption 6 degenerates to
Assumption 3.

We interpret main effect and additional effect as follows. First, S; u S can

be decomposed into two sets: A = (S1 U S2) N (SE%) N Sé%)), i.e., the set of

Influential Overlaps and B = (51 u Sg)\(Sg%) N Sé%)). Similar analysis holds
for the O (df) term. When we fix r and increase dy, A does not change while the
structure of B changes with dy, causing p(r, di, d2) to deviate from j(r). Second,
we assume that this deviation has a lower order impact compared to the main
effect, i.e., the order of (9(%1).

G.2. Proof under Assumption 6

In our previous proof, only two fundamental lemmas directly rely on Assump-
tion 3: Lemma E.5 (the precise bound for ni%(dl,dg)) and Lemma E.6 (the
rough bound for 72 ;. (d1, d2)). Based on these two lemmas, we can derive the

upper bounds of Ji% and hence upper bound Var(Vu) (see the proof roadmap
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in Appendix 4.4). Therefore, when Assumption 3 is relaxed to Assumption 6, it
suffices to show the results in Lemma E.5 and E.6.

First, it is trivial to validate a relaxed Lemma E.6 under Assumption 6. As-
sumption 6 does not change the upper bound of p(r,ds, ds), which is Fc(k) =
Cov[h(S")?, h(S")?] s.t. |S" n S”| = ¢ (4.13). The proof of Lemma E.6 in Ap-
pendix F.6 only requires the upper bound Fc(k), thus it still works.

Second, we need to adapt the proof of Lemma E.5 in Appendix F.5. p(r, dy, d2)
can no longer be represented as p(r). Thus, p(r,dy,ds) — p(r, d}, d}) is not nec-
essarily 0 for (dy,ds) # (d},d5).

Proof of Lemma E.5 under Assumptions 1, 2, 4 - 6. We adopt the proof in Ap-
pendix F.5 from the beginning to Lemma F.3. We note that Lemma F.3 does
not rely on Assumption 3. Hence, we still have Equation (F.17):

Corfa (5 s (55

_ *
- Z p('rO*,'rl*,rg*,dl,c)p(r*o,r*l,r*z,dg,c)g(z >d17d2)7
feasible r¥

where ¢(r*,d;,ds) is given in Equation (F.19).eq:def:g Since p(r,d;,ds) in
g(r*,di,ds) (F.19) depends di,ds, we cannot further simplify g(r*,d;,ds) as
G(r*). Further, we denote

p_g(f*; dla d27 C) = p(’l"[)*,Tl*,7’2*,dl,C)p(’l‘*o,T*l,T*Q,dz,c)g(£*7 d17 d2a C);
Apg(£*7 d17 d27 C) = p_g(£*7 dla d27 C) - p_g(£*7 07 d27 C)
- p_g(f*a d17 07 C) + p_g(f*v 07 Oa C)~

Then 773,% (d1,ds) can be represented as

Moop(dr,do) = )] Y, Apg(r*,dy,ds, o). (G.4)

(rose,T1s,T2%) (Ts0,T1,T52)

We apply the strategy used in the proof of Lemma F.4, partitioning the
summation as follows:

1z o1, (dv, dg) = < Z + Z )

Tixt+rex=c Tig+rog<c—1

X( DI DY )A—pg(z*vdl,dz,c). (G.5)

Tx1+Tg2=cC Tx1+rg2<c—1

There are 4 cases. Case A: 114 + 724 = cand 741 + 742 = ¢; case B: ri, + 19y = ¢
and 7y + 740 < c—1; case C: rix + 705 < ¢c— 1 and ryy + 749 = ¢; case D:
T1sx + T2 < ¢— 1 and ry1 + 72 < ¢ — 1. Since c is finite, 7;4’s and 7y;’s are also
. . . . E)\
finite. Thus, (G.5) is a finite summation. To show ni%(dl, dy) = O(k%FC( ))7 it

suffices to show that the summand Apg(r*, dy, ds, c) = O(k—lec(k)) in all 4 cases.
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First, we study case A. For the g(r*, d;, ds) defined in Equation (F.19), by ap—
proximation of p in Assumption 6: p(r,d;,ds) = [1 + B(r )d RN (%) ]
we have

