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a b s t r a c t 
Accurate understanding of global photosynthetic capacity (i.e. maximum RuBisCO carboxylation rate, Vc, max ) 
variability is critical for improved simulations of terrestrial ecosystem photosynthesis metabolisms and carbon 
cycles with climate change, but a holistic understanding and assessment remains lacking. Here we hypothesized 
that Vc, max was dictated by both factors of temperature-associated enzyme kinetics (capturing instantaneous eco- 
physiological responses) and the amount of activated RuBisCO (indexed by Vc, max standardized at 25 ◦C, Vc, max25 ), 
and compiled a comprehensive global dataset ( n = 7339 observations from 428 sites) for hypothesis testing. The 
photosynthesis data were derived from leaf gas exchange measurements using portable gas exchange systems. We 
found that a semi-empirical statistical model considering both factors explained 78% of global Vc, max variability, 
followed by 55% explained by enzyme kinetics alone. This statistical model outperformed the current theoretical 
optimality model for predicting global Vc, max variability (67%), primarily due to its poor characterization on 
global Vc, max25 variability (3%). Further, we demonstrated that, in addition to climatic variables, belowground 
resource constraint on photosynthetic machinery built-up that directly structures the biogeography of Vc, max25 
was a key missing mechanism for improving the theoretical modelling of global Vc, max variability. These findings 
improve the mechanistic understanding of global Vc, max variability and provide an important basis to benchmark 
process-based models of terrestrial photosynthesis and carbon cycling under climate change. 

1. Introduction 
Terrestrial photosynthesis is the largest carbon flux exchange 

between biosphere and atmosphere and exerts an important role in 
buffering atmospheric CO2 growth [1 , 2] . Under many real world 
conditions, photosynthesis is expected to be limited by the maximum 
carboxylation rate of RuBisCO in the chloroplasts ( Vc, max ) [3–5] . 
Vc, max shows a large variability globally and is affected by multiple 
environmental and biotic variables, such as climate, edaphic properties 
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and leaf traits [6–9] , all of which will be altered by future climate and 
land use changes. Although predicting Vc, max variability has received 
much scientific attention [8 , 10-12] , a holistic understanding of what 
drives global Vc, max variability remains lacking. 

Traditionally, empirically derived trait coordinated relationships 
and theory-based optimality models are used to explain Vc, max vari- 
ability [3 , 8-10] . The trait-based approach suggests that Vc, max can 
be estimated using its empirical relationships with other leaf bio- 
chemical traits (e.g., leaf N content per unit leaf area ( Na ) and leaf 
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chlorophyll content) that tightly correlate with photosynthetic biochem- 
istry [3 , 7 , 10] . However, mounting evidence suggests that trait- Vc, max 
relationships vary with plant growing environments, seasons and other 
biotic variables [13–16] , which further induces large uncertainties in 
representing Vc, max in terrestrial biosphere models (TBMs). Addition- 
ally, the trait-based approach is ultimately based on empirical relation- 
ships, lacking mechanistic foundation that is critical for long-term pre- 
dictions under global change. 

Recently, theoretical optimality models have been increasingly used 
for explaining and modelling large-scale Vc, max variability [8 , 17 , 18] . 
The models were built based on eco-evolutionary first-principles 
[13 , 19-21] , hypothesizing that plants can adjust their photosynthetic 
biochemistry for maximizing their net carbon gain, which is the dif- 
ference between photosynthetic carbon gain and all carbon costs of 
building and maintaining the photosynthetic machinery [13 , 22] . Be- 
cause optimality models are mechanistic and prognostic, they have been 
suggested as a novel means to infer Vc, max variability [18 , 23] . To sup- 
port its validity is a recent theoretical study [8] , demonstrating that op- 
timality models driven by aboveground environmental variables (i.e., 
temperature, incoming photosynthetically active radiation (PAR), va- 
por pressure deficit (VPD), atmospheric CO2 concentration ( Ca ), and 
elevation (a proxy of atmospheric pressure)) alone can accurately cap- 
ture global Vc, max variability. However, it remains contentious whether 
the optimality models could accurately predict Vc, max at a standardized 
temperature (e.g. Vc, max25 , Vc, max standardized at 25 ◦C) [8 , 12] . Some 
studies suggested that the optimality model could be more appropri- 
ate to predict Vc, max during the growing-season temperature ( Vc, maxTg ) 
rather than the Vc, max25 , because growing-season temperature is the 
temperature regularly experienced by plants rather than a standard tem- 
perature, which may be atypical for that environment [8 , 24] . In con- 
trast, some other studies hold the opposite viewpoint that the optimal- 
ity model could also accurately predict Vc, max25 , but with the use of 
limited dataset and the growing-season temperature as the proxy of leaf 
measurement temperature when calculating Vc, max25 from the measured 
Vc, max [12 , 25] . Therefore, despite its promising application in plant 
ecophysiology and modelling studies, a more rigorous and holistic as- 
sessment remains needed. Meanwhile, several empirical studies demon- 
strate the critical role of belowground resource availability on regulat- 
ing large-scale Vc, max variability [26 , 27] . For example, a large fraction 
of leaf nitrogen is allocated to RuBisCO enzyme, which is ultimately 
related to soil nutrient availability and associated plant evolved strate- 
gies for root nitrogen uptake [13 , 27] . With these, it remains unclear 
whether and how belowground environmental conditions exert a role in 
constraining photosynthetic machinery built-up in the theoretical opti- 
mality modelling framework. 

On the other hand, Vc, max is the product of catalytic rate and amount 
of RuBisCO enzyme (indicated by Vc, max25 ) in the chloroplasts [17 , 28] . 
This can be interpreted as two key factors governing Vc, max variability, 
namely the temperature-associated enzyme kinetics of a given Vc, max25 
and the eco-evo-environmental drivers of Vc, max25 . The second category, 
the eco-evo-environmental drivers of Vc, max25 , stands in contrast with 
pure enzyme kinetics. Within this second category, Vc, max25 variabil- 
ity is associated with environmental factors and leaf traits [3 , 6 , 10 , 29] , 
which can influence plant photosynthetic processes, the construction 
and maintenance of photosynthetic apparatus, carbon uptake capac- 
ity and then the subsequent responses to changing ambient conditions 
[30 , 31] . Thus, incorporating the relationships between Vc, max25 vari- 
ability and these environmental factors and leaf traits could further en- 
hance the characterization of global Vc, max variability. 

