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Significance

Phytoplankton are the main 
primary producers in marine 
environments and their biomass 
can be used to indicate 
environmental quality and identify 
long-term climate-related trends. 
We analyzed a long-term time 
series from Narragansett Bay, RI, 
and found that phytoplankton 
biomass declined by 49% from 
1968 to 2019. The intensity of 
winter–spring blooms, or biomass 
peaks that fuel coastal ecosystems, 
decreased over time and occurred 
earlier, about 5 d earlier each 
decade. Shifts in phytoplankton 
biomass were associated with 
changes in nutrients, temperature, 
and salinity. High levels of 
phytoplankton biomass variation 
in Narragansett Bay and other 
time series around the globe 
highlight the need for longer time 
series to identify trends from noisy 
datasets.
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revealed by a 60-year estuarine plankton time series
Patricia S. Thibodeaua,1,2 , Gavino Puggionib , Jacob Strocka, David G. Borkmanc , and Tatiana A. Rynearsona,1

Edited by David Karl, University of Hawaii at Manoa, Honolulu, HI; received June 30, 2023; accepted March 16, 2024

Long-term ecological time series provide a unique perspective on the emergent properties 
of ecosystems. In aquatic systems, phytoplankton form the base of the food web and 
their biomass, measured as the concentration of the photosynthetic pigment chlorophyll 
a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from 
the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a tem-
perate estuary experiencing long-term warming and changing anthropogenic nutrient 
inputs. Dynamic linear models were used to impute and model environmental variables 
(1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was 
observed with an average decline in the cumulative annual chl a concentration of 49% 
and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline 
in chl a concentration was directly and indirectly associated with multiple environmental 
factors that are impacted by climate change (e.g., warming temperatures, water column 
stratification, reduced nutrient concentrations) indicating the importance of account-
ing for regional climate change effects in ecosystem-based management. Analysis of 
seasonal phenology revealed that the winter–spring bloom occurred earlier, at a rate of 
4.9 ± 2.8 d decade−1. Finally, the high degree of temporal variation in phytoplankton 
biomass observed in Narragansett Bay appears common among estuaries, coasts, and 
open oceans. The commonality among these marine ecosystems highlights the need to 
maintain a robust set of phytoplankton time series in the coming decades to improve 
signal-to-noise ratios and identify trends in these highly variable environments.

phytoplankton | chlorophyll a | nutrients | dynamic linear models | Narragansett Bay

Phytoplankton are the main primary producers in marine environments (1, 2). Their 
biomass can be used as a key indicator in aquatic ecosystems because its magnitude results 
from growth in response to environmental conditions (e.g., nutrients and light) and 
mortality due to predation and disease (3–5). Imbalances between the daily rates of asexual 
division and equally rapid rates of mortality (6) lead to phytoplankton biomass fluctuations 
that occur over periods of days to months (e.g., refs. 7 and 8) and that influence water 
quality, biogeochemical cycling, and ecosystem function (9–11). Disentangling daily, 
seasonal, and annual variation from long-term trends in phytoplankton biomass requires 
extensive and often high-resolution ecosystem monitoring (12). However, current mon-
itoring programs are frequently shorter than the time of emergence, or the time at which 
the signal of climate change emerges from the noise of natural climate variability (13). 
Here, we utilize a 60-y plankton time series, one of the longest of its kind globally, in a 
warming temperate estuary (14) to examine long-term changes in phytoplankton biomass 
related to nutrients, seasonality, and bloom phenology.

Phytoplankton biomass is commonly assessed by determining the concentration of the 
photosynthetic pigment chlorophyll a (chl a) (15, 16). Over extended time periods (>10 
y), chl a is an informative tool for determining the effects of climate change and anthro-
pogenic inputs within an ecosystem (17) including shifts in nutrient loading, food webs, 
and carbon export (e.g., refs. 14, 18, and 19). Longer chl a time series also reveal the 
complexity of marine ecosystems in their responses to climate change (17, 20, 21) and 
illustrate dynamics that are not always evident in short-term ecosystem studies. For exam-
ple, although a recent 15-y time series in Long Island Sound, USA, showed chl a concen-
trations increasing over time, the inclusion of intermittent historical samples suggests no 
long-term trend (22), emphasizing the importance of highly resolved chl a records for 
examining long-term ecosystem change in aquatic environments.

Phenology, the seasonal timing of life history events, represents another important 
indicator of ecosystem response to climate change, particularly within a long-term context. 
Shifts in phenology can lead to trophic mismatches and significantly impact local food 
webs and ecosystem function (23–25). Importantly, the magnitude and direction of 
phenological shifts in marine organisms in response to climate change are unresolved. For 
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example, a meta-analysis of phenology across a broad range of 
benthic and planktonic marine organisms revealed advances in 
both spring and summer phenology of about 4 d decade−1 over 
the global ocean (26). However, regional responses can differ from 
this global trend (23, 25). For example, despite long-term regional 
warming in the Gulf of Maine, spring phytoplankton phenology 
is occurring later in the year, not earlier (27). These conflicting 
results argue for additional regional investigations of phenological 
shifts in localized ecosystems, particularly in coastal regions where 
local anthropogenic activities, such as nutrient loading, interact 
with larger-scale impacts of climate change, like increasing water 
temperature (22, 28).

The Narragansett Bay Long-Term Plankton Time Series 
(NBPTS) provides a unique 60-y (1959 to 2019) perspective on 
the effects of global change on long-term and phenologic patterns 
in phytoplankton biomass. Narragansett Bay (NBay) is a coastal 
estuary connected to the US Northeast Shelf and Northwest 
Atlantic (Fig. 1A) whose production has important implications 
for fisheries and human use along the coastal US (14, 29). NBay 
is a highly seasonal system experiencing long-term (1950 to 2015) 
warming waters and more recently, shifts in anthropogenic nutri-
ent loading through upgrades in wastewater treatment (30–33). 
Prior analyses of the partial NBPTS chl a dataset indicated declines 
of annual and seasonal means using linear regression (14, 34, 35), 
but no formal time-series analysis has been conducted on the 
entire 60-y NBPTS to test hypotheses regarding either the influ-
ence of environmental parameters on changing chl a concentra-
tions or long-term shifts in phenology.