dy+d 1
g(£*7d1’d2)2[1+ - 2 ( )+O(_2)]g(£*7070)’
Therefore, Apg(r*, dy, ds, c¢) can be simplified as
APQ(Z*, dla d27 C)
= g(£*7 Ov O){(p(r()*,rl* JTox,d1,c) T p(’l‘[)* ,rl*,r2*,0,c))
X (p(T'*o,T*hT*%dmC) _p(T*o7T*1J’*2,07C))
dlB(f)
+ Lk D(ros,mis,ma%,d1,c) <p(r*o,7"*1ﬂ“>x<2vd2vc) _p(T*ovT*hT*z,O#))
ng(ﬁ) 1
+ k P(ryo,rg1,m52,dz,c) (p(To*,Tl*Jz*@hC) - p(T0*7T1*7T2*,d270)) + O(ﬁ)}

By Lemma F.4, p(roy ris.ran dise) = Plrosorisras,0:¢) = O/E), Dirgorir rassdarc) —
P(ryo,rg1,m%2,0,¢) = O(l/k) BeSideSa g(f*v 0,0, C) < FC(k) ThUS, Apg(f*a d17 d?a C)
= O(LFD).

Secondly, we study case B. Recall that p(,,. .y, res.0,c) = 0 by (F.18). There-
fore, pg(r*,dy,0,c) = pg(r*,0,0,c) = 0. Hence, Apg(r*,d,ds, ¢) can be simpli-
fied as

Apg(£*7 dlv d27 C) = p_g(t*v dla d27 C) - p_g(t*v 07 d?v C)~ (G6)
By Assumption 6, we can approximate g(r*,d;,ds) as
dy
g(ﬁ*adladQ):[]-—’_? ( )+O(k2)]g(£*a0ad2)
Then, plug the above approximation into Equation (G.6):

Apg(£*7 d17 d2a C) = Q(Z*, 07 d2) [p(r*o,r*l,r*g,dg,c)

x (p(To*,h*,Tz* ,di,e) T Plrog,ris ,T2*70,C))

dlB(t) 1

+ L P(rose.r1se 25 d1,0) P(ryeo.rser ryez dz ) O(ﬁ)]

Similarly, we have p(r.g ryiriadac) = O/K) and oy iy rag diie) = Po(Z) =
O(1/k). Given g¢g(r*,0,ds,c) < Fc(k)7 we conclude that Apg(r*,dy,ds,c)
- O(LFD).

Thirdly, by a similarly analysis in case B, we can bound Apg(r*,d;,ds,c) =
O(k%Fc(k)) in case C.

Finally, we study case D. Since 714 + 105 < ¢ — 1 and 741 + 742 < ¢ — 1,
P(rog . risras.0.¢) = Plrgo.rsra.0,c) = 0. Therefore,

Apg(ﬂ*a dlv d27 C)dldQ = p(m*,n*,rg* ,dl,C)p(T*gﬂ‘*l,T*z,dg,c)g(t*7 dla d2)
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Since P(rog,ris,rag,di,c) = O(l/k)v P(ryo,rs1,mg2,d2,c) = O(l/k)7 and g(f*v dy, d2) <
F®, Therefore, we can bound Apg(r*,d;, ds,c) = O(%Fc(k)) in case D.
This completes the proof. O

Appendix H: Low order kernel h illustration

This section provides an over-simplified analysis of the behavior of E(Vu) and
Var(V,,) assuming that h is a linear kernel. Then, we discuss the difficulty in
generalizing the analysis to a general kernel h, which motivates us to propose

the assumptions for Cov[h(S1)h(S2), h(S3)h(S4)] in Section 4.2.

Proposition H.1. X;,X,,..., X, iid., s.t. E(X;) = 0,Var(X;) = v > 0.
Suppose kernel function h(Xy, ..., Xg) = %ZLI X, Then, we have the ratio
consistency of the estimator,

This can be concluded by showing that E(V,) = Q(1) and Var(V,) = O(%).
We skip a complete proof of this proposition but remark on three key steps to
upper bound Var(Vu): 1) the decomposition of V., by a double U-statist structure
(Proposition 4.2); 2) deriving an explicit form of ¢4 (S(%)) — o (S(Qk)) in the

above decomposition as

d [ 1 2
— | = X} - X, X;|;
k2 | 2k X“;%) 2k(2k — 1) X“Xjeg%)’m

and 3) showing that the leading term in Var(V,) dominates Var(V,,).