The goal of this study is to improve the process understanding of 
global Vc, max variability by first assessing the relative role of enzyme 
kinetics and eco-evo-environmental drivers of Vc, max25 , and then ex- 
ploring the way to improve current optimality models for characteriz- 
ing global Vc, max variability. Specifically, we test the hypothesis that 
global patterns of Vc, max are driven by (1) enzyme kinetics, (2) eco- 
evo-environmental drivers of Vc, max25 , or (3) both enzyme kinetics and 

the eco-evo-environmental drivers of Vc, max25 . Additionally, we test 
whether current optimality model explains global pattern of Vc, max , 
once Vc, max has been standardized to 25 ◦C (to remove the tempera- 
ture response of Vc, max ). Last, we test whether including belowground 
resource constraints through edaphic properties on photosynthetic ma- 
chinery would improve current optimality modelling of global variabil- 
ity in both Vc, max and Vc, max25 . To test these hypotheses, we collated 
a comprehensive global dataset of Vc, max for C3 plants with concurrent 
measurements of environmental variables and key leaf traits, and then 
integrated this unique global dataset with both statistical and optimality 
modelling analyses. 
2. Materials and methods 
2.1. Field dataset of Vc, max , climate and edaphic variables, and leaf traits 

To compile the global Vc, max dataset of C3 plants (Fig. S1), we turned 
to the following three data sources: two global data sources assembled 
by Smith et al. [8] and Peng et al. [12] , respectively, and one data 
source from three contrasting forest ecosystems in China [16] . The two 
global data sources were mainly derived from earlier compilations by 
Meir et al. [32] , Domingues et al. [33 , 34] , Cernusak et al. [35] , Walker 
et al. [3] , Atkin et al. [36] , Maire et al. [37] , Bahar et al. [26] , Smith & 
Dukes [38] , Dong et al. [39] , Wang et al. [40] , Bloomfield et al. [41] , 
Xu et al. [42] and the TRY plant trait database. It is worthy to note, 
when compiling this dataset, we only retained the records with con- 
current measurement of leaf temperature. This also represents one ma- 
jor difference between our compiled data and those compiled by Peng 
et al. [12] , in which Peng et al. [12] used the growing-season temper- 
ature as the proxy of leaf measurement temperature for those Vc, max 
records lack of the information on leaf measurement temperature (de- 
tails about the cross-comparison between ours and Peng et al. [12] are 
shown in Fig. S2 and in discussion Section 2 ). In our data, all Vc, max 
records came from natural vegetation, including 7339 measurements 
from 2250 species and 428 sites covering all major biomes worldwide. 
In order to quantify the separate and joint effects of enzyme kinetics and 
eco-evo-environmental drivers of Vc, max25 on global Vc, max variability, 
only those Vc, max records with concurrent measurements of environ- 
mental variables and leaf traits (i.e., LMA and Na ) were chosen. Totally, 
5748 measurements from 281 sites met these selection criteria. 

Besides, we extracted six climate-related variables (i.e. tempera- 
ture, VPD, PAR, Ca , elevation, and precipitation). For each climate 
variable, the average value across the full growing season (defined 
as all months with mean monthly air temperature higher than 0 ◦C) 
was calculated for each site [8] . These include (1) the mean growing- 
season temperature ( Tg ) and precipitation extracted using the cor- 
responding latitude and longitude from monthly, 0.5 degree resolu- 
tion data of 1901-2015 provided by Climatic Research Unit [43] ; (2) 
VPD and PAR calculated from the CRU data using SPLASH model; 
(3) Ca derived primarily from original records in earlier compila- 
tions, but when there was no Ca record, it was estimated using 
corresponding value from global average estimates by NASA GISS 
model ( https://data.giss.nasa.gov/modelforce/ghgases/ ); and (4) eleva- 
tion was partly derived from original records, but when there was no 
record, it was extracted from 0.5 degree resolution data from WFDEI 
meteorological forcing dataset [44] . Notably, Tg and precipitation were 
three-dimensionally interpolated to the actual site locations using Ge- 
ographically Weighted Regression (GWR) following Peng et al. [12] , 
while VPD and PAR were adjusted to the actual elevation following 
Smith et al. [8] . 

Moreover, we extracted ten edaphic variables, including pH, carbon 
(C) content, nitrogen (N) content, C:N ratio, Priestley-Taylor coefficient 
( !; this variable indicated plant-available surface moisture, and was cal- 
culated as the ratio of actual evapotranspiration to equilibrium evapo- 
transpiration. Equilibrium evapotranspiration refers to theoretical value 
of evaporation from a wet surface to a saturated atmosphere), cation 
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exchange capacity (CEC), silt content, clay content, sand content, and 
bulk density. ! of each 0.5 degree resolution was calculated using the 
SPLASH model run at a monthly timescale [45] . Other edaphic vari- 
ables, comprehensively reflecting soil physical and chemical conditions, 
were extracted from a 250-m resolution global data at the top 30 cm 
depth provided by ISRIC SoilGrids database ( www.soilgrids.org ) based 
on site-specific latitude and longitude. 
2.2. Field dataset of Vc, maxTmeas and Vc, max25 

With Vc, max derived at its measurement temperature ( Tmeas , ◦C), or 
Vc, maxTmeas , we calculated Vc, max respectively at Tg ( "#, maxTg , ◦C) and 
25 ◦C ( Vc, max25 ), using a modified Arrhenius function (see Eqs. (1 )- (2) ) 
that described the instantaneous response of enzyme kinetics to any 
given temperature [28] . Given a reference temperature T0 (◦C), Vc, max 
at temperature T1 (◦C) can be computed as 
"#, max T1 = "#, max T0 × $