Here, we digitized historical files (pre-1997) and generated a 
complete, quality controlled, and harmonized dataset of long-term 
chl a and nutrient concentrations. We used time series analysis to 
interpolate and model both chl a concentrations and a set of 
environmental parameters to examine the mechanisms underpin-
ning declines in chl a concentration. Imputed chl a data were then 
used to obtain and examine seasonal phenology metrics. Due to 

its broad seasonality and long-term warming, NBay is a model 
ecosystem to examine estuarine phytoplankton dynamics. Results 
from this study give important long-term context for bottom–up 
drivers of variability in an estuary that provides key ecosystem 
goods and services for the nearly two million people who inhabit 
its watershed (36).

Results

Long-term Trends of Chlorophyll a Concentration and 
Environmental Parameters. The digitization and quality control 
of historical and modern time series records yielded 2,013 chl a 
samples (1968 to 2019) and from 1,669 (1972 to 2019, NH4) 
to 2,047 (PO4) nutrient samples (1959 to 2019) (Fig. 1B and 
Table  1). Chl a concentration in NBay from 1968 to 2019 
ranged across five orders of magnitude (0.05 to 107 mg chl m−3, 
SI Appendix, Table S1) and was characterized by large variation 
[average annual coefficient of variation (CV) = 88%], reflecting 
the high degree of seasonality in NBay. There was a long-term 
decline in chl a concentration, with the steepest drop occurring 
in the early years of the dataset (1970 to 1989, Fig. 2A). Seasonal 
trends of chl a concentration mirrored annual patterns with long-
term declines in all seasons at similar rates of change (SI Appendix, 
Fig. S1). Overall, when compared to the first decade of the time 
series, the cumulative annual chl a concentration in the most 
recent decade declined by 49% (t = 5.59, P < 0.001, Fig.  2B 
and SI  Appendix, Table  S2). Although chl a concentrations 
decreased over time, the annual CV did not change significantly 
between the first and last decades of the study (t = 1.51, P = 0.15, 
SI Appendix, Table S2). Bloom intensity (i.e., maximum annual chl 
a concentration) also decreased significantly over time (Fig. 2C) 
dropping 57% between the first and last decades of the study  
(t = 3.9, P = 0.001, SI Appendix, Table S2). Annual minimum 
chl a concentrations also decreased (log(x) = −0.02x + 52.89,  
R2 = 0.07; P = 0.03).

Fig. 1.   (A) Map showing the Narragansett Bay Long-Term Plankton Time Series sampling site in Narragansett Bay, Rhode Island USA. (B) Subplots represent 
weekly data (open circles) and time series mean (black line) for the following parameters; temperature (1959 to 2019), light (1959 to 2019), salinity (1959 to 2019), 
silicate (SiO4, 1959 to 2019), phosphate (PO4, 1959 to 2019), ammonium (NH4, 1972 to 2019), and nitrate/nitrite (NO3/2, 1959 to 2019). Note: outlier values were 
removed (n < 10) to better illustrate seasonal signal. The complete data are reported in SI Appendix, Figs. S2 and S3.
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Like chl a, other environmental parameters ranged over several 
orders of magnitude and had long-term trends (SI Appendix, 
Table S1). Notably, nutrient concentrations exhibited subtle, 
long-term declines except for SiO4 (SI Appendix, Fig. S2). Surface 
water temperature strongly increased over time, particularly after 
the year 2000 (SI Appendix, Fig. S3). Salinity was variable with no 
long-term directional change. Water column stratification, a func-
tion of the difference between surface and bottom water density, 
decreased, but with large variation around the mean. Both Secchi 
depth, a proxy for water clarity, and precipitation did not exhibit 
any long-term trends while light intensity decreased (SI Appendix, 
Table S1 and Fig. S3). The number of cloudy days has increased in 
NBay possibly explaining the decrease in light we observed (14).

After applying a Bayesian Dynamic Linear Model to interpo-
late missing values in the dataset, we examined how environmen-
tal parameters were related to both short-term (0 to 3-wk lags) 
and long-term (annual, decadal) fluctuations in chl a concentra-
tions from 1970 to 2019. The best-fit seasonal autoregressive 
integrated moving average with exogenous variable(s) (SARIMAX) 
model was (2,0,1) × (0,1,1)52 with several significant environ-
mental parameters across the 100 SARIMAX model iterations 

and generally very small deviations in the Monte Carlo (MC) 
means (Table 2). Mean coefficients of the SARIMAX model indi-
cated that higher chl a concentrations were immediately (zero 
week lag) and significantly related to lower NO3/2, NH4, and 
SiO4 concentrations as well as lower salinity and temperature and 
shallower Secchi depth (Table 2). Precipitation, water column 
stratification, light intensity, and PO4 concentration were insig-
nificant parameters, regardless of week lag, and not included in 
the final SARIMAX model (Table 2).

To examine decadal trends, we utilized Granger causality 
analysis, which identifies predictive causal relationships between 
two evolving time series (37, 38), to test the hypothesis that 
long-term changes of environmental parameters affected long- 
term changes in chl a concentration. We found that NO3/2 
concentration Granger-caused chl a concentration (NO3/2 P = 
0.004). Precipitation also Granger-caused chl a concentration 
(P = 0.01). In turn, temperature and water column stratification 
Granger-caused nutrient concentrations but did not Granger- 
cause chl a concentration (PO4, NO3/2, NH4, SiO4, all P < 
0.001; chl a P > 0.05). Light intensity, salinity, and Secchi 
depth were insignificant parameters (P > 0.05).

Fig. 2.   Long-term trends of chlorophyll a (chl a) concentration from the Narragansett Bay Long-Term Plankton Time Series (1972 to 2019). (A) Weekly chl a data 
(circles) with the dynamic linear model (DLM) (black line) and the annual mean of the seasonal component (green line). (B) Boxplot of cumulative annual chl a 
values for the first complete decade (1973 to 1982) and last complete decade (2009 to 2019, see SI Appendix, Methods and Table S2). Mean cumulative chl a was 
significantly different (asterisk) between the first and last decades (t test P < 0.001, SI Appendix, Table S2). (C) Annual maximum chl a concentrations with the 
log-transformed model fit (black line, log(x) = −0.02x + 51.75, R2 = 0.39; P < 0.001). Note: Four data points >75 mg chl m−3 shown in C were removed from A to 
better illustrate the long-term trend. Data were not sampled the following years: 1995 to 1998 & 2012 (Table 1).

