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in a Microscale Selective
Laser Sintering System
Current metal additive manufacturing (AM) systems suffer from limitations on the minimum
feature sizes they can produce during part formation. The microscale selective laser
sintering (l-SLS) system addresses this drawback by enabling the production of parts with
minimum feature resolutions of the order of a singlemicrometer. However, the production of
microscale parts is challenging due to unwanted heat conduction within the nanoparticle
powder bed. As a result, finite element (FE) thermal models have been developed to predict
the evolution of temperature within the particle bed during laser sintering. These thermal
models are not only computationally expensive but also must be integrated into an iterative
model-based control framework to optimize the digital mask used to control the distribution
of laser power. These limitations necessitate the development of a machine learning (ML)
surrogate model to quickly and accurately predict the temperature evolution within the
l-SLS particle bed usingminimal training data. The regressionmodel presented in this work
uses an “Element-by-Element” approach, where models are trained on individual finite
elements to learn the relationship between thermal conditions experienced by each element
at a given time-step and the element’s temperature at the next time-step. An existing bed-
scale FE thermal model of the l-SLS system is used to generate element-by-element tabular
training data for theMLmodel. A data-efficient artificial neural network (NN) is then trained
to predict the temperature evolution of a 2D powder-bed over a 2 s sintering window with
high accuracy. [DOI: 10.1115/1.4064106]

Introduction

Existing additive manufacturing (AM) technologies are limited
by minimum feature resolutions of the order of hundreds of
micrometers. This prevents the successful application of AM to
several critical manufacturing domains [1,2]. The microscale
selective laser sintering (l-SLS) system addresses this problem
through the production ofmetal parts with singlemicrometer feature
sizes [3–6]. The l-SLS machine is a specialized version of selective
laser sintering (SLS), where laser energy is applied to a powdered
substance to enable part formation through selective heating. This
process is repeated layer-by-layer until a full 3D part is produced [7].
The key difference between l-SLS and traditional SLS systems is
the use of copper and silver nanoparticles instead of traditional
macroscale powders. The small size of these metal nanoparticles
enables the production of parts with the desired minimum feature
resolutions. These nanoparticles do not melt and solidify like their
macroscale counterparts. They instead experience solid-state
diffusion at temperatures well below the melting points of the

bulk materials. This diffusion process facilitates the production of
microscale parts using the l-SLS system.
To produce single micrometer features using the l-SLS system,

thermal modeling techniques are required to predict and minimize
the formation of unwanted heat affected zones (regions of sintering
in the particle bed that extend beyond the desired part shape). These
heat affected zones form in response to laser heating and subsequent
rapid conduction within the particle bed. A bed-scale finite element
(FE) thermalmodel is developed for thel-SLS system to predict this
heat spread in the particle bed and determine the resulting
temperature evolution during the sintering process [8]. Ideally,
this thermal model would integrate into an iterative control
framework used to optimize the l-SLS system parameters and
improve the feature resolution of printed parts. The major limitation
of this integration strategy is the extensive computation times
required to execute high fidelity thermal FE models. A much faster
thermal model is required to efficiently control heat spread and
optimize sintering performance.
Surrogatemodels are often used as fast and accurate replacements

to classical models when computational expense is a constraint. For
instance, a high-fidelity sampling approach was used to achieve
accurate predictions of physics-based processes with minimal
training data. The surrogate model Brain-STORM was deployed
using deep learning-based strategies for rapid prediction of the
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transient evolution of smoke flow, pressure, and temperature during
high-rise fire scenarios. Brain-STORM is trained on data produced
by Fire-STORM, a previously developed physics-based model [9].
Tapia et al. developed a cross-validated, computationally efficient
Gaussian process based surrogate model trained on a high-fidelity
laser powder bed fusion model. This model showed good
performance demonstrated by a low mean absolute predictive error
[10]. These models demonstrate the ability of surrogate models to
act in place of existing, computationally expensive models while
maintaining useful predictive capacity.
Surrogate models have also been proposed as approximators for

finite element analysis (FEA) and finite volume modeling to reduce
computational complexity. These models are trained on input/
output data generated by the FE models. These surrogate models
performwell in a variety of tasks including prediction and sensitivity
analysis [11]. FEA based surrogate models have been used in
biomechanical applications to reduce the simulation time of
anatomical simulations, improving their usability for clinical
applications [12]. Additionally, Liang et al. developed a feedfor-
ward fully connected neural network with four hidden layers as an
inverse method to successfully estimate and recover the human
thoracic aorta zero pressure geometry [13]. Vurtur Badarinath et al.
estimated the stress distribution over a one-dimensional beam using
machine learning surrogate models, where FEA data represented
response variables such as displacement, velocity, acceleration,
strain or stress [14]. Masood et al. proposed a data driven design
optimization process for a Kaplan turbine, incorporating a Gaussian
process based surrogate model for efficient prediction [15]. Dupuis
et al. proposed a methodology for prediction of steady turbulent
aerodynamic fields while handling variable flow conditions [16].
This model provided improved accuracy when compared to existing
surrogates capable of handling diverse flow regimes. Sikirica et al.
developed machine learning (ML) based surrogate models for heat
transfer calculation to optimize microchannel heat sinks [17].
Neural network (NN) architectures were compared with random
forests and gradient boosting algorithms for performance. Compact
long short-termmemory networks have previously been proposed to
predict responses as an alternative to finite element simulation data
when time dependent predictions are required [18]. Bottlenecks for
the accuracy of a machine learning surrogate model trained on finite
element data include limited mesh sizes and fixed input parameters.
However, if the generated data captures the essential use cases, the
model will still be useful in practice.
Additionally, FE base surrogate models have been employed as

