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The present work describes a new approach to evaluation and root finding for the kinetic 
dispersion relation of Langmuir waves, which is central to the analytical understanding of 
collisionless damping in plasmas. The plasma dispersion function is solved to machine precision 
using direct integration in the complex plane in combination with an analytic evaluation of the 
residue to account for the deformation along the Landau contour. To efficiently attain machine 
precision, the contour is displaced in the complex plane prior to integration, and numerical 
subtleties related to the placement of the contour are discussed. The approach is generic in that 
it applies to arbitrary distribution functions, with the present manuscript focused on relativistic 
cases. Detailed verification of results via direct kinetic simulation in a variety of configuration 
space dimensions is also presented. Finally, the technique is applied to the challenging case 
of highly relativistic (i.e. extremely hot) plasmas. Here we show both qualitative agreement 
with prior work, as well as the disappearance of the Landau root which would have significant 
implication for real-life observation or experiment.

 Introduction

Kinetic effects are important in a wide variety of physics application including inertial confinement devices [1,2], magnetic 
nfinement devices [3,4], space plasmas [5,6], laser wakefield acceleration [7,8], and even galactic dynamics [9] to name a few. In 
e present work, “kinetic” indicates a process whose dynamics are described with independent variables of space and momentum, 
 opposed to so-called fluid models with just spatial independent variables, e.g. moment-reduced fluid equations. Kinetic equations 
ise because for a classical 𝑁 -particle system where quantum effects are negligible, the precise motion of all 𝑁 particles and any 
sociated electromagnetic fields constitutes a complete description of the system. However, the majority of applications contain such 
large number of particles that they cannot be practically tracked (i.e. available and foreseeable computing resources are simply 
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sufficient). From a simulation point of view, one is therefore constrained to either consider an approximation using a smaller 
mber of particles (sometimes thought of as macro-particles), or to consider the number of particles to be so large that the limit 
→∞ is a sensible approximation. The former leads to the well-known particle-in-cell description [10], and the later to continuum 
netic descriptions such as the Vlasov or Boltzmann equations.
The focus of the present work is the Vlasov equation, which is a continuum kinetic description of collisionless plasmas. An 
portant phenomenon in kinetic physics is the presence of Landau (collisionless) damping, whereby the fluctuating electric field 
 a collisionless plasma exhibits exponential damping in time. This despite the fact that the governing equations are strictly time-
versible, which would indicate that solutions to the system would be purely undamped. A key breakthrough in the theory was 
iginally discussed in [11], and subsequently by many authors including vanKampen [12], and Cédric Villani who was awarded the 
elds Medal partly for “his proofs of nonlinear Landau damping” [13].
Landau damping of electrostatic waves was investigated experimentally in [14], and has been subsequently probed in numerous 
periments, e.g. [15–17]. The existence of Landau damping is now assumed, and is used for example in the theory of wave heating 
d current drive of Tokamaks [18–23]. Similarly for prediction of parametric instability in inertial fusion hohlraums, growth thresh-
ds are determined using a combination of plasma inhomogeneities and both collisional and Landau damping [24–27]. Application 
 this work to specific experiments on large scale facilities enabled detailed analysis of results and, subsequently, to the develop-
ent of numerical codes that are routinely used to design experiments for current drive [28] and for ICF that avoid instability by 
aximizing Landau damping [29–34]. These works all assumed the plasma was hot (2-5 keV) but below the range where the wave 
teracted with relativistic electrons. Recent experiments, however, have created plasmas with electron temperatures reaching up to 
 keV, [35,36] where non-relativistic theory would predict stronger Landau damping than the correct relativistic theory for high 
ase velocity electron plasma waves, e.g. those excited by Stimulated Raman Scattering [37].
Recently, Bers [38] and others [39–41] have investigated corrected relativistic theories that reduce the damping rate as observed 

 experiment. However, numerical evaluation and subsequent root finding for such complicated dispersion relations can be chal-
nging. Nevertheless there has been excellent work to address various aspects of the problem. For example in [42], the authors 
proximate the distribution using a set of analytic basis functions combined with closed-form evaluation of the relevant integrals. 
 Matsuda and Smith [43], the dispersion relation for cyclotron-maser and whistler-wave instabilities is evaluated by performing a 
riety of manipulations to yield a smooth integration kernel but at the expense of introducing slowly decaying tails. This integrand 
then treated using Gauss quadrature. In [44] the authors suggest that standard quadratures applied directly to a grid evaluated 
tegrand could yield inaccuracies due to highly oscillatory kernels, and to avoid the problem they propose polynomial interpolation 
llowed by analytic evaluation of the interpolant. Verscharen et al. [45] adopt classical numerical methods, e.g. piecewise linear dif-
rencing and integration, which yields reasonable accuracy (∼ 10−5) for their problems. Perhaps most closely related to the present 
ork, Hellinger and Trávníček observe that for weakly damped modes direct integration along the real line could be problematic. 
 a remedy they suggest that the contour could in principle be displaced, but they do not pursue it perhaps because for their appli-
tion sufficient accuracy is obtained without it. Nevertheless, there remains open questions along the path of evaluating or solving 
e relevant dispersion relation over a wide range of parameters. Simultaneously, simulation of solutions to Vlasov equations has 
come an important and timely topic in computational science and engineering with significant research efforts on a wide variety 
 techniques including semi-Lagrangian [46–49], pseudo-spectral [50–52], finite element [53,54], finite volume [55–58], and finite 
fference [59–62] methods. One significant challenge in kinetic simulation is the cost of discretization in a six dimensional phase 
ace. As a result, many authors consider dimensionally reduced equations e.g. 2D-2P [51,52,63,64], and/or high-order accurate 
scretizations e.g. [54,58,62]. Verification and benchmarking of such codes is extremely important, and while manufactured solu-
ns can be used, the construction of exact solutions is one important aspect the present work. There exists a relatively complete 
alytic theory for non-relativistic Landau damping with Maxwellian equilibria which has been widely and effectively used in veri-
ation work [57,62,65–69]. Extension to relativistic cases appears somewhat less studied, despite the interest in relativistic kinetic 
ulation tools, both PIC and continuum type, e.g. [70–73]. This work seeks to close that gap.
The present manuscript explores Landau damping in the context of computational physics. First we describe a set of new mathe-
atical techniques and computational tools that enable the evaluation and subsequent determination of roots to the kinetic dispersion 
lation for general equilibrium distribution functions, including for the relativistic equations. This technique enables a precise un-
rstanding of the behavior of plane wave solutions, and can therefore be considered a key part of determining exact plane-wave 
lutions to the linearized Vlasov-Poisson system. These tools are capable of double precision accuracy, even in very challenging 
gimes with very hot plasmas and relativistically correct Jüttner equilibria. The validity of these tools is then illustrated by compar-
n to direct continuum simulation of the Vlasov equation using the LOKI code [57,62]. In so doing, we provide a useful benchmark 
r other continuum codes by effectively providing an exact solution to the governing equations where none was previously known. 
nally the tools are used to investigate highly relativistic plasmas where we show that under certain conditions the Landau root can 
ase to exist. Furthermore, we reveal that for certain equilibria, e.g. the Jüttner, there apparently exists superluminal modes whose 
ase and group velocities exceeds the speed of light. Similar results were observed in [40]. The existence of such modes may indicate 
at the Vlasov-Poisson system is not the physically correct model in the highly relativistic limit since it is not Lorentz invariant (for 
lated discussion see [74]). Further study of this phenomenon, e.g. direct Vlasov simulation of driven waves and investigation of the 
rentz invariant Vlasov-Maxwell system, is outside the scope of the present work and will be taken up in follow-on investigations.
The remainder of this manuscript is organized as follows. Section 2 discusses the governing equations, and Section 3 discusses 
e plasma dispersion relation in a general setting. Landau damping in cold plasmas (i.e. not relativistic) is discussed in Section 4, 
ginning with the classical solution via special functions in Section 4.1 and then moving to our new more general approach in 
2

ction 4.2. The techniques are then extended to relativistically hot plasmas in Section 5. Verification with respect to direct kinetic 
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ulation in a variety of dimensions and for both hot and cold plasmas is discussed in Section 6. The techniques are then applied 
 highly relativistic cases in Section 7, and concluding remarks given in 8. Section Appendix A discusses details about the order of 
tegration in the new approach, and finally Appendix B discusses normalization of the Jüttner in reduced dimension settings.

