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A constraint on historic growth in global 
photosynthesis due to rising CO2

T. F. Keenan    1,2  , X. Luo    1,2,3, B. D. Stocker    4,5,6,7,8, M. G. De Kauwe    9,10,11, 
B. E. Medlyn    12, I. C. Prentice    13,14,15, N. G. Smith    16, C. Terrer    17, H. Wang    15, 
Y. Zhang    1,2,18 & S. Zhou    1,2,19,20,21,22

Theory predicts that rising CO2 increases global photosynthesis, a process 
known as CO2 fertilization, and that this is responsible for much of the 
current terrestrial carbon sink. The estimated magnitude of the historic CO2 
fertilization, however, di!ers by an order of magnitude between long-term 
proxies, remote sensing-based estimates and terrestrial biosphere models. 
Here we constrain the likely historic e!ect of CO2 on global photosynthesis 
by combining terrestrial biosphere models, ecological optimality theory, 
remote sensing approaches and an emergent constraint based on global 
carbon budget estimates. Our analysis suggests that CO2 fertilization 
increased global annual terrestrial photosynthesis by 13.5 ± 3.5% or 
15.9 ± 2.9 PgC (mean ± s.d.) between 1981 and 2020. Our results help 
resolve con#icting estimates of the historic sensitivity of global terrestrial 
photosynthesis to CO2 and highlight the large impact anthropogenic 
emissions have had on ecosystems worldwide.

Globally, photosynthesis results in the single largest flux of carbon 
dioxide (CO2) between the atmosphere and the biosphere1,2. Long-term 
changes in photosynthesis, for example in response to rising atmospheric 
CO2, could therefore provide an important feedback to climate change3–5. 
Global terrestrial photosynthetic carbon uptake cannot be observed 
directly, however, and must instead be either predicted by terrestrial bio-
sphere models (TBMs) or inferred from proxies2. The multiple long-term 
proxies from which changes in global terrestrial photosynthesis are 

derived include satellite-based estimates6,7, ice-core records of carbonyl 
sulfide (COS)8 and herbarium samples of deuterium isotopomers9, along 
with information gleaned from the seasonal cycle of atmospheric CO2 
(ref. 10). Despite the importance of photosynthesis, however, and the 
multiple proxies that exist, there is no consensus about the expected 
historic change in terrestrial photosynthesis due to rising CO2 (refs. 3–12).

Satellite-based estimates of global terrestrial photosynthetic carbon  
uptake are derived from observations of spatiotemporal variations in 
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satellite- and TBM-inferred sensitivities of GPP to historic changes in 
atmospheric CO2.

We reconciled the apparent difference between the TBM-inferred 
and satellite-based estimates of the sensitivity of GPP to CO2 (Fig. 1) by 
using first-principles theory to incorporate the direct effect of increas-
ing CO2 on C3 LUE in the satellite-based estimates. We refer to RS  
estimates that incorporate theory of the direct effect of CO2 on LUE as 
the modified RS-based methods hereafter. The direct effect of CO2 on 
LUE reflects the increasing competitiveness of CO2 relative to O2 for 
the active sites of the ribulose-1,5-bisphosphate carboxylase-oxygenase 
(RuBisCO) enzyme and the increasing competitiveness of CO2 as atmos-
pheric concentrations rise (Methods). To do so we considered two 
distinct classes or satellite-based estimates. The first is a commonly 
used LUE approach based on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) algorithm (the MA approach) and the second 
is an ML approach that integrates both satellite and ground observa-
tions of ecosystem carbon fluxes. The direct effect of increasing CO2 
on the LUE of canopy photosynthesis13 was roughly twice as large as 
the indirect effect of increasing canopy leaf area and thus increasing 
the fraction of absorbed photosynthetically active radiation(fAPAR), 
represented in the ML and MA approaches (Fig. 1a,b). The long-term 
sensitivity of the RS-based estimates of GPP modified to account  
for both the direct (βLUE

