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Connections between propulsive efficiency and
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We present experiments on oscillating hydrofoils undergoing combined heaving and
pitching motions, paying particular attention to connections between propulsive efficiency
and coherent wake features extracted using modal analysis. Time-averaged forces and
particle image velocimetry measurements of the flow field downstream of the foil
are presented for a Reynolds number of Re = 11 × 103 and Strouhal numbers in the
range St = 0.16–0.35. These conditions produce 2S and 2P wake patterns, as well as a
near-momentumless wake structure. A triple decomposition using the optimized dynamic
mode decomposition method is employed to identify dominant modal components (or
coherent structures) in the wake. These structures can be connected to wake instabilities
predicted using spatial stability analyses. Examining the modal components of the wake
provides insightful explanations into the transition from drag to thrust production, and
conditions that lead to peak propulsive efficiency. In particular, we find modes that
correspond to the primary vortex development in the wakes. Other modal components
capture elements of bluff body shedding at Strouhal numbers below the optimum for peak
propulsive efficiency and characteristics of separation for Strouhal numbers higher than
the optimum.

Key words: swimming/flying, low-dimensional models

1. Introduction

The performance characteristics of swimming and flying animals have long motivated the
design of autonomous swimmers with similar kinematics for propulsion and navigation.
The energetics of fish propulsion and, in particular, their ability to harvest energy in
schools or unsteady flow environments (Beal et al. 2006) have also spurred the research
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and development of novel energy harvesters (McKinney & DeLaurier 1981; Jones et al.
1997; Bryant, Mahtani & Garcia 2012). Broadly, these animals rely on oscillating or
undulating foils for propulsion.
Characterizing the relationship between foil performance and the downstream wake

structure has been a long-standing research area. Pioneering work in this area by
Triantafyllou, Triantafyllou & Grosenbaugh (1993) analysed the swimming performance
of several different fish and showed that fish operate within a narrow Strouhal number
range, 0.2 < St < 0.35, that leads to high propulsive efficiency. The Strouhal number is a
kinematic parameter defined as St = fA/U∞, where A is a characteristic length describing
the width of the wake, f is the frequency of oscillation and U∞ is the swimming speed.
Laboratory experiments also showed high propulsive efficiencies from oscillating foils
operating in this Strouhal number range. Complementary stability analyses showed that
oscillating foils produce a jet-like wake that is convectively unstable when excited at
frequencies corresponding to Strouhal numbers that yield peak propulsive efficiencies.
The spatial stability analysis performed by Triantafyllou et al. (1993) used the jet profile
of a reverse von Kármán vortex street, where two single (S) vortex cores were shed per
half-cycle of oscillation, i.e. a 2S wake pattern. Similar relationships between optimal
Strouhal number ranges and instabilities of the jet wake were found by Lewin & Haj-Hariri
(2003).
The relationship between wake instability and peak propulsive efficiency was studied

further by Moored et al. (2012), who used particle image velocimetry (PIV) to visualize
wake structures produced by a batoid-inspired oscillating fin. These experiments showed
multiple peak efficiencies, with some corresponding to a 2P wake pattern, where two
pairs (P) of vortex cores are shed per half-cycle, and others corresponding to a 2S wake.
Moored et al. (2012) also pursued local stability analyses (i.e. relying on a parallel flow
assumption) to show that the time-averaged velocity profile exhibits instabilities when
excited at frequencies corresponding to peak propulsive efficiency. This phenomenon was
termed ‘wake resonance’, suggesting that when the oscillating foil is tuned to optimally
excite the wake, it produces the highest propulsive efficiencies. Moored et al. (2012) also
examined the vorticity perturbations generated by the most unstable modes in an effort
to better understand these instabilities. Follow-on work by Moored et al. (2014) showed
that the ‘resonant frequencies’ correspond to optimal momentum entrainment, both into
and out of the jet region. These findings suggest that there is no single wake structure that
corresponds to peak propulsive efficiency (Smits 2019). Further examples of 2P vortex
patterns have also been found in wakes produced by eels and dolphins (Tytell & Lauder
2004; Smits 2019).
Recent studies have raised questions regarding the validity of wake resonance theory

(Arbie, Ehrenstein & Eloy 2016), noting that although correlations exist between unstable
frequencies and peak propulsive efficiency from experiments, it is more difficult to
establish a causal link between the two. Arbie et al. (2016) considered the stability
characteristics of momentumless wakes and noted that these wakes may be stable (even
if the thrust-producing jet-like component is unstable). It has also been suggested that,
while the wake structure provides insight into propulsive efficiency, it cannot provide a
complete explanation (Zhang 2017; Taylor 2018). Other studies (Eloy 2012) suggest that
the development of the wake structure is a result of, and not a cause of, high propulsive
efficiency. The reverse von Kármán wake from an oscillating foil can be shed in more
patterns than just the 2S and 2P wake (see, e.g. Lentink et al. 2008; Schnipper, Andersen
& Bohr 2009; Andersen et al. 2017), and each wake structure has an indirect relationship
with propulsive efficiency. For example, Mackowski & Williamson (2015) found from
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Connections between propulsive efficiency and wake structure

experiments that wake patterns for a pitching foil, where self-interactions of the vortices
occur, do not reflect a net force. Thus, observing the wake structure alone is likely not
enough to completely determine the propulsive efficiency (Floryan, Van Buren & Smits
2020).
As an alternative approach, we make use of dynamic mode decomposition (DMD) to

identify coherent features (or patterns) in the wakes produced by oscillating foils and
link these features to propulsive performance. Dynamic mode decomposition, as first
introduced by Schmid (2010), is a technique used to approximate the dynamics of a
nonlinear system via the identification of a linear operator that evolves the system to the
next state. Dynamic mode decomposition can also be thought of as a data-driven stability
analysis because each DMD mode is associated with a specific frequency and growth or
decay rate, which provides interpretable physical insight into the spatial structures and
their dynamic evolution. In contrast to the stability analysis approach, DMD does not
require the mean flow to be locally or globally parallel. In the fields of marine propulsion
and energy harvesting, DMD and similar modal decomposition techniques have been used
on propeller and turbine wakes to characterize wake instabilities, loading conditions and
efficiency (Sarmast et al. 2014; Araya, Colonius & Dabiri 2017; Magionesi et al. 2018;
Strom, Polagye & Brunton 2022).
In this study we use the triple decomposition to identify coherent flow features that

