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Abstract

Identification of parameters in ordinary differential equations (ODEs) is an important and challenging task when modeling
dynamic systems in biomedical research and other scientific areas, especially with the presence of time-varying parameters.
This article proposes a fast and accurate method, TVMAGI (Time-Varying MAnifold-constrained Gaussian process Inference),
to estimate both time-constant and time-varying parameters in the ODE using noisy and sparse observation data. TVMAGI
imposes a Gaussian process model over the time series of system components as well as time-varying parameters, and restricts
the derivative process to satisfy ODE conditions. Consequently, TVMAGI does not require any conventional numerical
integration such as Runge—Kutta and thus achieves substantial savings in computation time. By incorporating the ODE
structures through manifold constraints, TVMAGI enjoys a principled statistical construct under the Bayesian paradigm,
which further enables it to handle systems with missing data or unobserved components. The Gaussian process prior also
alleviates the identifiability issue often associated with the time-varying parameters in ODE. Unlike existing approaches,
TVMAGI can be applied to general nonlinear systems without specific structural assumptions. Three simulation examples,
including an infectious disease compartmental model, are provided to illustrate the robustness and efficiency of our method
compared with numerical integration and Bayesian filtering methods.

Keywords Ordinary differential equations - Inverse problem - Time-varying parameter estimation - Gaussian process -
Bayesian inference

1 Introduction allowed to be time-varying:

Ordinary Differential Equations (ODEs) are often used to ;) — dx(t) _ £(x(0). 0(). ¥ 1).1 € [0.T] )
analyze the behavior of dynamic systems, such as the spread
of infectious diseases (Li and Muldowney 1995), interactions
between species (Takeuchi et al. 2006), and viral dynamics
(Perelson et al. 1996). This paper studies a general formu-
lation of ODE equations, where some of the parameters are

Here, x(¢) is the series of system outputs from time O to
T, ¥ denotes time-constant parameters, 6 (f) denotes time-
varying parameters, and f is a set of general functions that
characterize the derivative process. When f is non-linear, the
system outputs x (¢) typically do not have analytic solutions.
To solve x(¢) given initial conditions x(0) and parameters
0 (t) and ¥, numerical integration methods are often required,
such as Euler’s Method or Runge-Kutta Method (Lapidus and
Seinfeld 1971).
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observe y(t) = x(t) + €(t), where T denotes the obser-
vation time points while error €(t) denotes Gaussian noise.
We focus on the inference of 6(¢) and ¥ given y(7), with
emphasis on nonlinear structure f.

The time-varying parameter 6(r) in the ODE is often
important yet challenging to recover from real-world data.
For example, during a pandemic, the time-varying disease
reproduction number is critical for public health policy deci-
sions. However, its estimation can still be crude despite the
best effort (Abbott et al. 2020). The time-varying 6(¢) pro-
vides too much degree of freedom to the ODE system, and
two different 0 (¢) can both give x (¢) that fits the observation
data, resulting in identifiability issues (Miao et al. 2011).
Such high degree of freedom in the time-varying parame-
ters also gives overfitting issues for the usual gold standard
numerical integration method, which tends to produce 6(¢)
that fits the observation data exactly.

2 Review of related literature

Surrogate models (including Gaussian Processes) have long
been proposed to approximate the dynamic systems and facil-
itate computation (Calderhead et al. 2008; Dondelinger et al.
2013; Barber and Wang 2014; Ghosh et al. 2017; Lazarus
et al. 2018; Wenk et al. 2019), although most of them only
accommodate time-constant parameters (Dondelinger et al.
2013; Yang et al. 2021; Wenk et al. 2019; Calderhead et al.
2008; Girolami and Calderhead 2011). Early Bayesian works
include (Skilling 1992), which brought out the idea of mod-
eling the derivative process as Gaussian convolution of some
hidden function (i.e. radial basis function interpolation in
discrete setting). More recent works include (Tronarp et al.
2019; Kriamer et al. 2022), which combined Gaussian process
with Bayesian filtering for non-linear ODEs/PDEs. However,
all these works (Skilling 1992; Tronarp et al. 2019; Krdmer
et al. 2022) focused mainly on solving the initial value prob-
lems of the ODE (i.e. forward problems) rather than the
inverse problems. For the inverse problems, Calderhead et al.
(2008) used the product-of-expert heuristic to construct GP
posterior to estimate time-constant parameter. With notable
lack of theoretical rigor, the model artificially injected noise
to the posterior so as to balance the overconfidence issue from
product-of-expert approach. Other ideas, such as Bayesian
sampling with manifold constraints, has also been studied
(Diaconis et al. 2013; Girolami and Calderhead 2011), but the
usual approaches still suffer from the computational burden
of conventional numerical integration methods when apply-
ing to ODEs.

For time-varying parameters inference in the ODE system,
existing methods all have their deficiencies (Wu 2005). For
example, Lietal. (2002) relied on time-consuming numerical
integration; Huang et al. (2006) proposed a Bayesian para-
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metric approach to model time-varying coefficients in the
HIV-1 dynamic model, sacrificing some flexibility; Cao et al.
(2012) developed an efficient two-stage local polynomial
estimation method that circumvents conventional numerical
integration for a non-parametric time-varying parameters,
but required ODE system to have linear dependency on
the time-varying parameters (see Eq.(A2) in Supplementary
Material). Bayesian filtering methods are also explored in
the time-varying ODE parameter inferences, although lack-
ing some statistical rigor. For example, Pei and Shaman
(2020) and Shaman and Karspeck (2012) applied Ensem-
ble Adjustment Kalman Filter (EAKF) algorithm to estimate
parameters in a metapopulation SEIR model. Schmidt et al.
(2021) proposed an extended Kalman Filter approach based
on Gauss-Markov process that can infer time-varying param-
eter but cannot accommodate time-constant parameters any
more. The use of GP to model time-varying parameters
have been previously explored on the Stochastic Differential
Equation (SDE) (Pokern et al. 2013; Papaspiliopoulos et al.
2012; Hairer et al. 2011), but its applicability with respect
to the ODE remains more open, although its potential for
mitigating ill-posedness has been recognized (Cotter et al.
2010).

One concurrent work with ours that worth special note
is the article of Chen et al. (2021). In this article, Chen et
al. introduced the PDE-constraint GP optimization to solve
inverse problems. The paper also proposed to model the
location-dependent parameters as another GP, which resulted
in a seemingly similar objective function to our proposed pos-
terior function. However upon close examination, we can see
that the approaches are different, with each of its own merits.
We highlight a few key differences here. (1) The motiva-
tions are different. The paper Chen et al.(2021) incorporates
the PDE structure using an engineering approach through
constraint optimization where the PDE constraint is directly
added to the objective function. We took a more statisti-
cal approach through conditioning in the probability space
where the ODE information in the posterior function is natu-
rally derived from Bayesian principles. (2) The end objective
function and posterior function are seemingly similar but
with major differences. In the objective function of Chen et
al., the PDE constraint is exact at the discretization points,
and it would need equality constraint optimization such as
Lagrange multiplier. In our approach, the ODE information
is incorporated through posterior conditioning and the pos-
terior function only needs unconstrained optimization to get
the Maximum A Posteriori (MAP). Looking only at the pos-
terior function, our approach is more like “penalizing” the
deviation from ODE information, which is naturally derived
through Bayesian principles. (3) There is a small but solid
difference in the GP kernel selection: Chen et al.(2021) uses
the radial basis function (RBF) kernel, while we propose to
use Matern kernel in the least degree of freedom possible.
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The Matern kernel, thanks to the finite degree of smooth-
ness, tends to give much better numerical stability than the
RBF kernel, which eliminated the need for artificial perturba-
tion or nugget in the kernel and removed assumptions on the
smoothness of the time-varying/location-dependent parame-
ters. We will further highlight our distinct contribution in the
next section.

3 Our contribution

We propose a fast and statistically principled method to infer
time-varying 0 (¢) and time-constant ¥ from noisy observa-
tions of ODE. The key idea is to use Bayesian approach and
place Gaussian process (GP) prior on x (#) and time-varying
parameters 0(¢), thus the identifiability issue is mitigated
using the informative prior that favors smoother parameter
curves. Our method is built upon the prior work of MAnifold-
constrained Gaussian process Inference (Yang et al. 2021)
where the Gaussian process x () is restricted on a manifold
that satisfies the ODE system. Placing a Gaussian process
on x(¢) facilitates a fast inference on 6(¢), as it no longer
requires conventional numerical integration such as Runge—
Kutta. Our approach also adheres to the classical Bayesian
paradigm with principled posterior derivation. Through a
Gaussian process model on #(¢), we are able to general-
ize the MAnifold-constrained Gaussian process Inference to
the situation where time-varying and time-constant parame-
ters co-exist. We name our method TVMAGI (Time-Varying
MAnifold-constrained Gaussian process Inference), empha-
sizing its capability in handling time-varying parameters.
We demonstrate the effectiveness of TVMAGI through three
realistic simulation examples, where TVMAGI works well
even when some of the system components x(¢) are par-
tially observed. Through these simulation examples, we also
show that TVMAGI can outperform benchmark methods
including a numerical integration approach, a Bayesian fil-
tering approach, and a two-stage approach. Thanks to the
computational savings of skipping conventional numerical
integration step such as Runge-Kutta, TVMAGI has great
potential to be generalized in high-dimensional and large-
scale systems. TVMAGI has a distinct contribution from
the previously-proposed time-constant parameter inference
methods (Wenk et al. 2019; Yang et al. 2021) by investi-
gating a much more complicated problem with functional
estimate of time-varying parameters. The change from time-
constant parameter to time-varying parameter also creates a
notable difference in the scientific context, as parameters to
be inferred in most real-world phenomena are non-stationary
or changing over time.

