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Accurate understanding of global photosynthetic capacity (i.e. maximum RuBisCO carboxylation rate, V, may)
variability is critical for improved simulations of terrestrial ecosystem photosynthesis metabolisms and carbon
cycles with climate change, but a holistic understanding and assessment remains lacking. Here we hypothesized
that V.., was dictated by both factors of temperature-associated enzyme kinetics (capturing instantaneous eco-
physiological responses) and the amount of activated RuBisCO (indexed by V. 1, standardized at 25 °C, V nax25)s
and compiled a comprehensive global dataset (n = 7339 observations from 428 sites) for hypothesis testing. The
photosynthesis data were derived from leaf gas exchange measurements using portable gas exchange systems. We
found that a semi-empirical statistical model considering both factors explained 78% of global V, ..., variability,
followed by 55% explained by enzyme kinetics alone. This statistical model outperformed the current theoretical
optimality model for predicting global V, ., variability (67%), primarily due to its poor characterization on
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Ecophysiology global V .y05 variability (3%). Further, we demonstrated that, in addition to climatic variables, belowground
Climate resource constraint on photosynthetic machinery built-up that directly structures the biogeography of V. .5
Leaf traits

was a key missing mechanism for improving the theoretical modelling of global V, ., variability. These findings
improve the mechanistic understanding of global V.., variability and provide an important basis to benchmark
process-based models of terrestrial photosynthesis and carbon cycling under climate change.

Belowground resource constraint

1. Introduction

Terrestrial photosynthesis is the largest carbon flux exchange
between biosphere and atmosphere and exerts an important role in
buffering atmospheric CO, growth [1,2]. Under many real world
conditions, photosynthesis is expected to be limited by the maximum
carboxylation rate of RuBisCO in the chloroplasts (Ve, max) [3-51.
Ve, max Shows a large variability globally and is affected by multiple
environmental and biotic variables, such as climate, edaphic properties
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and leaf traits [6-9], all of which will be altered by future climate and
land use changes. Although predicting V ¢ Variability has received
much scientific attention [8,10-12], a holistic understanding of what
drives global V. . variability remains lacking.

Traditionally, empirically derived trait coordinated relationships
and theory-based optimality models are used to explain V n,, vari-
ability [3,8-10]. The trait-based approach suggests that V. ., can
be estimated using its empirical relationships with other leaf bio-
chemical traits (e.g., leaf N content per unit leaf area (N,) and leaf

2667-3258/© 2024 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)

Please cite this article as: Z. Yan, M. Detto, Z. Guo et al., Global photosynthetic capacity jointly determined by enzyme kinetics and eco-evo-
environmental drivers, Fundamental Research, https://doi.org/10.1016/j.fmre.2023.12.011



https://doi.org/10.1016/j.fmre.2023.12.011
http://www.ScienceDirect.com/science/journal/26673258
http://www.keaipublishing.com/en/journals/fundamental-research/
mailto:jinwu@hku.hk
https://doi.org/10.1016/j.fmre.2023.12.011
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fmre.2023.12.011

JID: FMRE

Z. Yan, M. Detto, Z. Guo et al.

chlorophyll content) that tightly correlate with photosynthetic biochem-
istry [3,7,10]. However, mounting evidence suggests that trait-V, .y
relationships vary with plant growing environments, seasons and other
biotic variables [13-16], which further induces large uncertainties in
representing V., in terrestrial biosphere models (TBMs). Addition-
ally, the trait-based approach is ultimately based on empirical relation-
ships, lacking mechanistic foundation that is critical for long-term pre-
dictions under global change.

Recently, theoretical optimality models have been increasingly used
for explaining and modelling large-scale V, ., variability [8,17,18].
The models were built based on eco-evolutionary first-principles
[13,19-21], hypothesizing that plants can adjust their photosynthetic
biochemistry for maximizing their net carbon gain, which is the dif-
ference between photosynthetic carbon gain and all carbon costs of
building and maintaining the photosynthetic machinery [13,22]. Be-
cause optimality models are mechanistic and prognostic, they have been
suggested as a novel means to infer V, ., variability [18,23]. To sup-
port its validity is a recent theoretical study [8], demonstrating that op-
timality models driven by aboveground environmental variables (i.e.,
temperature, incoming photosynthetically active radiation (PAR), va-
por pressure deficit (VPD), atmospheric CO, concentration (C,), and
elevation (a proxy of atmospheric pressure)) alone can accurately cap-
ture global V ., variability. However, it remains contentious whether
the optimality models could accurately predict V., at a standardized
temperature (€.8. V¢ maxoss Ve, max Standardized at 25 °C) [8,12]. Some
studies suggested that the optimality model could be more appropri-
ate to predict V. . during the growing-season temperature (V¢ maxrg)
rather than the V .,.405, because growing-season temperature is the
temperature regularly experienced by plants rather than a standard tem-
perature, which may be atypical for that environment [8,24]. In con-
trast, some other studies hold the opposite viewpoint that the optimal-
ity model could also accurately predict V, ax05, but with the use of
limited dataset and the growing-season temperature as the proxy of leaf
measurement temperature when calculating V., a¢o5 from the measured
Ve, max [12,25]. Therefore, despite its promising application in plant
ecophysiology and modelling studies, a more rigorous and holistic as-
sessment remains needed. Meanwhile, several empirical studies demon-
strate the critical role of belowground resource availability on regulat-
ing large-scale V, ., variability [26,27]. For example, a large fraction
of leaf nitrogen is allocated to RuBisCO enzyme, which is ultimately
related to soil nutrient availability and associated plant evolved strate-
gies for root nitrogen uptake [13,27]. With these, it remains unclear
whether and how belowground environmental conditions exert a role in
constraining photosynthetic machinery built-up in the theoretical opti-
mality modelling framework.