contribute to drag and thrust production from PIV measurements for the wake past an
oscillating foil. We examine both the vorticity and the Reynolds stresses associated with
optimized DMDmodes across Strouhal numbers ranging from St = 0.16 to St = 0.35, and
compare the results to time-averaged forces and propulsive efficiencies. We find that the
use of DMD enables us to link wake structure with wake stability and propulsive efficiency
for oscillating foils.
Our study builds upon the foil configuration described by Floryan et al. (2020). We

focus on rigid foils and present results primarily in the context of swimming performance.
While the use of rigid foils represents a simplification of the fluid–structure interactions
pertinent to flapping foil propulsion in nature, our results may provide additional insight
into coherent flow features that contribute to drag and thrust. Moreover, the observations
presented herein are also relevant to the design of autonomous swimming vehicles (Van
Buren, Floryan & Smits 2020) and energy harvesting systems (McKinney & DeLaurier
1981) that use rigid oscillating foils.

2. Heave and pitch foil parameters

We consider an oscillating NACA-0012 hydrofoil with chord c and span s as illustrated in
figure 1. The distance b = 0.25c denotes the point of rotation from the leading edge. The
imposed pitching and heaving kinematics of the foil at the point of rotation are described
by θ(t) = θ0 sin(2πft + φp) and h(t) = h0 sin(2πft), respectively, where θ0 and h0 are the
respective pitching and heaving amplitudes, f is the frequency of oscillation and φp is the
phase difference between heaving and pitching oscillations. For the experiments described
below, the phase difference was set to π/2 (90◦).
The oscillation frequency can be expressed in dimensionless terms as the Strouhal

number,

St = fATE

U∞
. (2.1)

Note that the Strouhal number can also be interpreted as the wake width (∼ATE)
normalized by the wavelength (∼U∞/f ). Another important parameter relative to
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Figure 1. Geometry and parameters for a pitching and heaving hydrofoil.

swimming performance is the angle of attack α, which is different from the pitch angle
due to the influence of the heave velocity, ḣ(t), and can be expressed as

α(t) = arctan
(

1
U∞

ḣ(t)
)

− θ(t). (2.2)

In the case where the phase angle φp between pitch and heave is 90◦, the maximum angle
of attack α0 can be estimated as

α0 = arctan
(

ωh0
U∞

)
− θ0, (2.3)

where ω = 2πf is the radian frequency. The time-averaged power and thrust coefficients
are described using the following equations:

CP = ℘̄

1
2
ρscU3∞

, CT = τ̄

1
2
ρscU2∞

. (2.4a,b)

Here ρ is the density of the fluid, τ̄ is the time-averaged thrust and ℘̄ =
(1/T)(

∫ T
0 ḣ(t)Fy(t) dt +

∫ T
0 θ̇ (t)Tz(t) dt) is the time-averaged power input to the fluid;

Fy and Tz are the force and torque associated with the heaving and pitching motions.
Propulsive efficiency can then be calculated as

η = CT

CP
= τ̄U∞

℘̄
. (2.5)

The propulsive efficiency and thrust coefficient are both used to characterize swimming
performance. Table 1 shows kinematic parameters and flow conditions examined in the
present study. Note that we match kinematic parameters with those from Quinn, Lauder
& Smits (2015), who presented a large dataset of propulsive efficiencies for a NACA-0012
foil.

3. Experimental methods

Experiments were carried out in a large-scale free-surface water channel with a
glass-walled test section of dimensions 7.6 m × 0.6 m × 0.9 m. A NACA-0012 hydrofoil
with a chord of c = 10 cm and a span of s = 32 cm was used. The foil was
three-dimensionally printed from polylactic acid filament, sanded and reinforced with two
internal aluminum rods throughout the span. The channel was run at a free-stream speed
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Connections between propulsive efficiency and wake structure

Study Configuration Type Rec (×103) St φp θ0 h∗

Present study Pitch and Heave E 11 0.16–0.59 90◦ 10◦ 0.19
Quinn et al. (2015) Pitch and Heave E 5–70 0.14–1.4 90◦ 10◦ 0.19

Table 1. Parameters used in the present and previous oscillating-foil studies. Chord-based Reynolds number
Rec = ρU∞c/μ, Strouhal number, St, phase between heaving and pitching φp, pitch amplitude θ0 and
dimensionless heave ratio h∗ = h0/c.

Linear

rail

Hydrofoil

Water

channel

U∞

Translational

motor

Rotary

motor

Force

sensor

Figure 2. Experimental motion-control system.

of U∞ = 0.1 m s−1 with a turbulence intensity of 1%. Foil motions were produced using
a closed-loop control system driven by two NEMA 23 integrated stepper motors, as shown
in figure 2. One of the motors was connected to a linear rail to generate the heaving motion.
The other motor was mounted to the beam to create the pitching motion. Translational and
angular positions of the foil were calculated from the precision micro-steps (3200 steps
per revolution) of the stepper motors. Measurements of hydrodynamic forces were made
concurrently with an ATI Gamma (SI-32-2.5) six-degree-of-freedom force transducer with
a minimum force and torque resolution of 1/80 N and 1/2000 Nm, respectively. Data were
acquired at a rate of 5 kHz and filtered using a zero-phase second-order Butterworth filter.
Instantaneous forces were measured over oscillation frequencies f = 0.4 Hz–1.3 Hz. For
the kinematic parameters used in the present study (table 1), this yielded a Strouhal number
range of St = 0.16–0.59. Time-averaged thrust coefficients (CT ), power coefficients (CP)
and propulsive efficiencies (η) were computed by combining the force measurements
with the foil kinematic data. The standard Klein–McClintock procedure was used to
estimate uncertainties for these parameters based on known instrument resolution and
measurement uncertainty for the time-averaged thrust and power input (Taylor 1997).
Force measurements were collected and averaged for at least 13 periods for each run.
Free-stream velocity measurements were recorded using a laser Doppler velocimetry
system (MSEminiLDV). Relative uncertainties in the velocity measurements were 0.11%.
Two-dimension two-component (2D-2C) PIV measurements were carried out in the

near-wake region of the oscillating foil to provide further insight into the transition from
drag-producing and free-swimming conditions to thrust-producing conditions. The PIV
system comprised a 5 W 532 nm solid-state laser and a Phantom VEO 410-L high speed
camera with 1280 × 800 pixel resolution. Images of the flow field were captured in a
field of view of 27 cm × 17 cm at a rate of 65 Hz for approximately 56 s. Standard
analysis routines in DaVis (LaVision) were used to generate velocity measurements. Two
64 pixel × 64 pixel and four 24 pixel × 24 pixel convolution windows were used with a
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U∞ Field of view

Light sheet

c
0.15c

2.71c

1.7c

Figure 3. Hydrofoil and PIV experimental set-up with field-of-view dimensions.