We note that a similar analysis may be performed for an intrinsic low-order
kernel, where h(Xy, ..., X) = (,;>71 Zi1<.‘.<il gD(X;,, ..., X;,) for a fixed | and
g is an order ! kernel. Because we are still able to derive an explicit form of
9a(SPF)) — oo (SEP).

However, for a general kernel h without a low-order structure, difficulties
arise in the above analysis. First, ¢q(S®%)) — ©o(S?*)) no longer has a simple
expression. Our remedy is to quantify the implicit cancellation in covariance
12 ok (. d2) = Covlioa, (577) = @o(S1™). 0, (53°7) — 0 (S1)] (see Equa-
tion (4.9)). The further decomposition of 7?2 4. (d1,da) involves the following
covariance (4.11)

p = CO’U[h(Sl)h(SQ), h(Sg)h(S4)]

Thus, assumptions are made about this term. In particular, Assumption 3 re-
duces its degree of freedom from 11 to 9. A relaxation of Assumption 3 is
presented in Appendix B. Second, we may not be able to show that oi% (or
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its upper bound) dominates Var(V,) (4.3) as 03, 5, /0%, does not have an ex-
plicit form. Therefore, we adopt a new strategy that bounds all ai% with a
tighter upper bound for ¢ = 1,2,..,7; (Proposition E.2) and a looser upper
bound for ¢ = Ty + 1,...,2k (Proposition E.3), where T; is a fixed value de-
pendent on the growth rate of k. A series of technical lemmas are collected in
Appendix E.

Appendix I: Additional simulation results

This section we present additional simulation results.

I1.1. Computational cost

We performed additional simulation study to address the concern of computa-
tional cost. It should be noted first that the major cost of variance calculation in
MS is not the part of our proposed estimator, but it is rather the standard pre-
diction mechanism in which we send an observation down each tree. Once these
tree predictions are obtained, the variance estimation is done immediately at lit-
tle cost. On the other hand, BM, BM-corr (bias-corrected BM) and 1J estimators
add burden to this. They all involve using the number of training samples in each
tree (see, e.g., equations m; = Zf;”l w; phy and é?}i = ﬁ Sy (my — ﬁz)Q in
Section 4.2 [35]) and hence the total cost is at O(nTrees-nTrain). Furthermore,
our MS-s estimator adds additional computational cost based on predicting ad-
ditional neighboring samples, but this is not affected by the number of training
samples.

To rigorously compare the computational cost of MS and BM estimators,
we implemented BM and BM-corr under the same C++ parallel computing
framework of our RLT package, which was used to implement our MS and MS-s
methods. We also use the grf package to fit random forests and perform 1J
estimation.

We perform experiments with these settings: subsample size k = n/2 setting
and number of trees (nTrees = 2000). All experiments are performed on an 8-
core AMD Ryzen 7 4800H CPU with 16 GB ram. Each experiment is repeated
1000 times and we summarize the average cost of each experiment with aver-
age’s standard error (in millisecond) in Table 6. The other experimental settings
are the same as the experiments presented in Section 6.2, including using 200
training samples and 55 testing samples. We enable the use of multiple cores
for model fitting and prediction procedures by setting the ncores parameter in
RLT and the num.thread parameter in grf as 8.

Columns in Table 6 can be interpreted as follows. The variance estimation
cost for each testing samples is collected in the last column: “Additional cost
from var est”. For MS, MS-s, and 1J methods, this column is calculated as a dif-
ference between prediction with and without variance estimation since variance
estimation is integrated in their model prediction functions. As references, we
also present the cost of 1) fitting random forest on 200 training samples (column
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TABLE 6
Computational cost in milliseconds. The cost of time is reported in the form of “average
over 1000 simulations (standard error of the average)”. IJ is implemented in grf and all
other methods are implemented with RLT and Rcpp.

Method Train Post-train (pred. and var. est. per testing samilsz)'t' —
Model Fit Pred. cost Total cost tional cos
var est. = Total — Pred.
M 151 .001 .01 .001
MS L ags (0.2) 0141 (<0.001) |21P (<0.001) | 0.010  (<0.001)
MS-s 1.830 (0.010) 1.679 (0.010)
BM 47 04) 0143 (<0.001) |02 (0.002) | 0.060  (0.010)
BM-cor 1.634 (0.005) | 1.491  (0.005)
1 65.9 (1.1) 0.547 (0.001) | 0.596 (0.001) | 0.050  (<0.001)

“model fit”), 2) predicting on each testing samples (column “Pred. cost”), and
3) total cost of prediction and variance estimation (column “Total cost”) on
each testing sample.

