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Theory predicts that rising CO, increases global photosynthesis, a process
known as CO, fertilization, and that this is responsible for much of the
current terrestrial carbon sink. The estimated magnitude of the historic CO,
fertilization, however, differs by an order of magnitude between long-term
proxies, remote sensing-based estimates and terrestrial biosphere models.
Here we constrain the likely historic effect of CO, on global photosynthesis

by combining terrestrial biosphere models, ecological optimality theory,
remote sensing approaches and an emergent constraint based on global
carbon budget estimates. Our analysis suggests that CO, fertilization
increased global annual terrestrial photosynthesis by 13.5 + 3.5% or

15.9 +2.9 PgC (mean % s.d.) between 1981 and 2020. Our results help
resolve conflicting estimates of the historic sensitivity of global terrestrial
photosynthesis to CO, and highlight the large impact anthropogenic
emissions have had on ecosystems worldwide.

Globally, photosynthesis results in the single largest flux of carbon
dioxide (CO,) between the atmosphere and the biosphere'?. Long-term
changesinphotosynthesis, for examplein response torising atmospheric
CO,, could therefore provide animportant feedback to climate change®™.
Global terrestrial photosynthetic carbon uptake cannot be observed
directly, however,and mustinstead be either predicted by terrestrial bio-
sphere models (TBMs) or inferred from proxies®. The multiple long-term
proxies from which changes in global terrestrial photosynthesis are

derivedincludesatellite-based estimates®’, ice-core records of carbonyl
sulfide (COS)®and herbariumsamples of deuteriumisotopomers’, along
with information gleaned from the seasonal cycle of atmospheric CO,
(ref. 10). Despite the importance of photosynthesis, however, and the
multiple proxies that exist, there is no consensus about the expected
historic changein terrestrial photosynthesis due torising CO, (refs.3-12).

Satellite-based estimatesof globalterrestrialphotosyntheticcarbon
uptake are derived from observations of spatiotemporal variations in
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Fig.1|Long-term changes in global annual photosynthesis from TBMs and
multiple satellite observations. a, Relative changes in global terrestrial
photosynthesis (AGPP, %) from 1982 (CO, = 341 ppm) t0 2012 (CO, = 391 ppm)
based on simulations from process-based models in the TRENDY project model
ensemble (orange, mean + s.d.) and two different satellite approaches (empirical
MODIS algorithm (MA, solid lines); a machine learning method (ML, dashed
lines)). Estimates from the satellite approaches were obtained allowing for an
effect of increasing CO, on either the fAPAR (red lines, dots), the LUE of

photosynthesis (blue line) or both fAPAR and LUE (black lines, dots). b, Inferred
CO, sensitivities (fP*; Methods) from the data presentedin a, for the standard
satellite-based approaches using ML and the MODIS algorithm (MA) with the CO,
effect on GPP manifest through changes in fAPAR, the modified MA approach
witha CO,effect only on LUE (MA, only LUE) and both ML and MA satellite
RS-based approaches with an effect of increasing CO, on both LUE and fAPAR.
Black error bars represent the mean standard error of ﬁﬁ"" foreach product

(MA, ML) or the mean standard error across TRENDY models.

surfacereflectance, fromwhich vegetation solar energy absorption can
bederived. As they integrate land surface observations, they are often
regarded as abenchmark to which TBMs should be compared". Such
comparisons generally suggest that TBMs overestimate the change
in global terrestrial photosynthesis due to too high a sensitivity of
photosynthesis to increasing CO, (refs. 6,11). However, satellite-TBM
comparisons are mired by the fact that most satellite-based estimates,
bethey machinelearning (ML) or algorithmically based, do notincor-
porate the universally observed direct effect of increasing CO, on the
light-use efficiency (LUE) of leaves of C, vegetation®. This is because
the direct effect of increasing CO, on LUE is not directly observable
fromspace'. In contrast, observation-based proxies, based onice-core
records of COS**, eddy-covariance networks' and herbarium and
field-based deuteriumisotopomers’, suggest that TBMs may underesti-
mate the sensitivity of global photosynthesis to CO,. TBMs themselves
showalargerange of sensitivities of global terrestrial photosynthesis to
CO, (refs.10,16,17), though few demonstrate sensitivities as low as the
average satellite-inferred values®** or typically as high as those derived
from the COS or deuterium proxies®®”. The spread in estimates of the
sensitivity of global terrestrial photosynthesis to CO, and the lack of
aglobal constraint, constitutes alarge source of uncertainty in future
projections of the Earth system'® and hinders attribution of the various
processes responsible for long-term changes in the global terrestrial
carboncycle.