50% overlap to determine the velocity vectors. This yielded a set of 77 × 50 velocity
vectors and 3600 snapshots for each of the wakes in this study. Erroneous columns of
velocity values from the far ends of the field of view were removed.
Particle image velocimetry flow fields were both phase averaged and time averaged.

For the lowest oscillation frequency ( f = 0.4 Hz), the available PIV data spanned more
than 21 oscillation periods. Dimensions of the field of view relative to the hydrofoil are
illustrated in figure 3. Time- and phase-averaged measurements of streamwise velocity
and vorticity were computed for the Strouhal numbers St = 0.16, 0.23, 0.29 and 0.35. The
respective maximum angles of attack were α0 = 15.2◦, 22.3◦, 28.2◦ and 33.1◦.

3.1. Periodic structures via the triple decomposition
For periodic flows under natural or forced conditions, large-scale coherent motions are
often present in addition to turbulence. In such situations, the Reynolds decomposition,
which assumes that turbulence is the only source of fluctuations in the flow, may not be
accurate and can lead to overestimation of the stochastic part of the flow. Alternatively, the
full flow field u can be expressed as a triple decomposition as introduced by Hussain &
Reynolds (1970):

u(x, t) = ū(x) + ũ(x, φ(t)) + u′(x, t). (3.1)

Here ū is the mean (time-averaged) flow field, ũ is the periodic flow field, characterized by
the phase parameter φ(t), and u′ represents the turbulent fluctuations that are incoherent.
In our case, where the flow is driven by a known forcing frequency, the periodic component
can be directly obtained through phase averaging as

ũ(x, φ0) + ū(x) = 1
N

N∑
n=1

u(x, φ0), (3.2)

where the specific phase position φ0 = φ(t0 + nτ) is defined for an initial time t0 and a
period τ . However, for natural flows, or those driven by a series of forcing frequencies,
(3.2) may be difficult to compute. Instead, phase averaging can be attained through
modal decomposition methods. In these cases, the unsteady coherent component ũ may
be represented by a linear combination of modes obtained via techniques such as proper
orthogonal decomposition (POD) or DMD, and the triple decomposition can be modified
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Connections between propulsive efficiency and wake structure

as described by Baj, Bruce & Buxton (2015):

u(x, t) = ū(x) +
r∑

n=1

ũn(x, φn(t)) + u′(x, t). (3.3)

Here, r is the number of modes retained from the modal decomposition. In this study we
use DMD to obtain the periodic component of the flow field in (3.3) and compare this
modal representation to the wake characteristics obtained via direct phase averaging, as
shown in (3.2).

3.2. Dynamic mode decomposition
Dynamic mode decomposition was originally presented to the fluid mechanics community
by Schmid (2010) as a method to decompose unsteady or turbulent flow fields into coherent
structures. Dynamic mode decomposition can be interpreted as an eigendecomposition of a
least squares best-fit linear operator A that advances the past snapshots of data (i.e. 2D-2C
velocity fields obtained from PIV) forward in time towards future snapshots.
For a set of m snapshots (x1, x2, . . . , xm), the dataset is arranged into two separate

matrices of the forms

X =
⎡
⎣ | | |
x1 x2 · · · xm−1
| | |

⎤
⎦ (3.4)

and

X ′ =
⎡
⎣ | | |
x2 x2 · · · xm
| | |

⎤
⎦ , (3.5)

with
X ′ = AX . (3.6)

Generally, A can be approximated by taking the Moore–Penrose pseudo inverse of
X ′(A = X ′X−1

) via the singular value decomposition (SVD): X = UΣV ∗. However, for
high-dimensional datasets such as measurements from PIV snapshots, the computation of
A is expensive and can be inaccurate due to noisy entries or outliers in the data. To limit
computational expense and the impact of noise, we consider the projection of A onto a
reduced-rank representation of the data obtained via the SVD, X ≈ UrΣrV ∗

r , where the
subscript denotes a truncation to rank r:

Ã = U∗
r AUr = U∗

r X
′VrΣ

−1
r . (3.7)

Note that this is analogous to projecting A onto the leading POD modes. Subsequently, the
eigenvalues of matrix A can be estimated by taking the eigendecomposition of Ã,

ÃW = WΛ, (3.8)

where the matrix W contains the eigenvectors and Λ contains the corresponding
eigenvalues (λ1, λ2, . . .). Dynamic modes for the flow field can be computed using the
exact-DMD algorithm from Tu et al. (2014) as

Φ = X ′VrΣ
−1
r Wr. (3.9)

Here the matrix Φ contains individual dynamic modes (φ1, φ2, . . .). Using this
low-dimensional approximation to the dynamics represented by A, we can reconstruct the
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data using a linear approximation of the dynamic modes for all future times:

x(t) ≈
r∑

k=1

φk exp(ωkt)bk = Φ exp(ωt)b. (3.10)

The frequency ωk is defined based on the associated eigenvalue λk as ωk = ln(λk)/�t,
where �t is the time interval between individual snapshots. The vector b contains entries
of the initial amplitudes bk defined as b = Φ−1x1. Recall that the dynamic modes
φk are the columns of the matrix Φ. The modes in this temporal DMD formulation
represent the absolute stability of the flow field, with the eigenvalues providing insight
into oscillation frequencies and growth or decay rates. Given a complex eigenvalue
λk = λk,r + iλk,i = |λk| exp(i∠λk), the frequency can be estimated as ωk = ωk,r + iωk,i =
ln |λk|/�t + i(∠λk/�t). Thus, a dynamic mode φk grows over time if the corresponding
eigenvalue has amplitude |λk| > 1 and decays if |λk| < 1.
Spatial growth rates can also be approximated by the DMD algorithm by reorganizing

the series of snapshots as increasing in space. In this case, modes in spatial DMD
represent convective stability, where the eigenvalues would represent spatial frequencies or
wavenumbers. In practice, spatial DMD is more prone to noise due to the sparsity of spatial
data from PIV measurements, since the number of time snapshots available is typically
much higher than the spatial locations (Schmid 2010). For instance, the PIV data obtained
in this study span 3600 snapshots in time but only 77 streamwise locations for each run.
As a result, we focus on using the temporal DMD approach to take advantage of our
time-resolved snapshot data.