On the other hand, V 1,y is the product of catalytic rate and amount
of RuBisCO enzyme (indicated by V yax25) in the chloroplasts [17,28].
This can be interpreted as two key factors governing V. .4 variability,
namely the temperature-associated enzyme kinetics of a given V. o5
and the eco-evo-environmental drivers of V 1,ax05- The second category,
the eco-evo-environmental drivers of V 1,405, stands in contrast with
pure enzyme kinetics. Within this second category, V. x5 variabil-
ity is associated with environmental factors and leaf traits [3,6,10,29],
which can influence plant photosynthetic processes, the construction
and maintenance of photosynthetic apparatus, carbon uptake capac-
ity and then the subsequent responses to changing ambient conditions
[30,31]. Thus, incorporating the relationships between V. .05 vari-
ability and these environmental factors and leaf traits could further en-
hance the characterization of global V, ., variability.

The goal of this study is to improve the process understanding of
global V. . variability by first assessing the relative role of enzyme
kinetics and eco-evo-environmental drivers of V. 1,405, and then ex-
ploring the way to improve current optimality models for characteriz-
ing global V ., variability. Specifically, we test the hypothesis that
global patterns of Ve, max are driven by (1) enzyme kinetics, (2) eco-
evo-environmental drivers of V. .05, or (3) both enzyme kinetics and
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the eco-evo-environmental drivers of V j,y05. Additionally, we test
whether current optimality model explains global pattern of V pay,
once V, ¢ has been standardized to 25 °C (to remove the tempera-
ture response of V. ..). Last, we test whether including belowground
resource constraints through edaphic properties on photosynthetic ma-
chinery would improve current optimality modelling of global variabil-
ity in both V 1.y and V, pmaxos. To test these hypotheses, we collated
a comprehensive global dataset of V ., for C plants with concurrent
measurements of environmental variables and key leaf traits, and then
integrated this unique global dataset with both statistical and optimality
modelling analyses.

2. Materials and methods
2.1. Field dataset of V; pqy, climate and edaphic variables, and leaf traits

To compile the global V ., dataset of C3 plants (Fig. S1), we turned
to the following three data sources: two global data sources assembled
by Smith et al. [8] and Peng et al. [12], respectively, and one data
source from three contrasting forest ecosystems in China [16]. The two
global data sources were mainly derived from earlier compilations by
Meir et al. [32], Domingues et al. [33,34], Cernusak et al. [35], Walker
et al. [3], Atkin et al. [36], Maire et al. [37], Bahar et al. [26], Smith &
Dukes [38], Dong et al. [39], Wang et al. [40], Bloomfield et al. [41],
Xu et al. [42] and the TRY plant trait database. It is worthy to note,
when compiling this dataset, we only retained the records with con-
current measurement of leaf temperature. This also represents one ma-
jor difference between our compiled data and those compiled by Peng
et al. [12], in which Peng et al. [12] used the growing-season temper-
ature as the proxy of leaf measurement temperature for those V ax
records lack of the information on leaf measurement temperature (de-
tails about the cross-comparison between ours and Peng et al. [12] are
shown in Fig. S2 and in discussion Section 2). In our data, all V, .
records came from natural vegetation, including 7339 measurements
from 2250 species and 428 sites covering all major biomes worldwide.
In order to quantify the separate and joint effects of enzyme kinetics and
eco-evo-environmental drivers of V, .05 on global V, .., variability,
only those V, . records with concurrent measurements of environ-
mental variables and leaf traits (i.e., LMA and N,) were chosen. Totally,
5748 measurements from 281 sites met these selection criteria.

Besides, we extracted six climate-related variables (i.e. tempera-
ture, VPD, PAR, C,, elevation, and precipitation). For each climate
variable, the average value across the full growing season (defined
as all months with mean monthly air temperature higher than 0 °C)
was calculated for each site [8]. These include (1) the mean growing-
season temperature (T;) and precipitation extracted using the cor-
responding latitude and longitude from monthly, 0.5 degree resolu-
tion data of 1901-2015 provided by Climatic Research Unit [43]; (2)
VPD and PAR calculated from the CRU data using SPLASH model;
(3) C, derived primarily from original records in earlier compila-
tions, but when there was no C, record, it was estimated using
corresponding value from global average estimates by NASA GISS
model (https://data.giss.nasa.gov/modelforce/ghgases/); and (4) eleva-
tion was partly derived from original records, but when there was no
record, it was extracted from 0.5 degree resolution data from WFDEI
meteorological forcing dataset [44]. Notably, T, and precipitation were
three-dimensionally interpolated to the actual site locations using Ge-
ographically Weighted Regression (GWR) following Peng et al. [12],
while VPD and PAR were adjusted to the actual elevation following
Smith et al. [8].

Moreover, we extracted ten edaphic variables, including pH, carbon
(C) content, nitrogen (N) content, C:N ratio, Priestley-Taylor coefficient
(a; this variable indicated plant-available surface moisture, and was cal-
culated as the ratio of actual evapotranspiration to equilibrium evapo-
transpiration. Equilibrium evapotranspiration refers to theoretical value
of evaporation from a wet surface to a saturated atmosphere), cation
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exchange capacity (CEC), silt content, clay content, sand content, and
bulk density. a of each 0.5 degree resolution was calculated using the
SPLASH model run at a monthly timescale [45]. Other edaphic vari-
ables, comprehensively reflecting soil physical and chemical conditions,
were extracted from a 250-m resolution global data at the top 30 cm
depth provided by ISRIC SoilGrids database (www.soilgrids.org) based
on site-specific latitude and longitude.

2.2. Field dataset of V maxtmeas A V¢, maxas

With V. .x derived at its measurement temperature (Tpea5, °C), OF
Ve, maxTmeas> We calculated V. 1, respectively at Ty (V, maxre> °C) and
25 °C (V, max2s), using a modified Arrhenius function (see Egs. (1)-(2))
that described the instantaneous response of enzyme kinetics to any
given temperature [28]. Given a reference temperature T, (°C), V.

at temperature T; (°C) can be computed as

Vc, maxT =Ve, maxT X f(TO’Tl) (1)

where

, max

(Ty +273.15)(AS) — H,,
R(T, +273.15)
(T, +273.15)(AS) — H,,
R(T, +273.15)
@

where H, is the activation energy (71,513 J mol1), R is the universal
gas constant (8.314 J mol~! K1), H is the deactivation energy (200,000
J mol1), and AS is an entropy term (J mol~! K1) calculated following
Kattge and Knorr (2007) [28].