Table 1.   Synopsis of physical, chemical, and biological data collected by the Narragansett Bay Long-Term Plankton 
Time Series indicating when sampling occurred each week (shaded squares), when sampling occurred every other 
week (asterisks), or when no sampling occurred (white squares). Several decades of data were physically obtained 
and digitized for this analysis (plus signs)

a

Temp—Temperature (°C), Secchi—Secchi depth, PO4—phosphate, NH4—ammonium, NO3/2—nitrate/nitrite, SiO4—silicate, Chl a—Chlorophyll a.
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Chlorophyll a Seasonality and Phenology. The chl a seasonal 
cycle was characterized by a bimodal distribution with peaks in 
concentration occurring both in winter–spring and in summer–
fall (Fig.  3). Seasonal patterns in chl a concentration showed 

declines in every decade in both seasons except for a slight increase 
in winter–spring chl a concentration during the last decade (2010 
to 2019). Pair-wise comparisons of seasonal chl a patterns were 
significantly different every decade, except between the 1990s 
and the 2010s (SI  Appendix, Table  S3), despite the marked 
differences in winter–spring chl a distribution between those 
decades. Nutrient seasonal cycles followed a common pattern of 
lower concentrations in the spring and summer with increasing 
concentrations from fall into winter (SI Appendix, Fig. S4).

Some aspects of the phenology of phytoplankton blooms, iden-
tified by thresholds in chl a concentration, showed significant 
temporal shifts. The initiation of the winter-spring bloom occurred 
earlier in the year (the variable “year” in the Poisson GLM, 
SI Appendix, Table S4). In the first decade of the dataset, the win-
ter–spring bloom began on week 7 ± 4 (mid-Feb) while in the last 
decade, it began on week 4 ± 3 (late Jan, Fig. 4A). The initiation 
of the summer–fall bloom did not change over time and was 
variable: the onset ranged from week 22 (early June) to week 35 
(late Aug) with a mean initiation of 26 ± 3 wk (late June, Fig. 4B). 
The timing of the bloom maximum did not change for either the 
winter–spring or summer–fall blooms (SI Appendix, Table S4 and 
Fig. 4 C and D). On average, the peak of the bloom in winter–
spring occurred on week 8 (±4 wk, late Feb/early Mar) and in 
summer–fall on week 32 (±3 wk, early Aug). The duration of the 
winter–spring bloom did not change significantly over time and 
lasted 6 ± 4 wk (SI Appendix, Table S4, P > 0.05, Fig. 4E). In 
contrast, the duration of the summer–fall bloom decreased signif-
icantly over time (SI Appendix, Table S4, P < 0.001, Fig. 4F). 
Blooms lasted more than ten weeks on average in the first two 
decades of the time series and less than 10 wk on average in the 
latter half of the dataset. Bloom frequency varied by season with 
significantly fewer blooms in winter–spring (median = 3) than in 
summer–fall (median = 4; SI Appendix, Fig. S5) with no long-term, 
directional trends. The number of blooms throughout the year 
ranged from three to twelve blooms with a median number of 
~seven blooms per year (SI Appendix, Fig. S5C). There were no 
significant changes in nutrient phenology (week of nutrient max-
imum concentration, P > 0.05, SI Appendix, Fig. S6).

Bloom phenology was associated with multiple environmental 
factors that varied by season (SI Appendix, Table S4). We found 
that NO3/2 concentration, Secchi depth, and salinity were posi-
tively related to the timing of both bloom initiation and maximum 
chl a concentration in winter–spring indicating that a shallower 
Secchi depth as well as lower NO3/2 concentrations and salinity 
corresponded to earlier blooms. Lower SiO4 concentrations and 
less water column stratification were related to an earlier bloom 
initiation and earlier maximum, respectively. In addition, lower 
NO3/2 and SiO4 concentrations explained longer winter–spring 
bloom durations. Finally, the Gulf Stream Index (GSI) was an 
important predictor with a positive GSI related to earlier bloom 
start and maximum as well as a shorter duration. In the summer–
fall, no statistically significant environmental parameters explained 
variation and trends for bloom start or maximum but for bloom 
duration lower salinity concentrations corresponded to longer 
blooms (SI Appendix, Table S4).

Discussion

Long-term Changes in Narragansett Bay. Phytoplankton-derived 
chl a concentrations in NBay exhibited long-term annual declines 
from 1968 through 2019, regardless of season, and provide context 
for reports of summertime declines in NBay chl a concentrations 
(14, 32). Furthermore, the annual maximum chl a concentration 
decreased over time suggesting a waning intensity of phytoplankton 

Table  2.   Seasonal autoregressive integrated moving 
average with exogenous variable(s) model, SARIMAX 
(2,0,1) × (0,1,1)52, including the Monte Carlo (MC) mean 
and standard deviation (SD) for the model parameters, 
as well as the absolute frequency of times the param-
eter was significant (P < 0.05) out of 100 MC iterations

Parameter MC-mean MC-SD
Significance  
frequency

AR1 1.12 0.03 100

AR2 −0.19 0.03 100

MA1 −0.79 0.02 100

SMA1 −0.95 0.01 100

NH4 −0.65 0.04 100

SiO4 −0.08 0.01 99

NO3/2 −0.23 0.03 100

Secchi −2.97 0.08 100

Temp −0.61 0.08 54

Salinity −2.68 0.16 100

NH4_lag1 0.06 0.05 1

SiO4_lag1 0.08 0.01 99

NO3/2_lag1 −0.18 0.05 87

Salinity_lag1 0.93 0.24 33

NH4_lag2 0.06 0.04 0

NO3/2_lag2 0.09 0.03 18

Salinity_lag2 1.38 0.15 100

NO3/2_lag3 0.23 0.05 100
Model component abbreviations are as follows: AR—Autoregressive component, MA—
Moving average, SMA—Seasonal moving average, NH4—ammonium, SiO4—silicate, 
NO3/2— nitrate/nitrite, Secchi—Secchi depth, Temp—temperature, X_lag1—parameter 
lagged 1 wk, X_lag2—parameter lagged 2 wk, X_lag3—parameter lagged 3 wk. No lag in-
dicates a zero-week lag.