3.3. Optimized DMD
For the periodic flows that are studied in this paper, it is expected that the dynamic modes
should neither grow or decay in time. That is, the eigenvalues of DMD are fixed directly
onto the unit circle |λk| = 1. However, the presence of even weak noise in periodic flows
is known to yield damped eigenvalues, |λk| < 1, that result in decay of the corresponding
modes (φk) over time (Bagheri 2014). Thus, several recent methods have been proposed for
debiasing the DMD algorithm in the presence of noisy data, such as measurements from
PIV (Dawson et al. 2016; Hemati et al. 2017; Askham & Kutz 2018). For this purpose,
we use the optimized-DMD (opt-DMD) algorithm presented by Askham & Kutz (2018).
This is a variant of DMD that uses a variable projection method to approximate the linear
operator A with reduced noise. Specifically, opt-DMD solves the nonlinear least squares
problem

min
Λ,b

||XT − Φ(Λ)b||F, (3.11)

where the eigenvalues in Λ act as iterative parameters and determine the values of the
eigenfunctions, Φ, and amplitude coefficients, b. The algorithm also has the advantage of
projecting the modes onto the full dataset rather than a subset from an r-rank truncation.
Additional constraints can be applied to the modes, such as restricting eigenvalues to
stay on the unit circle. For simplicity, we do not use any constraints for the flow
fields in this study, and find that opt-DMD naturally converges towards the expected
eigenvalues in a periodic flow. The DMD modes of velocity are computed using both
opt-DMD and exact-DMD algorithms for comparison. We compute the vorticity directly
from the opt-DMD modes of velocity to understand the differences between the modal
representation and the full flow field.
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Figure 4. Comparison of time-averaged thrust coefficients and propulsive efficiencies as a function of
Strouhal number.

4. Results

4.1. Propulsive efficiency
Measurements of the thrust coefficient and propulsive efficiency are presented in figure 4.
The thrust and power coefficients increase monotonically with increasing Strouhal number.
However, CP increases faster than CT at higher St values, leading to non-monotonic
behaviour in propulsive efficiency and reduced efficiency for St > 0.35. Peak propulsive
efficiencies can be seen within the range of 0.23 < St < 0.35. With the provided
uncertainty estimates, it can be argued that either of the three Strouhal numbers St = 0.23,
0.29 and 0.35 result in the highest propulsive efficiency. However, simplified scaling laws
suggest that, for angles of attack α where the flow remains attached to the foil, peak
propulsive efficiency can be estimated as

Stmax ≈
√
3St0, (4.1)

where St0 is the Strouhal number that results in zero net thrust (Taylor 2018). In our case,
the thrust coefficient is near zero for St = 0.16. Using this value for St0 gives a maximum
efficiency of Stmax ≈ 0.28. This approximation is consistent with our case of St = 0.29
for which the measured η is highest. Note that the uncertainty in measured efficiency at
St = 0.16 is large, which is due to the fact that the thrust and power coefficients are close to
0 for this condition. Nonetheless, this case is similar to a self-propelled swimming mode,
where the thrust from the foil is approximately equal to its drag. Negative efficiencies
are expected for lower Strouhal numbers, St < 0.16, for which the net thrust becomes
negative due to the effects of viscous drag. As the foil oscillates at lower frequencies, the
drag contribution on the propulsor stays approximately constant while the thrust generated
decreases (Floryan et al. 2017). The present measurements are broadly consistent with
trends observed from previous studies (Triantafyllou et al. 1993; Quinn et al. 2015).

4.2. Mean and phase-averaged flow fields
Particle image velocimetry measurements were used to study the downstream wake of
the foil for a subset of the Strouhal numbers for which the force measurements were
obtained. Phase-averaged vorticity (Ω) and time-averaged streamwise velocity (ū) fields
are shown in figure 5, where the foil is positioned to move in the positive y direction.
An increase in magnitude of the jet wake (i.e. ū/U∞ > 1) can be seen with increasing
St. A near-momentumless wake is observed for St = 0.16, where the wake profiles are
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ū/U∞Ωc/U∞
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Figure 5. Phase-averaged vorticity and time-averaged streamwise velocity fields for (a,b) St = 0.16, (c,d) St =
0.23, (e, f ) St = 0.29 and (g,h) St = 0.35. See also supplementary movie 1 available at https://doi.org/10.1017/
jfm.2024.446.

close to zero, again indicating a resemblance to self-propelled swimming (figure 5b).
Under this condition, approximately five positive and six negative vortices are shed per
cycle of oscillation, signifying a small wake asymmetry. The vortices deflect laterally
away from the heave and pitch centreline, resulting in an increase of the wake width from
x/c ≈ 0.5–1.5 that can be seen in figure 5(b).
Increasing the Strouhal number to St = 0.23 produces a 2P wake (figure 5c), with

mean profiles that are approximately trapezoidal shaped, with two small but distinct
peaks. This wake characteristic matches well with the 2P structure observed by Dewey,
Carriou & Smits (2012), who concluded that the presence of two vortex pairs result in two
separate peaks in the mean profile. The Strouhal number St = 0.29 (figure 5e), initially
produces a 2P wake with mean profiles that are trapezoidal (0.22 � x/c � 1.5). These
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Figure 6. Eigenvalue spectrum for (a) St = 0.16, (b) St = 0.23, (c) St = 0.29, (d) St = 0.35. Purple markers
indicate overlap of the opt-DMD (red) and DMD (blue) eigenvalues. Here λr denotes the real component of the
eigenvalues while λi denotes the imaginary component.

vortex pairs coalesce further downstream to a 2S wake, creating a mean profile resembling
that produced by a single jet (1.5 < x/c � 2.7). As the Strouhal number increases further
to St = 0.35, a classical 2S wake is observed, suggesting a transition from a 2P to 2S
wake structure over the range 0.23 < St < 0.35. These observations are consistent with
the results of Moored et al. (2012), who found optimal efficiencies in both wake types.