AS =-107x T, + 668.39 3

Ha(Tl _TO)
R(T, +273.15) (T, +273.15)  1+e

f(T()sT1> =e

1+e

Spurious correlations may arise because the same temperature re-
sponse function was applied to both observed and modeled V. .-
Smith et al. [8] has examined this issue and found that the temperature
scalar did yield some but low spurious correlations. We also compared
models against V, yaxTmeas that did not subject to the temperature scalar
issue, and found similar results as those for V. nare (Fig. S3), suggest-
ing that spurious correlation effects induced by the temperature scalar
function would not affect our result interpretations.

2.3. Statistical and optimality modelling approaches for predicting global
V¢, maxtg variability

To improve the process understanding of global V, ., variability,
we cross-compared a statistical approach with an optimality modelling
approach for predicting Vi mayry and V¢ mayos, respectively. The sta-
tistical model examined the separate and joint effects of the two fac-
tors in explaining V. nayr, Variability, with two levels of analyses. In
the first level, we used the temperature-associated enzyme kinetics re-
sponse assuming no intra- or inter-specific variability in V, a405 across
global C; plants. In the second level, we added temperature-associated
enzyme kinetics to site-specific V, naxo5 derived from its empirical re-
lationship with both environmental variables and leaf traits, assuming
that large geographical variability in V, ,ax05 Was correlated with their
living environments [6,29] and leaf traits [3,10]. The optimality mod-
elling relies on an established optimality theory [8], and is able to infer
Ve, max,Tg from five aboveground environmental variables (i.e., temper-
ature, PAR, VPD, elevation and C,). The current optimality model by
default assumes that the cost of building photosynthetic machinery is
independent of species and the belowground environmental condition.
To account for variable costs, particularly the cost of nutrient acquisi-
tion [27,37], we built and evaluated a modified optimality model that
considered the belowground resource constraints through edaphic vari-
ables on the unit cost of building and maintaining the photosynthetic
machinery.
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All analyses were performed at site-mean level by averaging all mea-
surements of each site. Details of these modelling analyses are shown
below. For simplicity, we primarily focused on the data analyses for the
subset dataset with concurrent measurements of environmental vari-
ables and leaf traits in the main text, while the results from the data
analyses for the entire dataset (solely including the aboveground en-
vironmental measurements) are shown in the supplementary materials
with similar findings (Figs. S4-S6).

2.3.1. Statistical modelling approach for predicting global V, maxrg
variability
There are two levels of statistical modelling analyses:

(1) Quantifying the effect of enzyme kinetics on global V. .., variabil-
ity. To assess the effect of enzyme kinetics alone on explaining global
Ve, maxtg Variability, we first derived the site-mean V. 1,405 based on
field measurements, and then calculated the average V. p.yos5 across
all sites, assuming that all the C; plants shared the same V p.x05 as
this average value. Afterwards, for each site, we calculated the mod-
elled V, nare using Egs. (1)-(3) that multiplied this global-average
Vc, max25 with f(25, Tg)'

(2) Quantifying the joint effects of enzyme kinetics and eco-evo-
environmental drivers of V. pay05 on global Vi ..y variability.
We first built a multiple linear regression model of V 405 with
site-specific environmental variables and leaf traits as the input (Ta-
ble S1), and then added this modelled V, 405 With temperature-
associated enzyme kinetics (Eqns. 1-3) for deriving V. maxrg Of each
site. The coefficients of predictors in the multiple linear regression
were determined using the Ordinary Least-Squares method by min-
imizing the root mean square error (RMSE) between the observed
and predicted V. maxos values. Specifically, Ve maxos and Ve mayrg
modelling were built and evaluated using a repeated cross-validation
method, including four steps: (1) the full dataset was split into cal-
ibration and independent validation subsets using a 5-fold cross-
validation with 100 repetitions; (2) for each repetition, the calibra-
tion subset was used to build the model, with the validation subset
for model evaluation; (3) the modelled V, 1,505 for each validation
subset was calculated and averaged across all 100 repetitions to ob-
tain the ensemble predicted value for each record; and (4) the en-
semble predicted V, .05 and their associated f(25, T,), were used
together to estimate V. g Of each record.

2.3.2. The optimality modelling approach for V, maxrg
(1) The optimality theory

The optimality model shown in Smith et al. [8] is based on two sepa-
rate optimization processes. The first process involves the leaf photosyn-
thetic process, and the total carbon gain is derived from leaf assimilation
rate (A), whereas the respiration carbon cost is required to build and
maintain the photosynthetic machinery, including the light harvesting
component (via Jp,,,) and the carbon reduction component (via Ve, )
[13]. Thus, the first optimization is expressed as maximizing the net
carbon gain, which is the difference between A and the carbon costs as-
sociated with maintaining V, m,y and Ji,.x [8]. The second optimization
process applies the least-cost theory to find the optimal leaf internal to
external CO, ratio (y) at the lowest carbon cost to maintain photosyn-
thetic machinery (V. may) and water transpiration (E) at a given assim-
ilation rate (A) [13]. These two optimality conditions can be expressed
as:

v maXJ (A_bXVc. max_dx']max) (4)
. E I/Cmax

X —=4+bX —— 5

m;n(a 1 n > %)

where a, b, and d are the dimensionless carbon cost factors for E,
V., max and the maximum electron transport rate (J,,,), respectively.
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Based on an assumption that V. .., is linearly proportional to Jp,,, (i.e.
Ve, max = €XJmax, Where e is the ratio of V 1,y t0 Jp,y), the total carbon
costs for both V ., and J;;o could then be expressed by the carbon
cost for J,,, only. Thus, the first optimality condition can further be

reduced to
max; (A -cX Jmax) (6)

where c is defined as the total unit carbon cost of building and maintain-
ing the two components of photosynthetic machinery. By building upon
these two independent optimizations, V. maxr, can further be inferred
with solely environmental inputs from T,, PAR, VPD, C,, and elevation.
The key mathematical formulations have been introduced in Smith et al.
(2019) [8]. Here we provided the details about the optimality model in
the supporting method S1.