computationally efficient alternatives to high-fidelity models for
additive manufacturing applications. Surrogate models have been
shown to have enormous potential for computational gains when
compared to baseline physics-based models, enabling advance-
ments in the optimization of additive manufacturing processes [19].
Wang et al. constructed a surrogate model capable of predicting the
three-dimensional melt pool geometry formed during metal AM
fabrication and estimated the associated uncertainty. The validity of
the surrogate model was then improved using sequential Bayesian

calibration [20]. Despite the successful modeling results accom-

plished in other works, no present surrogate model can predict the

nuanced, nanoparticle heat transfer processes that occurs within the

l-SLS system.
Heat transfer based ML models have gained popularity as

surrogates for temperature field prediction and heat source layout
(HSL) optimization for integrated circuit applications. Zhao et al.
developed a deep convolutional image-to-image regression model
for rapid prediction of temperature fields for given HSLs [21]. This
model employs temperature field difference based data augmenta-
tion, transfer learning, and a feature pyramid network for improved
performance in the presence of limited data for data hungry
convolutional neural network (CNN) architectures. Chen et al. built
a similar model based on the feature pyramid network architecture
for thermal optimization of HSL [22]. A multimodal neighborhood
search algorithm is used to avoid convergence on local optimum
duringHSL optimization. Yang et al. used aU-net CNN architecture

to predict the temperature field in a two-phase composite under a
given HSL. Each of these HSL thermal surrogates use CNN-based
architectures to predict thermal images as functions of input energy
distribution images (HSLs) [23]. While the HSLs are similar to the
digital laser masks used to control heat generation in the l-SLS
system, these models only predict and update temperature values.
They are not suitable for the multivariable prediction of temperature
and densification needed for part prediction in the l-SLS system.
The surrogate model developed in this work must predict the entire
temperature field over time while simultaneously updating the
densification as a function of the developing temperature. This
requirement makes it difficult to use similar strategies for l-SLS
surrogate model development.
Modern advancements in ML have prompted the development of

advanced surrogate models using novel neural network architec-
tures including modern CNN architectures and graph neural
networks [24,25]. These models have shown the ability to achieve
very high accuracy for a variety of physics-based applications while
maintaining rapid computational times. Unfortunately, these
models require large training datasets consisting of hundreds or
thousands of simulations. Given that the l-SLS system is currently
in an iterative development stage, the underlying bed-scale finite
element model used to generate the training data is subject to
change. This promotes the need for a surrogate model capable of
providing accurate predictions after training on a smaller simulated
dataset. This surrogate model must also be robust to changes in the
underlying FE model during system development.
This paper presents a surrogate modeling approach for rapid

temperature prediction over time in a l-SLS particle bed. The
handcrafted features implemented in the model provide direct
information regarding the thermal conditions present in the system,
allowing for high accuracy when trained on minimal data. This
model can out-perform the long computation times experienced by
classical simulations that discretize and solve the heat equation. This
facilitates the implementation of a mask optimization process that
requires iterative prediction and mask adjustment. The improved
computational speed provided by the surrogate model is needed to
perform the large number of computations required for this mask
optimization process.

Methods

Sufficient data detailing the transient evolution of the l-SLS
particle bed in response to laser exposure is needed for anML based
surrogate model to accurately predict temperature changes in the
system. This temperature data are generated by running a high-
fidelity finite element model (FE model, FEM) with a series of
unique input laser patterns. This work employs an element-by-
element methodology, where ML predictions are made on
individual elements in the FE mesh. As a result, specific features
about each element within the particle bed and its surrounding
elements are extracted from the FEM output data. Custom features
are also incorporated that detail the spatial relationship between
each element and the overall distribution of applied laser power.
Finally, features detailing sudden changes in laser exposure are
incorporated formore realistic use cases.Once features are extracted
for each element in the mesh and a simulated dataset is formulated,
an artificial NN is trained to predict temperature evolution of a single
element based on each of its extracted features.

Finite Element Model Data Generation. A bed-scale thermal
FE model is used to generate temperature, density, and volumetric
heat generation (Qgen) data for a single layer particle bed exposed to
laser irradiation over a 2 s sintering window. The bed-scale model
simulates a thin layer of copper particles (1.2 lm in thickness)
resting on a thick glass substrate (1mm in thickness). The thin
copper bed is split into two regions: a rectangular inner mesh region
in the immediate vicinity of the laser exposure region
(1.5 mm� 3mm), and an outer rectangular meshing region
(4mm� 6mm) that surrounds the inner region. These two copper
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regions are the same thickness, sit at the same z-location and are in
perfect thermal contact with each other. The inner copper region is
used for data generation, and the outer region is used to decouple
boundary effects from the resulting temperature distribution. The
split regions allow for accurate modeling of the powder bed while
maintaining a reasonable quantity of output training data. The full
model geometry is shown in Fig. 1.
The inner region of the thin copper bed is exposed to laser