4 Method of TVMAGI
4.1 The prior

Following standard Bayesian notation, the D-dimensional
dynamic system x(¢) is a realization of stochastic process
X(@) = (X1(t),..., Xp()), and the P-dimensional time-
varying parameters 0(¢) is a realization of stochastic process
O(t) = (O1(1), ..., ©®p(t)). We assume that O(¢) is contin-
uous and differentiable in # during time period [0, T'], which
helps to prevent overfit and to alleviate identifiability issue,
but can be relaxed later. The prior distribution of X and ®
in each dimension is independent Gaussian process in each
dimension d. That is,

Op(t) ~GP(uY. K. 1 €[0.T]. pefl,.... P} )
Xq(t) ~ GP(uy, KX),t €10,T1,d e {1,..., D} (3)

where ICff and IC;’: R x R — R are positive definite covari-
ance kernels for GP, while Mé( and MS): R — R denote mean
functions.

4.2 The likelihood

The observations are denoted as y(t) = (yi(t1), ..., yp(T D)),
where T = (71, T2, ..., Tp) is the collection of observa-
tion time points across all components. Each component
X4(t) can have its own set of observation time points T4 =
(ta,15 -+ Ta,N,), Where Ny is the number of observations of
the d-th component. If the d-th component is not observed,
then N; = 0, and T4 = . The observation is thus assumed
to be

Yi(tg) = Xa(tg) +€(tg), €(1q) W N(O, 03) 4

In this paper, notation ¢ shall refer to time generically, and T
shall denote specifically the observation time points.

4.3 The manifold constraint

We introduce a variable W to quantify the difference in the
derivative process X (¢) between Gaussian process and ODE:

W= sup 1Xa(t) —£(X(1), ©1), ¥, )| (5)

tel0,T],dell,..., D}

Intuitively, W is the Lo, norm of derivative difference,
and W = 0 if and only if X(@) strictly satisfies the ODE
structure, which is equivalent to constraining X (#) on the
manifold of the ODE solutions. The advantage of Ly, norm
is further discussed in Supplementary Material Section A.1.
In the ideal situation where W = 0, the posterior distribution
of ©(t), ¥, and X (¢) shall be formulated as
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Pow,w.xw.yy@@), ¥, x@®)|W =0,Y(t) = y(1)).
However, such ideal posterior is not computable in practice.
Therefore, we approximate W by finite discretization on time
points I = {t1,t,...,t,},suchthat = C I C [0,T]. We
similarly define Wy on the discretization set I as the Lo
distance of the derivative from GP and that from ODE:

Wr= sup  [Xa(t) —£(X (1), ©1), ¥, )] (6)

tel,del{l,...,D}

Here Wy is the maximum on a finite set, and W; — W
monotonically as I becomes dense. The associated com-
putable Bayesian probability of the discretized manifold
constraint Wy = 0 is

P(Wp =0[XU) =x(I),0)=0(I1),¥ =)
= P(X(I) —£(X(I), ), ¥, 1)
=0X()=x(I),0)=60(1),¥ =19)
= P(X(I) =fx(I),0(D). ¥, t1)|X(I) = x(I))
(7
which is a multivariate Gaussian distribution since the time

derivative X 4(t) of GP is also a GP with specific mean and
covariance kernel.

about . Supplementary Material Section A.2 presents addi-
tional intuition regarding the manifold constraint W; = 0.

4.4 The posterior

Therefore, a computable discretized posterior for TVMAGI
inference of X (¢), ©(t), and W is:

Pen),w.xm)\w;, ()
@), ¥, x(H|W; =0,Y(7) = y(1)) (8)

Equation (8) is the computable discretized posterior of
TVMAGI inference. In this paper, we consider the Maximum
A Posteriori (MAP) as the fast point estimate from TVMAGI,
while the Posterior Mean and the Posterior Interval are the
formal Bayesian inference results that further quantify the
uncertainty.

4.5 Closed-form derivation

The posterior distribution of X (¢), @(¢), and ¥ in Eq.(8) can
be further derived as

o), w.x(Dw. Y@ @), ¥, x(DHIWr =0,Y(r) = y(r)) « P(OU) =0(),¥ =¢, X(I)

=x(I),W; =0,Y(7) = y(1))

©))

x 7y (¥) x P(OU) =0(D|¥ =) P(X(I) =x(D|OUT) =0(), ¥ =¥)

1st Part, which is Eq.(2)

2nd Part, which is Eq.(3)

x P(Y(r) =y(@IXUI)=xI),0)=0(I),¥ =9) P(W; =0]Y(7) = y(z), X(I) =x(I),0I) =0(I), ¥ = ¥)

3rd Part, which is Eq.(4)

4th Part, which is Eq.(7)

(10)
1 P
= mu¥) x exp | = 5 (3 [111108m) +108lCS (D) + 10,(1) = 1§ (D p, |
p=1
1st Part, which is Eq.(2)
D
+ 3 [ 1110gm) + 1og /K (D1 + 1a (D) = 1 (Dl x 1 + Nalog@ro) + lva(ra) - ya @Iy
d=1
2nd Part, which is Eq.(3) 3rd Part, which is Eq.(4)
.0, . X -
1 Tog@) -+ logICal + 157" — it (1) =K (DKF (D™ a (D = wF (DI ] )| an

4th Part, which is Eq.(7)

Note that 6 enters into the posterior only through the
manifold constraint in Eq.(5)(6)(7). For the equations in
the previous sections, Eq.(3) is the prior for the system
component (without ODE information), and Eq.(4) is the
observation noise, both of which would have no information
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where [[v]|3 = vT Av, |I]is the cardinality of I, and f;”f‘w
is short for the d-th component of f(x (), 0(I), ¥, t7), and
Ca= K" () —'KJ (DX )~'C'S (1) is the conditional
covariance matrix of X (1) given X, (I).
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A deeper look into the above equation reveals that Eq.(9)
is the joint probability in Bayesian statistics, and Eq.(10) fur-
ther decomposes it into parts. The 1st Part (which is Eq.(2))
corresponds to independent GP prior distribution of @ (1),
as the prior of ©(¢) and ¥ are independent. The 2nd Part
(which is Eq.(3)) is the prior of GP on X (I), because the
prior of X (I) is independent from ®(¢) and W. The 3rd Part
(which is Eq.(4)) is the level of observation noise, and given
the value of underlying true components X (), the additive
Gaussian observation noise € () is independent from every-
thing else. The 4th Part (which is Eq.(7)) can be simplified to
be the conditional probability of X (I) given X (I) evaluated
atf(x(I),0(I), ¥, t1). All four parts are multivariate Gaus-
sian distributed. Especially, The 4th Part (which is Eq.(7)) is
Gaussian because conditional X (I) given X(I) has a mul-
tivariate Gaussian distribution, provided that the GP kernel
KCX is twice differentiable.

We choose Matern kernel with degree of freedom v =
2.01 for both @(¢) and X (¢) to guarantee a differentiable GP
that allows more flexible patterns:

Ko(l) = ¢1 —) K, (@ ),

) [ =|s —t] (12)

where K, denotes the modified Bessel function of the second
kind. In this case, 'K = "IC(s 1, K = %K(s,t), and

K’ = avath(s t) are all well-defined.

5 Algorithm

This section provides a detailed computational scheme
of TVMAGI, including the hyper-parameter settings. The
implementation is available on GitHub. Overall, the Max-
imum A Posteriori (MAP) of X(I), ©®(I), and ¥ is
obtained by optimization, while the posterior mean/interval
is obtained by Hamiltonian Monte Carlo. To set the hyper-
parameters and initiate the optimizer, we introduce a multi-
stage approach in the algorithm. The advantages of the multi-
stage mechanism are discussed in Supplementary Material
Section A.16.

5.1 Initialization and inference of the mean

At the first stage, we impose a GP only on X(#) and sub-
stitute the time-varying @ () with its unknown mean p® in
the entire model. This formulation ignores the time-varying
property of 0(¢) and treats it as time-constant, which fits in
the time-constant parameters inference framework of Yang
et al. (2021). As such, we can use MAGI package ((Yang
et al. 2021)) to obtain point estimates for the parameters
and system components, denoted as [LG), 1/I(O), and x (I )(0).
The ii® is subsequently used as the prior mean value for the

time-varying #(¢) in an empirical Bayes fashion, and will be
plugged in Eq.(11). The ¢© and x (1)@ will be used as the
initial values for ¥ and x (1) in the later MAP optimization.