Here, we use remote sensing (RS) observations informed with
ecological optimality theory to help constrain the historic response of
photosynthesis torising CO, We develop amethodtoincorporate the
directeffect of CO,ontherate of canopy-level terrestrial gross primary
photosynthesis (GPP) in established satellite-based approaches. We do
so using first-principles theory of photosynthetic carbon fixation'*?°
and generate 30-year global datasets of satellite-derived GPP. In addi-
tion, we identify an emergent multimodel relationship? > between
the modelled terrestrial carbon sink and the sensitivity of photo-
synthesis to CO, from the Trends in Net Land-Atmosphere Carbon
Exchanges project (TRENDY?*). When combined, these approaches
constrain the range of plausible estimates of the historic effect of
CO, on global GPP, resolving the large apparent difference between

satellite-and TBM-inferred sensitivities of GPP to historic changesin
atmospheric CO,.

Wereconciled the apparent difference between the TBM-inferred
and satellite-based estimates of the sensitivity of GPP to CO, (Fig.1) by
using first-principlestheory toincorporate the direct effect of increas-
ing CO, on C; LUE in the satellite-based estimates. We refer to RS
estimates thatincorporate theory of the direct effect of CO,on LUE as
the modified RS-based methods hereafter. The direct effect of CO,on
LUE reflects the increasing competitiveness of CO, relative to O, for
theactivesites of the ribulose-1,5-bisphosphate carboxylase-oxygenase
(RuBisCO) enzyme and the increasing competitiveness of CO, as atmos-
pheric concentrations rise (Methods). To do so we considered two
distinct classes or satellite-based estimates. The first is a commonly
used LUE approach based on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) algorithm (the MA approach) and the second
is an ML approach that integrates both satellite and ground observa-
tions of ecosystem carbon fluxes. The direct effect of increasing CO,
on the LUE of canopy photosynthesis™ was roughly twice as large as
the indirect effect of increasing canopy leaf area and thus increasing
the fraction of absorbed photosynthetically active radiation(fAPAR),
represented in the ML and MA approaches (Fig. 1a,b). The long-term
sensitivity of the RS-based estimates of GPP modified to account
for boththe direct (8’F)and indirect (%APAR) effect of increasing CO,
(BS™P; equation (1)) was 0.50 + 0.1 (mean +s.d.) and 0.46 + 0.1 for the
ML and MA approaches, respectively (Fig. 1b), compared to 0.16 + 0.05
and 0.16 £ 0.06 for the original ML and MA-based estimates, respec-
tively (Fig. 1b). The long-term increase in GPP from the updated
RS-based estimates thus more closely approximated that of the TBM
ensemble mean (S5 = 0.59 + 0.16) (Fig. 1b). The modified RS-based
methods predict a7.27 £ 0.7% (ML) and 6.72 + 0.9% (MA) increase in
global annual GPP for a 14.5% increase in atmospheric CO, between
1982 and 2012.

Despite the agreement between the updated satellite methods
and the TBM model ensemble (Fig. 1b), there is a large spread in
individual TBM sensitivities and the true sensitivity is uncertain
because of the lack of a comparable observational record. To address
this issue, we proposed a constraint on the historic response of
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Fig.2| A constraint on the sensitivity of global terrestrial photosynthesis to
CO,.a, The relationship between the modelled sensitivity of GPP to CO, (557,
TRENDY experiment S1: dynamic CO, only) and the modelled cumulative
terrestrial carbon sink (PgC, TRENDY experiment S3: dynamic CO,, climate and
land use). Individual TRENDY model details and /Z‘prp values are listed in
Supplementary Table 2. Thered line and shaded area show the best linear fit
across models and the associated prediction standard error (dashed red) and
standard deviation of prediction error (dashed grey) intervals. The vertical
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dashed lines shows the cumulative residual terrestrial carbon sink (mean, s.d.)
between 1982 and 2016 as estimated by the Global Carbon Project”. b, The
unconstrained probability density function (PDF) distribution of S* across all
original estimates (TRENDY models and the original RS-based approaches;
dotted line, grey bars) and the unconstrained PDF of 5™ across the TRENDY
TBMs (dashed blackline). The orange area represents the conditional probability
distribution derived by applying the constraint froma to the model ensemble.