irradiation in select regions of the particle bed determined by a
projected binary image mask. An example binary mask is shown in
Fig. 2.
This digital mask is the same mask that is applied to the digital

micromirror device (DMD), a mirror array used by the physical
l-SLS system to control the distribution of applied laser power.
White pixels in the mask transmit the maximum laser power at the
corresponding location, while black pixels restrict all laser power
transmission. Laser irradiation passing through theDMDalso passes
through a downstream optical system before reaching the copper
bed. The 1920 � 1080 pixel binary image can expose a
2.3mm� 1.3mm region when the binary mask consists exclusively
of white pixels. The binary mask is projected onto the simulated
inner copper region using the same magnification used in the l-SLS
optical system. A series of unique and intricate part shapes can be
fabricated simply by replacing this digital mask. In the simulation,
the binary mask induces heat generation in the same locations as in
the physical system. Each element in the FE mesh is mapped to a
projected binarymask pixel. Elements corresponding towhite pixels
produce the maximum value of generated heat, while elements
corresponding to a black pixel do not generate heat.
The particle bed used in the physical l-SLS system undergoes

substantial changes in particle morphology during sintering, and
thus cannot be accurately represented by a uniform copper block. To
address this, the FE model is integrated with property functions that

model the evolution of thermal properties within the powder bed as
the morphology of the particles change during sintering. As copper
particles reach the 450 �C sintering threshold they begin to
experience diffusion between adjacent particles, forming necks
between particles and increasing the density of the sintering regions
over time. The necks that form between particles become larger as
diffusion occurs, providing larger pathways for heat to pass through
within the sintering region. These larger pathways result in thermal
conductivity values that increase proportionally with density.
In the simulation, values for density and thermal conductivity for

each element are updated at ten specified timesteps over the 2 s
simulation window (every 0.2 s of simulation time) based on the
element temperatures at the specified timesteps. This coarse
property update frequency reduces the time spent updating material
properties at the cost of sudden redistributions of temperature in
response to material property changes. The surrogate model will
update with a much finer frequency to improve accuracy of the
temperature results when used in practice. Simulated sintering for
each element in the FE mesh begins once the element temperature
exceeds 450 �C at any of the specified timesteps when property
updates occur. Once elements begin to sinter, their individual
densities and thermal conductivities are updated according to the
property relationships developed in Refs. [26] and [27]. The FE
simulation is initialized at room temperature, with all elements set to
22 �C. The bottom surface of the glass substrate is held at 22 �C for
the duration of the simulation. Convection and radiation are not
considered in the FE model, as the contributions of both are
negligible when compared to heat conduction at the microscale.
Contributions of convection and radiation were tested empirically
during model development, and as a result all additional faces were
insulated. Additional information regarding the thermal property
update procedure used in the FE model is discussed in Ref. [8].
When generating the data, the size, and shape of the mesh

elements in the FEMare fixed. 20 node hexahedral elements are used
throughout the copper bed, with a fine mesh size of 2:5� 10�5 m
applied to the inner region and a larger mesh size of 1:0� 10�4 m
applied to the outer region. The size and shape of the copper bed and
glass substrate are also fixed. These constant parameters accurately
represent the physical system,while limiting the variation in training
data. A constant absorbed laser power of 3:55� 106 W=m2 is used
for regions exposed to the laser via the digital laser mask.While this
laser power is slightly higher than laser powers used in the physical
system, the accuracy of the surrogate model when predicting
reduced laser powers is comparable to the results presented in this
work. For the initial training dataset, three unique masks are used to

control laser application during three separate simulations. Each of

the three input masks determined the distribution of laser power for

its corresponding simulation, and this power distribution remained

constant throughout the sintering window. At the end of each

simulation, temperatures at 133 timesteps over a 2 s window are

saved for each node in the system.
Density, thermal conductivity, and normalized Qgen values are

updated for each element at ten specified timesteps over the 2 s
window, resulting in ten unique density and Qgen values for each
element. Qgen values are determined based on the given element’s
location relative to the 2.3� 1.3 mm2 exposure region that
corresponds to the selected mask after projection through the
focusing optical system.Qgen ¼ 1 if the element is exposed to awhite
pixel andQgen ¼ 0 if the element is exposed to a black pixel. Density
values are determined from the nanoparticle property curves
developed in Ref. [26]. After each simulation, constant value
interpolation is used to expand the tenQgen and ten density values for
each element tomatch the full 133 time-step nodal dataset. Since the
temperature time series is saved for each node, and the Qgen and
density values are saved for each element, nodal temperatures must
be mapped to element temperatures to maintain a uniform data
shape. Since each hexahedral element consists of 20 associated
nodes, each of the 20 nodal temperatures associatedwith a particular
element are uniformly averaged to obtain the temperature of the
element. This process is repeated for every element at every time-

Fig. 1 Physical geometry used in FEA simulations, with
(a) representing the inner copper region (fine mesh),
(b) representing the outer copper region (coarse mesh), and (c)
representing the glass substrate

Fig. 2 Simple “double-I” binary mask (192031080 pixel count)
used to control DMD mirrors and selective application of laser
power
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step. The final exported dataset corresponding to each of the three
simulations includes 7080 elements in a 60� 118 element grid, with
each element represented by Qgen, density and temperature values
for each of the 133 simulation timesteps. The updated thermal
conductivity values are not included in the dataset given that thermal
conductivity is a direct function of density. The temperature values
corresponding to each element at the final time-step of the training
data (as generated by the FE model using the “double-I” mask) are
shown in Fig. 3.