 Governing equations

For the present study, it is sufficient to consider a kinetic description of an electron plasma with assumed immobile neutralizing 
ns, and self-consistent electrostatic fields. Using a continuum description with appropriate non-dimensionaliaztion, the single-
ecies Vlasov-Poisson system in 3 space dimensions 𝐱 = [𝑥, 𝑦, 𝑧]𝑇 , 3 momentum dimensions 𝐩 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]𝑇 , and time 𝑡 is expressed

𝜕𝑡𝑓 + 𝐯 ⋅∇𝐱𝑓 −𝐄 ⋅∇𝐩𝑓 = 0, (1a)

𝐄 = −∇𝜙, (1b)

Δ𝜙 = 1 − ∫
𝐩

𝑓 𝑑𝐩, (1c)

here the integral is understood in the usual way as the definite integral over the (infinite) momentum space. In (1) 𝜕𝑡 indicates the 
rtial time derivative, ∇𝐱 is the vector of partial derivatives in space, ∇𝐩 is the vector of partial derivatives in momentum, 𝑓 (𝐱, 𝐩, 𝑡)
the distribution function, 𝐄(𝐱, 𝑡) the electric field, and the relativistic velocity 𝐯(𝐩) = 𝛾−1𝐩 is given using the Lorentz factor 𝛾
fined by

𝛾 =

√
1 +

‖𝐩‖2
𝑐2

,

here ‖ ⋅ ‖ denotes the 2-norm and 𝑐 the speed of light (units to be discussed). Note that one can also express 𝛾 in terms of 𝐯 as

𝛾 = 1√
1 − ‖𝐯‖2

𝑐2

.

te that Equation (1) is presented in dimensionless form, which has the important implication that 𝑐 in Equation (1), and throughout 
e manuscript, is a normalized light speed. Therefore, 𝑐 ∈ (1, ∞) will be used as a parameter to alter the magnitude of relativistic 
ects with 𝑐→∞ indicating a cold non-relativistic plasma.1
Assume that in physical space we seek planar waves propagating in the 𝑥-direction, with no corresponding variation in the other 
ysical space coordinates. In this case the governing system (1) reduces

𝜕𝑡𝑓 + 𝑣𝑥𝜕𝑥𝑓 + 𝜕𝑥𝜙𝜕𝑝𝑥𝑓 = 0, (2a)

𝜕2𝑥𝜙 = −1 + ∫
𝐩

𝑓 𝑑𝐩, (2b)

hich is the classical 1D Vlasov-Poisson system for fully relativistic formulation with 𝜙 an electric potential. Henceforth we will 
opt notation indicating variation only in 1 space dimension, e.g. 𝑓 (𝐱, 𝐩, 𝑡) will become 𝑓 (𝑥, 𝐩, 𝑡).

 Developing the plasma dispersion relation

To understand the nature of solutions to (2), it is useful to express the distribution as the summation of an equilibrium 𝑓𝐸 (𝐩), 
d a perturbation 𝛿𝑓 (𝑥, 𝐩), where 𝑓𝐸 (𝐩) is a momentum dependent steady state of the system with the restriction that ∫𝐩 𝑓𝐸 𝑑𝐩 = 1. 
 defining 𝑓𝐸 it is often sensible to consider the vanishing collisionality limit, and so 𝑓𝐸 would take the form of a Maxwellian in 
e non-relativistic case, and a Maxwell-Jüttner in the relativistic case. However the present analysis makes no such assumptions, 
d any time-independent distribution function would suffice. For example, one could consider plasmas which are relativistically 
t in one dimension but cold in the others (essentially Maxwell-Jüttner in a single dimension and Maxwellian in others), or even 
stributions which are not the limit of any weakly collisional process (e.g. from experimental observation). A linearized analysis 
rresponds to further restricting consideration to small perturbations with |𝛿𝑓 | ≪ 1 and neglecting quadratic terms in 𝛿𝑓 to yield 
e linearized Vlasov-Poisson system

𝜕𝑡𝛿𝑓 + 𝑣𝑥𝜕𝑥𝛿𝑓 + 𝜕𝑥𝜙𝜕𝑝𝑥𝑓𝐸 = 0, (3a)

𝜕2𝑥𝜙 = ∫
𝐩

𝛿𝑓 𝑑𝐩. (3b)

Although (1) is dimensionless, common physical scalings would take units of length to be the Debye length, time to be the inverse plasma frequency, and velocity 
3

be the thermal velocity of the unperturbed distribution (i.e. the square root of the second moment of 𝑓 ).
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It is useful to recall the analysis in the landmark paper [11], which considers a particular 𝑥-mode characterized by wave number 
(i.e. take 𝛿𝑓 = 𝛿𝑓 𝑒𝑖𝑘𝑥 and 𝜙 = 𝜙𝑒𝑖𝑘𝑥), from whence

𝜕𝑡𝛿𝑓 + 𝑖𝑘𝑣𝑥𝛿𝑓 + 𝑖𝑘𝜙𝜕𝑝𝑥𝑓𝐸 = 0, (4a)

− 𝑘2𝜙 = ∫
𝐩

𝛿𝑓 𝑑𝐩. (4b)

plying a Laplace transform with 𝛿𝑓 = ∫ ∞
0 𝛿𝑓 𝑒−𝑠𝑡 𝑑𝑡, and 𝜙= ∫ ∞

0 𝜙𝑒−𝑠𝑡 𝑑𝑡 gives

𝑠𝛿𝑓 + 𝑖𝑘𝑣𝑥𝛿𝑓 + 𝑖𝑘𝜙𝜕𝑝𝑥𝑓𝐸 = 𝛿𝑓 0, (5a)

− 𝑘2𝜙 = ∫
Γ

𝛿𝑓 𝑑𝐩, (5b)

here 𝛿𝑓 0 is the initial condition, and ∫
Γ
indicates the integral over the so-called Landau Contour, for example as depicted in Fig. 1. 

tegration along the Landau Contour corresponds to performing the integral over real-valued 𝐩, as well as including any residue 
ntributions from the pole located at the point 𝑣𝑥 = 𝑖𝑠∕𝑘 when ℜ(𝑠) <= 0. This description is at the core of our new approach 
 evaluation of the dispersion relation in general cases. The necessity of the Landau Contour in Equation (5b) is the core of the 
sagreement between Vlasov and Landau, and is described in detail in [11]. In short, the Landau Contour is required to ensure 
at poles in the complex 𝑠 plane correctly indicate the long-time behavior upon performing the inverse Laplace transform using the 
propriate Bromwich contour.
Solving Equation (5a) for 𝛿𝑓 , and substituting into Equation (5b) leads to

𝜙 =
−∫
Γ

𝛿𝑓0
𝑠+𝑖𝑘𝑣𝑥

𝑑𝐩

𝑘2 − 𝑖𝑘∫
Γ

𝜕𝑝𝑥 𝑓𝐸

𝑠+𝑖𝑘𝑣𝑥
𝑑𝐩
. (6)

les in the Laplace transformed 𝜙 will indicate the long-time behavior of the electric potential, and the location of such poles is 
dicated by a vanishing denominator. Furthermore, to aid physical interpretation in the remainder of the manuscript, we make the 
oice to describe the time-behavior using temporal frequency rather than the dual Laplace transform variable 𝑠, and so make the 
bstitution 𝑠 = −𝑖𝜔 to give

𝐷 ≡ 𝑘2 − ∫
Γ

𝜕𝑝𝑥𝑓𝐸

𝑣𝑥 −
𝜔

𝑘

𝑑𝐩 = 0. (7)

is the so-called plasma dispersion relation whose roots indicate the long-time behavior of the electric potential 𝜙.

 Landau damping in cold plasmas

Evaluation of the plasma dispersion function 𝐷, and subsequent identification of roots, can be performed in closed form only in 
rtain limited cases, e.g. a cold plasma corresponding to the weakly relativistic limit with Maxwellian equilibrium. However, for 
any cases of practical interest, closed-form solutions are not known, e.g. when relativistic effects become important. Nevertheless, 
is useful to reiterate the known solution, and subsequently to use the cold-plasma case as a simple baseline for comparison of our 
w approach to evaluating 𝐷.
In the weakly relativistic limit 𝛾 → 1, and therefore 𝐩 → 𝐯. As a result, the integrals and derivatives defining the dispersion 
lation can be expressed in terms of 𝐯 as

𝐷0 = 𝑘2 − ∫
Γ

𝜕𝑣𝑥𝑓𝑀

𝑣𝑥 −
𝜔

𝑘

𝑑𝐯, (8)

here the notation 𝐷0 is used to indicate the non-relativistic dispersion relation. In Equation (8), the Maxwellian equilibrium 
, which is the equilibrium distribution in the presence of particle collisions, is explicitly indicated.2 In dimensionless form this 
uilibrium is expressed

𝑓𝑀 (𝐯) = (2𝜋)−
3
2 𝑒−

1
2 ‖𝐯‖2 ,

d so 𝜕𝑣𝑥𝑓𝑀 = −𝑣𝑥𝑓𝑀 . Substituting into (8), and explicitly indicating each of the integrals leads to

Electron scattering from ions involves very little energy loss but isotropizes the electron distribution on the fastest time scale. On a longer time scale electron-
ctron scattering leads to an isotropic Maxwell-Boltzmann distribution. Ion-ion collisions generally occur on a longer time scale and lead to an isotropic Maxwell-
4

ltzmann ion distribution. On yet a longer time scale, collisions lead to a equilibration of the electron and ion temperatures.



W.

w

4.

w

No

di

ar

or

ex

4.

re

a 
eq

id

No

th

m

𝑍

po

w

w

Journal of Computational Physics 508 (2024) 113001J. Arrighi, J.W. Banks, R.L. Berger et al.

𝐷0(𝜔,𝑘) = 𝑘2 − ∫
Γ

∞

∫
−∞

∞

∫
−∞

−𝑣𝑥𝑓𝑀
𝑣𝑥 −

𝜔

𝑘

𝑑𝑣𝑧 𝑑𝑣𝑦 𝑑𝑣𝑥,

= 𝑘2 − ∫
Γ

1√
2𝜋

−𝑣𝑥𝑒
− 1

2 𝑣𝑥
2

𝑣𝑥 −
𝜔

𝑘

∞

∫
−∞

∞

∫
−∞

1
2𝜋
𝑒−

1
2 (𝑣𝑦

2+𝑣𝑧2) 𝑑𝑣𝑧 𝑑𝑣𝑦 𝑑𝑣𝑥,

= 𝑘2 − ∫
Γ

1√
2𝜋

−𝑣𝑥𝑒
− 1

2 𝑣𝑥
2

𝑣𝑥 −
𝜔

𝑘

𝑑𝑣𝑥, (9)

hich is in agreement with [11].