(
%0 , %1 ) (1) 

where 
$
(
%0 , %1 ) = &

'( (%1 − %0 )
)
(
%0 + 273 . 15 )(%1 + 273 . 15 ) × 1 + &

(%0 + 273 . 15)( Δ* ) −'+ 
)
(
%0 + 273 . 15 )

1 + &

(%1 + 273 . 15)( Δ* ) −'+ 
)
(
%1 + 273 . 15 )

(2) 
where Ha is the activation energy (71,513 J mol− 1 ), R is the universal 
gas constant (8.314 J mol–1 K–1 ), Hd is the deactivation energy (200,000 
J mol− 1 ), and ∆S is an entropy term (J mol–1 K–1 ) calculated following 
Kattge and Knorr (2007) [28] . 
Δ* = −1 . 07 × %, + 668 . 39 (3) 

Spurious correlations may arise because the same temperature re- 
sponse function was applied to both observed and modeled Vc, max . 
Smith et al. [8] has examined this issue and found that the temperature 
scalar did yield some but low spurious correlations. We also compared 
models against Vc, maxTmeas that did not subject to the temperature scalar 
issue, and found similar results as those for Vc, maxTg (Fig. S3), suggest- 
ing that spurious correlation effects induced by the temperature scalar 
function would not affect our result interpretations. 
2.3. Statistical and optimality modelling approaches for predicting global 
Vc, maxTg variability 

To improve the process understanding of global Vc, max variability, 
we cross-compared a statistical approach with an optimality modelling 
approach for predicting Vc, maxTg and Vc, max25 , respectively. The sta- 
tistical model examined the separate and joint effects of the two fac- 
tors in explaining Vc, maxTg variability, with two levels of analyses. In 
the first level, we used the temperature-associated enzyme kinetics re- 
sponse assuming no intra- or inter-specific variability in Vc, max25 across 
global C3 plants. In the second level, we added temperature-associated 
enzyme kinetics to site-specific Vc, max25 derived from its empirical re- 
lationship with both environmental variables and leaf traits, assuming 
that large geographical variability in Vc, max25 was correlated with their 
living environments [6 , 29] and leaf traits [3 , 10] . The optimality mod- 
elling relies on an established optimality theory [8] , and is able to infer 
Vc, max,Tg from five aboveground environmental variables (i.e., temper- 
ature, PAR, VPD, elevation and Ca ). The current optimality model by 
default assumes that the cost of building photosynthetic machinery is 
independent of species and the belowground environmental condition. 
To account for variable costs, particularly the cost of nutrient acquisi- 
tion [27 , 37] , we built and evaluated a modified optimality model that 
considered the belowground resource constraints through edaphic vari- 
ables on the unit cost of building and maintaining the photosynthetic 
machinery. 

All analyses were performed at site-mean level by averaging all mea- 
surements of each site. Details of these modelling analyses are shown 
below. For simplicity, we primarily focused on the data analyses for the 
subset dataset with concurrent measurements of environmental vari- 
ables and leaf traits in the main text, while the results from the data 
analyses for the entire dataset (solely including the aboveground en- 
vironmental measurements) are shown in the supplementary materials 
with similar findings (Figs. S4-S6). 
2.3.1. Statistical modelling approach for predicting global Vc, maxTg 
variability 

There are two levels of statistical modelling analyses: 
(1) Quantifying the effect of enzyme kinetics on global Vc, maxTg variabil- 

ity. To assess the effect of enzyme kinetics alone on explaining global 
Vc, maxTg variability, we first derived the site-mean Vc, max25 based on 
field measurements, and then calculated the average Vc, max25 across 
all sites, assuming that all the C3 plants shared the same Vc, max25 as 
this average value. Afterwards, for each site, we calculated the mod- 
elled "c , maxTg using Eqs. (1 )- (3) that multiplied this global-average 
Vc, max25 with $ (25 , %, ) . 

(2) Quantifying the joint effects of enzyme kinetics and eco-evo- 
environmental drivers of Vc, max25 on global Vc, maxTg variability. 
We first built a multiple linear regression model of Vc, max25 with 
site-specific environmental variables and leaf traits as the input (Ta- 
ble S1), and then added this modelled Vc, max25 with temperature- 
associated enzyme kinetics (Eqns. 1-3) for deriving Vc, maxTg of each 
site. The coefficients of predictors in the multiple linear regression 
were determined using the Ordinary Least-Squares method by min- 
imizing the root mean square error (RMSE) between the observed 
and predicted Vc, max25 values. Specifically, Vc, max25 and Vc, maxTg 
modelling were built and evaluated using a repeated cross-validation 
method, including four steps: (1) the full dataset was split into cal- 
ibration and independent validation subsets using a 5-fold cross- 
validation with 100 repetitions; (2) for each repetition, the calibra- 
tion subset was used to build the model, with the validation subset 
for model evaluation; (3) the modelled Vc, max25 for each validation 
subset was calculated and averaged across all 100 repetitions to ob- 
tain the ensemble predicted value for each record; and (4) the en- 
semble predicted Vc, max25 and their associated $ (25 , %, ) , were used 
together to estimate Vc, maxTg of each record. 

2.3.2. The optimality modelling approach for Vc, maxTg 
(1) The optimality theory 

The optimality model shown in Smith et al. [8] is based on two sepa- 
rate optimization processes. The first process involves the leaf photosyn- 
thetic process, and the total carbon gain is derived from leaf assimilation 
rate ( A ), whereas the respiration carbon cost is required to build and 
maintain the photosynthetic machinery, including the light harvesting 
component (via Jmax ) and the carbon reduction component (via Vc, max ) 
[13] . Thus, the first optimization is expressed as maximizing the net 
carbon gain, which is the difference between A and the carbon costs as- 
sociated with maintaining Vc, max and Jmax [8] . The second optimization 
process applies the least-cost theory to find the optimal leaf internal to 
external CO2 ratio ( -) at the lowest carbon cost to maintain photosyn- 
thetic machinery ( Vc, max ) and water transpiration ( E ) at a given assim- 
ilation rate ( A ) [13] . These two optimality conditions can be expressed 
as: 