R

) and indirect (βfAPAR
R

) effect of increasing CO2 
(βGPP

R

; equation (1)) was 0.50 ± 0.1 (mean ± s.d.) and 0.46 ± 0.1 for the 
ML and MA approaches, respectively (Fig. 1b), compared to 0.16 ± 0.05 
and 0.16 ± 0.06 for the original ML and MA-based estimates, respec-
tively (Fig. 1b). The long-term increase in GPP from the updated 
RS-based estimates thus more closely approximated that of the TBM 
ensemble mean (βGPP

R

 = 0.59 ± 0.16) (Fig. 1b). The modified RS-based 
methods predict a 7.27 ± 0.7% (ML) and 6.72 ± 0.9% (MA) increase in 
global annual GPP for a 14.5% increase in atmospheric CO2 between 
1982 and 2012.

Despite the agreement between the updated satellite methods 
and the TBM model ensemble (Fig. 1b), there is a large spread in  
individual TBM sensitivities and the true sensitivity is uncertain 
because of the lack of a comparable observational record. To address 
this issue, we proposed a constraint on the historic response of 

surface reflectance, from which vegetation solar energy absorption can 
be derived. As they integrate land surface observations, they are often 
regarded as a benchmark to which TBMs should be compared11. Such 
comparisons generally suggest that TBMs overestimate the change 
in global terrestrial photosynthesis due to too high a sensitivity of 
photosynthesis to increasing CO2 (refs. 6,11). However, satellite–TBM 
comparisons are mired by the fact that most satellite-based estimates, 
be they machine learning (ML) or algorithmically based, do not incor-
porate the universally observed direct effect of increasing CO2 on the 
light-use efficiency (LUE) of leaves of C3 vegetation13. This is because 
the direct effect of increasing CO2 on LUE is not directly observable 
from space14. In contrast, observation-based proxies, based on ice-core 
records of COS8,15, eddy-covariance networks12 and herbarium and 
field-based deuterium isotopomers9, suggest that TBMs may underesti-
mate the sensitivity of global photosynthesis to CO2. TBMs themselves 
show a large range of sensitivities of global terrestrial photosynthesis to 
CO2 (refs. 10,16,17), though few demonstrate sensitivities as low as the 
average satellite-inferred values6,14 or typically as high as those derived 
from the COS or deuterium proxies8,9,17. The spread in estimates of the 
sensitivity of global terrestrial photosynthesis to CO2 and the lack of 
a global constraint, constitutes a large source of uncertainty in future 
projections of the Earth system18 and hinders attribution of the various 
processes responsible for long-term changes in the global terrestrial 
carbon cycle.

Here, we use remote sensing (RS) observations informed with 
ecological optimality theory to help constrain the historic response of 
photosynthesis to rising CO2. We develop a method to incorporate the 
direct effect of CO2 on the rate of canopy-level terrestrial gross primary 
photosynthesis (GPP) in established satellite-based approaches. We do 
so using first-principles theory of photosynthetic carbon fixation19,20 
and generate 30-year global datasets of satellite-derived GPP. In addi-
tion, we identify an emergent multimodel relationship21–23 between 
the modelled terrestrial carbon sink and the sensitivity of photo-
synthesis to CO2 from the Trends in Net Land–Atmosphere Carbon 
Exchanges project (TRENDY24). When combined, these approaches 
constrain the range of plausible estimates of the historic effect of 
CO2 on global GPP, resolving the large apparent difference between 

340 350 360 370 380 390

CO2 concentration (ppm)

–2

0

2

4

6

8

10

∆G
PP

 (%
)

TRENDY model ensemble
Machine learning (only ∆fAPAR)
MODIS (only ∆fAPAR)
Theory (only ∆LUE)
Machine learning (∆LUE + ∆fAPAR)
MODIS (∆LUE + ∆fAPAR)