The hyper-parameters (¢1}f dr ¢§f 4) for kernel ICS; in
Eq.(12) and the noise level o for each system component
Xa4,d =1, ..., D,are also estimated in MAGI package, using
the Gaussian process smoothing marginal likelihood ((Yang
etal. 2021)). The MAGI estimated noise level o () will serve
as initial value for later joint MAP optimization.

5.2 Point-wise inference of the time-varying
parameters

At the second stage of TVMAGI, we obtain an initial esti-
mate for time-varying 6 (I) by removing the smoothing GP
prior. That is, we maximize the partial posterior Eq.(13) con-
ditioning on O (I), without considering Part 1 Eq.(2):

), 0, V.6

= argmax pw X (I)|W;,Y(t),0)

x.0.9.0
W, x(DHIW; =0,Y(r) = y(r),0I) =0(1))
x y(Y) x P(XUT) = x(I)) (13)
2nd Part Eq.(3)
x P(Y(r) =y@IXUT) =x()) x
3rd Part Eq.(4)

P(X(D) =fx(D),0(D), ¥, 1D|X(I) = x(I)) (14)

4th Part Eq.(7)

The optimization is initialized atx(1 )(O), 1//(0), 0(0), and
the 0(1 ) is initialized at ii . We denote the optimized 6 (1)
as 0(1 ), and x YO 1/f(0) O are updated to a new opti-
mum X (1), 1# and 0. We call 0(1 ) the point-wise estimate
since there is no requirement on the smoothness or continu-
ity of 6(t)on . Although wiggling and possibly overfitting
the data, the point-wise estimate ] (I) captures the trend of
parameter changes, which provides information to set the
hyper-parameters of GP kernels ICE? for O(z).

5.3 GP hyper-parameters for time-varying ODE
parameters

Length scale parameter ¢© controls how fast @(¢) could
change. Provided the point-wise estimate 0(I), we use Gaus-
sian Process smoothing method to set the hyper-parameters
o7 . % , of GP kernels K3 in Eq.(12). We shall treat o)
as observations of @(I), and operate on each dimension of
time-varying ODE parameters separately.

Recall the prior ®,(I) ~ QP(MO IC®(I, I)), where the
mean 9 » isobtained in Sect. 5.1. We use the empirical Bayes

approach again to set qbl@p, 4529 » by maximizing its posterior
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density at 67p(1):

¢y, $5, = argmax 7, ($) P (6,(1)|¢)
b1,$2

15)

where 8, (I)|¢ ~ N([L?, K(¢) + diag(8?)), the § is the nui-
sance parameter governing the induced noise in point-wise
estimate 0 p(I), and the g, () is the hyper-prior. In practice,
the hyper-prior 7 , () is often set to be uniform on a reason-
able interval depending on the context to ensure desired level
of smoothness for the time-varying ODE parameter 6, ().
Once the hyper-parameters (1;1@ » (ﬁ? pare estimated through

maximum marginal likelihood, we fix the hyper-parameters
at their optimized values in all subsequent posterior infer-
ence. This is also called modularization and is justified in
Bayarri et al. (2009).

5.4 Maximum a posteriori (MAP) optimization

All hyper-parameters are now set and will be held as con-
stant when optimizing Eq.(11) to get the MAP, with initial
values (1@ = 6(I), x(DH© = ), ¥y = ¥ and
0® = &, all from Sect.5.2. The joint posterior function
Eq.(11) of x(I), 6(I), ¥ and o is optimized with Adam
optimizer (Kingma and Ba 2014) in PyTorch to get the MAP
estimation of TVMAGI. Finally, to mitigate the potential
issue of Adam optimizer converging to local optimum, we
suggest trying multiple initial values, including starting x (I)
at linear interpolations from the observations y(t).

5.5 Interval estimation of parameters

In addition to the MAP point estimate, we also quantify the
parameter uncertainty in TVMAGI using posterior samples.
In particular, we sample the posterior function Eq(11) using
Hamilton Monte Carlo (HMC), while holding all the hyper-
parameters at the same constant value as in Sect. 5.4. Details
about the HMC algorithm can be found in Supplementary
Material Section A.3. The interested reader may refer to Neal
(2011) for more thorough introduction to HMC. Specifically
in all illustration examples of this paper, we set step size
€ = 1073, number of leap-frog steps L = 100, sample size
8000, burn-in ratio 0.5, and the HMC is initialized at the
MAP estimate.

6 Benchmark methods and evaluation
metrics
6.1 Benchmark methods

We compare our method with two common approaches
for time-varying parameter inference in ODE: numerical
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integration methods, represented by Runge—Kutta method
(Lapidus and Seinfeld 1971), and Bayesian filtering meth-
ods, represented by Ensemble Adjustment Kalman Filter
(EAKF) (Shaman and Karspeck 2012), which has been used
in estimating the influenza disease spread SIRS model param-
eter (Shaman and Karspeck 2012) and studying time-varying
fatality rate In COVID-19 disease spread modeling (Yang
et al. 2020). Supplementary Material Section A.4 provides
the review of two approaches and some additional theoretical
discussion about the limitations and the statistical rigor of the
benchmark methods for ODE inference when time-varying
parameters and time-constant parameters co-exist.

6.2 Evaluation metrics

To assess the quality of the parameter estimates and the sys-
tem recovery, we consider two metrics based on root mean
squared error (RMSE). First, we examine the accuracy of the
parameter estimates, using parameter RMSE. For the time-
constant parameters, we directly calculate the RMSE of the
parameter estimates to the true parameter value across sim-
ulations. For the time-varying parameters, we additionally
average over discretization set I for the RMSE. Second, we
examine the system recovery, using trajectory RMSE. Due
to the potential identifiability issue that different parameters
can give similar system observations, we measure how well
the system components are recovered as another indepen-
dent evaluation. To calculate the trajectory RMSE, we use
numerical integration to reconstruct the trajectory based on
the TVMAGI inferred parameters and initial conditions. The
RMSE of the reconstructed trajectory to the true system is
then calculated at observation time points.

We emphasize that the numerical integration is only
used for evaluation purpose, and throughout our TVMAGI
approach, no numerical integration is ever needed. For
better distinction, we refer to the MAP of x(I) directly
from TVMAGI as the inferred trajectory, and refer to the
numerically integrated x (¢) based on the TVMAGI inferred
parameters and initial conditions as the reconstructed trajec-
tory.

To assess the quality of the interval estimates, we con-
sider the Frequentist coverage of our posterior intervals. For
the time-constant parameters, we directly calculate the pro-
portion of repeated simulations where our posterior interval
covers the truth. For the time-varying parameters, we addi-
tionally average over discretization set I for the coverage.
The coverage of the inferred trajectory can be similarly calcu-
lated, averaging over discretization set I. We do not compute
the coverage of the reconstructed trajectory as it will require
numerical solver for each posterior sample of the parameters
and initial conditions.
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7 Results

We illustrate the accuracy and efficiency of TVMAGI
through three realistic simulation studies of ODE models in
epidemiology, ecology, and system biology. We begin with
a disease compartmental model that demonstrates the effec-
tiveness of TVMAGI for problems with partially observed
system component(s). We then use an ecology example to
show how TVMAGI can mitigate the identifiability issue
through the informative GP prior that favors smoother time-
varying parameters. Lastly, we apply TVMAGI on a system
biology example with non-stationary rapid-changing time-
varying parameters, and presents TVMAGI’s competitive
performance with one additional tailor-made benchmark
method for such ODE.

7.1 SEIRD model

Consider a COVID-19 cases/deaths modeling using an infec-
tious disease Susceptible-Exposed-Infectious-Recovered-
Deceased (SEIRD) compartmental ODE model (Hethcote
2000; Hao et al. 2020), where the entire population is classi-
fied into S, E, I, R, D components, and any transitions from
one state to another state (i.e., the disease spreading dynam-
ics) are modeled as ODE:

ds  BIS dE IS

— = . — =—— —E,

dt N dt N

dl . ;

— =Vv'E—-v1,

dt

dD ; d

2 i 16
o vl (16)

N is the total population, and the cumulative recovered pop-
ulationisR=N—-S—E—I1—D.The S, E, I and D denote

Table 1 Accuracy comparison for the SEIRD model based on 100 sim-
ulation datasets. The mean of RMSE is reported first with the standard
deviation across 100 replications followed after £ for the parameters
and the reconstructed trajectories. The last column is the coverage of

the susceptible, exposed, infected population and cumulative
death respectively. The 4 parameters of interest are investi-
gated: rate of contact by an infectious individual (), rate
of transferring from state of exposed to infectious (v¢), rate
of leaving infectious period (v') and fatality rate ( p%). Dur-
ing a pandemic, parameters in the SEIRD model can evolve
over time due to pharmaceutical and non-pharmaceutical
interventions. We assume that g is time-varying due to the
mutation of disease and policy interventions during a spe-
cific time; p? is time-varying depending on the sufficiency
of medical treatments; v° is time-varying due to the different
levels of public awareness or complacency, and v’ is assumed
to be unknown time-constant parameter to avoid identifiabil-
ity issues.