When comparing the additional variance estimation cost (last column) of all
methods, MS is faster than BM and IJ, which BM and IJ show similar cost.
However, the costs of all 3 methods are much lighter than the cost of model
fitting. The little cost of MS confirms our previous statement that they can be
immediately obtained after standard predictions, i.e., O(nTrees).

For each testing sample, after obtaining the predictions of nTrees trees, the
variance estimation cost of MS estimator is O(nTrees) (see line 7-13 of Algo-
rithm 1 in Section 6). While for BM method, their estimator of the component
o2 of each testing sample involves using the number of training samples in each
tree (see equations m; = 32" w; yhy and 5{32{ = 13" | (m; —m)? in Section
4.2 [35]) and hence the total cost is at least O(nTrees - nTrain), where nTrain
is the number of training samples. Similarly, IJ’s cost of variance estimation for
each sample is also O(nTrees -nTrain) (see Equation (5) in Wager, Hastie and
Efron [29]). BM-cor estimator is a little more computationally intensive while
we notice there exists an approximate version of this estimator [35, Appendix
E.], whose cost is between BM and BM-cor. In short, given our matched-group
samples, MS estimation is efficient because it does not need to track how many
times each training sample appears in a specific tree.

1.2. Additional experimental results for mtry = 2

We perform the same experiments in Section 6.2 with mtry = 2, i.e., p/3, as
to show that variance estimation is not very sensitive to the choice of tunning
parameters. Experimental results are collected in Table 7 and 8. While we do
observe a slight decrease of coverage across all models, possibly due to the worse
performance and possibly larger variance of random forest itself, the coverage
results and relative bias are not changed significantly compared with Table 1
and Table 2 in Section 6.2.
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TABLE 7
mtry=2. 90% CI Coverage Rate averaged on 50 testing samples. The number in the bracket
is the standard deviation of coverage over 50 testing samples.

k=n/2 k=n/4 k=n/8
nTrees 2000 20000 2000 20000 2000 20000
MARS
MS 78.0% (3.2%)  86.5% (1.4%) | 79.3% (3.6%) 88.2% (1.0%) | 79.1% (3.1%) 88.0% (1.4%)
MS-s 87.0% (2.8%) 89.6% (2.6%) | 86.7% (2.5%) 90.1% (1.8%) | 86.2% (2.4%) 89.4% (1.8%)
BM 85.0% (3.6%) 66.4% (1.9%) | 93.4% (1.8%) 81.6% (1.4%) | 94.7% (1.1%) 86.9% (1.2%)
BM-cor  3.6% (4.2%)  57.8% (2.1%) | 3.6% (4.2%)  57.8% (2.1%) | 82.1% (1.3%) 85.0% (1.1%)
1J 82.1% (1.3%) 85.0% (1.1%) | 90.7% (1.5%) 90.4% (0.8%) | 93.5% (1.5%) 88.1% (0.9%)
MLR
MS 81.2% (1.8%) 87.1% (1.1%) | 81.9% (2.4%) 88.3% (0.9%) | 81.9% (2.4%) 88.3% (0.9%)
MS-s 89.2% (1.5%)  90.4% (1.3%) | 88.7% (1.3%)  90.3% (1.4%) | 87.7% (1.6%) 90.6% (1.1%)
BM 82.7% (1.9%) 64.9% (1.7%) | 91.8% (1.2%) 81.5% (1.2%) | 94.1% (1.1%)  86.4% (0.9%)
BM-cor  6.0% (3.5%) 57.9% (2.1%) | 6.0% (3.5%) 57.9% (2.1%) | 82.7% (1.2%) 84.8% (1.0%)
1J 93.9% (0.9%)  95.7% (0.7%) | 90.2% (1.0%) 90.8% (1.0%) | 92.5% (1.1%) 88.3% (1.2%)

TABLE 8

mtry = 2. Relative bias (standard deviation) over 50 testing samples. For each method and
testing sample, the relative bias is evaluated over 1000 simulations.