4.3. Modal decomposition
We now compare results between the exact-DMD and opt-DMD algorithms. Eigenvalues
obtained for the first nine DMD modes for both methods are shown in figure 6. The mode
corresponding to λ = 0 for each Strouhal number represents the mean flow field, while the
other eigenvalues, having a non-zero imaginary part, represent the time-periodic modes.
Note that the eigenvalues with non-zero imaginary components are represented in complex
conjugate pairs (i.e. with λk = λk,r ± λk,i), which together represent a single-frequency
component of the flow field.
As shown by Magionesi et al. (2018), the eigenvalue problem degenerates and results in

harmonic solutions when the dominant components of the flow travel at a constant speed,
and with constant shape. This is noticeable in both the opt-DMD and exact-DMD modes,
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whereby the eigenvalues have oscillation frequencies (|ωk,i|) that are multiples of the first
harmonic. The opt-DMD eigenvalues for all Strouhal numbers lie directly on the unit
circle, suggesting that the modes neither grow or decay overtime (|λk| = 1). In contrast,
the exact-DMD eigenvalues tend to fall within the circle for increasing St, particularly for
large values of |λk,i|, signifying that the oscillatory modes obtained via exact-DMD decay
over time (|λk| < 1). This is most evident for the largest Strouhal number case (St = 0.35)
in figure 6(d), which shows eigenvalues within the unit circle for |λk,i| > 0.2. Similar
trends were reported by Bagheri (2014), who observed that eigenvalue damping increases
linearly with noise amplitude and quadratically with frequency. For the remainder of this
paper, we refer to the flow field produced by the dynamic modes associated with a complex
conjugate pair of eigenvalues as a single mode, and consider the first to fourth harmonics
as modes 1–4.
To further understand the effects of mode decay via eigenvalue damping, we

computed the periodogram-based power spectral density of the original flow field and
the reconstructed flow from opt-DMD and exact-DMD modes (see figure 7). Note
that each of the peaks represents the flow field produced by a pair of dynamic
modes (i.e. corresponding to a complex conjugate pair of eigenvalues). The normalized
frequencies for these peaks, St = fATE/U∞, represent harmonics of the foil oscillation
frequency. The power from the exact-DMD reconstruction are lower in power compared
with the opt-DMD reconstruction and full flow field (figure 7c,d). This decay can be
attributed to the dampened eigenvalues from the exact-DMD algorithm, observed in
figure 6(c,d). As a result, the effect of reduced power worsens with increasing St. These
results suggest that the opt-DMD algorithm outperforms the exact-DMD method in
retaining the energy in all modes, as also shown by Strom et al. (2022).
For completeness, we also highlight the exponential decay of the amplitude peaks of the

opt-DMDmodes, as shown by the dotted lines in figure 7. Interestingly, the exponential fits
for St = 0.16 and St = 0.23 show some flattening at the higher frequencies, suggesting that
the wake is not strongly locked to the actuation frequency for these cases. For example,
in the case of St = 0.23 (figure 7b), the third opt-DMD and exact-DMD modes have a
slightly higher energy (−10.9 dB and −12.9 dB) compared with mode two (−11.1 dB and
−14.0 dB). The other cases do not show this behaviour.

4.3.1. Opt-DMD coherent structures
In addition to characterizing oscillation frequencies and growth or decay rates, DMD also
provides insight into the wake structure. Reconstructions for the first two modes are shown
in figure 8. Each modal reconstruction corresponds to the phase of oscillation shown in
figure 5. For all St values, mode 1 exhibits top–bottom symmetry in vortex structure across
the centreline (y/c = 0). In contrast, mode 2 has an antisymmetric structure with vortex
lobes of smaller size compared with mode 1. The higher-order modes 3 and 4 are also
symmetric and asymmetric, respectively, as shown in figure 9. Qualitatively, these modes
better capture skews in the wake structure across the centreline, particularly for the case of
St = 0.16 (figure 9a,b).
It was shown by Moored et al. (2012) that the overlap in vorticity modes at certain

locations in space contributes to producing the full vortex structure. Similar observations
can also be made in the present study, where the modal hierarchy is trying to represent a
convective process in terms of purely oscillatory DMD modes that are harmonics of the
flapping frequency. This is reflected in the DMD mode structure: since mode 2 exhibits
twice the oscillation frequency as mode 1, vortex lobes from mode 2 exhibit roughly twice
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Figure 7. Power spectral densities for the original flow field (black) and the reconstructed flow fields from
the opt-DMD (orange) and exact-DMD (blue) method for (a) St = 0.16, (b) St = 0.23, (c) St = 0.29 and
(d) St = 0.35. The dotted lines represent exponential decay rates obtained from fits to the first four mode
amplitudes from opt-DMD and show the following behaviour: (a) e−5.1St, (b) e−4.0St, (c) e−1.5St and (d) e−1.0St.

the spatial wavenumber as mode 1 (see figure 8). A coherent vortex is formed at a particular
region in space when both modes are either in-phase or in anti-phase and vortex lobes with
the same sign overlay each other. This is also consistent with the fact that the foil sheds
a vortex each half-cycle. Whether the vortex formed is positive or negative is determined
by the sign of the spatial eigenfunctions. These features (and the modes themselves) are
phase-locked in a reference frame moving with the local convective velocity.
Notable differences between the modes from the near-momentumless wake and that

from the 2P and 2S wakes are observed. For instance, mode 1 for St = 0.16 has
approximately four symmetric lobes of vorticity along the lateral axis (figure 8a). These
elongated vortex packets expand laterally as they advect downstream and similar trends
can be seen for mode 2 (figure 8b). This is consistent with the lateral variation observed
in the mean velocity profile and phase-averaged vorticity fields. In contrast, mode 1 for
the cases St = 0.23, 0.29 and 0.35 primarily consists of two vortex lobes with decreasing
streamwise extent. Thus, the size of the lobes reflects the length scale of the shed vortices,
which is partially determined by the convective length scale U∞/f .
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Figure 8. Vorticity fields from opt-DMD modes 1 (a,c,e,g) and 2 (b,d, f,h) for (a,b) St = 0.16,
(c,d) St = 0.23, (e, f ) St = 0.29 and (g,h) St = 0.35. See also supplementary movie 2 and movie 3 available at
https://doi.org/10.1017/jfm.2024.446.