In the experiment we set vl =0.1, Br = 1.8 —cos(rt/8),
v¢ = 0.1 —0.02cos(rrt/8), p? = 0.05+ 0.025 cos(rt/8),
and focus on a time horizon of 32 days. The initial val-
ues of four components are set as (100000, 100, 50, 50) for
(S, E, I, D). We assume S, I, D are observed on daily fre-
quency with log-normal multiplicative observation noise at
3% level. The exposed population E is assumed to be only
sparsely observable at 3% noise level, with one observation
per two days, due to the high cost of data acquisition from
sampling test. Such pandemic settings (Dong et al. 2020;
Mwalili et al. 2020) capture the periodic fluctuation of param-
eters often observed in the real world.

We apply TVMAGTI on a log-transformed system (by tak-
ing the log of populations in each of the S, E, I, D state)
over 100 simulation datasets, with 2 discretizations per day.
Figure I shows the results of parameter inference and the
TVMAGI reconstructed trajectory X (I') of the ODE system.
The parameter RMSE and trajectory RMSE introduced in
Sect. 6.2 are presented in Table 1, where TVMAGI is shown
to be more accurate than Runge—Kutta or EAKF.

interval estimates for the parameters and the inferred trajectories. The
last row shows the computing time (in seconds) needed to obtain point
estimates from all methods

Point Estimate

TVMAGI Posterior Samples

RMSE TVMAGI-MAP Runge—Kutta EAKF Posterior Mean RMSE Interval Coverage
Parameter B 0.114 0.039 0.178 0.094 0.706 0.010  0.110 £0.043 98.2%

ve 0.009 0.010 0.051 0.030 0.057 0.003 0.007 £ 0.005 97.4%

v 0.005 0.003 0.004 0.003 0.151 0.008  0.007 £ 0.004 91.0%

¢ 0.019 0.029 0.083 0.073 0.039 0.003 0.011 £ 0.008 98.0%
Trajectory S 581.7 272.1 1084.8 195.3 3868.3 132.2 615.3 £294.5 98.8%

E 704.7 218.3 951.7 1423 5376.1 496.6 660.7 £ 202.3 96.6%

I 439.0 140.4 556.2 90.6 3167.0 4049 41504+ 158.7 96.4%

D 383 49 33.3 5.0 907.3 48.6 140+£52 94.2%
Computing Time (s) 1006.7 115.54 2904.4 195.5 7.3 0.4 -

The bold indicates that the performance is the best among all methods
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Results of TVMAGI (MAP) across 100 simulations
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Fig.1 Results of parameter inference (upper) and reconstructed trajec-
tory (lower) of TVMAGI in 100 simulated datasets for SEIRD model.
The mean and the 95% interval here refer to the point estimates across

For point estimates, Fig. 1 and Table 1 show that, even
when the exposed population is sparsely observed, TVMAGI
is still capable of providing good results of inference. As the
most important parameter when assessing the spread of dis-
ease, f; can be accurately and robustly inferred. v’ can also
be accurately inferred as constant. pld has larger variability
at the start, as initial deaths are too few to provide enough
information. In comparison, the variability of vy inference
increases at the end of the period, because susceptible popula-
tion has decreased to nearly zero while infectious population
reaches plateau. Despite variations in the inferred parame-
ters, the inferred system trajectories are all very close to the
truth, confirming the intuition that the system is possibly less
sensitive to p? in earlier state and v in later stage. Sup-
plementary Material Section A.5 has the visual illustration
for Runge-Kutta or EAKF, and their accuracy is far from
satisfactory: Runge-Kutta method will overfit the observa-
tion noise, and EAKF reconstructed trajectory completely
misses the truth. We also tried to increase the computation
budget for EAKF, by increasing the discretization level and
the ensemble size. The result is shown in Supplementary
Material Section A.17. It can be seen that the performance of
EAKF would not improve given the increased computation
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95% interval

Sample observation

100 simulated datasets. One sample simulation dataset is also presented
to visualize the noise level and observation schedule.

budget, suggesting that the limitation of EAKF is inherent,
as discussed in Supplementary Material Section A.8.

For Interval estimates, Figure A10 in Supplementary
Material Section A.9 gives a visual illustration for 10 sample
datasets. The coverage of Posterior Interval across 100 simu-
lated datasets is included in Table 1. The emperical coverage
of the interval is reasonable around the 95% nominal value.
The intervals are wider for pd at the starting time, and wider
for v¢ at the ending time, which are consistent with the intu-
ition about their sensitivity discussed above. More interval
estimation results are available in Supplementary Material
Section A.9.

On the computational cost, Table 1 also shows that
TVMAGI is much faster than the Runge—Kutta numeri-
cal integration methods. EAKF is fast, but gives unreliable
results (see Supplementary Material Section A.8 for more
discussion on the reliability of EAKF).

7.2 Lotka-Volterra model

Lotka-Volterra (LV) model (a.k.a. predator—prey model) is
widely used to describe population fluctuation of predators
and preys and their interactions in the ecosystem (Goel et al.
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Results of TVMAGI across 100 simulations
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Fig. 2 Comparison of inferred @ (¢) and reconstructed X () of LV model. The mean and the 95% interval here refer to the point estimates across
100 simulated datasets. One sample simulation dataset is also plotted to visualize the noise level.

Table 2 Accuracy comparison of estimated parameters and reconstructed trajectory in the LV model based on 100 simulation datasets. See legend

of Table 1 for detailed description

Point Estimate

TVMAGTI Posterior Samples

RMSE TVMAGI Runge—Kutta EAKF Posterior mean RMSE Interval Coverage
Parameter  «(?) 0.0395  0.0302  0.1155 0.0920 0.2330  0.1589  0.0450 £ 0.0346 40.5%

B 0.0154  0.0098  0.0480 0.0069 0.1041 0.0621 0.0187 £ 0.0122 62.0%

1) 0.0156  0.0111  0.0166 0.0058 0.1605 0.0831 0.0160 +0.0119 58.0%

y(t) 0.0304  0.0226  0.0863 0.0756 0.0974  0.1847  0.0341 £ 0.0201 46.0%
Traj. x (prey) 0.0606 0.0550 0.0314  0.0085  0.4701 0.0903 0.0838 £ 0.0568 69.1%

y (predator)  0.0813 0.0622 0.0384  0.0131  0.2773 0.0646  0.0989 £ 0.0714 62.2%
Computing Time (s) 910.8 113.7 2042.1 85.2 22.7 1.1 -

The bold indicates that the performance is the best among all methods

1971). With the introduction of time-varying parameters,
the system becomes weakly identifiable during certain time
range, which creates a challenge in the inference. Specifi-
cally, the ODE system is characterized as:

dx
— = x — fxy,

o a7

dy
7 =0y vy
where x and y denote the population of preys and preda-
tors. «; indicates the birth rate of the prey and y; denotes
the death rate of the predator, both of which are assumed to
fluctuate according to seasonality. § and § describe the inter-
action relationships between predators and preys, and are
assumed constant. We set the parameters 8 = 0.75,68 = 1,
o = 0.6+ 0.3cos(wt/5), and y; = 1 4+ 0.1sin(;wt/5). The
time is measured on a yearly basis, and data for 20 years are
generated with monthly observations contaminated by 3%
multiplicative log-normal noise. The initial values of preda-
tors and preys are 1 and 3, as an ideal ratio in real ecology
systems (Donald and Stewart Anderson 2003).

Figure 2 shows the estimated time-varying parameters and
the reconstructed trajectory X (1), with parameter RMSE and
trajectory RMSE presented in Table 2. Our recovered system
components x and y are very close to the truth, despite the

weak identifiability of the parameter «; and y; when the x
and y are at peak (year=12). Most notably, «; could deviate
from the truth in the attempt to best fit the observed noisy data
at the peak of x;, resulting in a biased inference of the time-
varying parameters at the weakly identifiable time points,
although all deviations are still within the range of smooth-
ness constraints on «; . Nevertheless, both TVMAGTI inferred
system components x and y are still accurate.