max 
"c , max , .max (/ − 0 × "c , max − + × .max ) (4) 
min 
-

( 
( × E 

/ + 0 × "c , max 
/ 

) 
(5) 

where a, b , and d are the dimensionless carbon cost factors for E, 
Vc, max and the maximum electron transport rate ( Jmax ), respectively. 
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Based on an assumption that Vc, max is linearly proportional to Jmax (i.e. 
Vc, max = e ×Jmax, where e is the ratio of Vc, max to Jmax ), the total carbon 
costs for both Vc, max and Jmax could then be expressed by the carbon 
cost for Jmax only. Thus, the first optimality condition can further be 
reduced to 
max .max (/ − # × .max ) (6) 
where c is defined as the total unit carbon cost of building and maintain- 
ing the two components of photosynthetic machinery. By building upon 
these two independent optimizations, Vc, maxTg can further be inferred 
with solely environmental inputs from Tg , PAR, VPD, Ca , and elevation. 
The key mathematical formulations have been introduced in Smith et al. 
(2019) [8] . Here we provided the details about the optimality model in 
the supporting method S1. 
(2) Evaluating the optimality model with a constant or dynamic cost 

The marginal cost c (i.e., 1/2 
1.3(4 ) reflects the fundamental tradeoff be- 

tween photosynthetic carbon gain (i.e., /2 ) and the relevant cost for pho- 
tosynthetic machinery built-up and maintenance (i.e., Jmax and Vc, max , 
which in this study are assumed to be linearly related), and is an im- 
portant parameter for predicting Vc, max in the optimality model (Eqns 
6 and S10). In the optimality model of Smith et al., [8] , c was param- 
eterized with a default globally constant at 0.053. However, as several 
empirical and theoretical studies demonstrated, the costs in construct- 
ing and maintaining the photosynthetic machinery could also depend 
on environmental factors and leaf traits [13 , 22 , 26 , 27 , 46] . To explore 
whether incorporating the constraints from environmental variables and 
leaf traits on the cost factor c can improve the current optimality model 
performance, we parameterized c under four scenarios (Table S2 and 
S3): (1) a globally constant c at 0.053 across all sites as used in the 
current optimality model [8] , and a site-specific variable c respectively 
constrained by (2) the edaphic variables alone, (3) both environmen- 
tal (i.e. climatic and edaphic) variables and leaf traits, and (4) the five 
most important variables (i.e. Na , VPD, soil pH, precipitation and eleva- 
tion) identified from the statistical modelling ( Fig. 4 ). To differentiate 
these four optimality models, we called (1) as optimality-constant (with 
a fixed c ) and (2-4) as optimality-dynamic models (with a variable c ). 

For the three optimality-dynamic models, the cost factor c was fit- 
ted with a four-step approach illustrated below. First, the full dataset 
was split into calibration and validation subsets using a 5-fold cross- 
validation with 100 repetitions. Different choices of folds and repeti- 
tions yielded similar results. Second, for each repetition, the calibration 
subset was used to build a multiple linear regression between the cost 
factor #5 at site 5 , and their corresponding site-specific environmental 
variables and leaf traits, 452 , depending on the scenario: 
#5 = 60 +∑

2 62 452 (7) 
where 62 are fitted parameters for the specific environmental variable or 
leaf trait (see the example demonstration in Table S4 and S5). The mul- 
tiple linear regression coefficients of predictors were fitted using a ge- 
netic algorithm (GA) technique through minimizing the RMSE between 
observed and optimality-dynamic modelled Vc, maxTg . GA is a heuris- 
tic global optimization method [47] that avoids the dependence on the 
initial parameter values and efficiently identifies the global parameter 
optimization solution when there are many acceptable local solutions 
[48] . Third, for each repetition, we used the multiple linear regression 
coefficients estimated from the calibration sub-dataset to predict Vc, max 
of the independent validation sub-dataset. Fourth, the predicted Vc, max 
was then averaged across all 100 repetitions to obtain the ensemble pre- 
dicted value for each measurement record, which was used to evaluate 
the optimality model performance under each scenario. 

2.4. Cross-model performance comparisons and attributions of important 
variables of the two modelling approaches 

With the above model-derived Vc, maxTg and Vc, max25 , we evaluated 
the model performance with reference to field-derived Vc, maxTg and 
Vc, max25 . Four statistical metrics for assessing model performance in- 
clude (1) r2 –the square of correlation coefficient, (2) Bias–the residual 
bias, (3) RMSE, and (4) AIC–Akaike Information Criterion. The AIC was 
calculated with the formula AIC = 2 × k + n × log (RMSE2 ), where n is 
the number of observations, and k is the number of model parameters. 

For the statistical modelling approach, we assessed the relative im- 
portance of each environmental or biotic variable on Vc, max25 mod- 
elling. To avoid the strong multicollinearity amongst predictor variables 
(Fig. S7), we first computed the variance inflation factor (VIF) and iter- 
atively removed variables with very high VIF [49–50] , until the remain- 
ing variables with VIF less than 10 and the absolute values of correlation 
coefficients amongst these variables were less than 0.7. Afterwards, we 
conducted a model selection for Vc, max25 based on corrected AIC using 
‘glmulti’ R package [51] . We estimated the relative importance of each 
variable as the sum of the Akaike weights for the models in which the 
variable appeared. We set relative importance value of 0.8 as a cut-off
to differentiate between important and unimportant variables [52] . Fi- 
nally, we illustrated the sign of the effects from each selected variable 
through conducting partial regression plots while holding all the other 
variables constant [51 , 53] . 