1. The classical approach

As discussed in [75], the dispersion relation 𝐷0 in (9) can be evaluated in closed form as

𝐷0(𝜔,𝑘) = 𝑘2 +𝑊
(
𝜔

𝑘

)
, (10a)

here

𝑊 (𝑍) = 1 + 𝑖
√
𝜋

2
𝑍 erfcx

(
𝑍√
2

)
, erfcx(𝑍) = 𝑒−𝑍2 erfc(−𝑖𝑍). (10b)

te that 𝑍 is used throughout to denote a dummy complex variable. While useful, even these expressions present certain practical 
fficulties in terms of numerical evaluation. For instance, many standard math libraries do not implement error functions of complex 
guments (e.g. Matlab, C/C++). Furthermore, it would be preferable to have a direct implementation of erfcx for complex type in 
der to avoid over- and under-flow issues related to the 𝑒−𝑍2

term. For this, one can download or implement their own version, for 
ample based on the algorithm described by Gautschi [76].

2. A “numerical” approach

Whatever method one uses to evaluate 𝐷0, the guiding principle should be that one obtains roughly machine precision in a 
lative sense, e.g. 16-digit accuracy for double precision. There are of course many ways to accomplish this, and here we pursue 
particular approach with natural generalization to more complex cases, such as relativistically hot plasmas or non-Maxwellian 
uilibria.

To describe the methodology, the present discussion focuses on the evaluation of the integral term in (9), which in (10a) is 
entified as the 𝑊 -function

𝑊 (𝑍) = −∫
Γ

𝑔𝑊 (𝜉;𝑍)𝑑𝜉, (11a)

𝑔𝑊 (𝜉;𝑍) = − 1√
2𝜋

𝜉𝑒−
1
2 𝜉

2

𝜉 −𝑍
. (11b)

te that 𝑊 (𝑍) is closely related to the Faddeeva (previously known as the Kramp function) Voigt, and Dawson functions for which 
ere are well known numerical implementations [76–79].
In describing a generic and extensible approach however, it is useful to consider the Landau Contour used in evaluating (11a) in 
ore detail. For example, Fig. 1 shows the Landau Contour associated with evaluating 𝑊 (𝑍) for 𝑍 = 1 − 1

2 𝑖 on the left in red, and 
= 1 + 3

4 𝑖 on the right in green. The figure shows that the Landau contour lies along the real axis, but is deformed to pass below the 
le whenever ℑ(𝑍) ⩽ 0. The approach advocated here will rely on numerical quadrature to evaluate integrals to machine precision, 
ith explicit inclusion of residues when appropriate. As such, it is useful to express the 𝑊 -function as

𝑊 (𝑍) =𝑊𝐼 (𝑍) + 2𝜋𝑖𝑊𝑅(𝑍), (12a)

here

𝑊𝐼 (𝑍) = −

∞

∫
−∞

𝑔𝑊 (𝜉;𝑍)𝑑𝜉, (12b)

𝑊𝑅(𝑍) =
⎧⎪⎨⎪
(2𝜋)−

1
2𝑍𝑒−

1
2𝑍

2
ℑ(𝑍) < 0

1
2 (2𝜋)

− 1
2𝑍𝑒−

1
2𝑍

2
ℑ(𝑍) = 0 (12c)
5

⎩0 else.
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ℜ(𝜉)

ℑ(𝜉)

Location of Pole

Landau Contour

− 1
2

ℜ(𝜉)

ℑ(𝜉)

Landau Contour

Location of Pole

3
4

Fig. 1. Representative Landau Contours for poles located below the imaginary axis (left) and above the imaginary axis (right).

re 𝑊𝐼 indicates the integral portion of 𝑊 , while 𝑊𝑅 indicates any residue contributions from poles when ℑ(𝑍) ⩽ 0. Note that 
e difference between the cases with ℑ(𝑍) < 0 and ℑ(𝑍) = 0 is due to the contour being circular for the former but semi-circular in 
e latter case.

2.1. Quadrature evaluation of 𝑊𝐼
To evaluate 𝑊𝐼 (𝑍) for ℑ(𝑍) ≠ 0 in the form suggested by Equation (12), numerical quadrature can be employed.3 Importantly 
ℑ(𝑍) ≠ 0, the integrand 𝑔𝑊 is a 𝐶∞ function with exponentially decaying tails for ℜ(𝜉) → ±∞. Therefore, as discussed in [80], 
pezoidal quadrature is exponentially convergent in the sense that it converges faster than  

(
1
𝑁𝑝

)
for any finite 𝑝 with 𝑁 the 

mber of quadrature points. Note that if the integrand is not continuous or lacks sufficient smoothness, the present approach is not 
plicable and would need to be extended, e.g. by using difference approximation of the derivative or perhaps by combination with 
eas from [42,43,81] for example. Even in the case where the integrand is smooth, some care must be taken in using trapezoidal 
adrature, e.g. the integration bounds must be taken sufficiently large that further expanding them does not change the computed 
tegral approximation in the given computer number system, see [80]. Therefore, it is useful to precisely define the approximation 
d introduce notation. Consider the function ℎ(𝑥), the trapezoidal approximation to the integral is defined

𝛽
𝛼𝑇𝑁 (ℎ(𝜉)) ≈

𝛽

∫
𝜉=𝛼

ℎ(𝜉)𝑑𝜉, (13a)

here

𝛽
𝛼𝑇𝑁 (ℎ(𝜉)) =

𝛽 − 𝛼
𝑁

𝑁−1∑
𝑗=0

ℎ(𝜉𝑗 ) + ℎ(𝜉𝑗+1)
2

, (13b)

ith 𝜉𝑗 = 𝛼 +
𝛽−𝛼
𝑁
𝑗.

2.2. Displacing the integration contour
On some level the fact that trapezoidal quadrature is exponentially convergent means it is an excellent choice that will yield 
curate results using “reasonable” numbers of quadrature points 𝑁 (note that the term “accurate” will be used throughout this 
anuscript to indicate machine precision). However, practical cases of interest often include ℑ(𝑍) ≈ 0, in which case the behavior 
 𝑔𝑊 can include both coarse and fine scale features due to the close proximity of the pole to the integration contour. This scenario 
n lead to large and expensive quadratures for accurate integration. Fortunately however, the contour can be moved or deformed, 
sentially at will, in the complex plane as long as the deforming contour does not cross any poles or branch cuts of the integrand. 
r example for ℑ(𝑍) < 0 and any 𝜂 > 0, 𝑊𝐼 can be expressed

𝑊𝐼 (𝑍) = −

∞

∫
−∞

𝑔̃𝑊 (𝜉;𝑍,𝜂)𝑑𝜉 (14a)

here

𝑔̃𝑊 (𝜉;𝑍,𝜂) = (2𝜋)−
1
2
−(𝜉 + 𝑖𝜂)𝑒−

𝜉2
2 −𝑖𝜉𝜂+ 𝜂

2
2

𝜉 + 𝑖𝜂 −𝑍
. (14b)

 fact, as will be used later in this document, the contour can be moved across poles as well, provided the residue of the pole is 
propriately accounted for. Furthermore, although not pursued here, more complicated deformations could be considered.
6

The case of ℑ(𝑍) = 0 would need special treatment, but the subsequent discussion in the manuscript covers this too.
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. 2. At left is min(|𝑔𝑊 (𝜉; 𝑍0)|, 3) for 𝑍 =𝑍0 =
1
2
− 1

100
𝑖 and complex 𝜉. Here the cap of 3 ensures that variation away from the pole, whose location is clearly seen, 

n still be observed. At right are the real and imaginary parts of the integrand 𝑔𝑊 (𝜉, 𝑍0), i.e. for ℑ(𝜉) = 0.

Fig. 3. Real and imaginary parts of 𝑔̃𝑊 (𝜉;𝑍0,1) (left) and 𝑔̃𝑊 (𝜉;𝑍0,5) (right). These are line of integration shifted vertically by 1 or 5 respectively.

As an example, consider 𝑍0 =
1
2 − 1

100 𝑖. The left panel of Fig. 2 shows the modulus of the integrand as a function of complex 𝜉
d a cap of 3 so that the behavior of the pole doesn’t swamp all other features, i.e. min(|𝑔𝑊 (𝜉; 𝑍0)|, 3). The location of the pole is 
ear, and its proximity to the integration contour with ℑ(𝜉) = 0 will clearly have significant effect on the behavior of the integrand. 
 more clearly understand this effect, the right panel of Fig. 2 shows the real and imaginary parts of the integrand 𝑔𝑊 (𝜉, 𝑍0) for 
(𝜉) = 0. Even though these curves are in fact smooth, i.e. 𝐶∞, accurate quadrature for this function would require exceedingly 
rge numbers of quadrature points due to combination of slowly varying large scale oscillations and rapid variation near 𝜉 = 1

2 . 
antitative estimates of this cost are presented in Fig. 4.
On the other hand, displacing the line of integration away from the pole may change the nature of the integrand and ultimately the 
ture of the quadrature required for machine precision. Appealing to Equation (14b), which describes the integrand as a function of 
rtical displacement 𝜂, one can observe that displacement away from the pole will tend to mollify its influence, and thereby enable 
curate integration with smaller quadratures. To illustrate this effect, Fig. 3 shows the real and imaginary parts of 𝑔̃𝑊 (𝜉; 𝑍0, 1) and 
(𝜉; 𝑍0, 5), i.e. the line of integration vertically shifted by 1 or 5 respectively. These plots reveal two primary features: Firstly, 

 the line of integration is moved away from the pole and into the upper half plane, the magnitude of the smallest scales tend to 
crease, which would imply that accurate quadratures require fewer points. Secondly, the magnitude of the real and imaginary 
rts of the integrand tends to grow exponentially as ℑ(𝜉) →∞, which tends to make the condition of the problem progressively 
orse.