The differences that reflect the transition from the 2P wake to the 2S reverse von Kármán
street are more subtle. In the case of St = 0.23, which exhibits a 2P wake morphology,
the vorticity lobes travel consistently downstream (see figure 8c,d). As the Strouhal
number increases from St = 0.23 to St = 0.35, the lobe pairs move inward towards the
centreline over the region 0.22 � x/c � 1.0. In the region where x/c > 1.0, the lobes
consistently travel in the streamwise direction again. This dynamic characteristic can be
observed better from modes 3 and 4 in figures 9(c)–9(h), where the lobes structures
are considerably smaller. Another key distinction across the 2P to 2S wake transition is
that the symmetric vorticity lobes of modes 1 and 3 start to coalesce into a single lobe
towards the downstream end of the field of view, x/c � 2.0. The antisymmetric pairs for
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Figure 9. Vorticity fields from opt-DMD modes 3 (a,c,e,g) and 4 (b,d, f,h) for (a,b) St = 0.16,
(c,d) St = 0.23, (e, f ) St = 0.29 and (g,h) St = 0.35. See also supplementary movie 4 and movie 5 available at
https://doi.org/10.1017/jfm.2024.446.

modes 2 and 4 remain apart. This is most noticeable for the case of St = 0.35 (figures 8g
and 9g).
Although the high-frequency wake structures exhibit reverse von Kármán streets – as

expected for thrust-producing systems – their symmetric and antisymmetric topologies are
similar to that from the classical Kármán vortex street shed from two-dimensional objects
(Tu et al. 2014; Araya et al. 2017; Taira et al. 2020). In these drag-producing wakes, the
dominant DMD or POD modes obtained for these flows can also correspond to a series of
frequency harmonics. One distinction from the classical drag-producing bluff body wakes
is that their symmetric mode structures may consist of a single lobe of vorticity across the
y axis – as shown in experiments from Tu et al. (2014) – rather than two or more from our
study.
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Figure 10. Reconstructed streamwise velocity fields: u = ū + ∑4
n=1 ũn (a,b); ū + ũ1 (c,d) and ū + ũ2 (e, f ).

The left and right columns are of the Strouhal numbers St = 0.16 and St = 0.23, respectively. The mode
hierarchy is in terms of frequency, with the lowest corresponding to mode 1.

4.3.2. Influence of modes on wake dynamics
To further understand how the symmetric and antisymmetric modes relate to the full flow
field, we superimpose the streamwise component associated with DMDmodes 1 (ũ1) and 2
(ũ2) separately with the time-averaged streamwise velocity (ū). Figures 10 and 11 show the
full opt-DMD reconstructions (i.e. comprising modes 1–4) as well as these single-mode
reconstructions of the streamwise velocity component. In the original streamwise fields
the vortex development is characterized by the regions where u is less than that of the
free-stream velocity (u/U∞ < 1), resulting in shear layer roll up. In the transition to the
2S wake, a wavy jet is observed in the original flow fields (11a,b). Mode 1 with the mean
flow (u = ū + ũ1) reproduces most of these wake dynamics, including a reasonable portion
of the shear layer roll up from which the vortices emerge.
The wake dynamics associated with mode 1 and the associated symmetric vorticity

perturbations closely resemble the spatial instabilities observed by Moored et al. (2012) in
the 2S wake structure created by a flexible fin. The main distinction lies in the number of
vorticity lobes, with the former exhibiting two lobes instead of three. This observation
suggests that the opt-DMD modes yield coherent structures that are related to spatial
instabilities. It is also likely that mode 1 induces a majority of the net thrust since this mode
is associated with the lower velocity structures that form the vortex structures outside the
central jet. In contrast, mode 2 is associated with the shedding frequency of each vortex or
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Figure 11. Reconstructed streamwise velocity fields: u = ū + ∑4
n=1 ũn (a,b); ū + ũ1 (c,d) and ū + ũ2 (e, f ).

The left and right columns are of the Strouhal numbers St = 0.29 and St = 0.35, respectively. The mode
hierarchy is the same as in figure 10.

vortex pair for the 2S and 2P wakes (i.e. twice the oscillation frequency). Mode 2 accounts
for much of the remaining shear in the centre jet region; this is particularly evident in the
higher Strouhal number wakes (figure 11e, f ).

4.3.3. Coherent Reynolds stress contributions from DMD modes
The subtle differences in DMD mode structure across Strouhal numbers suggest that
the associated Reynolds shear stresses may provide additional insight into thrust and
drag effects. Following Reynolds & Hussain (1972) and assuming that the Reynolds
stress contributions from the turbulent fluctuations u′ are negligible compared with
the contributions from the phase-averaged periodic components ũ, the time-averaged
momentum equation in the streamwise direction can be expressed as follows:

ū
∂ ū
∂x

+ v̄
∂ ū
∂y

≈ ∂

∂y

[
ν

(
∂ ū
∂y

)
− ũṽ

]
. (4.2)

The equation above also assumes no external pressure gradient, a purely two-dimensional
flow, and that cross-stream gradients of the viscous and Reynolds stress terms dominate
over the streamwise gradients. Invoking both a strong parallel flow assumption, whereby
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v̄ ≈ 0 and ∂ ū/∂x ≈ 0 locally, (4.2) can be further simplified to