Feature Extraction (Single Mask). The objective of the ML
model is to predict an element’s temperature at a subsequent time-
step based on features of the element at the current time-step. For this
regression model, the training label for an individual element is the
subsequent temperature of the element at the next time-step. This
prediction process is performed for all elements in the inner copper
region and repeats for each time-step as themodelwalks through and
predicts the full timeseries. The training features that form the input
dataset are described in detail in this section.

Explicit Finite Element Analysis Features: Elements and
Surroundings. The first features extracted from the FE model
results for a given element are as follows: element temperature,
element volumetric heat generation (Qgen), and element density at
the current time-step. The next set of extracted features are the
temperature, volumetric heat generation (Qgen), and density values
for the eight elements directly surrounding the specified element.
These features capture the state of the specified element, in addition
to the state of the element’s immediate surroundings, giving context
regarding the local distribution of energy and temperature around
the element. This feature subset includes 27 total features (three
features for the current element and 24 features for the surrounding
elements). An illustration of the elements incorporated into this
feature subset is shown in Fig. 4.

Derived Features: Spatial Energy Distribution. An initial model
was trained only on the explicit FEA features, and the resulting
accuracywas poor. Temperature gradientswere limited to the region
immediately surrounding the portion of the bed that was exposed to
laser power, proving that the ML model was unable to adequately
learn heat transfer within the bed. Expanding the set of surrounding
element features hadminimal impact on the prediction accuracy. To
account for this spatial inaccuracy, two new feature types were
added to the model that consider the spatial arrangement of exposed
elements relative to the selected element. The first set of these
features, labeled the “Qgen zones,” count the number of exposed
elements in expanding ring-shaped regions around the selected
element. This feature helps capture the element’s proximity to large
sources of heat generation. The number and size of each Qgen zone
were set as parameters for model tuning. The final model used six
Qgen zones for each element, with zone thickness increasing with
each subsequent zone moving radially away from the selected

element. An illustration of the first three Qgen zones for an example
element is shown in Fig. 5.
The introduction of the Qgen zone features greatly improved the

model accuracywhen predicting the spatial temperature distribution
at each time-step. Despite this improvement, the limited range of the
Qgen zones failed to adequately account for the heat generated by the
full set of exposed elements. To further improve the model, a new
feature representing the global energy distribution was added to
supplement the Qgen zones. This feature, labeled “Qgen distance,”
encodes information about the entire digital mask for each specified
element in themesh. The value ofQgen distance for each elementwas
calculated using the following equation:

Fig. 3 Temperature distribution across the inner copper region
at final time-step as predicted by the ANSYS FE model using the
“double-I” mask

Fig. 4 Illustration of specified element on which the surrogate
model will predict temperature and its surrounding elements.
Each element contributes temperature, density, and Qgen to the
training dataset. Adjacent elements are labeled with position
indices relative to the target element.

Fig. 5 Illustration of three of the six Qgen zone features for an
example element (shown in the center). Moving radially outward,
each Qgen zone is larger than the preceding one. Six Qgen zones
are attributed to eachelement.Eachzonecounts the total number
of exposed elements (Qgen 51) that have centroids located in the
zone.
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Qgen distance ¼
X

7079

n¼1

Qn

d1:2n

� �

(1)

where n represents the index of another element in the mesh
(1–7079), Qn represents the heat generation experienced by the
indexed element, and d1:2n represents the Euclidean distance between
the specified element and the other element in themesh. This ratio of
laser power to distance between elementswas summedover allmesh
elements excluding the specified element. Elements with a Qgen

value of 0 (unexposed) did not contribute to this feature. Likewise,
exposed elements closer to the specified element (smaller d1:2n ) will
have a greater impact than elements farther away (larger d1:2n ). The
full summation process over the 7079 other elements is performed
for each specified element in the mesh. The Qgen distance feature
provided explicit information regarding the spatial energy distribu-
tion across the entire bed for each specified element. The exponent of
1.2 on the distance parameter was chosen after testing the
performance of models trained on different values in the range of
0.8–1.5. The addition of the Qgen distance feature significantly
improved the model’s ability to capture spatial temperature
distributions across all model tests. A diagram of the distance
values used for this feature is shown in Fig. 6.
In total, the training dataset for the best performing model

included 27 explicit features and seven derived features for a total of
34 features for each specified element. The feature set for each of the
three digital masks were combined to form the full training dataset,
consisting of 2,824,920 training points (7080 elements, 133
timesteps, three masks).