From the perspective of numerical quadrature, the fact that small-scale features tend to decay as 𝜂→ ±∞ leads one to desire large 
7

 On the other hand, because integrand becomes large in magnitude as 𝜂→∞, the condition of the definite integral also increases, 
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. 4. At left are the errors in the 𝑁 -point trapezoidal quadrature approximation to 𝑊𝐼 (𝑍0) ≈ 10
−10𝑇𝑁 (−𝑔̃𝑊 (𝜉; 𝑍0, 𝜂)). Here the vertical offset is given by 𝜂 (see the 

ure legend). At right is the number of quadrature points required for error saturation in double precision, 𝑁𝜖 , and the approximate error at saturation, 𝐸𝜖 for the 
rious 𝜂.

hich leads one to desire small 𝜂. To probe the interplay of these two competing demands in the context of the present example with 
=𝑍0, the left panel of Fig. 4 shows the error in 10−10𝑇𝑁 (−𝑔̃𝑊 (𝜉; 𝑍0, 𝜂)) for various values of 𝜂, which are approximations to 𝑊𝐼 (𝑍0)
 defined in Equation (14a). For reference, 𝑊𝐼 (𝑍0) ≈ −0.76159 + 0.54465𝑖. In the figure one observes exponential convergence of 
e quadrature approximation since the errors in log-log scaling are concave downward prior to numerical saturation (here in double 
ecision). Also, in accordance with expectation, one observes that the number of points required for error saturation appears to be 
creasing as 𝜂 increases. The appearance of results for 𝜂 =

√
ln(2𝜋) may seem a mystery, but will be discussed momentarily. Finally, 

e magnitude of the error at numerical saturation is generally increasing with 𝜂 for large 𝜂, but for small 𝜂 the picture is potentially 
anced (particularly for cases where the pole is exceedingly close to the contour and so the quadrature will necessarily include 
rge and small values). These observations about error saturation are summarized in the table on the right of Fig. 4 which shows 
e number of quadrature points required for error saturation in double precision, 𝑁𝜖 , and the approximate error at saturation, 𝐸𝜖 , 
 functions of the offset 𝜂.
The question of how to pick 𝜂 centers on minimizing, or at least reducing, the number of quadrature points, while avoiding 
-conditioning in the integral formulation. Although it is not a focus of the present manuscript, keeping the number of quadrature 
ints low can be important in order to keep the computational cost in check. For example in [82,83], fluid modeling of stimulated 
attering uses a large number of dispersion relation calculations, and so overly costly calls could add up. A brief discussion of cost 
ith respect to Gautschi’s algorithm is given in Section 4.3. As seen in Fig. 4, the minimum number required to attain saturation 
pends on the proximity of the contour to the pole, but taking marginally too many quadrature points is not generally detrimental to 
e result (although at extra unnecessary cost). On the other hand, taking too large an offset will yield unacceptable loss in accuracy 
e to ill-conditioning. Therefore our choice will be based on using a reasonably small fixed number of quadrature points (e.g. 200 
r double precision), and determining 𝜂 based on arguments about conditioning. Using a fixed number of quadrature points implies 
at the contour should be displaced at least some distance from the pole for accurate integration, call that distance 𝛿. Because 
e wish to limit the growth of the condition number, the direction of displacement should be dictated by ℑ(𝑍), i.e. if the pole is 
ove or below the imaginary axis. Specifically, ℑ(𝑍) ⩽ 0 implies 𝜂 ⩾ 0, while ℑ(𝑍) > 0 implies 𝜂 ⩽ 0. In either case, the relative 
owth in the magnitude of the integrand (14b) can be bounded by the case 𝜂 = 0, where limiting the exponentially growing factor 
 Equation (14b) to be less than unity yields the threshold value 𝛿 =

√
ln(2𝜋).

2.3. Evaluation the W-function
With the basic concepts in place, the complete approach to evaluation of 𝑊 (𝑧) is now given by

𝑊 (𝑍) ≈
⎧⎪⎨⎪⎩
𝜉+
𝜉−
𝑇𝑁 (−𝑔̃𝑊 (𝜉;𝑍,𝜂+)) + 2𝜋𝑖𝑊𝑅(𝑍) ℑ(𝑍) ⩽ 0

𝜉+
𝜉−
𝑇𝑁 (−𝑔̃𝑊 (𝜉;𝑍,𝜂−)) else,

(15a)

here,

𝜂+ = max(ℑ(𝑍) + 𝛿),0) (15b)

𝜂− = min(ℑ(𝑍) − 𝛿,0). (15c)

e interesting aspect of the present formulation is that, by construction, the line integral is chosen to avoid any poles. As a result, 
viations around poles for the Landau contour are all circular, and there are not separate cases for ℑ(𝑍) < 0 and ℑ(𝑍) = 0, as 
as the case in (12) where the pole was on the line integral when ℑ(𝑍) = 0. For double precision accuracy it is sufficient to take 
8

= −10, 𝜉+ = 10, and 𝑁 = 200. To understand the formulation in Equation (15) in terms of the implied integration contours, it 
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ℜ(𝜉)

ℑ(𝜉)

𝜂 =
√
ln(2𝜋) − 1

2

− 1
2

ℜ(𝜉)

ℑ(𝜉)

𝜂 = 0

− 3
2

√
ln(2𝜋) − 3

2

. 5. Integration contour for a pole below the real axis, the left being close to the axis and the right being sufficiently far from the real axis that the Landau Contour 
used.

ill suffice to describe the case ℑ(𝑍) ⩽ 0 since the case with ℑ(𝑍) > 0 follows similarly. Therefore, Fig. 5 presents the implied 
ntours for evaluating 𝑊 (𝑍) for 𝑍 = 1 − 1

2 𝑖 and 𝑍 = 1 − 3
2 𝑖 as formulated in Equation (15). For the case with 𝑍 = 1 − 1

2 𝑖, the pole 
sufficiently close to the axis so that ensuring the integration contour is no closer than 𝑑 to the pole places the line of integration 
 the upper half plane. Therefore the offset value is 𝜂 =ℑ(𝑍) + 𝛿. On the other hand for the case 𝑍 = 1 − 3

2 𝑖, the pole is well below 
e axis and integration with 𝜂 = 0 is sufficient to separate.

3. Comparison to Gautschi’s algorithm

Having described a new approach to evaluate the 𝑊 -function, we return to the full plasma dispersion function for the cold 
asma case, 𝐷0 as given in Equation (8), and provide a comparison to the exact result to full numerical precision, as well as existing 
gorithms which is typical of those employed in practice. To obtain a full double precision result, 𝐷0 is evaluated as in Equation (10a)
 Maple using 50 digit arithmetic, and the result is then truncated to 16 digits. As an example of existing functionality, Gautschi’s 
gorithm is used to evaluate erfcx with parameters selected for double precision [76] (i.e. in the notation used by Gautschi in [76]
= 8.72, 𝑦0 = 10.06 ℎ0 = 2, 𝑛0 = 6, 𝑛1 = 40, 𝜈0 = 9, and 𝜈1 = 39). On the other hand, the new quadrature approach with displaced 
ntour uses 𝜉− = −10, 𝜉+ = 10, and 𝑁 = 200. Fig. 6 shows results for 𝑘 = 1

3 with ℜ(𝜔) ∈ [0, 2] and ℑ(𝜔) ∈ [−2, 1]. In all cases the 
ots use 400 uniformly distributed points in the real axis, and 402 uniformly distributed points in the imaginary axis. At the top of 
e figure are visualizations of the dispersion function itself with the left showing the zero contours of the real and imaginary parts, 
hile the complex argument is shown at right. The bottom portion of the figure shows the relative error in the evaluations with 
spect to the exact solution to full double precision accuracy. The plots are expressed in terms of the number of correct significant 
ures calculated as

Digits(𝜔) = −max
(
log10

(|𝐷0(𝜔) − 𝐷̃0(𝜔)||𝐷0(𝜔)|
)
,−17

)
,

here 𝐷0(𝜔) indicates the exact result, and 𝐷̃0(𝜔) indicates the computed result with either the Gautschi algorithm or numerical 
adrature. The cap of 17 digits is simple due to the fact that in some cases the computed result is exact to all represented digits, 
situation which would lead to plotting irregularities. The plots make clear that the Gautschi-based algorithm is comparable to 
e quadrature-based algorithm with both yielding 13-17 digits of accuracy for all cases. In fact the quadrature-based algorithm 
slightly more reliable in producing full double precision accuracy with 16-17 digits. In addition, it is been useful to report the 
lative cost of evaluation of the dispersion relation as used to produce the plots in Fig. 6. Both the Gautschi algorithm and the 
w quadrature approach are implemented here in MATLAB and not highly optimized, and so caution in interpreting performance 
mbers is warranted. In both cases there is no use of vectorization and so timings essentially represent the cost to make 160, 800
lls to the respective dispersion relation function. A representative run on a MacBook Pro laptop with Apple M2 Max processor has 
e Gautschi algorithm requiring 1.15 seconds, the quadrature approach requiring 1.12 seconds, and so the quadrature algorithm is 
ughly 3% more efficient than the Gautschi-based one.
A further check of the accuracy in the various implementations is the evaluation of the Landau root. Recall that the Landau 
ot, 𝜔𝐿, corresponds to the least damped mode in the system, and so for sufficiently long times will indicate the observed linear 
quency and decay rate for a freely propagating plane Langmuir wave. Therefore, the Landau root is an important quantity with 
ysical significance. For reference, the root is computed in Maple using Newton’s method with 50 digit arithmetic and a very small 
lerance. The result is then rounded to 16 digits and therefore represents the exact Landau root to 16 digits. Similar computations 
e carried out using the quadrature and Gautschi implementations.4 Results for these three methods are

𝜔𝐿,exact =1.200108902115360 − 0.025873679887016𝑖 (16a)
9

Note that implementation of Newton’s method of course requires 𝑑𝐷0
𝑑𝜔
, which is straightforward.
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. 6. At the top are visualizations of the dispersion function 𝐷0(𝜔) with the left showing the zero contours of the real and imaginary parts, while the complex 
ument is shown at right. At bottom are plots showing the number of correct significant figures in the results as computed by the quadrature approach at left, and 
utschi’s algorithm at right.