k=n/2 k=n/4 k=n/8
nTrees 2000 20000 2000 20000 2000 20000
MARS
MS 0.7% (2.3%) 0.2% (2.3%) 1.4% (2.5%) 0.8% (1.8%) —1.1% (2.5%) —0.4% (1.5%)
MS-s 4.6% (13.8%) 4.8% (13.5%) 4.8% (10.6%) 4.6% (10.8%) 2.3% ( 6.3%) 2.8% ( 6.6%)
BM —15.9% (15.0%) —63.9% ( 1.6%) | 33.4% (16.9%) —31.2% ( 2.3%) | 49.9% (11.5%) —11.9% ( 1.9%)
BM-cor  —120.6% (14.2%) —74.4% ( 1.7%) | —60.6% ( 5.4%) —40.7% ( 1.2%) | —27.7% ( 2.2%) —19.9% ( 1.4%)
1J 85.5% (13.8%) 85.0% (13.6%) 52.7% (15.7%)  23.9% ( 3.7%) 91.8% (22.4%)  18.2% ( 5.2%)
MLR
MS 0.0% (2.7%) 0.8% (2.4%) —0.7% (2.5%) —1.1% (1.9%) —0.8% (2.2%) 0.0% (1.5%)
MS-s 8.7% (8.5%) 9.3% (8.8%) 6.8% (6.6%) 6.3% (6.8%) 4.0% (4.1%) 4.9% (3.9%)
BM —28.0% (5.7%) —65.3% (0.9%) | 19.5% (8.0%) —33.0% (1.4%) | 39.7% (7.1%) —14.3% (1.3%)
BM-cor  —109.7% (6.0%)  —73.5% (1.1%) | —57.5% (2.8%)  —40.8% (1.0%) | —27.0% (1.7%)  —21.1% (1.4%)
1J 76.8% ( 8.8%) 78.9% (10.5%) 39.8% ( 7.1%) 20.0% ( 2.8%) 73.9% (14.1%) 12.5% ( 2.8%)

I1.3. Ground truth in the simulation

We simulate the ground truth for our experiments in main text: the expec-
tation of forest predictions: E(f(«*)) and the variance of forest predictions:
Var(f(x*)), by 10000 simulations. (see Section 6.1)

Since variance estimators are produced by different packages, we use the cor-
responding package to generate their ground truth. IJ estimator is performed
by grf package when k < n/2 and ranger package when k > n/2. Both “RLT
(MS)” and “RLT” use RLT package. However, When k < n/2, they apply differ-
ent way to sample incomplete U-statistics: matched-group sampling for MS and
MS-s, and independent subsampling (see the description above Equation 2.5)
for BM and BM-cor respectively. When k > n/2, the sampling schemes are the
same. The result of the central testing sample (see Section 6) is presented in
Table 9 and Table 10. There is a small difference between different packages
though similar tunning parameters are used to train random forests.

In addition, we present the “oracle” CI coverage rate in Table 11, which
matches 1 — a. To construct these Cls, we still use the random forest prediction
over 1000 simulations but replace the estimated variance with the “true vari-
ance”, Var(f(x*)). This result also shows the normality of the random forest
predictor.
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TABLE 9
Ground Truth of E(f(x*)) evaluated on central testing sample by 10000 simulations.
Reported in the form of “mean (standard deviation of mean)” of E(f(x*)). Standard
deviation (< 0.01) and (< 0.001) are displayed as (0.01) and (0.001) respectively.

MARS MLR
k nTrees | RLT (MS) RLT grf/ranger RLT (MS) RLT grf/ranger
;2000 | T781(001) 1781 (001) 18.20 (0.01) | 0.497 (0.001) 0,505 (0.001) 0.499 (0.001)
K 20000 | 17.81 (0.01) 17.81 (0.01) 18.20 (0.01) | 0.497 (0.001)  0.505 (0.001)  0.499 (0.001)
4 2000 [ 1742 (001) 1781 (001) IS0L (0.01) | 0.498 (0.001) 0,500 (0.000) 0.463 (0.001)
i 20000 | 17.42 (0.01) 17.42 (0.01) 18.00 (0.01) | 0.498 (0.001)  0.501 (0.001)  0.464 (0.001)
s 2000 [ 1740 (001) 1740 (0.01) 1819 (0.01) [ 0.499 (0.001) 0,500 (0.001) 0416 (0.001)
K 20000 | 17.40 (0.01) 17.40 (0.01) 18.19 (0.01) | 0.499 (0.001) 0.500 (0.001)  0.420 (0.001)
ins5 2000 18.21 (0.01) 18.19 (0.01) 0.499 (0.005) 0.498 (0.005)
™5 50000 18.21 (0.01) 18.19 (0.01) 0.498 (0.005) 0.498 (0.005)
TaBLE 10
Ground Truth of Var(f(z*)) evaluated on the central testing sample by 10000 simulations.
MARS MLR
k nTrees RLT (MS) RLT  grf/ranger | RLT (MS) RLT  grf/ranger
n/2 2000 0.847 0.840 0.802 0.135 0.131  0.133
20000 0.844 0.836  0.795 0.135 0.131  0.133
n/4 2000 0.519 0.518 0.527 0.077 0.077  0.076
20000 0.513 0.512  0.509 0.077 0.076  0.077
n/8 2000 0.345 0.345 0.382 0.044 0.043 0.043
20000 0.339 0.339  0.368 0.043 0.042  0.042
4n/5 2000 1.334 1.348 0.214 0.213
20000 1.331 1.341 0.213 0.212
TABLE 11