Feature Extraction (Mask Vector). The training dataset con-
sisting of 34 features and three FE simulations represents the
system’s thermal response to a constant distribution of laser power
(a single mask is applied for the full 2 s sintering window). The
thermal surrogate model developed in this work will be integrated
into a model-based control framework capable of optimizing the
digitalmask at specified timesteps during the sinteringwindow.This
optimization process will produce a series of unique masks (one at
each specified update step), forming a vector of digital masks.
Therefore, the surrogate model developed in this work must be able
to adapt to sudden changes in the laser power distribution to
accurately model thermal evolution in realistic scenarios. New
features and additional training data are added to the model in cases
where the model must adapt to these changes in laser power.
Data driven surrogate models can only learn relationships present

in the available training data. The training data produced by the three
FE simulations did not include situations where sudden mask
changes occurred during runtime. As a result, additional training
data representing these mask changes were supplied to an expanded
training dataset. A total of six additional simulations were added to
the dataset, resulting in nine total simulations. This set of six
additional simulations consisted of two subsets, each containing
three new simulation datasets. Simulations in the first subset were
run exactly as the initial single mask simulations were, with
exception of the laser mask input. The single masks used in the
original simulations were replaced with a mask vector containing
three different masks. Each of these three masks were run for 1/3 of
the 2 s sintering window, with each subsequent mask having a
smaller exposure region than the previous mask. Although the
exposure regions reduce in size during the simulation, the shape
displayed in the mask remains the same. An example mask vector in
this first subset is shown in Fig. 7.
The second subset of additional simulations used the same set of

masks as the first subset, but with the mask vector organized in the
opposite order. These mask vectors also consisted of masks with the
same base shape, but with each subsequent mask gradually
increasing the size of the laser exposure region during the sintering
window. As before, each of these threemasks were run for 1/3 of the
2 s sintering window. An example mask vector from this second
group of additional masks is shown in Fig. 8.
In addition to the expanded training dataset, an additional feature

was added to the feature set to capture the sudden change in applied
laser power. The initial models that were trained on the expanded
dataset failed to capture the rapid temperature changes that
correspond to a sudden adjustment to the distribution of laser
power. To account for this, a new feature was added to explicitly
instruct the NN to adjust the temperature predictions in response to a
sudden mask change. For a given element, this new feature
determines the difference between the smallest Qgen zone feature
at the current time-step (after the mask change), and the smallest
Qgen zone feature from the previous time-step (before the mask
change). This calculated difference represents the change in laser
energy experienced by an individual element at the time of a sudden
change in the digital mask. This encodes information regarding the
sudden redistribution of laser power experienced by the mask into a

Fig. 6 Illustration of the distance parameters used in the Qgen

distance feature calculation for a single element located in the
bottom left corner of the sintering region. White squares
represent elements exposed to laser irradiation. The Qgen

distance feature calculates the distance between the specified
element (red) and each exposed element (white) and then
performs the calculation shown in Eq. (1). Elements shown in
black are not exposed, and therefor do not contribute to this
feature (Qn50Þ:Only threeof the 16distancevalues are shown for
simplicity. The displayed mesh is coarser than the one used in
this work.

Fig. 7 Example mask vector with “vanishing” exposure region used to generate mask change training data
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training feature. This feature value is zero for all timesteps, where
the mask does not change, is negative for an element that
experiences a reduction in laser exposure and is positive for an
element that experiences an increase in laser exposure. The use of
the smallest Qgen zone in place of the raw Qgen value at each time-
step gives a broader picture of the energy change experienced by an
element during the mask change. An example image depicting this
feature for the entire mesh is shown in Fig. 9.
The new training dataset consisted of 8,474,760 training points

(7080 elements, 133 timesteps, nine masks). The incorporation of
additional training data and the mask change feature greatly
improved the ability of the model to predict temperature evolution
in response to a variable mask vector.

Model Selection. Once tabular data was generated, three
modeling frameworks were considered as surrogate candidates: a
five layer fully connected NN (three hidden layers), extreme
gradient boosted decision trees (XGBoost), and a distributed
gradient boosting framework (LightGBM). NNs are an appropriate
choice as a surrogate model because of their ability to approximate

any underlying functional relationship with computationally
efficient prediction times. However, NNs require a large amount
of time for hyperparameter optimization and model training. Next,
XGBoost employs a predictive model based on an ensemble of
weaker predictive models. XGBoost is known to avoid overfitting,
predict in a computationally efficient manner, and generalize well.
Additionally, LightGBM tends to have fast training speed, high
efficiency, low memory usage, and better accuracy when compared
to other boosting algorithms. Each of these models are capable of
training on the tabular dataset and producing a regression model
capable of predicting element temperature. However, the NN
produced predictions with the lowest mean average error across the
testing set. Additionally, the NN produced smooth temperature
contours, in contrast with the jagged temperature curves predicted
by the ensemble methods. Smooth temperature contours better
represent the continuous temperature profiles present during
sintering, and allow for estimation of smooth thermal gradients
within the bed. For these reasons, the NN was selected as the model
architecture for this work.
The final NN architecture consisted of five layers, with three

hidden layers (eachwith 24hidden nodes). The input layer contained

Fig. 8 Example mask vector with “growing” exposure region used to generate mask change training data

Fig. 9 Example training feature representing the change in laser exposure experienced by
each element in response to the change in digital mask
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a number of nodes equal to the number of training features, and the
output layer consisted of a single node (with a linear activation
function) for the predicted temperature value. The Adam optimizer
was chosen due to its fast convergence properties, which were
especially valuable during iterative model development. After
model training, the epoch with the lowest validation loss during
training was chosen as the final model. The ELU, ReLU, and Leaky
ReLU activation functions were tested for training time and model
performance. The ReLU activation function was ultimately chosen
for this work for the following reasons. The performance of models
trained on ReLU is independent of the underlying distribution of the
data, making ReLU considerably more versatile than other
activation functions. These models also benefit considerably from
reduced computational time during gradient calculation. Finally,
models trained using the ReLU activation function saw the best
performance despite similar training times during model testing.
The entireMLmodelwas developed in Python using the Tensorflow
and Keras NN implementations.