(2) Evaluating the optimality model with a constant or dynamic cost

. . 04
The marginal cost c (i.e., M—") reflects the fundamental tradeoff be-

tween photosynthetic carbon gain (i.e., A;) and the relevant cost for pho-
tosynthetic machinery built-up and maintenance (i.e., Jyax and Ve may,
which in this study are assumed to be linearly related), and is an im-
portant parameter for predicting V . in the optimality model (Eqns
6 and S10). In the optimality model of Smith et al., [8], ¢ was param-
eterized with a default globally constant at 0.053. However, as several
empirical and theoretical studies demonstrated, the costs in construct-
ing and maintaining the photosynthetic machinery could also depend
on environmental factors and leaf traits [13,22,26,27,46]. To explore
whether incorporating the constraints from environmental variables and
leaf traits on the cost factor ¢ can improve the current optimality model
performance, we parameterized ¢ under four scenarios (Table S2 and
S3): (1) a globally constant ¢ at 0.053 across all sites as used in the
current optimality model [8], and a site-specific variable c respectively
constrained by (2) the edaphic variables alone, (3) both environmen-
tal (i.e. climatic and edaphic) variables and leaf traits, and (4) the five
most important variables (i.e. N,, VPD, soil pH, precipitation and eleva-
tion) identified from the statistical modelling (Fig. 4). To differentiate
these four optimality models, we called (1) as optimality-constant (with
a fixed c) and (2-4) as optimality-dynamic models (with a variable c).
For the three optimality-dynamic models, the cost factor ¢ was fit-
ted with a four-step approach illustrated below. First, the full dataset
was split into calibration and validation subsets using a 5-fold cross-
validation with 100 repetitions. Different choices of folds and repeti-
tions yielded similar results. Second, for each repetition, the calibration
subset was used to build a multiple linear regression between the cost
factor ¢; at site i, and their corresponding site-specific environmental
variables and leaf traits, x;;, depending on the scenario:

=P+ Y Bx; @)
J

where f; are fitted parameters for the specific environmental variable or
leaf trait (see the example demonstration in Table S4 and S5). The mul-
tiple linear regression coefficients of predictors were fitted using a ge-
netic algorithm (GA) technique through minimizing the RMSE between
observed and optimality-dynamic modelled Vi mayre- GA is a heuris-
tic global optimization method [47] that avoids the dependence on the
initial parameter values and efficiently identifies the global parameter
optimization solution when there are many acceptable local solutions
[48]. Third, for each repetition, we used the multiple linear regression
coefficients estimated from the calibration sub-dataset to predict V; ax
of the independent validation sub-dataset. Fourth, the predicted V. yax
was then averaged across all 100 repetitions to obtain the ensemble pre-
dicted value for each measurement record, which was used to evaluate
the optimality model performance under each scenario.
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2.4. Cross-model performance comparisons and attributions of important
variables of the two modelling approaches

With the above model-derived V. naxrg and Ve maxos, We evaluated
the model performance with reference to field-derived V. maxr and
Ve, maxos- Four statistical metrics for assessing model performance in-
clude (1) r?-the square of correlation coefficient, (2) Bias-the residual
bias, (3) RMSE, and (4) AIC-Akaike Information Criterion. The AIC was
calculated with the formula AIC = 2 x k + n x log (RMSE?), where n is
the number of observations, and k is the number of model parameters.

For the statistical modelling approach, we assessed the relative im-
portance of each environmental or biotic variable on V. .05 mod-
elling. To avoid the strong multicollinearity amongst predictor variables
(Fig. S7), we first computed the variance inflation factor (VIF) and iter-
atively removed variables with very high VIF [49-50], until the remain-
ing variables with VIF less than 10 and the absolute values of correlation
coefficients amongst these variables were less than 0.7. Afterwards, we
conducted a model selection for V, 1,405 based on corrected AIC using
‘glmulti’ R package [51]. We estimated the relative importance of each
variable as the sum of the Akaike weights for the models in which the
variable appeared. We set relative importance value of 0.8 as a cut-off
to differentiate between important and unimportant variables [52]. Fi-
nally, we illustrated the sign of the effects from each selected variable
through conducting partial regression plots while holding all the other
variables constant [51,53].

For the optimality-constant model, we used a sensitivity analysis to
assess the variable importance. Specifically, we partitioned the variance
of the key model output into the variation in each model input (i.e.,
T,, PAR, VPD, elevation, and C,), allowing these inputs to cover the
full range of environmental variables. The analysis includes three steps.
First was the set-up of the five environmental variables. We built a one-
time random sampling for each of the five environmental variables us-
ing Sobol’ quasi-random sequences [54]. Second were the model sim-
ulations of V,, naxo5 using the optimality-constant model, with the five
environmental variables as input. Third was the variance partitioning.
We employed a global variance-based sensitivity analysis algorithm de-
veloped by Saltelli et al. [55], and partitioned the variance of modelled
Ve, maxes driven by each environmental variable, by which we quantified
the variables’ relative importance.