𝜔𝐿,Gautschi =1.200108902115361 − 0.025873679887016𝑖 (16b)

𝜔𝐿,quadrature =1.200108902115360 − 0.025873679887016𝑖, (16c)

hich shows that the new quadrature-based algorithm gives the exact result to 16 digits, while the Gautschi-based algorithm differs 
ly in the 16th digit.

 Landau damping in relativistically hot plasmas

Unfortunately there is no known closed-form evaluation of the plasma dispersion function in Equation (7) for hot plasmas where 
lativistic effects are important. However, the quadrature-based approach outlined in Section 4 is naturally extensible to this regime 
d represents a viable path to evaluating the dispersion relation and ultimately determining roots of the same. To describe this 
tension, Section 5.1 begins in the relativistic limit but with a Maxwellian equilibria in momentum space. This case contains all the 
sential features of the more physically relevant Maxwell-Jüttner equilibria, but is somewhat simpler to describe. Then in Section 5.2
e algorithm is discussed in the context of the Maxwell-Jüttner equilibria.

1. Maxwellian equilibria function in a hot plasma

As a simple starting point to describe quadrature-based evaluation of the dispersion relation in a relativistically hot plasma, 
nsider the Maxwellian equilibrium distribution in momentum space

𝑓𝑀 (𝐩) = (2𝜋)−
3
2 𝑒−

1
2 ‖𝐩‖2 . (17)
10

bstituting Equation (17) into (7) and expanding the integrals gives
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𝐷𝑀𝑐 (𝜔,𝑘) = 𝑘2 −

∞

∫
−∞

∞

∫
−∞

∫
Γ

−𝑝𝑥𝑓𝑀 (𝐩)
𝑣𝑥(𝐩) −

𝜔

𝑘

𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧, (18a)

here 𝑐 is the normalized velocity of light and 𝑀 indicates a Maxwellian equilibria and

𝑣𝑥(𝐩) =
𝑝𝑥√

1 + ‖𝐩‖2
𝑐2

. (18b)

te that throughout this work, the definition of the square root is the usual one where the branch cut lies along the negative real 
is, i.e. for 𝑍 = 𝑟𝑒𝑖𝜃 where 𝑟 ⩾ 0 and 𝜃 ∈ [−𝜋, 𝜋], then 

√
𝑍 =

√
𝑟𝑒𝑖

𝜃
2 with 

√
𝑟 being the principle root.

1.1. Quadrature evaluation for Maxwellian
Perhaps the most significant practical difference from the cold (non-relativistic) case is the fact that, due to the functional form 

 the dependence of 𝑣𝑥 on 𝐩 in (18b), the integrand no longer has a tensor product structure. As a result, the multi-dimensional 
tegral cannot be factored into the products of single dimensional integrals, and must therefore be performed using multidimensional 
adrature. Furthermore, the integrand now has both a pole, and branch points with corresponding branch cuts. To describe the 
adrature-based approach to evaluating the dispersion function, Equation (18a) is expressed as

𝐷𝑀𝑐 (𝜔,𝑘) = 𝑘2 −

∞

∫
−∞

∞

∫
−∞

𝑊𝑀
𝑐

(
𝜔

𝑘
,𝐩⟂

)
𝑑𝐩⟂, (19a)

here 𝐩⟂ = [𝑝𝑦, 𝑝𝑧]𝑇 ∈ℜ2 so that 𝑝𝑦2 + 𝑝𝑧2 = ‖𝐩⟂‖2 and
𝑊𝑀
𝑐 (𝑍,𝐩⟂) = ∫

Γ

𝑔𝑀𝑐 (𝜉𝑥;𝑍,𝐩⟂)𝑑𝜉𝑥, (19b)

𝑔𝑀𝑐 (𝜉𝑥;𝑍,𝐩⟂) = (2𝜋)−
3
2
−𝜉𝑥𝑒

− 1
2 (𝜉𝑥

2+‖𝐩⟂‖2)
𝑐𝜉𝑥√

𝑐2+𝜉𝑥2+‖𝐩⟂‖2 −𝑍
. (19c)

e notation, 𝑊𝑀
𝑐 , adopted in Equation (19) is chosen to illustrate a correspondence to the 𝑊 -function in (10b), but here with 𝑐

ing the normalized velocity of light and 𝑀 indicating a Maxwellian equilibria. Similar notation is used to define the integrand 𝑔𝑀𝑐 , 
here, in addition, the dependence on 𝐩⟂ is made explicit, and the dummy variable 𝜉𝑥 is used as a way to indicate that the present 
tegral originates from 𝑝𝑥 integration. Because it will be useful in the discussion to follow, the location of the pole in 𝑔𝑀𝑐 will be 
dicated as 𝜉𝑥, where

𝜉𝑥 =

√
𝑍2

(
𝑐2 + ‖𝐩⟂‖2)
𝑐2 −𝑍2 , (20)

d we again recall that the square root is the usual one with branch cut along the negative real axis. Furthermore, in the complex 
plane, 𝑔𝑀𝑐 has branch points at 𝜉𝑥 = ±𝑖

√
𝑐2 + ‖𝐩⟂‖2, with branch cuts extending outward along the imaginary axis extending to 

∞ respectively. Importantly, this implies that there are no branch cuts in the region where |ℑ(𝜉𝑥)| < 𝑐 for any 𝐩⟂.
Similar to the cold plasma case, 𝑊𝑀

𝑐 can be represented in terms of its integral and residue portions as

𝑊𝑀
𝑐 (𝑍,𝐩⟂) =

(
𝑊𝑀
𝑐

)
𝐼
(𝑍,𝐩⟂) + 2𝜋𝑖

(
𝑊𝑀
𝑐

)
𝑅
(𝑍,𝐩⟂), (21a)

ith

(
𝑊𝑀
𝑐

)
𝐼
(𝑍,𝐩⟂) =

∞

∫
−∞

𝑔𝑀𝑐 (𝜉𝑥;𝑍,𝐩⟂)𝑑𝜉𝑥, (21b)

(
𝑊𝑀
𝑐

)
𝑅
(𝑍,𝐩⟂) =

⎧⎪⎪⎨⎪⎪⎩
(2𝜋)−

3
2
𝜉𝑥𝑒

− 1
2 (𝜉𝑥

2+‖𝐩⟂‖2)
𝑄′(𝜉𝑥;𝐩⟂)

ℑ(𝜉𝑥) < 0

1
2 (2𝜋)

− 3
2
𝜉𝑥𝑒

− 1
2 (𝜉𝑥

2+‖𝐩⟂‖2)
𝑄′(𝜉𝑥;𝐩⟂)

ℑ(𝜉𝑥) = 0

0 else.

(21c)

re, 𝑄′ is the 𝜉-derivative of the denominator of the integrand, i.e.

𝑄(𝜉𝑥;𝐩⟂) =
𝑐𝜉𝑥√ −𝑍, (22a)
11

𝑐2 + 𝜉𝑥
2
+ ‖𝐩⟂‖2
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𝑄′(𝜉𝑥;𝐩⟂) = 𝑐
𝑐2 + ‖𝐩⟂‖2

(𝑐2 + 𝜉𝑥
2
+ ‖𝐩⟂‖2) 32 . (22b)

hile the residue portion of 𝑊𝑀
𝑐 in (21c) can be easily evaluated in closed form, the integral portion in (21b) cannot. However, 

aightforward extension of the basic quadrature approach used to evaluate the 𝑊 -function, as described in Section 4.2.3, gives a 
actical way to obtain machine precision. For example for ℑ(𝜉𝑥) ⩽ 0 and any 𝜂 ∈ [0, 𝑐), 

(
𝑊𝑀
𝑐

)
𝐼
can be expressed

(
𝑊𝑀
𝑐

)
𝐼
(𝑍,𝐩⟂) =

∞

∫
−∞

𝑔𝑀𝑐 (𝜉𝑥;𝑍,𝐩⟂, 𝜂)𝑑𝜉𝑥 (23a)

here

𝑔𝑀𝑐 (𝜉𝑥;𝑍,𝐩⟂, 𝜂) ≡ (2𝜋)−
3
2
−(𝜉𝑥 + 𝑖𝜂)𝑒

− 1
2 ((𝜉𝑥+𝑖𝜂)

2+‖𝐩⟂‖2)
𝑐(𝜉𝑥+𝑖𝜂)√

𝑐2+(𝜉𝑥+𝑖𝜂)2+‖𝐩⟂‖2 −𝑍
. (23b)

is represents a simple vertical shift of the line of integration away from the real axis in order to facilitate a machine precision 
curate quadrature using a reasonable number of quadrature points, as previously discussed. Note however, that the restriction 
∈ [0, 𝑐), which is a simple way to avoid displacing the contour past branch points for all 𝐩⟂, puts certain limitations on how hot 
e. how relativistic) the plasma can become and still employ this simple shift. Using the suggestion outlined in this manuscript, the 
iting value is given by 𝑐 ≈

√
ln(2𝜋) ≈ 1.36. Note however that we experience no difficulties even as far as 𝑐 = 1.5 which are the 

ttest plasmas considered in the present work. A similar shift of the line of integration downward is pursued when ℑ(𝜉𝑥) > 0. Using 
ese shifted contours, along with the exponentially accurate trapezoidal quadrature with 𝑁 points, the evaluation of 𝑊𝑀