Results and Discussion

The results section is split into six sections. The first section
discusses the parameters chosen for the model and how the model is
setup for prediction. The second section shows temperature results
predicted by the trained NN for uniform laser masks. The third
section details temperature predictions on more complicated mask
vectors. The fourth section presents part prediction results derived
from temperature prediction data. The fifth section compares the
runtime between the surrogate model and the FEA model, and the
final section describes themodel validation process and future work.

Modeling Parameters and Prediction Setup. The five-layer
NN was initially trained on the single-mask training dataset
consisting of 2,824,920 training points, each with a label
representing the temperature at the next time-step. The three masks
used to generate the training dataset are shown in Fig. 10.
The three training masks were initially chosen to generate unique

temperature distributions. Together, the three masks contain large,
concentrated pixel groups, small “islands” of pixels, convex and
concave corners, sharp edges, and smooth curves. Additionally, the
three masks help generate a wide range of final element temper-
atures.Masks with these geometric features allow themodel to learn
a more comprehensive set of laser power distributions and element
temperatures, improving the final model’s ability to predict on a
range of new mask inputs. Additional masks from the testing set
were swapped for these training masks, but the resulting models
suffered from reduced accuracy. The input layer of theNN consisted
of 34 neurons to match the number of training features, each hidden
layer of the NN consisted of 24 neurons each, and the output layer
contained a single neuron for the predicted temperature of the
specified element. The number of neurons in each of the hidden
layers was determined empirically by performing a hyperparameter
grid search. The ReLU activation function was used as the nonlinear
activation function between layers.Mean squared error was selected
as the loss function for training, and the Adam optimizer was chosen
to minimize error. The training dataset, the feature set, and the

number of input neurons were later adjusted to adapt the model to
more complex mask vectors.

NeuralNetworkPredictionResults (SingleMask). The trained
NN was then used to predict thermal evolution in the nanoparticle
bed for seven new input masks over the full two second sintering
duration. These masks were chosen to represent unique shapes with
substantially different laser power distributions for robust testing.
The collection of testing masks is shown in Fig. 11.
The NN was trained for 20 epochs to predict the temperature of a

single element at the next time-step given an input feature vector
containing temperature and heat generation information at the
current time-step. Training for additional epochs resulted in similar
performance with longer training times. Once trained, the NN was
used to predict the transient thermal evolution of the particle bed for
seven test masks. The initial conditions used for the NN prediction
match the conditions used in the FE model, with all elements
initialized at room temperature at time-step 0. The laser exposure
(Qgen) for each element at the initial time-step is sampled directly
from the chosen mask, as are the Qgen values at subsequent
timesteps. A constant mask is used for the entire 2 s simulation, so
Qgen for each element remains constant during simulation and
prediction. Using element data from time-step 0, the NN is used to
individually predict the temperatures for each element in the copper
bed at time-step 1. Once the temperature of each element has been
predicted at a subsequent time-step (using time-step 0 data to predict
time-step 1 temperatures), the predicted values are converted back
into the form of the original training data to predict the next time-
step. Current and adjacent elements temperatures and Qgen values
are remapped into the training data format. Element density is
recalculated every 0.2 s during prediction to match the property
update frequency used in the FE model. Once the results have been
reformatted, the NN again predicts the next time-step in the series.
This process continues until the final time-step is reached,
representing a completed 2 s sintering process. The temperature
distributions from the FEmodel (true values) and the neural network
predictions for two of the testing masks are shown in Fig. 12.
The temperature distributions in Fig. 12 directly compare the NN

predictions to the original FEA results. The data generated using the
testing masks are independent of the data used in training. The first
image in each figure shows the binary masks used to control laser
power for each comparison. The second image depicts the final
temperature distribution predicted by the NN, the image directly
below it shows the temperature distribution predicted by the FE
model, and the final image shows the percentage error between the
two predictions for all elements after 2 s of sintering. The overall
shape and magnitude of the NN predicted temperature plots agree
very well with the FEA data. The NN accuracy is also consistent
across the seven masks tested. An overall mean average error for all
elements used in all seven test simulations was calculated to be
12 �C, with a mean average percentage error (MAPE) of 5.5%.
These error values are calculated after 133 consecutive predictions
over the full timeseries, where error accumulates after each
subsequent prediction.
The temperature evolution of the element located at the center of

the simulation bed is shown for the same two test masks in Figs. 13
and 14.

Fig. 10 Binary masks used as input to generate training data for the ML model
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The overall temperature trajectory predicted by the NN matches
well with the FEA results. The NN accurately predicts the initial
rapid heating and the asymptotic behavior experienced by an
element as it approaches thermal equilibrium. The coarse update

frequency used to modify the thermal properties of the particle bed
results in sudden changes in temperature at each update time-step.
Future simulations will increase this update frequency to better
model the continuous property changes that occur during sintering.