photosynthesis to rising CO, by combining the TRENDY modelled
sensitivity of global GPP, for which no direct observations exist, with
the magnitude of the cumulative global terrestrial residual carbon sink
between 1982 and 2016 (S, ,xp), for which there are constrained esti-
mates®?®. Using cumulative S, .y €stimates as opposed to shorter time
periodsreducestheinfluence of annual or decadal random error. Model
sensitivities of photosynthesis to CO, (Supplementary Table 2) were
positively correlated (r=0.70, P < 0.01) with the magnitude of the
modelled cumulative terrestrial sink on amultidecadal scale (Fig. 2a),
with a stronger CO, fertilization effect leading to a larger modelled
cumulative sink. This emergent relationship**, provides an opportu-
nity to constrain the wide range in estimates of the sensitivity of GPP
to CO, with the observed magnitude of S, ,\p, particularly when com-
bined with the results of the modified RS-based estimates. The full
distribution, which includes the TBMs (Supplementary Table 2) and
the original RS-based estimates, provides an estimate of 5™ of
0.54 +0.21(mean + s.d.; Fig. 2b), whichis lower than that derived from
the distribution of TBMs (857" = 0.59 + 0.16). The posterior TBM dis-
tribution, formed by bootstrapping the cumulative land-sink emergent
constraint relationship (Fig. 2a) provides a constrained estimate of
BLPPof 0.62 + 0.14 (Fig. 2b). Thisis 30% lower than the maximum uncon-
strained estimate and over 200% higher than that of the original
RS-based approaches. The constrained distribution represents a 33%
reduction in uncertainty compared to the full distribution of ﬁg""
(Fig. 2b) and a 13.5% reduction compared to the unconstrained TBM
ensemble (Fig. 2b).

Results from the updated RS estimates and the emergent con-
straint provide a point of comparison for other reported estimates of
the sensitivity of global terrestrial photosynthesis to CO,. Along-term
COS proxy has been proposed®, which simulates photosynthetic
change on the basis of amass balance of global COS sources and sinks
from1900to 2013 and suggests an increase in photosynthesis equiva-
lent to an effective S5*" of 0.94 (Supplementary Table 1). This is
comparable to the highest sensitivity of the TBM models used here".
The COS estimate, however, integrates over alonger time period and
therefore potentially captures changes in the land surface unrelated
to CO,, such as reforestation and the agricultural green revolution?,
and is thus not directly comparable to the emergent constraint and
updated RS estimates presented here. Another proxy, based on
deuterium isotopomers gathered from herbarium specimens and
field trials’, suggests an historic change equivalent to a S§** of 1.03