Comparing with benchmark models in Table 2, TVMAGI
gives the most accurate parameter inference thanks to the
GP smoothing prior that mitigates the identifiability issue.
The numerical method of Runge—Kutta gives better trajec-
tory inference, but it cannot handle the identifiability issue
in the parameters. The coverage from TVMAGI is not ideal,
possibly due to the bias in «(#) estimate and the variance
in y(¢) estimate — if the GP smoothing prior is too strong,
the point estimates will be biased, and if the GP smoothing
prior is too weak, the point estimates will have large variance
(see Supplementary Material Figure A12. The comparison on
computational cost again demonstrates the expected advan-
tage of TVMAGI over Runge—Kutta, while EAKF is the
fastest method with the worst accuracy.
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Results of TVMAGI (MAP) across 100 simulations
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Fig.3 TVMAGI inferred a(t) and reconstructed X (¢) of HIV model.
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Table 3 Accuracy comparison of estimated parameters and trajectories in the HIV model based on 100 simulation datasets. See legend of Table 1

for detailed description

Point Estimate

TVMAGI Posterior Samples

RMSE TVMAGI Runge—Kutta EAKF ELE Posterior mean RMSE  Interval Coverage
a(t) 2819 71.8 695.7 50.9 818.6  54.9 2915 484 359.0 £ 127.8 74.1%

x(1) 0.057  0.002  0.038 0.003  0.181 0.004 0.075 0.003 0.069 £ 0.004 65.9%
Computing Time (s) 897.6  72.1 19402  79.7 54 0.3 10.7 0.1 - -

The bold indicates that the performance is the best among all methods

Fig. 4 Illustration of the manifold constraint on bi-variate Gaus-
sian. Left panel: blue dots are the samples from joint density of (Z1, Z»)
without the manifold constraint W = 0. The red curve is the manifold
constraint W = 0 to be imposed. Right panel: blue dots are the samples
from (Z, Z)|W = 0 where all points lie on the parabola. The den-
sity is proportional to the original bi-variate Gaussian but only on the
parabola curve.

This example illustrates the performance of TVMAGI
in the presence of weak identifiability — the inferred time-
varying parameters at the weakly identified time points could
subject to deviation from the truth, although the parameters
are smooth and still fit the observed data well.
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7.3 HIV model

In this example, we compare TVMAGI with a state-of-the-art
two-stage Efficient Local Estimation (ELE) method pro-
posed by Chen and Wu (2008) in an HIV dynamic model
that they studied. This is a challenging case for GP modeling
as the true time-varying parameter has non-periodic non-
stationary trends with rapid changes (Perelson et al. 1996;
Huang et al. 2003). To use the ELE method of Chen and Wu
(2008), the ODE system must fit in the linear form of Eq.(18):

d
X'(t) =Y ai(t)Zi(t) — X ()

i=1

(18)

where Z;(t) is the known covariate, and a;(t) is the
unknown time-varying coefficient. For benchmark com-
parison, we treat a;(¢) and a(¢) in Eq.(18) as unknown
time-varying parameters for TVMAGI. Detailed illustration
of HIV model formulation is provided in Supplementary
Material A.15.

Figure 3 shows the TVMAGI inferred parameter a(t) =
Zle ai(t)Z;(t) and the reconstructed trajectory X (z). The
parameter/trajectory RMSEs of TVMAGI and the bench-
mark methods are reported in Table 3. TVMAGTI has a small
advantage over the state-of-the-art method on HIV model
inference of X (¢). Further visual comparison to benchmark
methods (Supplementary Material Figure A9) shows that
TVMAGI is slightly more accurate at the beginning phase
of the system, which is in fact the most challenging phase
for HIV inference as viral load drops sharply due to the drug



Statistics and Computing (2023) 33:142

Page 11 of 30

142

Inferred 6(t) of EKF across 100 simulations
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Fig.5 Inferred 0(¢) of EKF, UKF and EnKF approach for SEIRD model. The inferred parameters cannot capture the ODE structure, thus yielding

inaccurate reconstructed trajectory.

effect. TVMAGI also achieves competitive inference result
ona(t), whichis of clinical importance for the generation rate
of HIV virus (Cao et al. 2012). The TVMAGI posterior inter-
val coverage is less ideal because of the decreased accuracy
in a(t) towards the ending period (Supplementary Mate-
rial Figure A13). Most importantly, while the benchmark
method requires a highly restricted form of ODE formula-
tion, TVMAGTI assumes no specific form of ODE equations,
and is thus applicable for general ODE systems, albeit with
longer computing time.

Overall in this example, we compare TVMAGI with an
additional benchmark method that can only be applied to
the ODEs with a specific form, where TVMAGTI is shown
to provide competitive inference accuracy while having
much more general applicability. The application in HIV
model also illustrates that TVMAGI could work well with
non-stationary trends in the time-varying parameters, where
the time-varying parameters is not periodic and have rapid
changes in part of the time horizon.
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Reconstructed x(t) of EKF across 100 simulations
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Reconstructed x(t) of UKF across 100 simulations
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Reconstructed x(t) of EnKF across 100 simulations
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Fig.6 Reconstructed trajectory of EKF, UKF and EnKF approaches for SEIRD model. The accuracy is far from satisfactory.

8 Sensitivity analysis

We conduct three sensitivity analysis to show the robustness
of our approach: the number of discretization, the selection
of GP kernel, and the mis-specified time-varying parameters.
Detailed discussion is provided in Supplementary Material
Section A.10-A.14, along with tables and visualizations of
SEIRD model results.

9 Discussion

In this paper, we introduce a Bayesian approach, TVMAGI,
for time-varying parameters inference in ODE dynamic sys-
tems. TVMAGI models time-varying parameters and system
components as Gaussian process, and is constrained to have
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the derivative processes satisfy the ODE dynamics. We
show that TVMAGTI is statistically principled and illustrate
its general applicability through three simulation examples.
Results have shown that TVMAGTI yields accurate and robust
parameter inference from noisy observations, with reason-
able interval estimates as well. Moreover, TVMAGI can
mitigate the identifiability issue and the over-fitting issue
in the time-varying parameters using the informative GP
smoothing prior. TVMAGI is also generally applicable in
the presence of missing observations.

TVMAGTI is more accurate than the benchmark methods
because TVMAGI addresses the challenges of the numer-
ical integration method and the Bayesian filtering method
for ODE time-constant and time-varying parameter infer-
ence. Numerical integration methods are the gold standard
for the ODE parameter inference when all parameters are
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Results of EKF across 100 simulations
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Fig.7 Inferred parameter and reconstructed trajectory of EKF, UKF and EnKF approaches for LV model. The accuracy is far from satisfactory.

time-constant. However, with the presence of time-varying
parameters, due to the lack of smoothness structure on 6(z),
the inferred time-varying parameters from Runge-Kutta will
overfit the noisy observation data, resulting in volatile 6(¢)
with little information about the true trends. The Bayesian fil-
tering approach, on the other hand, cannot infer time-constant
parameter ¥ because the update in ¥ is not permissible in
a state-space model fashion. We can nevertheless enforce
an update on the time-constant parameter, but there will be
no guarantee on the accuracy of the reconstructed trajectory.
The ELE two-stage approach relies on a regression technique
that can only be used if the ODE has linear dependency on
the time-varying parameters. Therefore, TVMAGI is the only
approach that is theoretically sound, practically accurate, and
generally applicable for the ODE inference problem when
time-constant and time-varying parameters co-exist.

On the computational time comparison, TVMAGI has
notable advantage of reduced computation cost compared to
numerical integration method, while the inference is more
accurate compared to the fast-yet-unreliable Bayesian fil-
tering methods. Even for the three small-sized problems in
this paper, TVMAGI is more than twice as fast than the
numerical integration method of Runge—Kutta with better
accuracy. When dealing with large-scale system, the gain in
computational time is likely to be even larger, as TVMAGI
computational time would scale linearly as the dimension
of system components grow, while inference with numerical
integration method typically scales super linearly. Therefore,
TVMAGTI has strong potential in large-scale systems, where
numerical integration is expensive.

There are two settings that may require tuning in TVMAGI.
First, the number of discretization can affect the inference
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Fig.8 Inferred parameter and reconstructed trajectory trajectory of EKF, UKF and EnKF approaches for HIV model. The accuracy is worse than

TVMAGI, Runge—Kutta, or ELE.

results. When observed components are sparse, the number
of discretization should increase until the results are stabi-
lized. However, over-densed discretization will lead to higher
computation cost. For example, in SEIRD model, we set
discretization as 2 data points per day for optimized per-
formance, as further increasing the discretization will not
improve the result accuracy. Second, the inference results on
TVMAGI can be affected by hyper-parameter settings of the
GP kernel for 8 (¢). To achieve the desired variability level of
time-varying parameters, we find it helpful to use informa-
tive hyper-prior that specifies the range of length-scale (a.k.a.
bandwidth) parameter of the GP kernel for (¢) to prevent
obvious over-smoothing or over-fitting.

The Gaussian process modeling of € (z) with Matern kernel
v = 2.01 ensures continuously differentiable time-varying
parameters, which prevents overfitting the parameter to the
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observation noise. The variability in time-varying parameter
0(t) can be further controlled by the length-scale GP hyper-
parameter ¢, through its hyper-prior. The Matern kernel
together with the hyper-prior on the length-scale hyperpa-
rameter ensures the smoothness and the degree of variability
in 0 (¢), which in turn prevents over-fitting and mitigates iden-
tifiability issues. If a more flexible 6 (¢) is desired, Matern
kernel v = 1.5 with hyper-prior favoring smaller GP hyper-
parameter ¢, can be used to allow rapid non-differentiable
changes in 6 (7).