Fig. 11 Binary masks used as input to generate testing data for model evaluation

Fig. 12 Full 2D temperature profiles after 2 s of sintering (133 consecutive predictions: (a) binary
masks used as simulation inputs, (b) temperature profiles generated by the NN for the circlemask
and longhorn mask, (c) temperature profiles generated by the FE model for the samemasks, and
(d) the percent error between the twopredictions at each element. Avg. error: 3.86% (circle), 3.64%
(longhorn).
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The results in Figs. 13 and 14 illustrate theNN’s ability to respond to
these property changes and adjust temperature accordingly in a way
thatmatches the FEA results. Temperature curves for other elements
and other test masks also follow similar trends.

NeuralNetworkPredictionResults (MaskVector). Themodel
setup used to predict temperature evolution in response to a variable
mask vector was identical to the setup described for the single mask,
with exception of the additional training data and the new mask
change feature described previously. A custom mask vector
consisting of three masks was used as testing data to evaluate the
surrogate model’s ability to accurately model sudden changes in
laser power distribution. Thismask vector contains three images of a
longhorn, with each subsequent mask providing a scaled-down
version of the pervious mask (subsequent masks have smaller
exposure regions). This mask vector was not included in the training
set. At the onset of the testing procedure, the initial mask was loaded
exactly as the masks were loaded when predicting the results for
single masks. Once the surrogate model predicted a series of
temperature values over a predetermined set of timesteps, the initial
mask was then replaced by the secondmask in themask vector. This
process was repeated for each mask in the mask vector until the
simulation terminated. The prediction results are shown at three
simulation timesteps along with the corresponding mask vector in
Fig. 15.
The results shown in Fig. 15 show the surrogate model’s ability to

accurately model the temperature evolution over a full sintering
window with changing laser energy distributions. The changes in
laser power distribution that result from the three longhorn masks in
this mask vector are likely more drastic than the real use cases.
Therefore, this test mask provides an estimate of model accuracy
usingmore difficult prediction cases. For the abovemask vector, the
MAPE remained within a range of 10–15%. While this indicates an
increase from the �5% MAPEs produced for single mask
predictions, it shows that the surrogate model is robust to more
complex inputs and sudden changes in laser exposure. Additional
simulations and data extracted from a finer mesh resolution should
improve this accuracy substantially for future model iterations. The
percentage error for the results shown in Fig. 15 encompasses the
full sintering domain, resulting in a conservative error percentage.

Fig. 13 Center element temperature over time (ML versus FEA)
using the circle mask

Fig. 14 Center element temperature over time (ML versus FEA)
using the longhorn mask

Fig. 15 Surrogatemodel results (top row)comparedwithFEAresults (bottomrow) for asinglesimulatedsintering
process over time using a variable mask vector. The images show the resulting temperature profiles after initial
heating in response to the first mask, followed by the temperature profiles after each of the subsequent mask
changes.
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When the error percentage is restricted to exclude regions far from
the laser source, the error range improves to 7–11%. This error will
further improve with the addition of more robust training data and a
more representative error metric. Additionally, mask changes used
in real applications will likely be less drastic than those tested in this
work, further reducing model error. Also, while it is likely possible
to develop more accurate models using CNNs and graph neural
networks, thesemodels oftenmore complex, and requiremanymore
simulations as input to the model. The model tested in this work
required only nine simulations to produce accurate results.

Part Predictions. In addition to transient temperature predic-
tions, the surrogate model also provides estimated sintered part
shapes for a given sintering process. This is accomplished by
incorporating the density-temperature property relationships devel-
oped in Refs. [19] and [20] into the surrogate modeling workflow.
The surrogate model uses these property relationships to periodi-
cally update the density of each element to use as feature data for
subsequent temperature predictions. These density values are stored
each time they are updated during prediction, and can be used to
visualize the regions of the sintering domain that have undergone
substantial densification. The density prediction at the final time-
step is used to estimate the shape of the final sintered part. These part
estimates provide build predictions given the predicted temperature
distribution in the particle bed. They also provide additional
information regarding the accuracy of the print. A sample
comparison of the sintered part shapes predicted by the NN
surrogate model and the original FE model are shown in Fig. 16
along with the longhorn mask used as input to both models.
The predicted longhorn shapes show good agreement between the

two models. Both models predict substantial sintering in the face of
the longhorn, and minimal to nonexistent sintering near the horns.
This is a direct result of the distribution of laser power in the powder
bed, with the longhorn face experiencing the bulk of the laser
exposure. The use of a nonuniform, optimized distribution of laser
power for sintering of the longhorn shape will address the lack of
sintering present in Fig. 16. Incorporating a higher laser power
(brighter pixels) in the horn regions and darker pixels near the center

of the exposure regionwill smooth out the temperature profile across
the longhorn shape and improve the sintered part accuracy. The
surrogate model prediction is somewhat asymmetrical when
compared to the FE model prediction, but the overall size and shape
show good agreement.