(Supplementary Table 1). Although higher than that derived from COS,
the deuterium isotopomer estimate reflects the effect of increasing
CO, on photosynthesis for leaves in full sunlight. As shaded leaves
experience stronger light limitation, which results inalower sensitivity
to CO,, COS-based estimates could thus reasonably be expected tobe
higher thanthe canopy integrated sensitivity. Our results indicate that
such larger implied sensitivities are probably overestimates (Fig. 2).
The closer agreement between the updated RS approaches and
the TBMs (Fig. 1) allows for their response to CO, to be probed more
deeply. The sensitivity of C; photosynthesis to CO, increases strongly
withtemperature®® (Fig. 3a; equations (2)-(7)) because the suppression
of oxygenation by RuBisCO with increasing CO, is greater at higher
temperatures. Reduced RuBisCO oxygenation reduces photorespira-
tionat high temperatures, as represented by the temperature depend-
ence of the photosynthetic CO,compensation point (/™, equation (3)).
The resulting latitudinal gradient is reproduced by both the TBMs
examined (Fig. 3b) and the updated RS approaches (Fig. 3c-e). The
results indicate that the influence of CO, on photosynthesis at high
latitudesis limited due to low temperatures. Estimates of the long-term
change in GPP from the updated RS approaches show large changes,
particularly in areas of intensive agriculture such as the midwestern
United States, centraland northern Europe and India (Fig. 3¢,d). Com-
paredtothe RS approaches (Fig.3d), the TBMs predict smallerincreases
inarid mid- and low-latitude regions, particularly in Australiaand South
Africa but much larger increases in the productive croplands and
tropical and temperate forests (Fig. 3d). The lower TBM sensitivity, in
particular of shrublands (Fig. 3f), is potentially due to poorly repre-
sented TBM processes such as the positive relationship between CO,
and woody shrub expansion®. The lower TBM sensitivities could be
from inaccurate representation of greening trends that arise from
changes in land management practices such as reforestation®. The
relatively higher TBM sensitivity regions, particularly tropical forests
(Fig. 3), may be due to insufficient TBM representation of nutrient
constraints®, or the saturation of RS vegetation indices at high leaf
area”, reflecting large uncertainty about the response of tropical forest
photosynthesis to CO, (ref. 33). In general, the magnitude of the TBM
and updated satellite 5™ suggests that the global terrestrial photo-
synthetic response to CO, is consistent with the response of the
light-limited photosynthetic rate which has also been suggested by
observations of photosynthesis and biomass changes at the ecosystem
scale®* %, theoretical models®*® and by model results showing that
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electron-transport limited leaves are responsible for most global
carbon assimilated through photosynthesis®.

As with any application of the emergent constraint technique, it
is important to highlight that many factors could lead to biases and
undermine the robustness of the derived constraint. Of primary con-
cern is the potential for emergent constraints to rely on spurious
cross-model correlations that are not based on aclear physical relation-
ship*°. The constraint we identify is based on the relationship between
CO,and thelandsink, for which there isample observational and theo-
retical support®*. Although CO, fertilization is by no means the sole
likely reason for an increasing land sink* (other contributions arise
fromforest regrowth, nitrogen fertilization, growing season extensions
andrelease from cold limitations), such processes areincluded in the
models examined and contribute to the scatter in the relationship
between 57 and S, 5y, presented in Fig. 2a. That said, there are many
processes inadequately represented in both TBMs and the satellite
approachesthat couldlead to biases in the derived 5. For example,
models have been shown to poorly reproduce changesin the seasonal
cycle of atmospheric CO, (ref. 41) and demonstrate arange of responses
when compared to results from experimental manipulation*?. Nutrient
limitation, thermal temperature acclimation, water stress, distur-
bances (including land-use change) and leaf area dynamics are all
poorly represented in TBMs*>**, Future implementations of new pro-
cess representations or model structures may lead to updated infer-
ence ontheresponse of photosynthesis to CO,.

Afurther source of uncertainty relates to the degree of structural
similarity between models and the potential for systematic cross-model
biases. For example, ifall models in the ensemble had the same missing
or biased process representation, which led to systematic bias in the
modelled relationship between the sensitivity of photosynthesis to
CO,andthelandssink across models, that could bias the emergent con-
straintreported here. Systematic cross-model biases with shared struc-
tural similarity could also lead to an underestimation of the uncertainty
associated with the values derived from the emergent constraint*®*,

The models we examine represent the state-of-the-science for land
surface modelling and have substantial diversity of process representa-
tionsand responses to forcings*, even for well-studied processes such
as photosynthesis. Because of this diversity, there are outlier models
with high or low CO, sensitivities or S, .y, estimates and such ‘wrong’
models are necessary for the formation of an emergent constraint.
Indeed, removal of some outlier models, in particular CABLE and
VEGAS, degrades the derived relationship between S and S, o
presented in Fig. 2a (to r=0.5, 0.64; P=0.03, 0.01, respectively) and
removal of both models leads to no statistically significant relationship
between BS*F and S, v, (P=0.15). If future versions of current outlier
models are more consistent with the ensemble, the constraintidenti-
fied here may no longer be evident.