For the optimality-constant model, we used a sensitivity analysis to 
assess the variable importance. Specifically, we partitioned the variance 
of the key model output into the variation in each model input (i.e., 
Tg , PAR, VPD, elevation, and Ca ), allowing these inputs to cover the 
full range of environmental variables. The analysis includes three steps. 
First was the set-up of the five environmental variables. We built a one- 
time random sampling for each of the five environmental variables us- 
ing Sobol’ quasi-random sequences [54] . Second were the model sim- 
ulations of Vc, max25 using the optimality-constant model, with the five 
environmental variables as input. Third was the variance partitioning. 
We employed a global variance-based sensitivity analysis algorithm de- 
veloped by Saltelli et al. [55] , and partitioned the variance of modelled 
Vc, max25 driven by each environmental variable, by which we quantified 
the variables’ relative importance. 
3. Results 
3.1. Relative importance of enzyme kinetics and eco-evo-environmental 
drivers of Vc, max25 in explaining global Vc, maxTg variability 

To investigate the relative importance of enzyme kinetics and eco- 
evo-environmental drivers of Vc, max25 in explaining global Vc, maxTg 
variability, we analyzed the relationships between field-derived and 
model-predicted Vc, maxTg using the statistical modelling approach. We 
found that the statistical approach considering both factors explained 
78% of global Vc, maxTg variability (RMSE = 11.87 µmol CO2 m− 2 s− 1 , 
AIC = 1423; Fig. 1b ), followed by 55% explained by enzyme kinet- 
ics alone (RMSE = 17.17 µmol CO2 m− 2 s− 1 ; AIC = 1600; Fig. 1a ). 
This result demonstrates that temperature-associated enzyme kinet- 
ics dominate the explanation of global Vc, maxTg variability, with eco- 
evo-environmental drivers of Vc, max25 also exerting a considerable 
role. 
3.2. The performance of optimality-constant model and the reasons 
underlying its poorer performance 

To investigate whether optimality-constant model explains global 
pattern of Vc, max , we cross-compared the optimality-constant model 
with the statistical model. We found that the optimality-constant model 
explained 67% of global Vc, maxTg variability but with comparable model 
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Fig. 1. The relative importance of enzyme kinetics and eco-evo-environmental drivers of Vc, max25 in controlling global Vc, maxTg variability. The statistical 
modelling approach is analyzed at two levels: global Vc, maxTg variability is described using (a) the temperature-associated enzyme kinetics together with a globally 
averaged Vc, max25 , or (b) by adding temperature-associated enzyme kinetics to site-specific Vc, max25 derived from its empirical relationship with both environmental 
variables and leaf traits. Details of these two models with the fitted equations are presented in Tables S5 and S6. Four statistical metrics for assessing model 
performance include (1) r2 –the square of correlation coefficient, (2) Bias–the residual bias, (3) RMSE–the root mean square of error, and (4) AIC–Akaike Information 
Criterion. Lines are fitted by the ordinary least-square regressions. 

Fig. 2. The performance of optimality-constant model in predicting global Vc, maxTg variability. The optimality model is used for global Vc, maxTg prediction 
with a default globally constant c (i.e., the total unit carbon cost of building and maintaining the photosynthetic machinery), or the optimality-constant model (a), 
which displays high correlation as the statistical model of enzyme kinetics (b). The statistical model of enzyme kinetics here is the same as Fig. 1a . 
error (RMSE = 16.38 µmol CO2 m− 2 s− 1 ; AIC = 1581; Fig. 2a ) as the sta- 
tistical model considering enzyme kinetics alone (RMSE = 17.17 µmol 
CO2 m− 2 s− 1 ; AIC = 1600; Fig. 1a ). We further found that the predicted 
Vc, maxTg by optimality-constant model was highly correlated with that 
predicted using the statistical model considering enzyme kinetics alone 
( r2 = 0.79; Fig. 2b ), suggesting that the optimality-constant model likely 
captured similar ecophysiological processes as the enzyme kinetics’ re- 
sponse, and thus showed comparable model performance in predicting 
Vc, maxTg ( Fig. 1a vs Fig. 2a ). This also agreed with the Vc, max25 mod- 
elling result, as environmental variables and leaf traits altogether ex- 
plained 36% of Vc, max25 variability ( Fig. 3a ; Table S1), but optimality- 
constant model explained only 3% of Vc, max25 variability ( Fig. 3b ). 

To explore the reasons underlying the poorer performance of 
optimality-constant model in predicting Vc, max25 variability further, we 
cross-compared the relative importance of each variable that was repre- 
sented in the optimality-constant and statistical modelling of Vc, max25 . 
Based on the statistical modelling approach, we identified five most im- 
portant biotic and environmental variables for explaining Vc, max25 vari- 
ability, i.e., Na , VPD, soil pH, precipitation and elevation, following a 
descending order of their relative importance ( Fig. 4a ). This result was 

different from the optimality-constant model, in which PAR and temper- 
ature were identified as the two most important variables (with relative 
contributions of 50.0% and 48.5%, respectively) for Vc, max25 ( Fig. 4a ). 
Collectively, these results demonstrate that the important drivers of 
global Vc, max25 (and thus Vc, maxTg ) variability were not well represented 
in optimality-constant model. 
3.3. The improvement of optimality model through considering 
belowground resource constraints 

To investigate whether including belowground resource constraints 
on photosynthetic machinery would improve current optimality mod- 
elling of global Vc, max variability, we revised the current optimality 
model by including a dynamic representation of c that described below- 
ground resource constraints through edaphic variables. We found that 
optimality-dynamic model had a much-improved predictive power and 
reduced model error for Vc, maxTg variability ( r2 = 0.74; RMSE = 13.80 
µmol CO2 m− 2 s− 1 ; AIC = 1501; Fig. 5a ), but still showed a slightly sub- 
ordinate performance compared with the statistical model of both en- 
zyme kinetics and eco-evo-environmental drivers of Vc, max25 ( Fig. 1b ). 
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Fig. 3. The statistical model of environmental variables and leaf traits outperforms the optimality-constant model in predicting Vc, max25 . The comparison 
of field-derived Vc, max25 with (a) the statistical model derived Vc, max25 that relies on its multiple linear regression relationship with both environmental variables 
and leaf traits, and (b) the Vc, max25 derived from the optimality-constant model. Details of the statistical model with the fitted equations are presented in Tables S4 
and S5. 