3. Results

3.1. Relative importance of enzyme kinetics and eco-evo-environmental
drivers of V maxas in explaining global V mqyr, variability

To investigate the relative importance of enzyme kinetics and eco-
evo-environmental drivers of Vi a5 in explaining global Ve mayrg
variability, we analyzed the relationships between field-derived and
model-predicted V, na4rg Using the statistical modelling approach. We
found that the statistical approach considering both factors explained
78% of global V. 1.re variability (RMSE = 11.87 pmol CO, m~2 571,
AIC = 1423; Fig. 1b), followed by 55% explained by enzyme kinet-
ics alone (RMSE = 17.17 pmol CO, m~2 s~!; AIC = 1600; Fig. 1a).
This result demonstrates that temperature-associated enzyme kinet-
ics dominate the explanation of global V. .., variability, with eco-
evo-environmental drivers of V. .05 also exerting a considerable
role.

3.2. The performance of optimality-constant model and the reasons
underlying its poorer performance

To investigate whether optimality-constant model explains global
pattern of V ..y, we cross-compared the optimality-constant model
with the statistical model. We found that the optimality-constant model
explained 67% of global V. .., variability but with comparable model
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Statistical model of enzyme

(a) Statistical model of enzyme kinetics (b) kinetics and drivers of V,,,,.s
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Fig. 1. The relative importance of enzyme kinetics and eco-evo-environmental drivers of V, ,.,»5 in controlling global V. ..y, variability. The statistical
modelling approach is analyzed at two levels: global V .41, variability is described using (a) the temperature-associated enzyme kinetics together with a globally
averaged V. .45, Or (b) by adding temperature-associated enzyme kinetics to site-specific V x5 derived from its empirical relationship with both environmental
variables and leaf traits. Details of these two models with the fitted equations are presented in Tables S5 and S6. Four statistical metrics for assessing model
performance include (1) r>~the square of correlation coefficient, (2) Bias—the residual bias, (3) RMSE—-the root mean square of error, and (4) AIC-Akaike Information
Criterion. Lines are fitted by the ordinary least-square regressions.
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Fig. 2. The performance of optimality-constant model in predicting global V .., Vvariability. The optimality model is used for global V ., prediction
with a default globally constant ¢ (i.e., the total unit carbon cost of building and maintaining the photosynthetic machinery), or the optimality-constant model (a),
which displays high correlation as the statistical model of enzyme kinetics (b). The statistical model of enzyme kinetics here is the same as Fig. 1a.

error (RMSE = 16.38 umol CO, m~2 s~1; AIC = 1581; Fig. 2a) as the sta- different from the optimality-constant model, in which PAR and temper-

tistical model considering enzyme kinetics alone (RMSE = 17.17 pumol ature were identified as the two most important variables (with relative
CO, m~2 s71; AIC = 1600; Fig. 1a). We further found that the predicted contributions of 50.0% and 48.5%, respectively) for V. 505 (Fig. 4a).
Ve, maxrg Dy optimality-constant model was highly correlated with that Collectively, these results demonstrate that the important drivers of
predicted using the statistical model considering enzyme kinetics alone global Vi .05 (and thus Vi .y, ) variability were not well represented

(r?> = 0.79; Fig. 2b), suggesting that the optimality-constant model likely in optimality-constant model.
captured similar ecophysiological processes as the enzyme kinetics’ re-

sponse, and thus showed comparable model performance in predicting 3.3. The improvement of optimality model through considering

Ve, maxrg (Fig. 1a vs Fig. 2a). This also agreed with the V, .x05 mod- belowground resource constraints

elling result, as environmental variables and leaf traits altogether ex-

plained 36% of V nax05 variability (Fig. 3a; Table S1), but optimality- To investigate whether including belowground resource constraints

constant model explained only 3% of V. a5 variability (Fig. 3b). on photosynthetic machinery would improve current optimality mod-
To explore the reasons underlying the poorer performance of elling of global V .., variability, we revised the current optimality

optimality-constant model in predicting V. yayo5 variability further, we model by including a dynamic representation of ¢ that described below-

cross-compared the relative importance of each variable that was repre- ground resource constraints through edaphic variables. We found that

sented in the optimality-constant and statistical modelling of V¢ mayos- optimality-dynamic model had a much-improved predictive power and

Based on the statistical modelling approach, we identified five most im- reduced model error for V,, maxTg variability (2 = 0.74; RMSE = 13.80

portant biotic and environmental variables for explaining V. naxos vari- umol CO, m~2 s~1; AIC = 1501; Fig. 5a), but still showed a slightly sub-

ability, i.e., N,, VPD, soil pH, precipitation and elevation, following a ordinate performance compared with the statistical model of both en-

descending order of their relative importance (Fig. 4a). This result was zyme kinetics and eco-evo-environmental drivers of V. .y05 (Fig. 1b).
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(a) Statistical model
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(b) Optimality-constant model
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Fig. 3. The statistical model of environmental variables and leaf traits outperforms the optimality-constant model in predicting V. ;.y,5. The comparison
of field-derived V, .05 With (a) the statistical model derived V.5 that relies on its multiple linear regression relationship with both environmental variables
and leaf traits, and (b) the V, .5 derived from the optimality-constant model. Details of the statistical model with the fitted equations are presented in Tables S4

and S5.
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Fig. 4. Relative importance of environmental variables and leaf traits in predicting global V, .5 variability. (a-main) The relative importance of each
variable based on the sum of the Akaike weights derived from a model selection using corrected AIC; (a-inset) the relative contribution of the five aboveground

environmental variables to V,

., maxzs Dased on the sensitivity analysis of the optimality-constant model; (b-f) partial regression plots of V. .,,,0s with the predictor of

area-based leaf nitrogen content (N,), vapor pressure deficit (VPD), soil pH, precipitation, and elevation, respectively. The cutoff (dashed line) of panel (a) is set at
0.8 for identifying the most important predictor variables; the shade areas in (b-f) are 95% confidential intervals around the predicted relationships.

We also observed that optimality-dynamic model explained 19% of
V¢, maxes variability (Fig. 5b), which was larger than that (3%) explained
by optimality-constant model (Fig. 3b). Such a cross-comparison further
demonstrates that the improvement in modelling V. ;.05 through
considering belowground resource constraints on ¢ indeed represents a
key avenue for improved modelling of global V. ., variability.