Global photosynthesisis the largest flux of CO, in the global carbon
cycleandsmallchanges interrestrial photosynthesis over time canlead
tolarge changesinthe net carbonsink. The resulting feedback fromthe
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effect ofincreasing CO, on photosynthesis (the carbon-concentration
feedback) has been estimated to be over four times larger and more
uncertain, than the direct carbon-climate feedback*®. The large differ-
ences between estimates of historic changes in GPP*'*" are therefore
disconcerting and could potentially lead to incorrect inference about
biasesin current TBMs®"* and long-term changesin related components
of the global carbon cycle such as soil respiration'*”. The confluence of
approaches we use bounds the plausible range of the historic effect of
CO,onglobal terrestrial photosynthesistoa S5 of 0.62 + 0.14 (mean,
s.d.; Fig. 2b) and helps to reconcile differences in previous estimates.
The results also show that widely used RS-based estimates of global
terrestrial photosynthesis need toincorporate the effect of increasing
CO,on photosynthetic LUE and provide a globally applicable approach
thatisbroadly consistent with the TBMs examined. Together, our results
suggest thatincreases in atmospheric CO, have led to a large increase
inglobal photosynthesis since 1982, representing a strong carbon-con-
centration feedback that has helped to slow down the accumulation of
anthropogenic emissionsin the atmosphere.
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Methods

The B metric of CO, sensitivity

We quantified the apparent sensitivity of global terrestrial GPP to CO,
intheRS, TBM and independent proxy estimates using two approaches:
(1) the percentage change in GPP with respect to GPP at the start of
the time period (equation (5) below) and (2) a S metric defined as the
responseratio (R) of GPP with respect to CO,:

_ [GPP(#) — GPP (£0)] /GPP (¢o)

A= TG -catto)/caty) @

where GPP(¢) is the value of GPP at time ¢t and Ca(t) is the value of
atmospheric [CO,] attime ¢. Although other methods to calculate the
[S-factor have been proposed (for example, ref. 48), we use equation
(1) for ease of interpretation. A 8 of 1 represents direct proportional-
ity between the GPP CO, response and the change in CO,. Note that to
avoid undueinfluence of year-to-year variability in GPP, we estimated
GPP(¢) and GPP(t,) on the basis of a linear regression fit to the GPP
time series.

Assessing the CO,-sensitivity of satellite-based GPP

Recent reports have highlighted that the most commonly used
satellite-based estimates of GPP have amuch lower CO,-sensitivity than
that derived from TBMs®". However, most satellite-based estimates
do not incorporate the universally observed direct effect of increas-
ing CO, on the LUE of leaves of C, vegetation', which is not observ-
able from space'. The effect of increasing CO, on global terrestrial C,
photosynthesis that we examine here manifests through two primary
pathways: though increasing the biochemical rate of photosynthesis
onaleafareabasis*, which we refer to as the direct effect and through
increasesinleafareaonaground areabasis, allowing for the intercep-
tion of greater amounts of light***', which we refer to as the indirect
effect. The former, direct response, arises because CO, is a substrate
for the photosynthetic enzyme, RuBisCO. Both CO, and O, compete
attheactive site of RuBisCO, so changesin the concentration of either
affect the rate at which CO, is assimilated, effectively changing the LUE
of photosynthesis on a leaf area basis at a given light level. The latter,
indirect response of increasing leaf area index (LAI*") and the result-
ing increase in the (FAPAR), reflects both the increased carbon avail-
able to invest in structural growth under elevated CO, and potential
changesinthe hydrological equilibrium due to elevated CO,-induced
increases in water-use efficiency, which can lead to increased leaf
area in water-limited ecosystems®>**, Both response pathways are
incorporated in TBMs** and long-term proxies account for each to
differing degrees. Most satellite-based estimates, however, do not
account for the direct effect ofincreasing CO,onthe biochemical rate
of photosynthesis'**.