Runtime Comparison. Despite the good agreement between the
NN predictions and the FEA results, the NN predictions will always
have additional error when compared to the FEA model. This small
increase in error is offset by the greatly improved runtime of the NN.
Currently, theNNpredicts the full temperature timeseries in roughly
40 s, while the FE model takes roughly 30min to fully solve for
temperature. This equates to an approximate 45� increase in
computational speed when using the NN as a temperature predictor.
Given that the FEmodel is optimized for runtime and the NN is only
partially optimized, there is room for improvement for the NN
prediction speed. Additionally, the TensorFlow backend used to
calculate the predicted temperatures scales exceptionally well for
parallel predictions of element temperature. As a result, the NN
prediction time will scale much more efficiently with a finer mesh
grid when compared to the FEmodel. Once the FEmodel is refined,
the speed increase when using the NN as a temperature predictor
should be much greater than 45�. Additionally, the NN only
requires three simulations for training to achieve good accuracy and
fast computation times on single masks, and only nine simulations
when predicting mask vectors, albeit at the cost of some accuracy.
While this training dataset will be expanded to train the final version
of the NN, this work presents a method to train an accurate finite
element surrogate model on minimal training data. This helps to
minimize the computational resources required to generate new
models in response to changes in the parent FE model.

Model Validation and Future Work. The results presented in
this work show good agreement between FEA and NN temperature
predictions for both constant and variable laser power distributions.
Laser power estimates were determined through preliminary
calibration efforts using sintered copper layers. The laser powers
used in this study are slightly higher than those used by the l-SLS
machine. The training framework outlined in this work was
retrained using laser powers equaling 60% of the laser power used
to develop the discussed results, and the prediction accuracy was
nearly identical. These power values were chosen to test the trained
models on a wider range of possible laser powers. This work
introduces a model training framework where the NN is approx-
imately learning the heat transfer process in a copper particle bed.
This framework should be robust to changes in the underlying FEA
model as long as the NN is retrained on the modified data.
The FE model has undergone preliminary validation with copper

sintering experiments using the l-SLS machine. Using a
1mm� 1mm square laser exposure region (controlled by a
square-shaped binary mask), bed-scale FE model predictions were
compared to physical parts sintered with the l-SLS system. This
sintering simulation was performed with the same mask for three
different laser powers. The part shapes, along with their simulated
counterparts, are shown in Fig. 17.
Part shapes predicted by the FE model agree with initial sintering

experiments using copper nanoparticle inks. At 935W, the sintered
and simulated parts are very similar in shape and size, with corner
curvature representing the major source of error in the prediction.
This remains true for the 810W comparison. For the lowest laser
power of 560W, the l-SLS system produces a small square part,
while the simulation does not predict part formation. While there
appears to be a substantial discrepancy between the sintered part and
the predicted part, analysis of the simulated temperatures reveals
that the FE model predicted a max temperature of 442 �C. In other
words, the FEmodel predicted a particle-bed just before the onset of
sintering, while the real system produced a weakly sintered part.
This likely results from an initial sintering process that initiates at
temperatures below the 450 �C sintering threshold. Incorporating a

Fig. 16 Comparison of part density predictions from both the
ANN and the FEA models. The longhorn mask was used as an
input to both models.
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ramping sinteringmodel beginning at 400–425 �C instead of using a
single sintering threshold will likely address this discrepancy.
Further experimental validation of the FE model will help align the
NN predictions with the l-SLS system, but this validation process
should not have a significant impact on the NN prediction accuracy.
The NN model was trained on a separate set of simulated data with
modified laser powers and energy distributions. Subsequent NN
model testing produced results with very similar accuracy scores
when compared to the original results. This paper proposes a general
framework for sintering prediction for a l-SLS system, using
features that describe the heat flow conditions surrounding each
element. Changes in the underlying FE model in response to
extensive model validation will require generating a new training
dataset, but the underlying heat flow features will continue to apply
to the new system.

Conclusion

This work develops a regression-based surrogate model to enable
rapid temperature predictions for the l-SLS sintering process. This
model is trained on data generated from a high-fidelity FE model to
learn the heat transfer characteristics of a nanoparticle bed exposed
to selective laser power. The surrogate model is capable of
predicting the full timeseries evolution of temperature within the
powder bed over a 2 s window with very good accuracy. The NN
predictions on average achieve a 5.5% MAPE for the seven
individual test masks used for comparison. The NN predictions on
the complexmask vector achieved aMAPE ranging from7% to 11%
over the course of the simulation when estimating error near the
region of interest. The NN predictions capture the thermal response
to sudden changes in density and thermal conductivity that allow the
FEmodel to account for thermal property evolution during sintering.
This property evolution can then be used to predict the shapes of
sintered parts. Although the FE model used to generate the data is
inherently more accurate, the surrogate model runs more than 45�
faster. This computational advantage will become more substantial as
the mesh becomes finer during mesh refinement. This surrogate model
enables the rapid timeseries predictions needed for parameter
optimizations of the l-SLS system. The model accuracy
and performance will continue to improve through feature
adjustments, further hyperparameter tuning, and an expansion of the
training dataset.
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Nomenclature

d ¼ distance between elements in the mesh
Qgen ¼ heat generation experienced by an individual

element
Qgen Distance ¼ feature summarizing spatial distribution of laser

power though summation of
Qgen

d
ratio for all

elements
Qgen Zone ¼ a ring-shaped region surrounding an element that

details laser exposure
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