4. Discussion

This study has three main findings. First, the statistical modelling ap-
proach considering enzyme kinetics and eco-evo-environmental drivers

of V¢ maxes €xplained a large portion (78%) of global V. yayrg vari-
ability, with enzyme kinetics as the dominant factor explaining 55%
of global V. .4re variability. Second, treating the statistical model as
a benchmark for the optimality approach to predict V. yayrg, we found
that the optimality-constant model effectively captured the role of en-
zyme Kinetics in controlling global V. 1. variability, but was inef-
fective in capturing the second control on global V. g variability
through eco-evo-environmental drivers of V. p,yos5. Third, we found that
belowground resources added constraints on building and maintaining
photosynthetic machinery, and improved the modelling of V405 vari-
ability.
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(b) Vc,maxZS Pl‘ediction
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Fig. 5. The performance of optimality-dynamic model in predicting global variability of V, ;a1 (2) and V4425 (b). The optimality model is used for global
Ve, maxtg a0 V¢ 1ax05 predictions with a site-specific dynamic c (i.e., the total unit carbon cost of building and maintaining the photosynthetic machinery) constrained
by edaphic variables, or the optimality-dynamic model. Details of the optimality-dynamic model with the fitted equations for cost factor ¢ parameterization are

presented in Tables S4 and S5.

4.1. Engyme kinetics and eco-evo-environmental drivers of V. pq 25 jointly
determine global V., variability

Our results first showed that enzyme kinetics’ response was the dom-
inant regulator of global V, ., variability (Fig. 1). One possible ex-
planation for this is the thermal sensitivity of the biochemical compo-
nents involved in the RuBisCO enzyme kinetics [56-57], and thus the
temperature-associated enzyme kinetics exert a direct, positive control
on global V. nayre variability. To further elucidate the role of enzyme
kinetics, we examined the empirical relationship between V. a,rg and
both environmental variables and leaf traits. Our analysis revealed that
these predictors together accounted for 71% of V. nayr, variability (Fig.
S8a), with growing-season temperature being the dominant predictor
(55%) (Fig. S8b), which is equivalent to the explanatory capacity to
the enzyme kinetics statistical model (Fig. 1a). We also investigated the
relative importance of each variable in predicting V. n,4rg variability,
and identified the four most biotic and environmental variables, namely
Ty, VPD, N, and elevation, in descending order of their relative impor-
tance (Fig. S9). These results collectively consolidate the dominant role
of enzyme Kinetics in global V. .y, variability.

Interestingly, several previous studies have reported weak, yet signif-
icant, negative relationships between V, 1,05 and site-mean growing
temperature across global vegetative landscapes [6,29,58]. However,
utilizing the largest global V. ., dataset compiled in this study, we
found that the bivariate ordinary least-squares regression relationship
between Ty and V. .45 was insignificant (Fig. S7). The key factors for
explaining V. mayos5 variability, based on the sum of the Akaike weights,
included leaf N content, VPD, soil pH, precipitation, and elevation, but
not the T, factor (Fig. 4). The minimal effect of Ty on V 05 vari-
ability is also supported by another similar study that explored the best
model of global V ;.05 variability [62]. The potential cause for Tg’s
minimal effect might be related to the interactive effects among multiple
interrelated environmental variables at a global scale (Fig. S7), with the
apparent temperature effect being hidden by other associated variables,
such as VPD, soil pH and precipitation (Fig. 4c-e). These results together
suggest that such a temperature-induced V, .05 down-regulation is
not sufficient to compensate the direct, positive effect of temperature
on V¢ mayr, through enzyme kinetics’ response, and thus the positive
temperature-V, .y, relationship is observed on a global scale. Collec-
tively, our results imply that temperature-associated enzyme kinetics
represent the first-order control on the variability of V maxre, Which
would increase with warmer growing season temperatures.

Second, we found that eco-evo-environmental drivers of V, naxos
also importantly regulated global V .ty variability (Fig. 1b). Thus,
when we added the site-specific V paxos5 to the temperature-associated

enzyme kinetics, the explained variance of global V .., variability
increased from 55% to 78%, even though the environmental variables
and leaf traits altogether only explained 36% of V 405 variability.
These results altogether further generate two important implications:
(1) improved characterization of V. .05 variability represents a very
effective avenue for modelling global V. .., variability, and (2)
there remains a large proportion of V_ .05 variability unexplained.
Some of the unexplained V .05 variability may be attributed to
random measuring and sampling error in the evaluation of site-mean
level V. maxes [41]. Alternatively, other important environmental
factors (e.g., day length, soil moisture, and soil phosphorus (P) con-
tent) [6,29,37], unmeasured leaf traits (e.g., leaf P content, and leaf
age) [3,59], species properties [29,30], and evolutionary history
[60] might have also played important roles in driving V. mayos
variability.

4.2. Limitations of optimality-constant model in capturing global V. mayr,
variability

There is an increasing interest in using the optimality-constant model
for characterizing V. m .05 variability for different applications, such
as exploring the patterns of V. .05 variation across environmen-
tal gradients and parameterizing TBMs [12,18]. However, our study
revealed that optimality-constant model performed relatively worse
than the optimality-dynamic model in predicting global V, 1,yrg vari-
ability, which was primarily attributed to the low predictive power
(r* = 0.03) of the global V. 1,25 (Fig. 3b). Our findings thus highlight
that optimality-constant model development should focus on improve-
ments in capturing large-scale V, .xo5 variability. Notably, Peng et al.
(2021) using the similar global dataset, reported a much higher V, 405
prediction (i.e. 72 = 0.36) based on the optimality model [12], which
is different from ours (> = 0.03). Our further analysis suggested that
this discrepancy is primarily linked to the inaccurate dataset (ultilizing
the mean growing season temperature to approximate V ., records
without direct leaf temperature measurements) employed in Peng et al.
(2021)’s data analysis [12]. Upon removing this inaccurate dataset (i.e.
the V. max records transformed from the mean growing season temper-
ature) from the data analysis, the result comparable to ours (2 = 0.03)
was then found (Fig. S2b). Such cross-comparisons also suggest that our
analysis is rigorous and the generated result is trustworthy.