We assessed whether incorporating a CO, sensitivity of LUE in
RS-based approaches for estimating GPP reconciled the difference
between the sensitivity of RS-based GPP to increasing CO, and that
implied by the emergent constraint. Todoso, wedevelop aCO,sensitivity
function for incorporating the effect of increasing CO, on the LUE of
photosynthesisinto satellite GPP estimates, based on the conservative
assumption that the ecosystem-scale CO, sensitivity is consistent with
that of the electron-transportlimited rate of photosynthesis (4;). This
issupported by reports that the observed CO, response of photosyn-
thesis and biomass closely corresponds to the CO,-sensitivity of 4; (ref.
35).Inaddition, ithas been suggested that shaded, and thus primarily
electron-transport limited, leaves contribute the most canopy®**®
and global terrestrial photosynthesis®. The assumption is further
supported by optimal coordination theory, which posits that photo-
synthesis under typical daytime field conditions is close to the point
where RuBisCO-limited (A.) and A;are colimiting. The colimitation of A,
and A;has beenshownto hold across a range of ecosystems”, as has the
downregulation of the maximum velocity of carboxylation (V,,,,) under

elevated CO, to maintain coordination®. Given that the sensitivity
of A;jto CO,is much smaller than that of A. (ref. 59), the sensitivity of A;
to CO, therefore represents a conservative approachtoincorporatea
CO, sensitivity of LUE* in RS estimates of photosynthesis. Note that
we also make the conservative assumption that C, plants operate at
or near CO, saturation®.

The mechanistic photosynthesis model proposed by ref. 49
captures the biochemical controls of leaf photosynthesis and
responses to variations in temperature, light and CO, concentration.
According to the model, the gross photosynthesis rate, A, is limited
by either the capacity of the RuBisCO enzyme for the carboxyla-
tion of ribulose-1,5-bisphosphate (RuBP), the electron-transport
capacity for RuBP regeneration. In the case of the limitation by the
electron-transport capacity for RuBP regeneration, the photosynthetic
rate (A, umol m~s™) is given by:

cG—I*

A= QUOIW 2

where @, is the intrinsic quantum efficiency, /is the absorbed light
(pmol m™2s™), ¢; (Pa) is the leaf-internal CO, concentration and I” (Pa)
isthe CO,compensation point. Parameter " depends on temperature,
as estimated through a biochemical rate parameter (r)®"

AH(T-298.15)
I =ryse 81k7 3)

where R is the molar gas constant (8.314 ) mol™ K™), r,s=4.22 Pa, is
the photorespiratory point at 25 °C, AH is the activation energy for
I (37.83 k) mol™) and T is the temperature in K. Assuming the CO,
sensitivity of light-limited photosynthesis allows for the development
of an index of the effect of CO, on photosynthetic LUE*, which can
be incorporated in any RS-based LUE model or empirical upscaling
estimate of GPP.

By rewriting equation (2), substituting c; by the product of
atmospheric CO, (c,) and the ratio of leaf-internal to leaf-ambient CO,
(x =c/c,), the sensitivity of GPP and LUE to CO, can be described as:
0¢ol cc_.a;:zlr\;

aco,

0o, 4)
@ Iacoz ’

daGPP
?co,

OLUE _ 0¢co,

~ 7 aco, ~ aco,

where o, = %and LUE = GPP/g,l. Note that the indirect effect of

CO,on GPP thFough ®,l, is explicitly accounted for in satellite-based
methods through changes in the fAPAR and considered here as an
independent effect. However, the direct effect, through changes in
LUE, (¢co,), is not. We used equation (4) to derive a scalar, f(CO,), to
account for the direct effect of CO, in any LUE-based estimate of GPP
(for example, satellite or empirical upscaling approaches). To do so,
we calculated AGPP in year ¢ due to the effect of CO, on LUE as
GPP(t = 0) x f(CO,), where:

t _ 1982
( co, ¢c02)
1982
co,

f(COy) = 5)

f(CO,) thus represents the fractional increase in LUE due to the
direct effect of CO, relativeto abaseline period (here 1982, the start of
the time series for the satellite-based methods considered).

The sensitivity of LUE to CO, thus depends on both I”, which is
calculated by means of equation (3), and . We estimated y using the
least-cost hypothesis'>®”. This states that an optimal long-term effective
value of y can be predicted as a result of plants minimizing their total
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carbon costs associated with photosynthetic carbon gain and explicitly
expressed with the following model:

¢ bK
,where =, ——
f_'_ A /D 16![*

where Dis vapour pressure deficitand ’ is the viscosity of water relative
toits value at 25 °C (ref. 63) and b is the ratio of the cost of maintain-
ing carboxylation relative to that of maintaining transpiration'. The
Michaelis—-Menten coefficient of RuBisCO (K) is given by:

~

(6)