Fig. 3.   Decadal patterns of weekly chlorophyll a (chl a) concentrations based 
on average modeled chl a. Decadal patterns were significantly different from 
each other except the 1990s and the 2010s (P < 0.001, K-sample Anderson–
Darling test, SI Appendix, Table S3).D
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bloom events. Long-term declines of chl a concentrations in 
NBay mirror those observed in diverse locations including other 
estuaries (19, 39), the Gulf of Maine (27), the Australian coast 
(40), and the Black Sea (41), where blooms have also decreased in 
intensity over time (41, 42). Reductions in annual and event-scale 
chl a concentrations have both ecological and biogeochemical 
implications for ecosystem functioning, with decreases in organic 
matter deposition resulting in a less efficient biological pump (43, 
44), and decline in nutrient cycling and benthic production within 
estuaries (45, 46).

Although the plankton time series provides a rich dataset for 
examining long-term trends in Narragansett Bay, there are limi-
tations inherent in the study. For example, the weekly sampling 
frequency may miss the annual chl a maximum and cannot cap-
ture bloom events shorter than 7 d. Weekly sampling becomes 
less of an issue as the duration of the time series increases (47), 
although it may be one reason we observed large variation in the 
annual chl a maximum, which is superimposed on a long-term 
decrease. Furthermore, chl a is a proxy for carbon (C) biomass 
and changes in chl a:C ratios can occur when species composition 
shifts (48). Future work examining species composition at the 
time series site may provide insights into the extent to which 
changes in chl a:C have occurred. Finally, single-station time series 
do not reveal long-term changes in spatial gradients of chlorophyll 
a (49).

At the NBPTS site, the long-term decline of chl a concentration 
was related to an interacting set of environmental factors. To iden-
tify predictive causal relationships between time series of chl a and 
environmental data, we used Granger causality analyses. Granger 
causality determines whether one variable can predict the other, 
but not the direction of that change (37, 38). Based on this 

analysis, we found both direct and indirect influences of environ-
mental factors on chl a. Nitrate plus nitrite concentrations were 
primary predictors of chl a concentration as expected based on 
the reliance of phytoplankton growth on these often-limiting 
nutrients in marine habitats (50). Precipitation was also a primary 
predictor of chl a concentration but likely affected phytoplankton 
less directly. Freshwater inputs driven by precipitation combined 
with increasing temperature act to reduce water column mixing, 
preventing nutrient-rich deep water from reaching the surface to 
fuel phytoplankton growth (4). This hypothesis is supported by 
the observation that nutrient concentrations (PO4, NO3/2, NH4, 
SiO4) were Granger-caused by water temperature and water col-
umn stratification. Together, these results suggest that nutrient 
limitation through warming-induced water column stratification 
could explain chl a concentration changes over time.

Both models and observations have pointed to the strong influ-
ence of water column stratification on nutrient concentrations in 
a warming ocean and the potential impacts on ecosystem function, 
including reduced chl a concentrations (22, 51, 52). Reductions 
in anthropogenic nutrient loading associated with upgrades in 
wastewater treatment facilities in NBay could further influence 
the observed relationship between nutrients and phytoplankton 
biomass (31). However, reduced nutrient loading occurred late in 
the time series [post 2010 (53)], after much of the long-term chl 
a decline had occurred, suggesting that this was not the primary 
mechanism driving decreases in chl a concentration. Our obser-
vation that long-term change in phytoplankton biomass in NBay 
is likely influenced by environmental factors directly impacted by 
climate change (e.g., warming temperatures, water column strat-
ification) indicates that it is important to account for regional 
climate change effects in ecosystem-based management (54).

Fig. 4.   Annual phenology metrics (1970 to 2019) for week of bloom start in winter–spring (A) and summer-fall (B), week of bloom maximum in winter-spring (C) 
and summer–fall (D) and bloom duration in winter-spring (E) and summer-fall (F). Colored lines indicate generalized linear model (GLM) results with significant 
environmental predictors used to explain variation for that particular phenology metric. For GLM statistics, refer to SI Appendix, Table S4.
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It is essential to note that chl a concentration represents a bal-
ance of growth and mortality and many of the environmental 
factors measured at NBPTS affect phytoplankton growth but not 
mortality (3, 6). Sources of phytoplankton mortality include pre-
dation by zooplankton, ingestion by filter feeders, viral activity, 
and parasitism (55–58). For example, in NBay, microzooplankton 
grazing removes an average of 96% of phytoplankton primary 
production annually (53). Therefore, the loss of chl a we observed 
could be reflective of either lower rates of primary production or 
higher rates of mortality. Since no long-term time series exists for 
these measurements in NBay, their influence cannot be directly 
determined, emphasizing the need for a combination of observa-
tional and process-oriented, in situ rate measurements to quantify 
the causes and effects of phytoplankton variability (59).

Understanding Phytoplankton Seasonality and Phenology within 
a Complex Ecosystem. Seasonal patterns of chl a concentration in 
NBay were characterized by a bimodal distribution throughout 
the time series with blooms occurring both in winter-spring and 
in summer–fall, a common feature in northern temperate coastal 
ecosystems (60). The significant annual peak of chl a concentration 
in winter–spring throughout the time series reveals that while the 
magnitude of the winter–spring bloom is declining, it continues 
to be an important component of the annual cycle in NBay. 
Interestingly, the summer–fall bloom, a significant component of 
the present-day annual cycle (61), has been characteristic of NBay 
since the beginning of the chl a time series (1968) and may play an 
increasingly important role in fueling the ecosystem through organic 
matter production if winter–spring bloom intensity continues to 
decline.

To further investigate bloom dynamics, we generated a time 
series of key bloom phenology metrics including the dates of ini-
tiation and maximum chl a concentration, as well as duration, 
and frequency. Blooms were defined as time periods exceeding 
5% of the annual chl a median for each year (62). In NBay, the 
winter–spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d 
decade−1, which is similar to the rate observed (4.4 ± 0.7 d dec-
ade−1) in the global ocean (26). This result reveals that the NBay 
winter-spring bloom may follow similar global patterns of marine 
phenology, reflecting a strong signal of climate change on phyto-
plankton bloom initiation from global to regional scales. Given 
that shifts in the initiation of the winter–spring bloom have yet 
to be detected elsewhere along the Northeast US Shelf (63), NBay 
may act as a sentinel ecosystem for monitoring broader phenologic 
changes across the region.