Fig. 4. Relative importance of environmental variables and leaf traits in predicting global Vc, max25 variability. (a-main) The relative importance of each 
variable based on the sum of the Akaike weights derived from a model selection using corrected AIC; (a-inset) the relative contribution of the five aboveground 
environmental variables to Vc, max25 based on the sensitivity analysis of the optimality-constant model; (b-f) partial regression plots of Vc, max25 with the predictor of 
area-based leaf nitrogen content ( Na ), vapor pressure deficit (VPD), soil pH, precipitation, and elevation, respectively. The cutoff (dashed line) of panel (a) is set at 
0.8 for identifying the most important predictor variables; the shade areas in (b-f) are 95% confidential intervals around the predicted relationships. 
We also observed that optimality-dynamic model explained 19% of 
Vc, max25 variability ( Fig. 5b ), which was larger than that (3%) explained 
by optimality-constant model ( Fig. 3b ). Such a cross-comparison further 
demonstrates that the improvement in modelling Vc, max25 through 
considering belowground resource constraints on c indeed represents a 
key avenue for improved modelling of global Vc, max variability. 
4. Discussion 

This study has three main findings. First, the statistical modelling ap- 
proach considering enzyme kinetics and eco-evo-environmental drivers 

of Vc, max25 explained a large portion (78%) of global Vc, maxTg vari- 
ability, with enzyme kinetics as the dominant factor explaining 55% 
of global Vc, maxTg variability. Second, treating the statistical model as 
a benchmark for the optimality approach to predict Vc, maxTg , we found 
that the optimality-constant model effectively captured the role of en- 
zyme kinetics in controlling global Vc, maxTg variability, but was inef- 
fective in capturing the second control on global Vc, maxTg variability 
through eco-evo-environmental drivers of Vc, max25 . Third, we found that 
belowground resources added constraints on building and maintaining 
photosynthetic machinery, and improved the modelling of Vc, max25 vari- 
ability. 
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Fig. 5. The performance of optimality-dynamic model in predicting global variability of Vc, maxTg (a) and Vc, max25 (b). The optimality model is used for global 
Vc, maxTg and Vc, max25 predictions with a site-specific dynamic c (i.e., the total unit carbon cost of building and maintaining the photosynthetic machinery) constrained 
by edaphic variables, or the optimality-dynamic model. Details of the optimality-dynamic model with the fitted equations for cost factor c parameterization are 
presented in Tables S4 and S5. 
4.1. Enzyme kinetics and eco-evo-environmental drivers of Vc, max25 jointly 
determine global Vc, maxTg variability 

Our results first showed that enzyme kinetics’ response was the dom- 
inant regulator of global Vc, maxTg variability ( Fig. 1 ). One possible ex- 
planation for this is the thermal sensitivity of the biochemical compo- 
nents involved in the RuBisCO enzyme kinetics [56–57] , and thus the 
temperature-associated enzyme kinetics exert a direct, positive control 
on global Vc, maxTg variability. To further elucidate the role of enzyme 
kinetics, we examined the empirical relationship between Vc, maxTg and 
both environmental variables and leaf traits. Our analysis revealed that 
these predictors together accounted for 71% of Vc, maxTg variability (Fig. 
S8a), with growing-season temperature being the dominant predictor 
(55%) (Fig. S8b), which is equivalent to the explanatory capacity to 
the enzyme kinetics statistical model ( Fig. 1a ). We also investigated the 
relative importance of each variable in predicting Vc, maxTg variability, 
and identified the four most biotic and environmental variables, namely 
Tg , VPD, Na , and elevation, in descending order of their relative impor- 
tance (Fig. S9). These results collectively consolidate the dominant role 
of enzyme kinetics in global Vc, maxTg variability. 

Interestingly, several previous studies have reported weak, yet signif- 
icant, negative relationships between Vc, max25 and site-mean growing 
temperature across global vegetative landscapes [6 , 29 , 58] . However, 
utilizing the largest global Vc, max dataset compiled in this study, we 
found that the bivariate ordinary least-squares regression relationship 
between Tg and Vc, max25 was insignificant (Fig. S7). The key factors for 
explaining Vc, max25 variability, based on the sum of the Akaike weights, 
included leaf N content, VPD, soil pH, precipitation, and elevation, but 
not the Tg factor ( Fig. 4 ). The minimal effect of Tg on Vc, max25 vari- 
ability is also supported by another similar study that explored the best 
model of global Vc, max25 variability [62] . The potential cause for Tg ’s 
minimal effect might be related to the interactive effects among multiple 
interrelated environmental variables at a global scale (Fig. S7), with the 
apparent temperature effect being hidden by other associated variables, 
such as VPD, soil pH and precipitation ( Fig. 4c - e ). These results together 
suggest that such a temperature-induced Vc, max25 down-regulation is 
not sufficient to compensate the direct, positive effect of temperature 
on Vc, maxTg through enzyme kinetics’ response, and thus the positive 
temperature- Vc, maxTg relationship is observed on a global scale. Collec- 
tively, our results imply that temperature-associated enzyme kinetics 
represent the first-order control on the variability of Vc, maxTg , which 
would increase with warmer growing season temperatures. 

Second, we found that eco-evo-environmental drivers of Vc, max25 
also importantly regulated global Vc, maxTg variability ( Fig. 1b ). Thus, 
when we added the site-specific Vc, max25 to the temperature-associated 

enzyme kinetics, the explained variance of global Vc, maxTg variability 
increased from 55% to 78%, even though the environmental variables 
and leaf traits altogether only explained 36% of Vc, max25 variability. 
These results altogether further generate two important implications: 
(1) improved characterization of Vc, max25 variability represents a very 
effective avenue for modelling global Vc, maxTg variability, and (2) 
there remains a large proportion of Vc, max25 variability unexplained. 
Some of the unexplained Vc, max25 variability may be attributed to 
random measuring and sampling error in the evaluation of site-mean 
level Vc, max25 [41] . Alternatively, other important environmental 
factors (e.g., day length, soil moisture, and soil phosphorus (P) con- 
tent) [6 , 29 , 37] , unmeasured leaf traits (e.g., leaf P content, and leaf 
age) [3 , 59] , species properties [29 , 30] , and evolutionary history 
[60] might have also played important roles in driving Vc, max25 
variability. 
4.2. Limitations of optimality-constant model in capturing global Vc, maxTg 
variability 