ν
d2ūn
dy2

≈ dũnṽn
dy

, (4.3)

which can be used to estimate the induced mean flow. In the above equation, ūn can
be thought of as the mean velocity induced by DMD mode n, i.e. the Reynolds shear
stresses generated by the periodic velocity components ũn and ṽn associated with mode n.
Since the DMD modes are harmonics of the foil oscillation frequency, there are no mean
Reynolds shear stress contributions from interactions across modes. In other words, we
expect ũmṽn = 0 for m /= n. Equation (4.3) indicates that positive values of dũnṽn/dy are
associated with minima in ūn and vice versa. Positive ūn contributions increase momentum
in the wake and produce thrust. The opposite is true for negative ūn contributions, which
result in induced drag.
Predictions made using the highly simplified momentum balance in (4.3) are

complementary to the control volume analyses of momentum entrainment and expulsion
presented by Moored et al. (2014), which showed that the surrounding fluid is entrained
into the near-wake region close the foil at wake resonance. The increase in mass flow
rate of the jet wake produces thrust, and the entrainment region should therefore have a
Reynolds stress distribution in which the periodic components ũṽ induce a jet-like mean
profile. We solve (4.3) numerically for ūn using the Reynolds shear stress profiles for DMD
modes 1 and 2 that are closest to the foil (x/c = 0.22), enforcing the boundary conditions
ūn(−∞) = ūn(∞) = 0.
Figures 12 and 13 respectively show the coherent Reynolds stress fields ũnṽn and

induced mean profiles ūn predicted using (4.3) for opt-DMDmodes 1 and 2. The Reynolds
stress fields show patterns that are antisymmetric across the centreline over the region
of 0.22 < x/c < 1.0. This antisymmetry begins to break down for the case of St = 0.35
(figures 12g and 13g). As expected, mode 1 (i.e. the primary harmonic) generates larger
Reynolds shear stresses and induced mean flow contributions compared with mode 2.
However, this discrepancy is more pronounced for the higher Strouhal number cases
(St = 0.29, 0.35) exhibiting 2S-type wakes. The maximum magnitudes of ũ1ṽ1 for mode
1 increase with Strouhal number.
The shape of the induced mean flow profiles for mode 1 are similar for the St = 0.16

and 0.23 cases (figure 12b,d), where two distinct positive maxima can be seen (with one
noticeable negative component for the case St = 0.23). Induced mean profiles for both 2S
wakes (St = 0.29, 0.35) in 12( f,h) also show similar characteristics. However, ū1 for St =
0.29 shows two separate maxima while the profile for St = 0.35 shows a single maximum
near the centreline. This transition from two distinct maxima in the mean profile to a single
peak is consistent with the 2P-2S transition noted earlier as the Strouhal number increases
from St = 0.23 to St = 0.35. Interestingly, ū1 profiles for St = 0.29 and St = 0.35 match
the measured mean profile shapes shown in figure 5(c,d). Specifically, the St = 0.29 profile
is approximately trapezoidal in shape while the St = 0.35 profile resembles a typical jet.
Induced ū1 profiles for these high Strouhal number cases are also much larger in magnitude
compared with the lower Strouhal number cases (St = 0.16, 0.23), which is indicative of
higher entrainment and thrust production.
Generally, Reynolds shear stress contributions and induced velocities from mode 2 in

figure 13 are lower than those from mode 1. Particularly, ū2 	 ū1 for the 2S wakes in
St = 0.29 and St = 0.35. Additionally, while the mode 1 contributions vary significantly
in magnitude across Strouhal number, all of the mode 2 profiles exhibit similar maximum
values of ũ2ṽ2 and ū2. Reynolds stress fields associated with mode 2 for St = 0.16 and
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Figure 12. Mean Reynolds stress fields ũ1ṽ1 and induced mean flow profiles ū1 (x/c = 0.22) for opt-DMD
mode 1 at (a,b) St = 0.16, (c,d) St = 0.23, (e, f ) St = 0.29 and (g,h) St = 0.35.

St = 0.23 (figure 13b,d) remain reasonably coherent over the field of view. The resulting
mean flow profiles also show consistent negative values (ū2 < 0), which is indicative of
drag generation. This aligns with Floryan et al. (2017), who found that scaling laws differed
from experiments in efficiency due to viscous drag effects at lower Strouhal numbers. The
coherent stress fields are likely characteristics of the transition to bluff body shedding.
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ũnṽn/U 2∞

ũnṽn/U 2∞ u–n/U∞2P mode

2S mode

2P + 7S mode

(d )(c)

(e) ( f )

(h)(g)
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Figure 13. Mean Reynolds stress fields ũ2ṽ2 and induced mean flow profiles ū2 (x/c = 0.22) for opt-DMD

mode 2 at (a,b) St = 0.16, (c,d) St = 0.23, (e, f ) St = 0.29 and (g,h) St = 0.35.

Note that these drag-inducing effects are characterized by modes with a higher frequency
than that from typical bluff body shedding (cf. similar observations from Strom et al.
2022).
While the ū2 profiles are primarily negative for the lower Strouhal number cases, distinct

positive regions are observed as the flow transitions from a 2P wake to a 2S wake for
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St = 0.29 and 0.35 as seen in figure 13( f,h). For St = 0.29, the ū2 profile is positive and
approximately trapezoidal in shape, matching the mean flow in figure 5( f ). For St = 0.35,
the induced ū2 profile has a mix of positive and negative regions, with the total area
under the profile yielding a net negative value. The transition from purely negative ū2
contributions for St = 0.16 and 0.23 to primarily positive ū2 contributions for St = 0.29
is reminiscent of the earlier convective instability work – as noted by Triantafyllou et al.
(1993), in a reverse von Kármán vortex street, there is little to no competition between
the drag wake and the thrust wake. This is consistent with the present observations for
St = 0.29.