All other phenology metrics, except summer–fall duration, were 
highly variable and did not exhibit significant changes over time. 
For example, the number of blooms occurring annually in NBay 
was highly variable over time, with bloom frequency ranging from 
three to twelve blooms per year. Notably, variable phenology is 
observed in other planktonic ecosystems and is reflective of many 
interacting abiotic and biotic factors that affect the timing and 
occurrence of phytoplankton blooms (28).

Seasonal blooms represent short-term events, with increased phy-
toplankton biomass lasting days to weeks (4). Our SARIMAX model 
showed that NH4, NO3/2, and SiO4 concentrations were primary 
predictors of short-term changes in chl a concentration, with lower 
nutrients associated with higher chl a concentrations. Similarly, lower 
NO3/2 and SiO4 concentrations explained earlier maximum chl a 
concentration during the winter–spring bloom. Lower concentra-
tions of both NO3/2 and SiO4 were also related to an earlier start and 
longer duration of the winter–spring bloom. The potentially coun-
terintuitive association between lower nutrients and higher chl a 
concentration or longer blooms is in fact consistent with the 

well-known relationship of phytoplankton nutrient uptake and 
resulting growth, such that we expect to see low nutrient concentra-
tions when chl a biomass is high (47). Our SARIMAX model results 
also showed that Secchi depth was associated with short-term changes 
in chl a concentration. Increased biomass in the water column during 
blooms can decrease water clarity (64) explaining the significant 
relationship of Secchi depth with chl a concentration on a zero-week 
lag. Notably, there was no long-term trend of increasing Secchi depth 
with decreasing chl a concentration. It is known that Secchi depth 
and chl a are well correlated in open ocean habitats (65) but can 
become decoupled in estuarine environments due to the prevalence 
of sediments and detrital matter in the water column (66) likely 
obscuring any long-term trend due to chl a concentration.

Although surface water temperature was not a significant pre-
dictor of bloom initiation or duration as has been hypothesized 
for NBay (14, 67), it may have influenced chl a phenology indirectly, 
via the temporal shifts in water column stratification observed here 
(SI Appendix, Table S1). Even short-term increases in stratification 
can decrease nutrient availability, a scenario that could intensify as 
winter surface water temperatures continue to increase over time 
(29). More directly, the physiological effects of temperature on phy-
toplankton growth could also influence bloom maxima by promot-
ing the growth of certain taxa over others (68). In NBay, some of the 
most abundant phytoplankton genera (Skeletonema and Thalassiosira) 
are represented by seasonally distinct species assemblages with differ-
ent thermal niches (69–71). Since chl a concentration represents all 
phytoplankton in a community, future examination of structural 
and phenologic shifts among taxa is needed in NBay, especially for 
those taxa that are particularly abundant.

In addition to nutrients and temperature, large-scale oceano-
graphic processes may influence bloom phenology in NBay. For 
example, a positive GSI [the latitudinal position of the Gulf Stream 
northern wall (72)] was correlated with later winter-spring 
Skeletonema blooms in NBay, presumably through an increase in 
water temperature (73). In contrast, we found that for chl a con-
centration, a positive GSI was correlated instead with earlier 
winter–spring bloom initiation and maximum as well as a shorter 
duration. Our contrasting results indicate that the whole phyto-
plankton community, as represented by chl a concentration, 
responds differently to environmental conditions than individual 
genera. This observation further highlights that chl a concentra-
tions represent multiple phytoplankton taxa with unique niches, 
potentially explaining why one primary driving parameter does 
not best explain bloom phenology patterns.

The weekly to decadal-scale variability of chl a concentrations in 
NBay was high, with the annual CV averaging 88% and not signif-
icantly changing over time. The consistency of this variation over 
decades indicates that it may be an inherent characteristic of this 
estuarine ecosystem. On the one hand, this variability could obscure 
real temporal trends. On the other hand, the large variability in 
phytoplankton biomass and some seasonal phenology metrics in 
spite of increasing water temperatures (30) may point to the resilience 
of a highly variable system to climate change (74). Interestingly, the 
variation we observed in NBay (88%) is comparable to that of other 
marine plankton time series, including those in the oligotrophic open 
ocean (Fig. 5). In all locations, the average annual CVs were >50%, 
with a maximum of 182% (San Francisco Bay). The CV at the 
Bermuda Atlantic Time Series (91%) was similar to NBay and sur-
prising given that oligotrophic regions have much lower chl a con-
centrations, do not experience the large blooms common to coastal 
and estuarine regions, and thus have lower SD in chl a concentrations 
over time compared to eutrophic regions like NBay (75). When 
viewed from the normalized perspective of the CV, however, chl a 
time series are highly variable. Thus, the time of emergence for D
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climate change signals in chl a across the global ocean is likely on 
the order of decades (76), highlighting the need to sustain a robust 
set of marine chl a time series for the long term.

Materials and Methods

Environmental parameters were collected weekly at the NBPTS site from 1959 
to 2019 (Table 1 and SI Appendix, Methods). A substantial component of this 
study was to digitize physical data archives for weekly surface chl a and nutrient 

concentrations dating from 1959. We compiled newly digitized and previously 
published data to generate a fully processed, quality-controlled, publicly available 
dataset for all surface environmental parameters (77).

We applied Bayesian DLMs (e.g., ref. 78) to interpolate missing values in 
the environmental parameters (Table 1), allowing us to both reconstruct the 
time series and assess the uncertainty around the missing values. In order to 
incorporate this uncertainty into our subsequent analysis, we sampled 100 
sequences from the posterior predictive distribution of chl a and performed 
a seasonal autoregressive integrated moving average with exogenous vari-
able(s) model (SARIMAX) (79) for each sequence (Table 2). This Monte Carlo 
approach was used to assess the robustness of the findings under different 
scenarios of imputed missing values. Granger causality analysis, which iden-
tifies predictive causal relationships between two evolving time series, was 
applied to physical environmental conditions (temperature, nutrient concen-
trations, stratification, salinity, precipitation, Secchi depth, and light) and chl 
a concentration (37, 38).

Phenology metrics, defined as in Ji et al. (25), included weeks of chl a bloom 
initiation and end, bloom duration, and week of bloom maximum (e.g., peak 
intensity) for the winter-spring (weeks 1 to 16) and summer-fall (weeks 22 to 38). 
Bloom start and end weeks were defined with a threshold approach of >5% of the 
annual chl a median for each year (62). To determine environmental parameters 
related to changes in chl a phenology, GLM with a Poisson distribution were used. 
Additional information on data collection and quality control, DLM and SARIMAX 
model structures, and environmental parameters used in the GLM can be found in 
SI Appendix, Methods.