𝑐 becomes

𝑊𝑀
𝑐 (𝑍,𝐩⟂) ≈

⎧⎪⎨⎪⎩
𝜉𝑥+
𝜉𝑥−
𝑇𝑁𝑥 (−𝑔

𝑀
𝑐 (𝜉𝑥;𝑧,𝐩⟂, 𝜂+)) + 2𝜋𝑖

(
𝑊𝑀
𝑐

)
𝑅
(𝑍,𝐩⟂) ℑ(𝑍) ⩽ 0

𝜉𝑥+
𝜉𝑥−
𝑇𝑁𝑥 (−𝑔

𝑀
𝑐 (𝜉𝑥;𝑍,𝐩⟂, 𝜂−)) else,

(24a)

here,

𝜂+ = max(ℑ(𝑍) + 𝛿),0) (24b)

𝜂− = min(ℑ(𝑍) − 𝛿,0). (24c)

 before, in this formulation there are not separate cases for ℑ(𝑍) < 0 and ℑ(𝑍) = 0 because the line of integration is specifically 
osen to avoid poles. Also as before, 𝛿 =

√
ln(2𝜋). For double precision accuracy it is sufficient to take 𝜉𝑥± = ±10, and the number 

 quadrature points to be 𝑁𝑥 = 200.
Finally, to evaluate the full dispersion function in (19), the exponentially accurate trapezoidal quadrature is also employed in the 
directions to give

𝐷𝑀𝑐 (𝜔,𝑘) ≈ 𝑘2 − 𝜉𝑧+
𝜉𝑧−
𝑇𝑁𝑧

[
𝜉𝑦+
𝜉𝑦−
𝑇𝑁𝑦

(
𝑊𝑀
𝑐

(
𝜔

𝑘
, [𝜉𝑦, 𝜉𝑧]

))]
, (25)

here 𝑊𝑀
𝑐 is given by (24) and the quadratures are understood to take place over 𝜉𝑦 and 𝜉𝑧 respectively. For double precision 

curacy it is again sufficient to take 𝜉𝑦± = 𝜉𝑧± = ±10, and 𝑁𝑦 =𝑁𝑧 = 200. Finally, note that numerical integration must be taken 
er the Landau contour in the 𝑝𝑥-space first to account for any contribution from the pole at 𝜉𝑥. The order of the remaining 
adratures is irrelevant. Further discussion on this matter is relegated to Appendix A.

1.2. Sample results for Maxwellian equilibrium
Application of the formulation in (25) is used to evaluate the dispersion function for plasmas with varying degrees of relativistic 
ects. For example, Fig. 7 shows the real and imaginary zero contours for 𝑘 = 1∕3 with 𝑐 = 8 (strongly relativistic) and 𝑐 =
(weakly relativistic). For comparison, zero contours for the nonrelativistic case are presented in Fig. 6. As has been observed 
sewhere in the literature [40], the spectrum of roots is seen to form a “hook” which terminates on the real axis at 𝜔 = 𝑐𝑘. Thus 
ere formally exists roots of the dispersion relation with arbitrarily small damping, but with phase velocity approaching the speed 
 light.
More relevant to physical systems would be roots with smaller |𝜔|, the smallest of which is identified here as the “Landau root”.5

 before, Newton’s method can be employed to compute this root, which is listed in Table 1. Also in Table 1 are computed Landau 
ots for dimensionally reduced Vlasov systems, i.e. Landau roots for 1-, 2-, and 3-momentum dimension (1P, 2P, and 3P respectively) 
asov systems. This is important because, due to the high cost of kinetic simulation, many practitioners have 1P and 2P codes, and 
oviding these additional benchmarks gives a useful metric by which to measure code performance. Extension of the methodology 

Note that generally the Landau root is identified as the root with smallest damping, but in the relativistic case this distinction becomes tricky due to the presence 
12

weakly damped roots near 𝜔 = 𝑐𝑘.
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. 7. Zero contours of the real and imaginary parts of the relativistic dispersion relation with Maxwellian equilibrium for 𝑐 = 20 (left) and 𝑐 = 8 (right). Recall that 
 the scaling employed here 𝑐 = 8 is more relativistic (i.e. hotter) than 𝑐 = 20. The spectrum of roots is seen to form a hook which terminates on the real axis at 
= 𝑐𝑘. The location of the Landau root is also indicated, with the exact values listed in Table 1.

Table 1

Table of Landau roots for Maxwellian equilibrium in various 
momentum-space dimensions given by 𝑑 with 𝑐 = 20 (weakly rel-
ativistic) and 𝑐 = 8 (strongly relativistic).

Maxwellian

𝑐 = 20 𝑐 = 8

𝑑 = 1 1.1955073 − 𝑖0.02307958 1.1712408 − 𝑖0.01133209
𝑑 = 2 1.1945206 − 𝑖0.02298272 1.1657767 − 𝑖0.01113948
𝑑 = 3 1.1935373 − 𝑖0.02288638 1.1604138 − 𝑖0.01094865

 compute these roots is straightforward, and involves posing the problem in the reduced dimensionality momentum space with 
propriate normalization of the Maxwellian as 𝑓𝑀 (𝑑)(𝐩) = (2𝜋)−

𝑑
2 𝑒−

1
2 ‖𝐩‖2 where 𝑑 indicates the dimensionality. Integrals are then 

ply taken in the existent dimensionality. Note that in the nonrelativistic case, dimensional reduction does not alter the result. 
so note that another way to interpret reduced dimensionality systems is to consider the 3P equations but for a distribution that is 
isotropically hot in only 1 or 2 directions.

2. Maxwell-Jüttner equilibria function in a hot plasma

Often when one is interested in relativistically hot plasmas, the relevant equilibrium distribution is the relativistic Maxwell-
ttner, since it is the steady distribution for collisional plasmas in this regime. In the present work the Jüttner is expressed

𝑓𝐽 (𝐩) =𝐴𝐽𝑒𝑐
2(1−𝛾), (26a)

here 𝐴𝐽 is the normalizing constant to assure the equilibrium satisfies the restriction ∫𝐩 𝑓𝐸𝑑𝐩 = 1. Following the discussion in [84,
], 𝐴𝐽 is

𝐴𝐽 =
1

4𝜋𝑐𝑒𝑐2𝐾2(𝑐2)
, (26b)

here 𝐾𝜈 is the modified Bessel function of the second kind of order 𝜈. Note that in (26) there appears to be an unnecessary 
petition of a factor of 𝑒𝑐2 in the denominator of 𝐴𝐽 and then as a multiplier in the exponential. This seemingly strange formulation 
numerically important because it ensures that 𝐴𝐽 =𝑂(1) and 𝑐2(1 − 𝛾) =𝑂(−

𝑝2

2 ) as 𝑐→∞, which avoids potentially problematic 
er or underflows for even moderately large 𝑐. However the explicit inclusion of 𝑒𝑐2 into 𝐴𝐽 introduces its own source of numerical 
erflow for 𝑐 ⪆ 25. This difficulty is easily avoided by introducing a series expansion for 𝐴𝐽 about 𝑐 =∞ for sufficiently large 𝑐. In 
13

is work, full double precision accuracy is obtained with 𝐴𝐽 represented as
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𝐴𝐽 =
⎧⎪⎨⎪⎩

1
4𝜋𝑐𝑒𝑐2𝐾2(𝑐2)

if |𝑐| < 10

(2𝜋)−
3
2 𝐸 else

(27a)

here

𝐸 =1 − 15
8𝑐2

+ 345
128𝑐4

− 3285
1024𝑐6

+ 95355
32768𝑐8

− 232065
262144𝑐10

− 19559475
4194304𝑐12

+

602889075
33554432𝑐14

− 110788764525
2147483648𝑐16

+ 2598854647275
17179869184𝑐18

+(
𝑐−20

)
. (27b)

te that for dimensionally reduced equations (e.g. the Jüttner in 1D or 2D), normalization is discussed in Appendix B.

2.1. Quadrature evaluation for Maxwell-Jüttner equilibrium
As before, the relativistic dispersion function will be evaluated to machine precision using quadrature. Therefore, the dispersion 
nction is represented as

𝐷𝐽𝑐 (𝜔,𝑘) = 𝑘
2 −

∞

∫
−∞

∞

∫
−∞

𝑊 𝐽
𝑐

(
𝜔

𝑘
,𝐩⟂

)
𝑑𝐩⟂, (28a)

𝑊 𝐽
𝑐 (𝑍,𝐩⟂) = ∫

Γ

𝑔𝐽𝑐 (𝜉𝑥;𝑍,𝐩⟂)𝑑𝜉𝑥 (28b)

𝑔𝐽𝑐 (𝜉𝑥;𝑍,𝐩⟂) =𝐴𝐽
−𝜉𝑥𝑒𝑐

2(1−𝛾̃)

𝜉𝑥 −𝑍𝛾̃
(28c)

𝛾̃ ≡
√

1 +
𝜉𝑥

2 + ‖𝐩⟂‖2
𝑐2

. (28d)

uch of the remaining formulation follows similar lines as for the Maxwellian case. Specifically, the integrand can be expressed as 
 integral and residue portions

𝑊 𝐽
𝑐 (𝑍,𝐩⟂) =

(
𝑊 𝐽
𝑐

)
𝐼
(𝑍,𝐩⟂) + 2𝜋𝑖

(
𝑊 𝐽
𝑐

)
𝑅
(𝑍,𝐩⟂) (29a)