One limitation of TVMAGI is its inherent bias. Just
like any other Bayesian approaches, TVMAGI could be
biased towards smoother curves due to the GP prior. The
results of inference would be less accurate when the true
time-varying parameters have rapid changes, and the pos-
terior interval coverage could suffer. But as shown in the
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Fig.9 Results of parameter inference in 100 simulated datasets using Runge—Kutta and EAKF for SEIRD model.

Reconstructed trajectory of Runge-Kutta across 100 simulations
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Fig. 10 Reconstructed trajectory using inferred parameters of Runge-Kutta and EAKF methods for SEIRD model. One sample simulation dataset
is also presented to visualize the noise level and observation schedule.
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Fig. 11 Comparison of inferred 6 (¢) and reconstructed X () of LV model. We also plot one sample simulation dataset to visualize the noise level.

examples, the magnitude of such bias is small in practice,
and our accuracy is still comparable with state-of-the-art
approaches while TVMAGI having much better universal
applicability. TVMAGI is also not suitable if the underly-
ing time-varying parameter is a jump process. In this case,
methods in change point detection literature might be more
applicable (Cuenod et al. 2011). Alternatively, we can place
the prior of continuous-time Markov chain or Poisson pro-
cess on 6(t), instead of Gaussian process, to model the jump
process.

There are also many other interesting future directions
for TVMAGI. We currently focus on empirical performance
of TVMAGI through simulation examples. More theoreti-
cal study on the convergence property, identifiability issue,
and asymptotic behavior of the time-varying parameter esti-
mate are all natural directions of future research. It would be
of future interest to extend TVMAGI for partial differential
equation of spatial-temporal dynamics (Xun et al. 2013), or
stochastic differential equation of inherent noise modeling
(Kou and Xie 2004).
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Appendix A: Supplementary materials
A.1 Advantage of the infinity norm in Eq. (4.5)

In this section we illustrate how L, norm in Eq.(4.5) of
main text facilitates theoretical construction, compared to
L, norm. First, with Ly, norm in W, it is clear that on
the discretization subset I, the corresponding W; will sim-
ply be the maximum over /. However, with the Ly-norm of
fOT (X(1) — f(X(1), ©(r), U, 1))%dt, the formulation of the
corresponding Wy is not as clear. Second, using L, makes
the theoretical justification easier. To mathematically study
the properties of TVMAGI while avoiding Borel paradox,
one can use the fact that {W; < €} = N;¢;/{W; < €}, thanks
to W being the Lo, norm over the set /. Third, the L
norm in Eq.(4.5) and Eq.(4.6) automatically transforms into
L5 loss for likelihood calculation in Eq.(4.7) and Eq.(4.11)
through a simple mathematical derivation, which facilitates
computation while maintaining the theoretical rigor. This is
because when a Gaussian distributed vector is constrained
to have zero deviation with some fixed value (i.e., vector
L~ distance to the fixed value is zero), the fixed value will
be plugged into the Gaussian probability density function,
inducing an L» loss in the target function Eq.(4.11).
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Fig. 12 Comparison of inferred 6 (7) and reconstructed X () of HIV model. We also plot one sample simulation dataset to visualize the noise level.

A.2 Intuition of the manifold constraint on Gaussian
process

In this section we illustrate the intuition behind the manifold
constraint W = 0 (or Wy = 0) for the Gaussian process.

We consider the following simple bi-variate Gaussian
example:

1 0.5
(Z1,2Z2) ~ N, (0, (0.5 | ))

LetW =2Z;—-0.5x (Z% +1). Then conditioningon W = 0,
the (Z1, Z») is distributed on the parabola as in the left panel
of Fig.4. The sampling is possible as the blue dots in the
right panel of Fig. 4, where the density is proportional to the
original bi-variate Gaussian but only on the parabola curve.

The Gaussian process X; in the main text and the con-
straint W; = 0 apply the same intuition on |/ |-dimensional
Gaussian vector, thus having a manifold constraint induced
by W; = 0.

A.3 HMC algorithm
We outline the HMC procedure for sampling from a target

probability distribution. Algorithm 1 provides the details of
our HMC implementation.

A.4 Additional benchmark methods of Bayesian
filtering approaches

Compared with Ensemble Adjustment Kalman Filter (EAKF),
other Bayesian filtering methods, such as Extended Kalman
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Interval estimation of B Interval estimation of v®

Fig. 13 Illustration of interval estimation of SEIRD model of 10 sample datasets for 8 (upper), v¢ (middle), p? (lower). The shadow indicates the
95% posterior interval from HMC samples, the solid lines indicate the posterior mean, and the red surface indicates the true value.
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Fig. 14 Median of upper & lower bound of 8, v¢ and p¢ in SEIRD model. We randomly plot 10 replications.
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Fig. 15 Estimated interval of «(¢) and y (¢) in LV model. We randomly plot 10 replications.
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Fig. 16 Estimated interval of a(¢) in HIV model. We randomly plot 10 replications.
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Algorithm 1 HMC sampling in TVMAGI
Input:

U: Log likelihood function in Eq.(4.11)

e: step size of HMC

L: number of leaf frog steps

N: number of samples

Initialize: x(1),0(1), ¥, o

1: for i in 1:N do

2: geurrent = vector(x(I), 0(I), ¥, o)

3 q = {current

4 p = rnorm(length(q), 0, 1)
S: Pcurrent = P

6: p=p—€VU(q)/2

7:  for jin 1:L do

8: qg=q+¢ep

9: p=p—¢eVU(g)

10:  end for

11: p=p—eVU(g)/2
12:  if runif(1) < exp(U (qeurrent) — U (@) +sum(p?,,. .. — p*)/2)
then

13: return q > (Accept)
14:  else

15: return gcyrrent > (Reject)
16:  endif

17: end for

Filter (EKF), Unscented Kalman Filter (UKF) and Ensemble
Kalman Filter (EnKF) are less discussed in ODE parame-
ter inference applications. In this section we also include a
few more Bayesian filtering benchmark methods of Extended
Kalman Filter (EKF), Unscented Kalman Filter (UKF), and
EnKEF. All the Bayesian filtering methods have the inherent
limitation that all parameters must be assumed time-varying,
and thus cannot accommodate time-constant parameters. To
further illustrate the Bayesian filtering approaches, we also
provide inference results using the other three methods. Fig-
ure 5 and Fig. 6 illustrate the results of SEIRD model. Figure 7
shows the results of LV model and Fig. 8 shows the results
of HIV model.

A.5 Additional results of the main benchmark
methods

Due to the limited space of the main text, we include visu-
alizations of the main benchmark methods of Runge—Kutta
method and EAKF method for the three examples in the main
text here. Figure 9 is for SEIRD model parameter inference,
and Fig. 10 is for SEIRD model reconstructed trajectory. Fig-
ure 11 is for LV model. Figure 12 is for HIV model.

A.6 Review on benchmark methods
A.6.1 Runge-Kutta method

Runge—Kutta methodis a brute-force way for parameter infer-
ence in ODE systems. As a non-linear least square method,
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Runge—Kutta method minimizes the MSE of observations
and reconstructed trajectory using numerical integration
from the proposed initial conditions and parameters. The
objective function is given by:

D
xo,om(ilr;,¢ Z Z(}’d(f)

TETy d=1

—XEBE% (x0,0(1), ¥)a)? (19)

where XRX4 denotes the reconstructed trajectory using the
4th Order Runge—Kutta method.

A.6.2 Ensemble adjustment Kalman filter

Ensemble Adjustment Kalman Filter (EAKF) is a variation
of Kalman Filter that is popular for parameter calibration
of ODE systems in practice. It is a specially designed fast
Bayesian filtering method. As a data assimilation technique,
EAKF represents filtered distribution using Monte Carlo
samples, and replaces the covariance matrix with sample
covariance. The Kalman update assumes all probability dis-
tributions involved are Gaussian. As a major difference with
Ensemble Kalman Filter (EnKF), EAKF uses a deterministic
update instead of stochastic update.