Data, Materials, and Software Availability. Data for this work are publicly avail-
able at the Narragansett Bay Plankton Time Series page on BCO-DMO: https://doi.
org/10.26008/1912/bco-dmo.874956.1 (77). Code and associated datasets are 
publicly available on Github: https://github.com/psthibodeau/Thibodeau-et-
al-2023 (80).

ACKNOWLEDGMENTS. This research was supported by the NSF (OIA-
1655221, OCE-1655686) and Rhode Island Sea Grant (NA22-OAR4170123). 
We thank C. Oviatt for insightful discussions and providing nutrient data,  
T. Smayda and P. Hargraves for directing the NBPTS from 1959 to 2008, 
multiple captains for providing field assistance, and the many students 
and researchers who have collected data since 1959. We used data from 
the Western Channel Observatory, funded by the UK Natural Environment 
Research Council (NE/R015953/1).

1.	 C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere: 
Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

2.	 P. G. Falkowski, R. T. Barber, V. Smetacek, Biogeochemical controls and feedbacks on ocean primary 
production. Science 281, 200–206 (1998).

3.	 M. J. Behrenfeld, E. S. Boss, Resurrecting the ecological underpinnings of ocean plankton blooms. 
Annu. Rev. Mar. Sci. 6, 167–194 (2014).

4.	 M. J. Behrenfeld et al., Climate-driven trends in contemporary ocean productivity. Nature 444, 
752–755 (2006).

5.	 H. W. Paerl et al., Phytoplankton photopigments as indicators of estuarine and coastal 
eutrophication. BioScience 53, 953 (2003).

6.	 A. Calbet, M. R. Landry, Phytoplankton growth, microzooplankton grazing, and carbon cycling in 
marine systems. Limnol. Oceanogr. 49, 51–57 (2004).

7.	 J.-M. André, C. Navarette, J. Blanchot, M.-H. Radenac, Picophytoplankton dynamics in the 
equatorial Pacific: Growth and grazing rates from cytometric counts. J. Geophys. Res. 104, 
3369–3380 (1999).

8.	 H. Liu, M. R. Landry, D. Vaulot, L. Campbell, Prochlorococcus growth rates in the central equatorial 
Pacific: An application of the ƒmax approach. J. Geophys. Res. 104, 3391–3399 (1999).

9.	 S. Basu, K. Mackey, Phytoplankton as key mediators of the biological carbon pump: Their responses 
to a changing climate. Sustainability 10, 869 (2018).

10.	 J. N. Boyer, C. R. Kelble, P. B. Ortner, D. T. Rudnick, Phytoplankton bloom status: Chlorophyll a 
biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. 
Indicators 9, S56–S67 (2009).

11.	 M. Winder, J. E. Cloern, The annual cycles of phytoplankton biomass. Phil. Trans. R. Soc. B 365, 
3215–3226 (2010).

12.	 G. C. Hays, A. J. Richardson, C. Robinson, Climate change and marine plankton. Trends Ecol. Evol. 20, 
337–344 (2005).

13.	 E. Hawkins, R. Sutton, Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 
(2012).

14.	 S. W. Nixon et al., The impact of changing climate on phenology, productivity, and benthic–pelagic 
coupling in Narragansett Bay. Estuar. Coast. Shelf Sci. 82, 1–18 (2009).

15.	 S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, Phytoplankton Pigments in Oceanography: Guidelines 
to Modern Methods (UNESCO, 1997).

16.	 C. I. Weber, L. A. Fay, G. B. Collins, D. E. Rathke, J. Tobin, “Review of methods for the analysis of 
chlorophyll in periphyton and plankton of marine and freshwater systems. Technical bulletin (Final)” 
(Ohio State University, Columbus, Sea Grant Program, 1986). 1 May 2023.

17.	 V. Smetacek, J. E. Cloern, On phytoplankton trends. Science 319, 1346–1348 (2008).
18.	 M. W. Lomas, N. R. Bates, R. J. Johnson, D. K. Steinberg, T. Tanioka, Adaptive carbon export response 

to warming in the Sargasso Sea. Nat. Commun. 13, 1211 (2022).
19.	 J. M. Testa, R. R. Murphy, D. C. Brady, W. M. Kemp, Nutrient- and climate-induced shifts in the 

phenology of linked biogeochemical cycles in a temperate estuary. Front. Mar. Sci. 5, 114 (2018).
20.	 D. I. Taylor et al., Wastewater input reductions reverse historic hypereutrophication of Boston Harbor, 

USA. Ambio 49, 187–196 (2020).
21.	 D. I. Taylor, C. A. Oviatt, D. G. Borkman, Non-linear responses of a coastal aquatic ecosystem to large 

decreases in nutrient and organic loadings. Estuar. Coasts 34, 745–757 (2011).
22.	 E. Rice, G. Stewart, Analysis of interdecadal trends in chlorophyll and temperature in the Central 

Basin of Long Island Sound. Estuar. Coast. Shelf Sci. 128, 64–75 (2013).
23.	 M. Edwards, A. J. Richardson, Impact of climate change on marine pelagic phenology and trophic 

mismatch. Nature 430, 881–884 (2004).
24.	 C. Parmesan, G. Yohe, A globally coherent fingerprint of climate change impacts across natural 

systems. Nature 421, 37–42 (2003).
25.	 R. Ji, M. Edwards, D. L. Mackas, J. A. Runge, A. C. Thomas, Marine plankton phenology and 

life history in a changing climate: Current research and future directions. J. Plankton Res. 32, 
1355–1368 (2010).

26.	 E. S. Poloczanska et al., Global imprint of climate change on marine life. Nat. Clim. Change 3, 
919–925 (2013).

27.	 N. R. Record, W. M. Balch, K. Stamieszkin, Century-scale changes in phytoplankton phenology in the 
Gulf of Maine. PeerJ 7, e6735(2019).

28.	 J. E. Cloern, A. D. Jassby, Complex seasonal patterns of primary producers at the land-sea interface. 
Ecol. Lett. 11, 1294–1303 (2008).

29.	 C. A. Oviatt, The changing ecology of temperate coastal waters during a warming trend. Estuaries 27, 
895–904 (2004).