(
𝑊 𝐽
𝑐

)
𝐼
(𝑍,𝐩⟂) =

∞

∫
−∞

𝑔𝐽𝑐 (𝜉𝑥;𝑍,𝐩⟂)𝑑𝜉𝑥, (29b)

(
𝑊 𝐽
𝑐

)
𝑅
(𝑍,𝐩⟂) =

⎧⎪⎪⎨⎪⎪⎩
𝐴𝐽

𝜉𝑥𝑒
𝑐2(1−𝛾̃)

𝛾̃𝑄′(𝜉𝑥;𝐩⟂)
ℑ(𝜉𝑥) < 0

𝐴𝐽
2
𝜉𝑥𝑒

𝑐2(1−𝛾̃)

𝛾̃𝑄′(𝜉𝑥;𝐩⟂)
ℑ(𝜉𝑥) = 0

0 else

(29c)

here 𝜉𝑥 and 𝑄′ are as before. For the integral portion, the contour is again offset, and quadrature applied to obtain

𝑊 𝐽
𝑐 (𝑍,𝐩⟂) ≈

⎧⎪⎨⎪⎩
𝜉𝑥+
𝜉𝑥−
𝑇𝑁𝑥 (−𝑔

𝐽
𝑐 (𝜉𝑥;𝑍,𝐩⟂, 𝜂+)) + 2𝜋𝑖

(
𝑊 𝐽
𝑐

)
𝑅
(𝑍,𝐩⟂) ℑ(𝑧) ⩽ 0

𝜉𝑥+
𝜉𝑥−
𝑇𝑁𝑥 (−𝑔

𝐽
𝑐 (𝜉𝑥;𝑍,𝐩⟂, 𝜂−)) else.

(30)

ain, in this formulation there are not separate cases for ℑ(𝑍) < 0 and ℑ(𝑍) = 0 because the line of integration avoids poles. 
nally, the full dispersion function is evaluated as

𝐷𝐽𝑐 (𝜔,𝑘) ≈ 𝑘
2 − 𝜉𝑧+

𝜉𝑧−
𝑇𝑁𝑧

[
𝜉𝑦+
𝜉𝑦−
𝑇𝑁𝑦

(
𝑊 𝐽
𝑐

(
𝜔

𝑘
, [𝜉𝑦, 𝜉𝑧]

))]
. (31)

r double precision accuracy it is again sufficient to take 𝜉𝑥± = 𝜉𝑦± = 𝜉𝑧± = ±10, and 𝑁𝑥 =𝑁𝑦 =𝑁𝑧 = 200.

2.2. Sample results for Maxwel-Jüttner equilibrium
Similar to previous, application of the formulation in (31) is used to evaluate the dispersion function with varying degrees of 
lativistic effects. Fig. 8 presents the zero contours of the real and imaginary parts for 𝑘 = 1∕3 with 𝑐 = 8 (strongly relativistic) and 
20 (weakly relativistic) and should be compared against the Maxwellian equilibrium results in Fig. 7. The spectrum of roots is 

ain seen to form a hook terminating on the real axis at 𝜔 = 𝑐𝑘, but interestingly here there are apparently roots with ℜ(𝜔) > 𝑐𝑘. 
is is a tantalizing observation is investigated in more depth in Section 7. Also as before, Newton’s method is employed to compute 
14

e Landau roots, in the 3P case presented in Fig. 8, as well as the 1P and 2P cases, with results presented in Table 2. Here the 
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. 8. Zero contours of the real and imaginary parts of the relativistic dispersion relation with Maxwell-Jüttner equilibrium for 𝑐 = 20 (left) and 𝑐 = 8 (right). The 
ectrum of roots is again seen to form a hook which terminates on the real axis at 𝜔 = 𝑐𝑘. However, unlike the cases presented in Fig. 7, the spectrum of roots is 
re seen to have elements with ℜ(𝜔) > 𝑐𝑘. The location of the Landau root is also indicated, with the exact values listed in Table 2.

Table 2

Table of Landau roots for Jüttner equilibrium in various momentum-
space dimensions given by 𝑑 with 𝑐 = 20 (weakly relativistic) and 
𝑐 = 8 (strongly relativistic).

Jüttner

𝑐 = 20 𝑐 = 8

𝑑 = 1 1.1962903 − 𝑖0.02381513 1.1760563 − 𝑖0.01443987
𝑑 = 2 1.1955483 − 𝑖0.02380358 1.1716859 − 𝑖0.01448172
𝑑 = 3 1.1948068 − 𝑖0.02379203 1.1673307 − 𝑖0.01452247

rmulation of the reduced dimensionality Jüttner, and in particular its normalization, is slightly more involved than in the case of 
e Maxwellian, and the details are discussed in Appendix B.

 Verification of Landau roots using kinetic simulation

The proposed methodology for evaluating the dispersion relation, and ultimately solving for the Landau roots, can be checked with 
spect to observed damping rates from kinetic simulation of the Vlasov-Poisson system. Similar checks have been used previously 
r code verification of kinetic simulation tools, e.g. [57,62], a process which is essentially flipped here. Here, kinetic simulation 
sults for Landau damping are obtained using a dimensionally generalized version of the LOKI code [62] which uses 6th-order 
curate conservative finite differences with 6th-order accurate Runge-Kutta time stepping. These results are processed to extract 
th a frequency and damping rate, which are then compared to the theoretical results in Tables 1 and 2.
The computational setup, adapted from [62], uses an initial value problem in a single space dimension 𝑥 ∈ [− 𝜋

𝑘
, 𝜋
𝑘
], and 𝑑

omentum dimensions 𝐩 ∈ [−10, 10]𝑑 , with initial conditions

𝑓 (𝑥,𝐩, 𝑡 = 0) = 𝑓𝐸 (𝐩)(1 + 𝛼 cos(𝑘𝑥)), (32)

d 𝑁𝑥 =𝑁𝑝 = 80 being the number of grid points in all dimensions. The wave number is taken to be 𝑘 = 1
3 , and the magnitude 

 the initial perturbation is taken as 𝛼 = 10−6 so that the dynamics are essentially linear. The simulation results are diagnosed in 
e traditional way by extracting a time trace of the standing wave electric field at a point. Due to linearity, the location of the 
traction is immaterial (provided the location is not a zero of the standing wave). The damping rate is extracted by identifying local 
axima of the time trace and then using a least squares fit in the log space to estimate the decay rate. The oscillation frequency is 
ilarly determined, using the maxima of the time trace to obtain the oscillation frequency. For more details of the specifics of the 
ta extraction used here see [62]. One challenge in this approach is isolating the behavior of the Landau root from other modes 
 the spectrum. As is typical, the approach used here simply waits sufficiently long so that the simulation contains essentially just 
e mode corresponding to the Landau root before beginning the data analysis. This is done by ignoring some of the first peaks in 
e data processing. However, one cannot wait arbitrarily long since the kinetic simulation will suffer from recurrence. Therefore, 
 discussed in [62], the precise selection of which peaks to consider is potentially delicate. In this work we choose to consider the 
15

h through 16th peaks, which appears to be sufficient for the present purposes. Results for this process applied to 𝑐 = 20 and 𝑐 = 8
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Table 3

Table of extracted roots from kinetic simulation.
𝑐 = 20

Maxwellian Jüttner

𝑑 = 1 1.1955072723 − 𝑖0.02307959656 1.1962902892 − 𝑖0.02381515141
𝑑 = 2 1.1945205692 − 𝑖0.02298274026 1.1955482825 − 𝑖0.02380359924
𝑑 = 3 1.1935372407 − 𝑖0.02288640317 1.1948067328 − 𝑖0.02379204774

𝑐 = 8

Maxwellian Jüttner

𝑑 = 1 1.1712410154 − 𝑖0.01133234640 1.1760563485 − 𝑖0.01444002108
𝑑 = 2 1.1657769434 − 𝑖0.01113971856 1.1716859793 − 𝑖0.01448186854
𝑑 = 3 1.1604140933 − 𝑖0.01094886050 1.1673306995 − 𝑖0.01452260369

. 9. Zeros of the relativistic dispersion relation for the Jüttner equilibria with 𝑐 = 4 (left), 𝑐 = 3.3 (center), and 𝑐 = 3.05 (right). Note that the plot limits change 
m left to right in an effort to keep the spectrum of roots within the field of view. From left to right one can observe the topology of the zero contours changing, 
ecifically the zero real contour associated with the Landau root. Furthermore, moving from left to right the Landau root is approaching the terminus of the spectrum 
roots at 𝜔 = 𝑐𝑘, and upon passing through it the Landau roots ceases to exist.

r the Maxwellian and Jüttner in 𝑑 = 1, 2, 3 appear in Table 3. Where these values differ from the corresponding theoretical values 
 Tables 1 and 2, the digits are colored red. The results indicate excellent agreement with roughly 5–8 digits of accuracy across all 
ses, which is in agreement with the limits of simulation diagnostics as discussed in [62]. Furthermore, the individual components 
 damping rate and frequency are independently in excellent agreement with their corresponding theoretical value.