A.7 Limitations of Runge-Kutta method

Numerical integration methods are the gold standard for
the ODE parameter inference when all parameters are
time-constant. However, with the presence of time-varying
parameters, there are several inherent disadvantages of
numerical integration methods. First and foremost, without
any structure on the time-varying parameters, the numerical
integration method will give time-varying parameter estimate
that perfectly fits the observation data, resulting in overfit-
ting issues in the time-varying parameter. Second, with the
increase of time points and size of the system, the objective
function becomes expensive to evaluate, resulting in high
computation cost. Third, the numerical methods are sensitive
to the initial value of the optimization, while searching for a
good initial point can be challenging in the high-dimensional
scenarios, as optimization of objective functions using algo-
rithms such as Adam can be easily stuck at local minimum.
We point out that using random initial values in our examples
can lead to high level of error, making numerical integration
methods completely fail. In this case, all the optimization for
Runge—Kutta method are initialized at the TVMAGI initial
points from Section 5.1 in the main text examples.
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Table 4 Parameter and

trajectory RMSE of TVMAGI in RMSE ?‘Scre“za“on Level 5 .
SEIRD model under different
discretization level. The Parameter B 0.156 + 0.083 0.114 + 0.039 0.102 + 0.036
computing time (in seconds) is .
reported in the last row v 0.007 £ 0.007 0.009 £ 0.010 0.010 £ 0.010
v 0.006 + 0.004 0.005 + 0.003 0.005 + 0.003
pd 0.018 £ 0.027 0.019 £ 0.029 0.021 £ 0.033
Trajectory S 1253.4 4+ 332.0 581.7 £272.1 603.9 + 355.2
E 1010.6 +231.9 704.7 £ 218.3 679.5 £ 209.1
1 584.6 £ 195.6 439.0 £ 140.4 401.0 £ 132.8
D 447+ 8.8 383+ 49 300+ 34
computing time (s) 622.1 &+ 49.6 1013.3 £109.1 1773.9 £ 161.3
Table 5 Parameter and
trajectory RMSE of TVMAGI in RMSE ‘]} gor 0@ 25 201
SEIRD using different kernels : : :
Parameter B 0.085 % 0.005 0.139 + 0.021 0.114 +0.039
vé 0.012 + 0.004 0.015 + 0.005 0.009 + 0.010
v 0.004 + 0.005 0.003 £ 0.004 0.005 + 0.003
pd 0.058 £ 0.004 0.044 £0.012 0.019 £+ 0.029
Trajectory S 423.0 £ 130.2 853.3 + 288.5 581.7 £ 272.1
E 4123 £ 111.7 836.1 + 186.5 704.7 £218.3
I 356.3 + 94.1 569.4 +171.8 439.0 & 140.4
D 69.1 £21.5 20.4 + 8.6 383+ 4.9

Table 6 Parameter and reconstructed RMSE table for mis-specified
time-varying parameter v°

RMSE

Parameter Reconstructed

B 0.120 0.046 S 513.13 232.08
v¢ 0.008 0.009 E 647.16 232.81
v 0.007 0.004 1 364.94 197.92
p¢ 0.022 0.036 D 27.61 6.52

A.8 Limitations of Bayesian filtering methods

Although Bayesian filtering method is the fastest, examples
have shown that applying Bayesian filtering methods to ODE
parameter inference problems has failed to provide satisfac-
tory results. Even though we included the Bayesian filtering
methods as baseline comparison methods, we emphasize that
state-space model (Bayesian filtering) and ODE parameter
inference (TVMAGI) are fundamentally different problems.
To illustrate the difference in a simplified framework from
a theoretical perspective, consider the following example of
time-constant parameter inference where all parameters are
denoted as 6.

The fundamental difference is the lack of randomness in
the state transition given the model parameters, and thus

the Bayesian update given the observation will have zero
effect. With the ODE structure, there is no randomness in
x¢|x;—1, 0. The state transition distribution p(x;|x;_1,0)
essentially has shifted Dirac delta distribution. Therefore,
regardless of emission probability p(y;|x;), the hidden state
x; will not depend on y,. As such, all Bayesian updates will
have zero effect to shift distribution of p(x;|x;—1, #), which
is still shifted Dirac delta distribution. The exact Bayesian
filtering results will simply be the solution of ODE dynam-
ics given the initial sample of x¢ and the parameter 6. In this
case, the parameter estimation in the exact Bayesian filtering
reduces to using numerical solver to generate the entire ODE
curve given x, @, and then using a least square approach to
compare the solved curve and the observations to find the best
x0, 0. The exact Bayesian filtering in this case degenerates to
a numerical integration method. From another particle filter
perspective, each particle of sampled x, @ will evolve in time
according to ODE without any randomness, and the param-
eter estimation becomes a brute-force search of the particle
of sampled xg, @ that provides the smallest mean squared
error to the observation. In light of this, the Bayesian filter-
ing/smoothing is more suitable for inference of Stochastic
Differential Equations (SDEs) parameters.

However, Bayesian filter methods still can be applied
in ODE inference problem if we can forego some statisti-
cal rigor. We can treat all parameters as time-varying, and
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Inferred 6(t) of TVMAGI across 100 simulations (mis-specified)
e

B v p?
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2.0 0.075
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—— True —— Mean of TVMAGI 95% interval

Fig. 17 Mis-specified parameter v¢ in SEIRD model. Figure y-scale is the same as Figure 1 for better visualization.

Inferred 6(t) of TVMAGI (MAP, d=1) across 100 simulations
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B p¢
3.0
0.12 A 0.20
2.5
0.10 0.15
2.01 0.08 1
10
1.51 .06
0.05 -
1.0 ] W
aho 0.00 1
0 5 10 15 20 25 30 O 5 10 15 20 25 30 0 5 10 15 20 25 30
— True —— Mean of TVMAGI 95% interval
(a) Discretization level = 1
Inferred 6(t) of TVMAGI (MAP, d=4) across 100 simulations
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(b) Discretization level = 4

Fig. 18 TVMAGI inferred parameters in SEIRD model with different discretization level.

artificially introduce additional randomness in 6;|6;_ and
¥,|¥,_;. In this case, the simultaneous estimation of system
components x(f), time-constant parameter ¥ and time-
varying parameter 6 (t) becomes an estimation of joint hidden
state (x;, ¥,, 6;). Then Bayesian filtering methods such as
EKF, UKF, EnKF and EAKF become applicable. However,
this is not a statistically principled approach, because (1)
time-constant parameter ¥ is now changing with time, and
(2) the inference on the distribution is not exact as Gaussian
distributional approximation is used on system components
x (t). Nevertheless, this method could work empirically, with
the notable success of SIRS-EAKF model.
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In our example, we found the Bayesian filter methods
are highly sensitive to the initialization of the parameters.
Randomized initialization often lead to insensible results.
Therefore, all the parameters for Bayesian filter methods are
initialized at the TVMAGI initial points from Section 5.1 in
the main text examples, which is the same as Runge—Kutta
method.

Even then, our numerical experiments suggest that Bayesian
filtering methods are the fastest, but often yield unreliable
inference results. Among EKF, UKF, EnKF and EAKF, we
see that UKF, EnKF and EAKF yield similar results, all out-
performing EKF in LV and HIV examples, while EKF has a
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Reconstructed x(t) of TVMAGI (MAP, d=1) across 100 simulations
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Fig. 19 TVMAGI reconstructed trajectories in SEIRD model with different discretization level.

slight advantage in SEIRD model inference compared with
other Bayesian filtering methods, although not robust. All of
them yield orders of magnitude worse trajectory RMSE com-
pared to TVMAGI or Runge—Kutta. Two factors contribute
to the unsatisfactory trajectory RMSE of Bayesian filtering
methods. First, all filtering approaches fail to yield an accu-
rate and robust parameter estimation, especially in SEIRD
model when the observation points are limited. Second, the
variance of time-varying parameters is large at weakly identi-
fiable time points (Fig. 7), and the estimates for the later time
points are no longer accurate due to the cascading effect.
The failure of Bayesian filtering in our setting is not sur-
prising. First, it violates the assumption of the model, as
it is not principled to allow time-constant parameters ¥ to
change over time. Although we used the average 1/_1 of the
filtered parameter ¥, to be the final estimate for the ¥, the
approximation error can still be large. The idea of changing
a time-constant parameter to be time-varying during infer-
ence and later plugging in the average of the inferred values
is not theoretically sound. The trajectory RMSE precisely
evaluates how accurate the estimated parameters can be used
to reconstruct the entire system given the ODE structure, of
which 1/_I would fail. Second, contrary to the typical setting of
Bayesian filtering in machine learning where there is a long

sequence of data, our experiments are designed to see how
the method performs with short time series and sparse obser-
vations, as in most scientific experiment settings. The lack
of long series of data poses a challenge to Bayesian filter-
ing methods. Third, the ODE structure is no longer exactly
followed in Bayesian filtering, which loosens the structure
constraints and creates additional loss of information from
the observation data that is already sparse.

A.9 Additional results of TVMAGI interval estimates

In this section we present the visualization for the interval
estimation results. We see that for long time series of obser-
vations, the estimated intervals tend to be narrow and may
not contain the true values, which is a limitation of TVMAGI.

A.10 Additional results on TVMAGI sensitivity study

In this section we conduct three sensitivity analysis: the
number of discretization, the selection of GP kernel, and
the mis-specified time-varying parameter. For the number
of discretization, our theoretical derivation ensures that the
inference result will converge as the discretization increase,
and we recommend gradually increasing the number of
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Inferred 6(t) of TVMAGI (MAP, v =1.5) across 100 simulations
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(a) Inferred parameters of v = 1.5
Reconstructed trajectory of TVMAGI (MAP, v = 1.5) across 100 simulations
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(b) Reconstructed trajectory of v = 1.5

Fig.20 TVMAGI inferred parameters and reconstructed trajectories of SEIRD model with Matern kernel v = 1.5.