90% CI Coverage Rate averaged on 50 testing samples, where the true variance is used in
constructing the CI. The number in the bracket is the standard deviation of coverage over
50 testing samples.

MARS MLR

Tree size nTrees | RLT grf/ranger RLT grf/ranger
k= n/2 2000 90.12% (0.93%)  90.00% (0.97%) | 89.97% (0.86%)  90.04% (0.99%)
20000 90.10% (0.96%)  89.95% (0.97%) | 89.97% (0.88%) 89.96% (1.00%)
k<n/2 k=n/4 2000 89.87% (0.76%)  89.69% (0.84%) | 90.07% (1.03%)  90.06% (1.25%)
= 20000 89.83% (0.78%)  89.63% (0.82%) | 90.14% (1.04%)  89.98% (1.21%)
k= n/8 2000 89.53% (0.78%)  89.35% (0.85%) | 90.22% (1.13%)  89.91% (1.17%)
20000 89.38% (0.89%)  89.28% (0.85%) | 90.20% (1.12%)  89.78% (1.23%)
k>n/2 k=in 2000 90.05% (0.94%)  90.02% (0.97%) | 89.86% (1.05%) 89.94% (0.98%)
5 20000 90.05% (1.01%)  90.00% (0.96%) | 89.88% (0.98%) 89.86% (0.97%)

1.4. Figures of MLR model

Figure 6 shows the performance of different methods on the MLR model. This
is a counterpart of Figure 2 in Section 6.

Appendix J: Additional information and results for the real data

Table 12 describes the covariates of Airbnb data in Section 7. We use the samples
with the price falling in the interval (0,500] dollars. The missing values (NA)
in the rating score and bathroom number are replaced. The “having rating”
covariate is created based on the “review number”.
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Fic 6. A comparison of different methods on MLR data. Fach column of figure panel cor-
responds to one tree size: k = n/2,n/4,n/8. The first row: bozxplots of relative variance esti-
mators of the central test sample over 1000 simulations. The diamond symbol in the boxplot
indicates the mean. The range of y-coordinate is restricted within [—1,3]. The second row:
bozplots of 90% CI coverage for 50 testing samples. For each method, three side-by-side bozx-
plots represent nTrees as 2000, 10000, 20000. The third row: the coverage rate averaged over
50 testing samples with 20000 nTrees and the confidence level (z-axis) from 80% to 95%. The
black reference line y = x indicates the desired coverage rate.

TABLE 12
Covariates information of Airbnb data.
Covariate Name Description
latitude Latitude of the Airbnb unit.
longitude Longitude of the Airbnb unit.
room type Three types (with # of samples): Entire home/apt (5547), Private
room (1839) and Shared room (129).

bedroom number Number of bedrooms in this unit.
bathroom number  Number of bathrooms in this unit. NA values are replaced by 0.
accommodates Maximum accommodates of this unit.
reviews number The number of reviews of this unit.
having a rating It is 1 if the number of reviews is greater than 0; and is 0 otherwise.
rating score The average rating score. NA is replaced by the average score.

To train the random forest model, we set mtry (number of variables randomly
sampled as candidates at each split) as 3, and set nodesize parameter as 36.
Here we also present the details of testing samples. The latitude and longitude
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of SEA Airport, Seattle downtown, and Mercer Island are (47.4502, —122.3088),
(47.6050, —122.3344), and (47.5707, —122.2221) respectively. The “room type”
“accommodates” and “having a rating” are fixed as “Entire home/apt”, the dou-
ble of “bedroom numbers”, and 1 respectively. We use averages in the training
data as the values of “reviews number” and “rating score”.
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