There is an increasing interest in using the optimality-constant model 
for characterizing Vc, max25 variability for different applications, such 
as exploring the patterns of Vc, max25 variation across environmen- 
tal gradients and parameterizing TBMs [12 , 18] . However, our study 
revealed that optimality-constant model performed relatively worse 
than the optimality-dynamic model in predicting global Vc, maxTg vari- 
ability, which was primarily attributed to the low predictive power 
( r2 = 0.03) of the global Vc, max25 ( Fig. 3b ). Our findings thus highlight 
that optimality-constant model development should focus on improve- 
ments in capturing large-scale Vc, max25 variability. Notably, Peng et al. 
(2021) using the similar global dataset, reported a much higher Vc, max25 
prediction (i.e. r2 = 0.36) based on the optimality model [12] , which 
is different from ours ( r2 = 0.03). Our further analysis suggested that 
this discrepancy is primarily linked to the inaccurate dataset (ultilizing 
the mean growing season temperature to approximate Vc, max records 
without direct leaf temperature measurements) employed in Peng et al. 
(2021)’s data analysis [12] . Upon removing this inaccurate dataset (i.e. 
the Vc, max records transformed from the mean growing season temper- 
ature) from the data analysis, the result comparable to ours ( r2 = 0.03) 
was then found (Fig. S2b). Such cross-comparisons also suggest that our 
analysis is rigorous and the generated result is trustworthy. 

Our results also help identify that the poorer performance of 
optimality-constant model was mainly because of its failure to capture 
the dominant environmental and biotic regulations of global Vc, max25 
variability, including Na , VPD, soil pH, precipitation, and elevation 
( Fig. 4 ). In contrast, optimality-constant model only included five above- 
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ground environmental variables (i.e., Tg , VPD, PAR, Ca and elevation), 
with PAR and Tg alone capturing 98.5% of Vc, max25 variability in model 
predictions ( Fig. 4a ). Our results suggested that other variables, in- 
cluding belowground resource availability, also importantly regulated 
Vc, max25 variability ( Fig. 4b - f ). For example, Na may reflect soil N avail- 
ability [61] and has been proven to be an essential element for the con- 
struction of RuBisCO and other essential enzymes of the photosynthetic 
machinery and thus, Na positively correlates with Vc, max25 [3 , 10] . Soil 
pH is a positive indicator of soil fertility, and higher soil pH usually 
means a lower nutrient cost for the construction of RuBisCO, thus fa- 
voring plant investment in greater Vc, max25 [27 , 37] . VPD and precip- 
itation reflect the water stress status that importantly mediates plant 
stomatal behaviors, and high VPD and low precipitation generally re- 
duce stomatal conductance and then increase the investment in Vc, max25 
required to achieve optimal photosynthesis [13 , 62] . However, the rela- 
tionship between soil pH and soil fertility is non-linear and dependent 
on plant species types [66] , leading to a peak in Vc, max25 at intermedi- 
ate soil pH levels ( Fig. 4d ). Similarly, the relationship between VPD and 
Vc, max25 exhibits non-linear and monotonic trends, rather than linear 
ones ( Fig. 4c ). These findings indicate that the use of linear regressions 
to derive explanatory variables for Vc, max25 has certain limitations, and 
future studies should consider non-linear explanations for key factors 
influencing Vc, max25 variability.. 

We also observed a negative effect of elevation alone on Vc, max25 
( Fig. 4f ), which contradicts previous findings that higher Vc, max25 is 
necessary to maximize carbon assimilation at high elevations when ex- 
amining specific elevation transects [19 , 25 , 42] . This discrepancy may 
be attributed to complex and interactive effects of numerous interre- 
lated environmental variables and leaf traits across large geographical 
extents (Fig. S5). As a result, the direct effect of elevation on Vc, max25 
differs from the apparent effects often confounded by other interrelated 
variables, including Na , VPD, soil pH and precipitation ( Fig. 4b - f ). Col- 
lectively, these explored dominant environmental and biotic variables 
further consolidate important drivers associated with global Vc, max25 
(and thus Vc, maxTg ) variability, which are not comprehensively repre- 
sented in current optimality-constant model. 

It is important to note that, besides soil nutrient availability, atmo- 
spheric N deposition also serves as a significant source of plant N up- 
take and demand, potentially affecting plant N concentration and sub- 
sequently Vc, max25 [10 , 67 , 68] . The magnitude of N deposition has fluc- 
tuated significantly over the time across the past decades [67 , 68] . How- 
ever, our study lacks the necessary sampling year information to match 
global Vc, max observations at a temporal scale, making it difficult to in- 
corporate atmospheric N deposition into the analysis of factors driving 
global Vc, max25 variability. Further manipulative experiments and field 
monitoring are warranted to disentangle the relative importance of at- 
mospheric N deposition and soil N availability in regulating the amount 
of RuBisCO enzyme and, subsequently, Vc, max25 variability. Besides, our 
study primarily examined the individual role of each environmental 
variable and leaf trait in driving global Vc, max25 variability, as previ- 
ously mentioned. However, our findings also revealed the combined in- 
fluence of climate variables, soil properties, and leaf traits on Vc, max25 
variability (Fig. S10), suggesting that belowground properties can regu- 
late Vc, max25 variability by indirectly affecting aboveground plant per- 
formance, while aboveground climate properties and plant traits can 
also influence Vc, max25 variability through indirect changes to below- 
ground chemical and physical properties. Thus, to fully understand the 
intrinsic mechanisms of global Vc, max25 variability, both independent 
and interactive effects of explanatory variables must be thoroughly con- 
sidered. 
4.3. Considering the belowground resource constraints can improve the 
performance of optimality model 

Our results showed that optimality-dynamic model considering the 
belowground resource constraints outperformed optimality-constant 

model in predicting both Vc, maxTg and Vc, max25 . This finding is consis- 
tent with recent studies, which suggest that edaphic variables can mod- 
ify leaf economics [27 , 37] . The explanation is that edaphic variables 
influence the availability of soil nutrients and water and, consequently, 
the uptake costs for the construction and maintenance of photosynthetic 
machinery [27 , 37] . For example, a large fraction of leaf N ( ∼50%) is 
allocated to the photosynthetic apparatus [63] . The cost of root N up- 
take varies with soil N availability and N acquisition strategies [37 , 64] . 
Similarly, soil water content influences the water uptake and transport 
costs necessary to deliver water to the leaves, which can affect the in- 
vestments to support assimilation [13 , 27] . These considerations thus 
imply that the cost of belowground resource uptake and use could be a 
first-order priority for improving theoretical modelling of global Vc, max 
variability. 