Table 7 Accuracy comparison of estimated parameters and recon-
structed trajectory in SEIRD model based on 100 simulation datasets.
d is the discretization size. For example, d = 5 means 5 discretizations

per day, that is, 5 discreization points per single observation points. n
indicates the ensemble size in the Ensemble Adjustment Kalman Filter
(EAKF). See legend of Table 1 for additional description

RMSE d=2,n=1e5 d=5n=1e5 d=>5n=2e5 d =10,n = 2e5 d =20,n =2e5
Parameter S 0.706 0.010 0.688 0.0186 0.683 0.0179 0.702 0.0145 0.737 0.0206
v° 0.057 0.003 0.044 0.005 0.040 0.006 0.061 0.006 0.056 0.0008
v 0.151 0.008 0.146 0.006 0.146 0.005 0.153 0.002 0.155 0.0004
¢ 0.039 0.003 0.043 0.007 0.046 0.009 0.034 0.005 0.0.032  0.006
Traj. S (prey) 3868.3 1322 3786.7 1529 4379.3  158.8 3879.3  158.8 4083.6 1775
E (predator)  5376.1  496.6 56184 5227 6769.0 5259 5469.0 5404 57189  623.7
I (predator)  3167.0 4049 1908.6  358.4 3081.3  392.1 2008.9 4494 2168.2 6209
D (predator)  907.3 48.6 924.6 52.6 72.4 30.8 317.5 357 130.4 10.6
Computing Time (s) 7.3 0.4 20.4 35 534 11.9 121.8 25.7 267.7 40.8

discretization points until the result is stabilized. Here we
empirically demonstrate such convergence by presenting
results with various discretization level. For the GP kernel
selection, we relax the GP kernel of time-varying parame-
ter to be Matern kernel with different degrees of freedom
v=25andv = 1.5. When v = 1.5, () is only required to
be continuous, but not necessarily differentiable. For the mis-
specified time-varying parameter, we examine the TVMAGI
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time-varying estimate when one parameter is in fact time-
constant.

A.11 Number of discretization

In this section we explore the sensitivity of TVMAGTI to the
number of discretization. In the paper we used discretization
level of 2 in the SEIRD model, that is, with 32 observa-
tion points, we have a total of 64 discretization points (2



Statistics and Computing (2023) 33:142

Page 250f30 142

Results of TVMAGI (MAP, v =2.5) across 100 simulations
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(b) Reconstructed trajectory of v = 2.5

Fig.21 TVMAGI inferred parameters and reconstructed trajectories of SEIRD model with Matern kernel v = 2.5.

discretization per observation). For comparison, we use the
same observation data with discretization level of 1 and
level of 4, corresponding to 32 discretization points (1 dis-
cretization per observation) and 128 discretization points (4
discretization per observation), respectively. Table 4 shows
that the inference accuracy indeed converges. However, the
computational time scales up linearly with the number of
discretization points. In practice, we recommend gradually
increasing the number of discretization points until the result
is stabilized, trying to balance the inference accuracy with
the computing cost.

A.12 Selection of kernel

In this section we discuss how the kernel selection will
affect the performance of TVMAGI. In the paper we recom-
mend modeling 6 (¢) as Gaussian process with Matern kernel
v = 2.01 to guarantee a continuous and differentiable time-
varying parameters while maintaining high flexibility. We
can also use other GP kernels or hyperparameters to control
the smoothness. For example, Matern kernel with v = 2.5
can be used for even smoother GP with a simple closed-
form kernel. The condition of differentiability can also be
further relaxed if we substitute the kernel with v = 1.5,

and then the parameters are only assumed with continuity
without differentiability, allowing more flexible patterns for
the time-varying parameters 6 (¢). Table 5 shows the result
under both kernels, where the the performance is similar to
the recommended v = 2.01 in SEIRD model, indicating that
TVMAGTI is not sensitive to the choice of kernels.

A.13 Mis-specified time-varying parameters

In this section, we explore the TVMAGI estimation when a
time-constant parameter is mis-specified to be time-varying,
i.e., a time-constant ODE parameter is falsely recognized
as a time-varying parameter. Ideally, the inferred parame-
ter curve from TVMAGTI should be a horizontal line which
is close to the true constant value, while still maintaining
smoothness. In this example, we alter the settings of SEIRD
model by setting parameter v¢ as constant v = 0.1, and
treat it as time-varying parameter in the TVMAGI estima-
tion. As shown in Fig. 17, TVMAGI is capable of dealing
with the mis-specified parameters, where the inferred v° is
approximately a horizontal line close to true parameter value
(except the ending time when the v° is difficult to estimate),
while the inference of other parameters are not affected. The
parameter and reconstructed RMSE results are presented in
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Discretization = 5, ensemble size = 1 x 10°
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Fig.22 Comparison of inferred parameters under different EAKF settings. d is the discretization size. For example, d = 5 means 5 discretizations
per day, that is, 5 discreization points per single observation points. n indicates the ensemble size in the Ensemble Adjustment Kalman Filter

(EAKF).
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Fig.23 Comparison of
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Supplementary Material Table A1, and the accuracy is com-
parable to the Table 1 in main text where all time-varying
parameters are correctly specified.
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(d) d = 20, ensemble size = 2 x 10°

A.14 Discretization and choice of kernels
In this section we give additional visualizations for TVMAGI

sensitivity study when varying the discretization level, and
Matern kernel degree of freedom v.
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A.15 Structure of HIV model

The ODE model that characterizes the response of anti-viral
regimens during HIV infection is given by:

T'(t) = %T(z) = —pT(t) — k[l — r(OIT)X (1)
T (1) = %T*(t) =k[1 = r(OIT(OX (@) — 8T*(t)

X' () = %X(l) = N8T*(t) — cX(1)
(20)

T (t) denotes the concentration of uninfected CD4+ T cells,
which can be accurately measured clinically; 7* () denotes
the unknown unobservable concentration of infected T cells;
X (t) is the HIV-1 viral load in plasma, and can be observed
with noise. A is the rate of new T cell generation; p is the
death rate of T cells; k is the infection rate of T cells by
HIV virus; § is the death rate of infected cells; N is the total
production of new virions by an infected T cell; ¢ denotes the
known constant rate of free virion clearance; r (¢) is the time-
varying antiviral drug efficacy coefficient, which may decay
through time due to drug resistance. Our simulation settings
are based onas A = 36, p = 0.108, k =5 x 1074, 8 = 0.1,
N = 1000, ¢ = 3.5, X(0) = 1000, T(0) = 350, T*(0) =
20, and r(t) = cos(rt/500). Time horizon is set as 100
days, with observation noise level at 5%. Hulin Wu (2008)
transformed the system Eq.(20) into Eq.(7.17) by taking d =
2,a1(t) = —=NT*(1),ay(t) = Nk[1—r(0)1X (1), Z1(t) = 1
and Z,(t) = T(t), and then used their ELE method estimate
time-varying coefficients a; (¢).

A.16 Advantages of multi-stage algorithm

Compared with joint optimization of hyperparameters and
parameters together, the multi-stage optimization method
enjoys several advantages. First, the GP hyperparameters ®*
for the system components are set at the first stage and held as
constant in the rest of the optimization so that the inverse of
kernel matrix only needs to be computed once. Second, GP
hyperparameters ®© for the time-varying parameters could
not be set without any information about @ (7). Therefore, a
multi-stage procedure is necessary, where a point-wise ] @))
is obtained in one stage without GP, and then GP hyper-
parameters ®© is estimated in the following stage based
on @ (I). Lastly, The multi-stage optimization ensures that
each step of the optimization starts with sensible initial
value obtained from previous modularized optimization, thus
drastically decreasing the chance of Adam optimizer stuck
in local mode. Experiments have shown that our carefully
designed multi-stage optimization is faster and achieves bet-
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ter results than joint optimization with randomized starting
values.

However, although we carefully designed the multi-stage
optimization and sampling schedule, occasionally the Adam
optimizer or the HMC sampler could still get stuck. Among
the total of 300 simulated datasets across three examples, the
algorithm got stuck in one particular dataset of the SEIRD
model. In the stuck case, some manual tuning of the hyper-
parameters or jittering of the sampled parameters might be
needed. We will continue to improve the robustness of our
proposed algorithm and our software implementation.

A.17 Results of EAKF under different discretization
and sample size

The computation time of Ensemble Adjustment Kalman Fil-
ter (EAKF) increases with denser discretization and more
sample sizes. In this section, the results of EAKF under dif-
ferent settings are exhibited and compared. It can be seen that
the accuracy of EAKF will not improve dispite the increased
computation cost.
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