Our results also help identify that the poorer performance of
optimality-constant model was mainly because of its failure to capture
the dominant environmental and biotic regulations of global V. p.yos5
variability, including N,, VPD, soil pH, precipitation, and elevation
(Fig. 4). In contrast, optimality-constant model only included five above-
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ground environmental variables (i.e., T,, VPD, PAR, C, and elevation),
with PAR and T, alone capturing 98.5% of V. 1,405 variability in model
predictions (Fig. 4a). Our results suggested that other variables, in-
cluding belowground resource availability, also importantly regulated
V¢, maxes variability (Fig. 4b-f). For example, N, may reflect soil N avail-
ability [61] and has been proven to be an essential element for the con-
struction of RuBisCO and other essential enzymes of the photosynthetic
machinery and thus, N, positively correlates with V 1,05 [3,10]. Soil
pH is a positive indicator of soil fertility, and higher soil pH usually
means a lower nutrient cost for the construction of RuBisCO, thus fa-
voring plant investment in greater V, .05 [27,37]. VPD and precip-
itation reflect the water stress status that importantly mediates plant
stomatal behaviors, and high VPD and low precipitation generally re-
duce stomatal conductance and then increase the investment in V payos
required to achieve optimal photosynthesis [13,62]. However, the rela-
tionship between soil pH and soil fertility is non-linear and dependent
on plant species types [66], leading to a peak in V 405 at intermedi-
ate soil pH levels (Fig. 4d). Similarly, the relationship between VPD and
V¢, maxes €xhibits non-linear and monotonic trends, rather than linear
ones (Fig. 4c). These findings indicate that the use of linear regressions
to derive explanatory variables for V. n.o5 has certain limitations, and
future studies should consider non-linear explanations for key factors
influencing V pax05 variability..

We also observed a negative effect of elevation alone on V mayos
(Fig. 4f), which contradicts previous findings that higher V. .05 is
necessary to maximize carbon assimilation at high elevations when ex-
amining specific elevation transects [19,25,42]. This discrepancy may
be attributed to complex and interactive effects of numerous interre-
lated environmental variables and leaf traits across large geographical
extents (Fig. S5). As a result, the direct effect of elevation on V, 1,405
differs from the apparent effects often confounded by other interrelated
variables, including N,, VPD, soil pH and precipitation (Fig. 4b-f). Col-
lectively, these explored dominant environmental and biotic variables
further consolidate important drivers associated with global V. 405
(and thus V. mayrg) variability, which are not comprehensively repre-
sented in current optimality-constant model.

It is important to note that, besides soil nutrient availability, atmo-
spheric N deposition also serves as a significant source of plant N up-
take and demand, potentially affecting plant N concentration and sub-
sequently V, naxos [10,67,68]. The magnitude of N deposition has fluc-
tuated significantly over the time across the past decades [67,68]. How-
ever, our study lacks the necessary sampling year information to match
global V ., observations at a temporal scale, making it difficult to in-
corporate atmospheric N deposition into the analysis of factors driving
global V .x05 variability. Further manipulative experiments and field
monitoring are warranted to disentangle the relative importance of at-
mospheric N deposition and soil N availability in regulating the amount
of RuBisCO enzyme and, subsequently, V. 1,05 variability. Besides, our
study primarily examined the individual role of each environmental
variable and leaf trait in driving global V. .05 variability, as previ-
ously mentioned. However, our findings also revealed the combined in-
fluence of climate variables, soil properties, and leaf traits on V, 05
variability (Fig. S10), suggesting that belowground properties can regu-
late Vi may0s variability by indirectly affecting aboveground plant per-
formance, while aboveground climate properties and plant traits can
also influence V. .05 variability through indirect changes to below-
ground chemical and physical properties. Thus, to fully understand the
intrinsic mechanisms of global V, .05 variability, both independent
and interactive effects of explanatory variables must be thoroughly con-
sidered.

4.3. Considering the belowground resource constraints can improve the
performance of optimality model

Our results showed that optimality-dynamic model considering the
belowground resource constraints outperformed optimality-constant
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model in predicting both V, nayrg @nd Ve maxos. This finding is consis-
tent with recent studies, which suggest that edaphic variables can mod-
ify leaf economics [27,37]. The explanation is that edaphic variables
influence the availability of soil nutrients and water and, consequently,
the uptake costs for the construction and maintenance of photosynthetic
machinery [27,37]. For example, a large fraction of leaf N (~50%) is
allocated to the photosynthetic apparatus [63]. The cost of root N up-
take varies with soil N availability and N acquisition strategies [37,64].
Similarly, soil water content influences the water uptake and transport
costs necessary to deliver water to the leaves, which can affect the in-
vestments to support assimilation [13,27]. These considerations thus
imply that the cost of belowground resource uptake and use could be a
first-order priority for improving theoretical modelling of global V .y
variability.