In addition, we tested the environmental constraints on parameter c 
through two other scenarios, i.e., the five most important variables re- 
vealed by the statistical model ( Fig. 4 ), and all the environmental and 
biotic variables. Overall, these three scenarios achieved very compara- 
ble results in predicting both Vc, maxTg (Table S2) and Vc, max25 (Table 
S3), with the r2 of 0.74-0.75 and RMSE of 13.51-13.80 for Vc, maxTg , 
and r2 of 0.19-0.22 and RMSE of 19.64-21.63 for Vc, max25 , respectively. 
These further lend us confidence in the following three interpretations: 
(1) our empirically identified five most important variables for Vc, max25 
( Fig. 4 ) are ecologically meaningful, (2) these environmental and biotic 
variables could shape the Vc, max25 biogeography through regulating the 
site-specific variability in c ( Fig. 6b-f ), and (3) the optimality model 
when considering a variable c indeed improves the modelling of both 
Vc, max25 and Vc, maxTg . 

The trends of c with environmental and biotic variables also agree 
with the idea that allocation costs vary with environmental gradients 
( Fig. 6b-f ). Parameter c represents the total unit cost of constructing 
and maintaining the photosynthetic apparatus. Previous empirical stud- 
ies have demonstrated that the construction cost of photosynthetic ap- 
paratus is influenced by belowground resource availability [26 , 27] . The 
proportion of leaf N allocated to the RuBisCO enzyme and the cost of 
root N uptake are influenced by soil nutrient and water availability, 
as well as associated N acquisition strategies [13 , 27 , 37 , 64] . Our results 
reveal that the cost factor c exhibits considerable variability and is influ- 
enced by edaphic properties. We identified a significantly negative rela- 
tionship between parameter c and soil pH, indicating decreasing carbon 
costs at high soil pH levels with greater nutrient availability. This obser- 
vation is supported by increased N allocation to the RuBisCO enzyme at 
higher pH levels [62] and lower leaf respiration and nutrient acquisition 
costs on alkaline, more fertile soils [27 , 65] . Furthermore, we discov- 
ered a significantly positive relationship between parameter c and soil 
! (a positive indicator of plant-available surface moisture) (results not 
shown), suggesting the decreasing carbon costs under drier conditions, 
accompanied by higher N allocation to the RuBisCO enzyme and sub- 
sequently, Vc, max25 [13 , 27] .The parameterization of the cost functions 
allows including important environmental variables in a more mech- 
anistic framework than the statistical regression modelling. However, 
our current parametrization of c is purely phenomenological. More re- 
search will be needed to understand how the cost functions relate to 
the biological processes of building and maintaining the photosynthetic 
machinery. 
4.4. Implication and future directions 

Our work generates two implications and future directions for 
understanding controls of global Vc, maxTg variability and terrestrial 
biosphere modelling. First, the proposed statistical modelling approach 
captures the synthetic effects of enzyme kinetics, environmental vari- 
ables and leaf traits on Vc, maxTg , providing an improved understanding 
of global Vc, maxTg variability. The accurate prediction of Vc, maxTg by 
considering both factors of enzyme kinetics and eco-evo-environmental 
drivers of Vc, max25 highlights that there are timescale-dependent 
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Fig. 6. The cost factor c constrained by edaphic variables shows large variability and is highly related to environmental variables and leaf traits. (a) The 
histogram distribution of the c across the global 281 sites. The bolded black line indicates the probability distribution function used to fit the histogram distribution; 
four statistical metrics are used to indicate the characteristics of c distribution, including mean, median, standard deviation (SD) and coefficient of variation (CV). 
(b-f) The ordinary least-square regression plots of c with the predictor of Vc, max25 , area-based leaf nitrogen content ( Na ), vapor pressure deficit (VPD), soil pH, and 
precipitation, respectively. r2 and p -value represent the square of correlation coefficient and significance level, respectively. 
mechanisms in regulating global Vc, maxTg variability, with enzyme 
kinetics capturing instantaneous ecophysiological responses and ex- 
plaining the dominant variance of global Vc, maxTg . Meanwhile, the 
second factor related to environmental variables and leaf traits likely 
represents the eco-evolutionary control of Vc, maxTg through structuring 
Vc, max25 biogeography. Although the second factor is empirical, we 
further hypothesize that this might be associated with several key 
eco-evolutionary processes, e.g., abiotic filtering of species pools, com- 
petition for limited resources and the resultant trait-trait relationships 
subject to fundamental evolutionary principles [23 , 30 , 31 , 60] . However, 
further rigorous hypothesis testing related to eco-evolutionary processes 

of Vc, max25 through experimental manipulation and field observation 
approaches across large environmental gradients is still needed. 

Second, the two factors that both regulate global Vc, maxTg variability 
also provide an important benchmark and theoretical basis for evaluat- 
ing current optimality models [8 , 19] while inspiring future improve- 
ments in the model representation of Vc, maxTg . For example, our re- 
sults highlight that optimality-constant model may struggle primarily 
to capture Vc, max25 variability ( Fig. 3b ), probably due to an incomplete 
representation of environmental and biotic regulations on the cost func- 
tions. These findings suggest that these deficiencies should be addressed 
to more reliably model photosynthetic processes in TBMs [5 , 18] . To 
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achieve this, sophisticated observational and experimental studies are 
still needed to help elucidate the reasons for the near-zero predictabil- 
ity of Vc, max25 in current optimality-constant model, as well as exploring 
potential ways to mechanistically improve optimality modelling, and 
thus better constrain TBMs for improved representation of terrestrial 
photosynthesis, carbon cycling and climate change [1–2] . 
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