30.	 R. W. Fulweiler, A. J. Oczkowski, K. M. Miller, C. A. Oviatt, M. E. Q. Pilson, Whole truths vs. half truths–
And a search for clarity in long-term water temperature records. Estuar Coast. Shelf Sci. 157, A1–A6 
(2015).

Fig. 5.   Boxplot illustrating the annual Coeffcient of Variation (CV) for surface 
chlorophyll a (colored circles) from long-term coastal and oceanographic time 
series. Data points beyond boxplot quantiles represent outliers. Narragansett 
Bay Long-Term Plankton Time Series (1968 to 2019), Chesapeake Bay (2000 to 
2019), San Francisco Bay (1977 to 2015), English Channel, L4 (1992 to 2019), 
Sargasso Sea, Bermuda Atlantic Time Series (1988 to 2019).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"U
N

IV
 O

F 
R

H
O

D
E 

IS
LA

N
D

, L
IB

R
A

R
Y

 / 
SE

R
IA

LS
 U

N
IT

" 
on

 Ju
ne

 5
, 2

02
4 

fr
om

 IP
 a

dd
re

ss
 1

31
.1

28
.7

3.
15

0.

http://www.pnas.org/lookup/doi/10.1073/pnas.2311086121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2311086121#supplementary-materials
https://doi.org/10.26008/1912/bco-dmo.874956.1
https://doi.org/10.26008/1912/bco-dmo.874956.1
https://github.com/psthibodeau/Thibodeau-et-al-2023
https://github.com/psthibodeau/Thibodeau-et-al-2023


8 of 8   https://doi.org/10.1073/pnas.2311086121� pnas.org

31.	 C. Oviatt et al., Managed nutrient reduction impacts on nutrient concentrations, water clarity, 
primary production, and hypoxia in a north temperate estuary. Estuar. Coast. Shelf Sci. 199, 25–34 
(2017).

32.	 D. L. Codiga, H. E. Stoffel, C. A. Oviatt, C. E. Schmidt, Managed nitrogen load decrease reduces 
chlorophyll and hypoxia in warming temperate urban estuary. Front. Mar. Sci. 9, 930347 
(2022).

33.	 T. J. Smayda, Phytoplankton studies in lower Narragansett Bay. Limnol. Oceanogr. 2, 342–359 
(1957).

34.	 R. W. Fulweiler, “The oligotrophication of Narragansett Bay” in Fundamentals of Ecosystem Science 
(Elsevier, 2021), pp. 301–309.

35.	 Y. Li, T. J. Smayda, A chlorophyll time series for Narragansett Bay: Assessment of the potential effect 
of tidal phase on measurement. Estuaries 24, 328 (2001).

36.	 Narragansett Bay Estuary Program, “State of Narragansett Bay and its Watershed” (Providence, RI, 
2017), pp. 1–28.

37.	 C. W. J. Granger, Investigating causal relationships by econometric models and cross-spectral 
methods. Econometrica 37, 424–438 (1969).

38.	 J. D. Hamilton, Time Series Analysis (Princeton University Press, 2020).
39.	 J. Turner, D. Borkman, J. Lincoln, D. Gauthier, C. Petitpas, Plankton studies in Buzzards Bay, 

Massachusetts, USA. VI. Phytoplankton and water quality, 1987 to 1998. Mar. Ecol. Prog. Ser. 376, 
103–122 (2009).

40.	 P. Thompson, M. Baird, T. Ingleton, M. Doblin, Long-term changes in temperate Australian coastal 
waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 394, 1–19 (2009).

41.	 O. Yunev et al., Long-term variations of surface chlorophyll a and primary production in the open 
Black Sea. Mar. Ecol. Prog. Ser. 230, 11–28 (2002).

42.	 W. M. Balch et al., Changing hydrographic, biogeochemical, and acidification properties in the Gulf 
of Maine as measured by the Gulf of Maine North Atlantic Time Series, GNATS, between 1998 and 
2018. JGR Biogeosciences 127, 1–35 (2022).

43.	 R. M. Morrow et al., CCE V: Primary production, mesozooplankton grazing, and the biological 
pump in the California Current Ecosystem: Variability and response to El Niño. Deep Sea Res. Part I 
Oceanograp. Res. Pap. 140, 52–62 (2018).

44.	 E. L. Cavan, E. C. Laurenceau-Cornec, M. Bressac, P. W. Boyd, Exploring the ecology of the 
mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).

45.	 R. W. Fulweiler, S. W. Nixon, B. A. Buckley, S. L. Granger, Reversal of the net dinitrogen gas flux in 
coastal marine sediments. Nature 448, 180–182 (2007).

46.	 C. A. Oviatt, “Impacts of nutrients on Narragansett Bay Productivity: A gradient approach” in Science 
for Ecosystem-Based Management (Springer, 2008).

47.	 L. M. Lawson, E. E. Hofmann, Y. H. Spitz, Time series sampling and data assimilation in a simple 
marine ecosystem model. Deep Sea Res. Part II Topical Stud. Oceanogr. 43, 625–651 (1996).

48.	 M. J. W. Veldhuis, G. W. Kraay, Phytoplankton in the subtropical Atlantic Ocean: Towards a better 
assessment of biomass and composition. Deep Sea Res. Part I Oceanogr. Res. Pap. 51, 507–530 
(2004).

49.	 J. Carstensen, M. Lindegarth, Confidence in ecological indicators: A framework for quantifying 
uncertainty components from monitoring data. Ecol. Indicat. 67, 306–317 (2016).

50.	 P. M. Glibert et al., Pluses and minuses of ammonium and nitrate uptake and assimilation by 
phytoplankton and implications for productivity and community composition, with emphasis on 
nitrogen-enriched conditions: Pluses and minuses of NH4+ and NO3−. Limnol. Oceanogr. 61, 
165–197 (2016).

51.	 A. Capotondi, M. A. Alexander, N. A. Bond, E. N. Curchitser, J. D. Scott, Enhanced upper ocean 
stratification with climate change in the CMIP3 models: Climate change of ocean stratification.  
J. Geophys. Res. 117, C04031 (2012).

52.	 S. C. Doney, Plankton in a warmer world. Nature 444, 695–696 (2006).
53.	 Rhode Island Department of Environmental Management, “History of Rhode Island Wastewater 

Treatment Facility Construction & Upgrades” (Rhode Island Department of Environmental 
Management, Providence, RI, 2021), pp. 1–8.