K=KC(1+ I%) @)

where K_ and K, are the Michaelis-Menten coefficient of RuBisCO
for carboxylation and oxygenation, respectively, expressed in par-
tial pressure units and P, is the partial pressure of O,. K responds to
temperature through K. and K, the temperature responses for which
are described using a temperature response function described by
equation (3) with specific parameters: AH is 79.43 k] mol™ for K, and
36.38 k) mol*forK,, r,sis 39.97 kPafor K.and 27.48 kPafor K, (ref. 61). We
applied this derived sensitivity to the RS approaches detailed below, on
aper-pixel basisin proportionto the percentage of C; plantsinagiven
pixel®*, as C, plants operate at or near CO, saturation®®. We thus make
the conservative assumption of no direct CO, effect on LUE in the C,
proportion of each pixel.

Incorporating a CO,sensitivity into satellite-based GPP

The approach for incorporating a CO, sensitivity we outline above
(equation (5)) can be incorporated into any satellite-based photo-
synthesis product. Here, we test it on two broadly used approaches.
The first, the MODIS MOD17 algorithm (GPPy,qps (ref. 65)) and the
second anempirical upscaling method based onamodel tree ensemble
(GPPy (ref. 66)). We applied the MODIS MOD17 GPP algorithm driven
by 30-year (1982-2012) Global Inventory Modeling and Mapping Stud-
ies (GIMMS3g) fAPAR data®, to calculate anew 30-year global monthly
gridded (0.5°) dataset of MODIS-derived GPP:

GPPyopis = GPPyopis X (1+ f(CO,))
= fAPAR x PAR x LUE,;5 X fiD) X f(Tmin) X 1+ fCO,)) (8)
= fAPAR x PAR x LUE

where LUE,,, represents biome-specific maximum LUE, f(D) represents
awater stress reduction scalar based on the atmospheric vapour pres-
suredeficitand f(T.,,) representsalow-temperature stressreduction
scalar. LUE,,,,f(D) and f(T.,;,) are parameterized accordingtoref. 68.
Value f(CO,) is estimated on a per-pixel basis using equation (5). We
used global monthly gridded (0.5°) weather data, provided by the
Climate Research Unit at East Anglia University (CRU TS4.01). The total
available photosynthetically active radiation (PAR) and D were calcu-
lated from insolation and CRU climate data using a simple
process-based bioclimatic model (STASH®).

To incorporate a CO, sensitivity in a global empirical upscal-
ing dataset based on a model tree ensemble ML technique (GPPyq,
1982-2012°¢), which does not account for the direct effect of CO, on
LUE, we followed the approach outlined for the MODIS GPP product.
Specifically, we applied the CO, function (equation (5) to spatially
distributed GPPy,y, as:

GPPyire = GPPyre(1+(CO;)) %)
Early RS GPP models®”° advocated for including a CO, effect on

LUE, though primarily used the larger, light-saturated, sensitivity.
A recent review’ found that the most widely used modern RS GPP

approaches®*®® donotinclude a CO, effect on LUE and of the 3 that did
(out of 14 assessed) 2 are enzyme kinetics, not LUE, models (BESS”*and
BEPS™). The third (cFix™) assumes the light-saturated CO, sensitivity,
which is not suitable for global application given the large contribu-
tion of RuBP regeneration-limited leaves**”>. Some recent studies'>’*”
incorporated a CO, effect on LUE but the approach taken typically
requires the reparameterization of the LUE model and is thus not eas-
ily applicable to other RS GPP products. The approach proposed here
provides a generic and conservative method for incorporating CO,
effects on LUE in any RS GPP product, which allows us to quantify the
relative importance of incorporating a CO, effect in RS GPP products
andreconciles the large difference between RS and TBM-derived sen-
sitivities to CO,.