4.4. Deterioration of propulsive efficiency at high St
The marginal deterioration in propulsive efficiency along with the negative ū2
contributions for the St = 0.35 case can potentially be attributed to effects from
leading-edge vortices. While we do not have access to PIV data around the foil, force
and torque measurements, along with the angle of attack trends support this interpretation.
In particular, we expect these effects to be evident in the normal or lift forces on the
foil, which also influence the power input and propulsive efficiency (see (2.4a,b) and
(2.5)). Dimensionless phase-averaged lift forces Fy and power requirements ℘ measured
for Strouhal numbers St = 0.29–0.59 are shown in figure 14. As expected, the lift forces
exhibit the same oscillation frequency as the actuation, which also matches the first mode
frequencies. The relative power exhibits oscillations at twice the actuation frequency,
which is also the second mode frequency.
Noticeable deviations in relative lift and power are observed between the near-optimal

Strouhal numbers (St = 0.29 and 0.35) and the highest Strouhal number case (St = 0.59).
Particularly, the small enhancements in the magnitude of the lift force observed between
t/T ≈ 0.4–0.5 and t/T ≈ 0.9–1.0 lead to lower relative power requirements, as shown
in figure 14(b,c). For the highest propulsive efficiency case of St = 0.29, additional
decreases in relative power at t/T ≈ 0.25 and 0.75 lower the overall power across the
full oscillation cycle (figure 14c). Note that the relative lift force enhancements for this
Strouhal number case appear soon after maxima and minima in the effective angle of
attack (t/T = 0.25, 0.75).
These relative lift force enhancements may be linked to the structure of the Reynolds

shear stress contribution and positive induced velocity from DMD mode 2 for St = 0.29
(figure 13e, f ), suggesting a delay in separation of the leading-edge vortices. The separation
effects may start to occur for the St = 0.35 case, which show a negative induced velocity
from mode 2 (figure 12h) and higher relative power requirements in comparison to those
from St = 0.29, resulting in lower propulsive efficiency. The deterioration in performance
is even more visible for the St = 0.59 case, which shows a substantial decrease in the
magnitude of Fy/Fy0 and corresponding increases in ℘/℘0.
The tapering of efficiency past St = 0.29 can also be explained based on high angles

of attack. The stall angle for a static NACA 0012 foil is approximately 16◦. However,
oscillating loads can increase the stall angle substantially (Maresca, Favier & Rebont
1979). For the present experiments, the maximum angles of attack α0 for the higher
Strouhal number cases St = 0.29, 0.35 and 0.59 are 28.2◦, 33.1◦ and 47.5◦, respectively.
Thus, it is likely that the induced drag effects from the secondary mode (figure 13h, f )
become more relevant as the effective angle of attack increases, through which separation
effects may occur – as also evident in the Fy/Fy0 traces. In turn, the efficiency tapers
downward past the Strouhal number St = 0.29. However, it would be misleading to say that
all cases with high angles of attack lead to reduced efficiency, as some combinations of
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Figure 14. Dimensionless heave cycle h/c (dotted line) and effective angle of attack α (solid lines) for one
cycle (a), together with phase-averaged lift forces Fy (b) and power requirements℘ (c) normalized by maximum
values (Fy0 and ℘0) for St = 0.29 (red), St = 0.35 (blue) and St = 0.59 (black).

kinematic parameters can delay these dynamic stall effects (Maresca et al. 1979; Ellington
et al. 1996; Anderson et al. 1998). Instead, a high angle of attack where the flow stays
attached to the foil can potentially maximize efficiency, an effect that has also been
observed for flexible propulsors (Quinn et al. 2015).

5. Discussion and conclusions

A triple decomposition method in which the periodic component of the wake is composed
of opt-DMD modes was used to provide further physical insight into the propulsive
performance of oscillating foils. The experimental data in which the method was used are
broadly consistent with prior literature. We observe a near-momentumless wake structure
for St = 0.16 and peak propulsive efficiency for St = 0.29. Over this range of Strouhal
numbers, PIV measurements show a transition from a momentumless wake to a 2S wake
morphology associated with the classical reverse von Kármán vortex street. The opt-DMD
method is employed here instead of the classical or (exact) DMD approach as it captures
more energy in the periodic component of the flow field. For this particular foil, the
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opt-DMD modes appear as harmonics of the foil oscillating frequency, with alternating
symmetric and antisymmetric morphology across the wake centreline.
The most interesting finding from our study is the relationship between the coherent

Reynolds stress contributions from DMD modes and their impact on propulsive
performance. Although (4.3) is only an approximation to the mean flow equation for
the wake, it helps delineate modal contributions to drag and thrust. In our experiments,
the mean velocities induced by the primary opt-DMD mode (mode 1) generally show
thrust-producing characteristics across all St values, though there is a transition from a
two-hump mean profile for the 2P wakes to a jet-like mean profile for the 2S wakes.
However, several different trends emerge from the mean velocities induced by mode 2,
representing features oscillating at twice the fundamental frequency of the foil: (i) for
Strouhal numbers below the optimum (St < 0.29), the induced mean velocities ū2 are
negative and suggest a transition to bluff body shedding; (ii) the secondary mode for
the optimum Strouhal number case (St = 0.29) has a prominent positive induced mean
velocity, indicating that the thrust wake is dominant; (iii) past the optimum Strouhal
number, mode 2 transitions back to a negative induced mean velocity, which may be
indicative of flow separation as a result of high angles of attack (St > 0.29).
Given the close connection between DMD and stability analyses, it may be of interest to

compare the opt-DMD modes with features identified in prior stability analyses (Moored
et al. 2012; Arbie et al. 2016). The development of the opt-DMD modes close to the foil
suggest that their may be some spatial growth of these perturbations in the near field.
Thus, there may be links between these opt-DMD modes and the spatially growing modes
identified in the ‘wake resonance’ studies (Triantafyllou et al. 1993; Lewin & Haj-Hariri
2003; Moored et al. 2014). Nonetheless, it should be emphasized that the temporal DMD
method was used in this study, which extracts modes at a particular oscillation frequency.
A spatial DMD approach could provide a more direct approach to understanding these
instability mechanisms. In this case, a spatial resolution that is higher than the PIV
data collected in this study would be necessary to allow for an appropriate spatial DMD
analysis.
This study focused on a narrow parameter range: we studied a single, rigid foil exhibiting

periodic single-frequency oscillations. However, modal analysis methods similar to those
employed here could provide substantial insights into wakes involving more complex
kinematics, dynamic fluid–structure interactions, multiple-foil interactions or massively
separated flows (see, e.g. Raspa, Godoy-Diana & Thiria 2013; Andersen et al. 2017).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.446.
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