54.	 C. J. Harvey et al., The importance of long-term ecological time series for integrated ecosystem 
assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).

55.	 S. O’Connell-Milne et al., Interactions between bivalve filter feeding and oceanographic forcing 
drive the fluxes of organic matter and nutrients at an estuarine-coastal interface. Mar. Ecol. Prog. 
Ser. 655, 29–42 (2020).

56.	 C. Lawerence, S. Menden-Deuer, Drivers of protistan grazing pressure: Seasonal signals of plankton 
community composition and environmental conditions. Mar. Ecol. Prog. Ser. 459, 39–52 (2012).

57.	 M. G. Park, W. Yih, D. W. Coats, Parasites and phytoplankton, with special emphasis on dinoflagellate 
infections. J. Eukaryotic Microbiol. 51, 145–155 (2004).

58.	 C. P. D. Brussaard, Viral control of phytoplankton populations–A review. J. Eukaryotic Microbiol. 51, 
125–138 (2004).

59.	 T. Smayda, Patterns of variability characterizing marine phytoplankton, with examples from 
Narragansett Bay. ICES J. Marine Sci. 55, 562–573 (1998).

60.	 J. Cebrian, Seasonal patterns in phytoplankton biomass in coastal ecosystems. J. Plankton Res. 21, 
429–444 (1999).

61.	 C. Oviatt, A. Keller, L. Reed, Annual primary production in Narragansett Bay with no Bay-Wide 
winter-spring phytoplankton bloom. Estuar. Coast. Shelf Sci. 54, 1013–1026 (2002).

62.	 D. A. Siegel, S. C. Doney, J. A. Yoder, The North Atlantic spring phytoplankton bloom and Sverdrup’s 
critical depth hypothesis. Science 296, 730–733 (2002).

63.	 K. D. Friedland et al., Asymmetry in the rate of warming and the phenology of seasonal blooms in 
the Northeast US Shelf Ecosystem. ICES J. Marine Sci. 80, 775–786 (2023).

64.	 J. H. Steele, Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7, 137–150 (1962).
65.	 D. G. Boyce, M. R. Lewis, B. Worm, Global phytoplankton decline over the past century. Nature 466, 

591–596 (2010).
66.	 J. S. Turner, P. St-Laurent, M. A. M. Friedrichs, C. T. Friedrichs, Effects of reduced shoreline erosion on 

Chesapeake Bay water clarity. Sci. Total Environ. 769, 145157 (2021).
67.	 G. L. Hitchcock, T. J. Smayda, The importance of light in the initiation of the 1972–1973 winter-

spring diatom bloom in Narragansett Bay: Light and 1972–1973 diatom bloom. Limnol. Oceanogr. 
22, 126–131 (1977).

68.	 S. I. Anderson, A. D. Barton, S. Clayton, S. Dutkiewicz, T. A. Rynearson, Marine phytoplankton 
functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).

69.	 S. I. Anderson, T. A. Rynearson, Variability approaching the thermal limits can drive diatom 
community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).

70.	 K. Canesi, T. Rynearson, Temporal variation of Skeletonema community composition from a long-
term time series in Narragansett Bay identified using high-throughput DNA sequencing. Mar. Ecol. 
Prog. Ser. 556, 1–16 (2016).

71.	 T. A. Rynearson, S. A. Flickinger, D. N. Fontaine, Metabarcoding reveals temporal patterns of 
community composition and realized thermal niches of Thalassiosira Spp. (Bacillariophyceae) from 
the Narragansett Bay Long-Term Plankton Time Series. Biology 9, 19 (2020).

72.	 A. H. Taylor, North-South shifts of the Gulf Stream: Ocean-atmosphere interactions in the North 
Atlantic. Int. J. Climatol. 16, 559–583 (1996).

73.	 D. G. Borkman, T. J. Smayda, Gulf Stream position and winter NAO as drivers of long-term variations 
in the bloom phenology of the diatom Skeletonema costatum “species-complex” in Narragansett 
Bay, RI, USA. J. Plankton Res. 31, 1407–1425 (2009).

74.	 J. R. Bernhardt, H. M. Leslie, Resilience to climate change in coastal marine ecosystems. Annu. Rev. 
Mar. Sci. 5, 371–392 (2013).

75.	 A. M. Kuhn et al., A global comparison of marine chlorophyll variability observed in Eulerian and 
Lagrangian perspectives. JGR Oceans 128, e2023JC019801 (2023).

76.	 S. Schlunegger et al., Time of Emergence and Large Ensemble Intercomparison for Ocean 
Biogeochemical Trends. Global Biogeochem. Cycles 34, 8 (2020).

77.	 P. Thibodeau, T. A. Rynearson, Weekly surface water quality measurements in Narragansett Bay from 
1959-2019 (Version 1) (2022). https://doi.org/10.26008/1912/BCO-DMO.874956.1. Accessed 
12 August 2022.

78.	 M. West, J. Harrison, Bayesian Forecasting and Dynamic Models (Springer Science & Business 
Media, 2006).

79.	 J. D. Cryer, K.-S. Chan, Time Series Analysis (Springer, ed. 2, 2008).
80.	 P. Thibodeau, Thibodeau-et-al-2023 (Version 1). GitHub. https://github.com/psthibodeau/

Thibodeau-et-al-2023. Accessed 20 December 2023.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"U
N

IV
 O

F 
R

H
O

D
E 

IS
LA

N
D

, L
IB

R
A

R
Y

 / 
SE

R
IA

LS
 U

N
IT

" 
on

 Ju
ne

 5
, 2

02
4 

fr
om

 IP
 a

dd
re

ss
 1

31
.1

28
.7

3.
15

0.

https://doi.org/10.26008/1912/BCO-DMO.874956.1
https://github.com/psthibodeau/Thibodeau-et-al-2023
https://github.com/psthibodeau/Thibodeau-et-al-2023

	Long-term declines in chlorophyll a and variable phenology revealed by a 60-year estuarine plankton time series
	Significance
	Results
	Long-term Trends of Chlorophyll a Concentration and Environmental Parameters.
	Chlorophyll a Seasonality and Phenology.

	Discussion
	Long-term Changes in Narragansett Bay.
	Understanding Phytoplankton Seasonality and Phenology within a Complex Ecosystem.

	Materials and Methods
	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 20