 Landau damping in highly relativistic plasmas

The results in Sections 5.1.2 and 5.2.2 shows the dispersion relation contains roots that form a familiar “hook” terminating on the 
al axis at 𝜔 = 𝑐𝑘. However, the root identified as the Landau root does not appear to have a frequency that is overly sensitive to 
anging 𝑐 (see Tables 1 and 2). These two observations naturally lead to the question of what happens as 𝑐→ 1, e.g. as the thermal 
locity of a plasma approaches the speed of light. At the same time, Section 5.2.2 showed the existence of roots with ℜ(𝜔) > 𝑐𝑘
r the case of the Jüttner equilibrium, adding additional intrigue to the question of what happens as 𝑐→ 1. As an illustration of the 
ility of the newly developed relativistic dispersion evaluator, this limit is now briefly investigated.
To begin addressing these questions, Fig. 9 shows the zero contours of the real and imaginary parts of the dispersion relation 

ith Jüttner equilibrium in the full 3-dimensional momentum space (𝑑 = 3) for 𝑐 = 4, 𝑐 = 3.3, and 𝑐 = 3.05. Note that the qualitative 
cture is similar for reduced dimensionality, and even for Maxwellian equilibrium, although there are of course quantitative differ-
ces. The specific values for 𝑐 are selected to highlight the changes in the spectrum of roots as 𝑐 decreases and relativistic effects 
crease. Specifically, from 𝑐 = 4 to 𝑐 = 3.3, one can see that the root identified as the Landau root transitions from being the most 
wly oscillating root, to the second-most slowly oscillating root. Furthermore, the topology of the real zero contour with respect 

 other contours changes as it moves left-to-right with increasingly strong relativistic effects. Subsequently in moving from 𝑐 = 3.3
 𝑐 = 3.05, the Landau root is effectively coincident with the terminus of the spectrum of roots at 𝜔 = 𝑐𝑘, and further increase in 
lativistic effects will result in the disappearance of the Landau root altogether. This last phenomenon will be investigated in more 
pth next.
To delve further into the behavior of the roots as relativistic effects become increasingly important, a simple continuation ap-
oach is used to trace various roots as functions of 𝑐. The continuation starts from 𝑐 = 20 and the first 5 roots in the spectrum with 
spect to |𝜔| are tracked through to 𝑐 = 1.5. This process is illustrated in the left panel of Fig. 10 where the trajectories of the first 5 
ots are shown on top of a dimmed version of the real and imaginary contours of the dispersion function for 𝑐 = 20 (indicating the 
16

rt of the continuation). The right two panels then show the real and imaginary parts of the traced roots as functions of 𝑐. The plot 
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. 10. At right are trajectories of the first 5 roots starting at 𝑐 = 20 and ending at 𝑐 = 1.5. The real and imaginary zero contours of the dispersion function for 𝑐 = 20
 shown dimly behind. At center is the real part of the first 5 roots as functions of 𝑐, and at right are the imaginary parts as functions of 𝑐.

Fig. 11. Real and imaginary parts of the phase velocity of the first 5 roots of the relativistic dispersion relation.

Fig. 12. Real parts of 𝑑𝜔∕𝑑𝑘− 𝑐 and 𝜔− 𝑐𝑘 for the first 5 roots of the relativistic dispersion relation.

 the real part versus 𝑐 also includes the reference line 𝑐𝑘, indicating waves with a phase velocity equalling the speed of light. A 
en observer may see that some of the roots exceed this phase velocity for 𝑐 ≲ 4 (see Fig. 12 for more detail). Furthermore, the track 
 the imaginary roots vs 𝑐 reveals that the Landau root (in blue) disappears for 𝑐 ≈ 3.1. This has significant practical implications 
ce the remaining roots would then be significantly more strongly damped (albeit in an absolute sense the damping has already 
come quite small).
Continuing the investigation one step further, the phase velocity of the roots 𝑑𝜔∕𝑑𝑘 is computed along the trajectory from 𝑐 = 20

 𝑐 = 1.5 using finite differences. Fig. 11 shows both the real and imaginary parts of these computed phase velocities, with a phase 
eed equalling the speed of light also indicated in the plot of the real part. In agreement with [40], one can observe that there 
pear to be modes whose group velocity exceeds the speed of light. To be clear of this observation, Fig. 12 shows the real parts of 
th 𝜔 − 𝑐𝑘 and 𝑑𝜔∕𝑑𝑘 − 𝑐 so that positive numbers would indicate phase or group velocities exceeding the speed of light. Clearly 
th phase and group velocities do in fact exceed the speed of light. One interesting note is that for the Maxwellian equilibrium this 
17

servation is not true and neither the phase or group velocities exceed the speed of light.
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 Conclusions

In this manuscript we have developed a new approach to the evaluation of the relativistic dispersion relation for Langmuir 
aves. The basic idea is based on direct evaluation of the line integral after displacement in the complex plane so that numerical 
adrature is more efficient. Simultaneously, the contribution from the pole associated with the deviation in the Landau contour is 
ded analytically. The resulting method is shown to be accurate to machine precision for the non-relativistic case. Moving to the 
se of relativity, the computed roots of the dispersion relation are shown to be in excellent agreement with roots extracted from 
rect kinetic simulation. Finally, a showcase of the capability is provided by investigating the nature of the roots to the relativistic 
netic dispersion relation in the highly relativistic limit, and somewhat surprisingly there are apparently modes whose phase and 
oup velocities exceed the speed of light.
Moving forward there are many interesting directions for follow on research. From the perspective of the physics, probing 
e existence of superluminal and/or undamped modes for the Vlasov-Poisson system is clearly very interesting. However, such 
vestigation may be somewhat delicate since those modes with fastest group velocity are also the most highly damped. It may be 
ssible to use external sources produced, for example, with beat waves to drive such waves. Further exploration of connections 
 solutions of the Lorentz invariant Vlasov-Maxwell system, as well as analysis of the Vlasov-Maxwell dispersion relation are also 
ry promising routes that will be pursued in follow on work. From a computational perspective there are clear extensions to the 
pability, such as the use of other equilibrium distributions, e.g. those from experimental observation, or possessing flattened 
pped particle regions. For example the distributions observed in experiments may appear Maxwell-Boltzman at low velocity and 
wer law or exponential at a higher temperature, or perhaps even double humped. Investigating such distributions may yield 
sights about the effects of damping in real-world experiments. To move to more exotic distributions, e.g. those with Heaviside 
p functions such as the incomplete Maxwellian, it may be fruitful to combine ideas presented in the present work with those of 
g. [42,43,81].
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pendix A. Order of integration in the multi-dimensional dispersion function

When solving the integral in the relativistic dispersion relation for dimensions higher than one, it is important to note here that 
e appearance of the residue, e.g. in Equation (24), leading to the implementable explicit formulation, e.g. in Equation (21c) is 
ly possible if one integrates over 𝑝𝑥 first. If one instead integrates over other momenta dimensions first, the numerical quadrature 
aves the form of the resulting residue unclear.
For example, supposing one wishes to integrate the function 𝑔(𝑥, 𝑦), which contains a singularity treated with the Landau contour 

 the x-dimension. Now assuming one chooses to integrate over 𝑦 first, the integral would be ∫Γ ∫ 𝜉𝑦+𝜉𝑦−
𝑔(𝑥, 𝑦)𝑑𝑦𝑑𝑥. Using the trape-

idal approximation methods outlined in Equation (13b), the integrand would become ∫Γ
[
𝜉𝑦+
𝜉𝑦−
𝑇𝑁𝑦 (𝑔(𝑥, 𝑦))

]
𝑑𝑥. Unfortunately now 

e integrand for the Landau contour is a discrete function sampled on a grid. As a result it is unclear how to identify the form of 
e pole and subsequently incorporate it into the formulation. On the contrary, if integrating over 𝑥 first, the formulation becomes 
 discussed, and incorporation of the effect of the pole is straightforward.

pendix B. General form of the Jüttner normalization factor

A general form for the normalization of a Jüttner equilibrium function is outlined in detail in [41] and [84]. The general 𝑑-
18

mensional anisotropic Jüttner is expressed as
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𝑓
(𝑑)
𝐽

(𝐩) =
(

𝑑∏
𝑗=1
𝛼𝑗

)
𝐴
(𝑑)
𝐽
𝑒𝑐

2(1−𝛾𝑑 ), (B.1a)

ith multidimensional, anisotropic Lorentz factor

𝛾𝑑 =

√√√√
1 +

∑𝑑
𝑗=1

(
𝑝𝑗𝛼𝑗

)2
𝑐2

. (B.1b)

call that Section 5 discusses the appearance of the “extra” factor of 𝑒𝑐2 to avoid numerical overflow. The normalization factor must 
en be computed to ensure ∫ ∞

−∞ 𝑓
(𝑑)
𝐽

(𝐩) 𝑑𝐩 = 1, which implies

𝐴
(𝑑)
𝐽

= (2𝜋)
1−𝑑
2

1
2𝑐𝑒𝑐2

1
𝐾𝑑+1

2
(𝑐2)

, (B.2)

here 𝐾𝜈(⋅) is the modified Bessel function of the second kind of order 𝜈. To avoid numerical issues associated with evaluating 𝑒𝑐
2
, 

re must be exercised when evaluating 𝐴(𝑑)
𝐽
for large 𝑐. However, note that for even dimension, the entirety of the expression (B.2)

plifies drastically and the issue is avoided.
For completeness, for 𝑑 = 1,

𝐴
(1)
𝐽

=
⎧⎪⎨⎪⎩

1
2𝑐𝑒𝑐2𝐾1(𝑐2)

if |𝑐| < 10

(2𝜋)−
1
2 𝐸1 else

(B.3)

here

𝐸1 =1 − 3
8𝑐2

+ 33
128𝑐4

− 249
1024𝑐6

+ 9963
32768𝑐8

− 131229
262144𝑐10

+

4471749
4194304𝑐12

− 95412897
33554432𝑐14

+ 19670636403
2147483648𝑐16

− 593441620209
17179869184𝑐18

+(
𝑐−20

)
. (B.4)

r 𝑑 = 2, there is no need to perform an asymptotic expansion due to the nice representation of the half-integer Bessel functions 
d one obtains

𝐴
(2)
𝐽

= 𝑐2

2𝜋
(
1 + 𝑐2

) . (B.5)

e case of 𝑑 = 3 is treated in the Section 5.2.
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