In addition, we tested the environmental constraints on parameter ¢
through two other scenarios, i.e., the five most important variables re-
vealed by the statistical model (Fig. 4), and all the environmental and
biotic variables. Overall, these three scenarios achieved very compara-
ble results in predicting both V, 1,yre (Table S2) and V. nayos (Table
$3), with the r2 of 0.74-0.75 and RMSE of 13.51-13.80 for V,, maxTg>
and r? of 0.19-0.22 and RMSE of 19.64-21.63 for V. jay05, respectively.
These further lend us confidence in the following three interpretations:
(1) our empirically identified five most important variables for V, paxo5
(Fig. 4) are ecologically meaningful, (2) these environmental and biotic
variables could shape the V1,05 biogeography through regulating the
site-specific variability in c¢ (Fig. 6b-f), and (3) the optimality model
when considering a variable ¢ indeed improves the modelling of both
Vc, max25 and Vc, maxTg*

The trends of ¢ with environmental and biotic variables also agree
with the idea that allocation costs vary with environmental gradients
(Fig. 6b-f). Parameter c¢ represents the total unit cost of constructing
and maintaining the photosynthetic apparatus. Previous empirical stud-
ies have demonstrated that the construction cost of photosynthetic ap-
paratus is influenced by belowground resource availability [26,27]. The
proportion of leaf N allocated to the RuBisCO enzyme and the cost of
root N uptake are influenced by soil nutrient and water availability,
as well as associated N acquisition strategies [13,27,37,64]. Our results
reveal that the cost factor ¢ exhibits considerable variability and is influ-
enced by edaphic properties. We identified a significantly negative rela-
tionship between parameter c and soil pH, indicating decreasing carbon
costs at high soil pH levels with greater nutrient availability. This obser-
vation is supported by increased N allocation to the RuBisCO enzyme at
higher pH levels [62] and lower leaf respiration and nutrient acquisition
costs on alkaline, more fertile soils [27,65]. Furthermore, we discov-
ered a significantly positive relationship between parameter ¢ and soil
a (a positive indicator of plant-available surface moisture) (results not
shown), suggesting the decreasing carbon costs under drier conditions,
accompanied by higher N allocation to the RuBisCO enzyme and sub-
sequently, V, maxos [13,27].The parameterization of the cost functions
allows including important environmental variables in a more mech-
anistic framework than the statistical regression modelling. However,
our current parametrization of c¢ is purely phenomenological. More re-
search will be needed to understand how the cost functions relate to
the biological processes of building and maintaining the photosynthetic
machinery.

4.4. Implication and future directions

Our work generates two implications and future directions for
understanding controls of global V. n.rg variability and terrestrial
biosphere modelling. First, the proposed statistical modelling approach
captures the synthetic effects of enzyme kinetics, environmental vari-
ables and leaf traits on V. payrg, providing an improved understanding
of global V. .yrg variability. The accurate prediction of V, maxrg by
considering both factors of enzyme kinetics and eco-evo-environmental
drivers of V paxos highlights that there are timescale-dependent



JID: FMRE

Z. Yan, M. Detto, Z. Guo et al.

60 " " T " "
(a) Mean=0.086
c sof Median=0.088
S SD=0.037
© 0 Cv=0.43
g 41 pa2s
v
Pl o]
O 30t
[T,
o
2 20
£
=)
Z 10}
0

0.00 0.05 0.10 0.15

Cost),qx (unitless)

0.20

0.20 | (€) y=0.11-0.013x, r?=0.06, p<0.001

¢ (unitless)
o
[N
o

:V
0.05} 8
)
0.00} o o
o 1 2 3 4 s
N, (g m?)
0.20

0.15

¢ (unitless)
o
=
o

0.05

0.00

Soil pH (unitless)

[m5GeSdc;February 27, 2024;14:7]

Fundamental Research xxx (xxxx) xxx

0.20| (b) ¥=0.13-0.0008x, >=0.21, p<0.001

0.15¢

0.10f

¢ (unitless)

0.05¢

0.00

100 120

V. maxzs (Mol CO, m2s)

T T T T

0.20 | (d) y=0.21x*%, r’=0.61, p<0.001

0.15¢

0.10

¢ (unitless)

0.05+

0.00f

0.0 0..5 1j0 115 2‘.0 2..5 3:0
VPD (kPa)

T T T

0.20 | (f) y=0.07-0.000014x, r*=0.08, p<0.001
0.15

0.10

¢ (unitless)

0.05

0.00

0 500 1000 1500 2000 2500 3000 3500
Precipitation (mm)

Fig. 6. The cost factor c constrained by edaphic variables shows large variability and is highly related to environmental variables and leaf traits. (a) The
histogram distribution of the c across the global 281 sites. The bolded black line indicates the probability distribution function used to fit the histogram distribution;
four statistical metrics are used to indicate the characteristics of ¢ distribution, including mean, median, standard deviation (SD) and coefficient of variation (CV).
(b-f) The ordinary least-square regression plots of ¢ with the predictor of V .05, area-based leaf nitrogen content (N, ), vapor pressure deficit (VPD), soil pH, and
precipitation, respectively. r? and p-value represent the square of correlation coefficient and significance level, respectively.

mechanisms in regulating global V. g variability, with enzyme
kinetics capturing instantaneous ecophysiological responses and ex-
plaining the dominant variance of global V yayrg. Meanwhile, the
second factor related to environmental variables and leaf traits likely
represents the eco-evolutionary control of V. .y, through structuring
Ve, maxes biogeography. Although the second factor is empirical, we
further hypothesize that this might be associated with several key
eco-evolutionary processes, e.g., abiotic filtering of species pools, com-
petition for limited resources and the resultant trait-trait relationships
subject to fundamental evolutionary principles [23,30,31,60]. However,
further rigorous hypothesis testing related to eco-evolutionary processes

of Ve maxos through experimental manipulation and field observation
approaches across large environmental gradients is still needed.
Second, the two factors that both regulate global V. 1t variability
also provide an important benchmark and theoretical basis for evaluat-
ing current optimality models [8,19] while inspiring future improve-
ments in the model representation of V. g For example, our re-
sults highlight that optimality-constant model may struggle primarily
to capture V. .05 variability (Fig. 3b), probably due to an incomplete
representation of environmental and biotic regulations on the cost func-
tions. These findings suggest that these deficiencies should be addressed
to more reliably model photosynthetic processes in TBMs [5,18]. To
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achieve this, sophisticated observational and experimental studies are
still needed to help elucidate the reasons for the near-zero predictabil-
ity of V. maxos in current optimality-constant model, as well as exploring
potential ways to mechanistically improve optimality modelling, and
thus better constrain TBMs for improved representation of terrestrial
photosynthesis, carbon cycling and climate change [1-2].
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