Constraining terrestrial photosynthesis CO, sensitivity
Emergent constraints have gained prominence in recent years as a
means by which to infer unobserved quantities of interest in land
surface and climate models? >, The underlying core concept is that,
althoughthereis alarge spreadinthe model estimates of an observed
variable X and an unobserved variable Y across models, the relation-
ship linking the two is sometimes tightly constrained across mod-
els. Given the existence of a strong and robust relationship across
models between X and Y, observations of X can be used to generate a
probabilistic inference, or constraint, on Y. This approach has been
termed ‘emergent’ because the functional relationship cannot be
diagnosed fromasingle model but rather emerges from examining the
model spread® >,

The emergent constraint identified in this study links the
sensitivity of GPP to CO, (85", see definition below) to the magnitude
of the cumulative residual terrestrial sink (S, ,np) between 1982 and
2016.1tisderived fromalinear regression across an ensemble of TBMs
between the modelled cumulative S, ,\p and the sensitivity of GPP to
CO,. We use global simulations from 15 TBMs (Supplementary
Table 2) run as part of the Trends in Net Land-Atmosphere Exchange
(TRENDY v.6) initiative (https://sites.exeter.ac.uk/trendy) (v.6 data are
reported in ref. 76). In TRENDY, common input forcing data were pre-
scribed for aseries of model experiments from 1901to0 2015. Here we use
boththeresults of the TRENDY v.6 scenario S3 simulations (temporally
dynamic climate, CO, and land use) as reported in the Global Carbon
Project (GCP”) and the TRENDY v.6 scenario S1simulations (CO,-only:
temporally dynamic CO,, time-invariant climate; pre-industrial land-use
mask). For more details on the TRENDY project see ref. 24 and for details
ofthe TRENDY v.6 simulations used here see ref. 76.

Weestimated BSF* for each TRENDY v.6 TBM from annual GPP from
the S1(CO,-only) simulations, performed by 15models (Supplementary
Table 2), using equation (1) over the 1982-2012 period (to maintain
consistency with the RS methods assessed). Cumulative S, ,\, (PgC) is
calculated from the annual S,y (PgC yr™) reported by the GCP” for
each TRENDY v.6 TBM, which represents the annual total net biome
productivity plus emissions from land-use change.

The emergent constraintapproachrelies on astatistical relation-
ship between a model predicted variable for which an observational
constraint exists and one for which thereis no observational constraint
available” . In the case of the relationship between 5" and S, o,
estimates of S, ,np are made annually by the Global Carbon Project,
along with the associated uncertainties®. The S, .\ values we use as the
constraint are the cumulative reported annual values of the residual
land sink from the Global Carbon Project® over the period from 1982
t02016. Note that the period we used was chosen to both coincide with
the satellite observations we use and to be sufficiently long so as to
minimize the effect of macroclimatic events such as strong El Nino
periods and volcanic eruptions.

The Global Carbon Project reports S, 4y Uncertainty both on an
annual, decadal and acumulative basis, with an average uncertainty of
0.9 PgC yr'for each of the four decades included in this study. For the
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1960-2020 period where direct atmospheric CO, measurements are
available, the Global Carbon Project estimates residual land carbon
uptake of 135 + 25 GtC (mean + s.d.; ref. 25, Table 8), with a near-zero
unattributed budget imbalance. The budget closure is interpreted as
evidence of a coherent community understanding of the emissions
and global sinks for this period”. This provides a cumulative S, \xp
reference uncertainty of18.5%, which we apply to the cumulative fluxes
of the period examined (1982 to 2016). It should be noted that the
uncertainty on cumulative S, ,p is itself uncertain and is estimated by
the Global Carbon Project based on the most up-to-date versions of
theland surface models they use”. Any future reduction in cumulative
Sianp uncertainty would decrease the uncertainty of 5P reported here.

Data availability

Alldataused tosupport the findings of this study are available publicly
oronrequest. TRENDY model simulations are available on reasonable
request from TRENDY coordinator S. Sitch (s.a.sitch@exeter.ac.uk;
https://globalcarbonbudgetdata.org/). The Multivariate ENSO Index is
available from https://psl.noaa.gov/enso/mei/. The GIMMS fAPAR data
areavailable onrequestfromR. Myneni, Boston University (https://sites.
bu.edu/cliveg/contact/). Climate forcings used are available from
Climate Research Unit at East Anglia University (https://crudata.
uea.ac.uk/cru/data/hrg/). Upscaled GPP data are available from the
FluxCom initiative of the Max Planck Institute for Biogeochemistry
(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).

Code availability

Code used to support the findings of this study is publicly avail-
able in the GitHub repository” at https://github.com/trevorkeenan/
gpp-co2-ncc.
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