0

0.2

0.4

0.6

β RG
PP

MA, o
nly 

fA
PA

R

ML, 
only 

fA
PA

R

Th
eory,

 only 
LU

E

MA, fA
PA

R an
d LU

E

ML, 
fA

PA
R an

d LU
E

TR
ENDY

a b

Fig. 1 | Long-term changes in global annual photosynthesis from TBMs and 
multiple satellite observations. a, Relative changes in global terrestrial 
photosynthesis (∆GPP, %) from 1982 (CO2 = 341 ppm) to 2012 (CO2 = 391 ppm) 
based on simulations from process-based models in the TRENDY project model 
ensemble (orange, mean ± s.d.) and two different satellite approaches (empirical 
MODIS algorithm (MA, solid lines); a machine learning method (ML, dashed 
lines)). Estimates from the satellite approaches were obtained allowing for an 
effect of increasing CO2 on either the fAPAR (red lines, dots), the LUE of 

photosynthesis (blue line) or both fAPAR and LUE (black lines, dots). b, Inferred 
CO2 sensitivities (βGPP

R

; Methods) from the data presented in a, for the standard 
satellite-based approaches using ML and the MODIS algorithm (MA) with the CO2 
effect on GPP manifest through changes in fAPAR, the modified MA approach 
with a CO2 effect only on LUE (MA, only LUE) and both ML and MA satellite 
RS-based approaches with an effect of increasing CO2 on both LUE and fAPAR. 
Black error bars represent the mean standard error of βGPP

R

 for each product  
(MA, ML) or the mean standard error across TRENDY models.
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photosynthesis to rising CO2 by combining the TRENDY modelled 
sensitivity of global GPP, for which no direct observations exist, with 
the magnitude of the cumulative global terrestrial residual carbon sink 
between 1982 and 2016 (SLAND), for which there are constrained esti-
mates25,26. Using cumulative SLAND estimates as opposed to shorter time 
periods reduces the influence of annual or decadal random error. Model 
sensitivities of photosynthesis to CO2 (Supplementary Table 2) were 
positively correlated (r = 0.70, P < 0.01) with the magnitude of the 
modelled cumulative terrestrial sink on a multidecadal scale (Fig. 2a), 
with a stronger CO2 fertilization effect leading to a larger modelled 
cumulative sink. This emergent relationship21–23, provides an opportu-
nity to constrain the wide range in estimates of the sensitivity of GPP 
to CO2 with the observed magnitude of SLAND, particularly when com-
bined with the results of the modified RS-based estimates. The full 
distribution, which includes the TBMs (Supplementary Table 2) and 
the original RS-based estimates, provides an estimate of βGPP

R

 of 
0.54 ± 0.21 (mean ± s.d.; Fig. 2b), which is lower than that derived from 
the distribution of TBMs (βGPP

R

 = 0.59 ± 0.16). The posterior TBM dis-
tribution, formed by bootstrapping the cumulative land-sink emergent 
constraint relationship (Fig. 2a) provides a constrained estimate of 
β

GPP

R

 of 0.62 ± 0.14 (Fig. 2b). This is 30% lower than the maximum uncon-
strained estimate and over 200% higher than that of the original 
RS-based approaches. The constrained distribution represents a 33% 
reduction in uncertainty compared to the full distribution of βGPP

R

  
(Fig. 2b) and a 13.5% reduction compared to the unconstrained TBM 
ensemble (Fig. 2b).

Results from the updated RS estimates and the emergent con-
straint provide a point of comparison for other reported estimates of 
the sensitivity of global terrestrial photosynthesis to CO2. A long-term 
COS proxy has been proposed8, which simulates photosynthetic 
change on the basis of a mass balance of global COS sources and sinks 
from 1900 to 2013 and suggests an increase in photosynthesis equiva-
lent to an effective βGPP

R

 of 0.94 (Supplementary Table 1). This is  
comparable to the highest sensitivity of the TBM models used here17. 
The COS estimate, however, integrates over a longer time period and 
therefore potentially captures changes in the land surface unrelated 
to CO2, such as reforestation and the agricultural green revolution27, 
and is thus not directly comparable to the emergent constraint and 
updated RS estimates presented here. Another proxy, based on  
deuterium isotopomers gathered from herbarium specimens and  
field trials9, suggests an historic change equivalent to a βGPP

R

 of 1.03 

(Supplementary Table 1). Although higher than that derived from COS, 
the deuterium isotopomer estimate reflects the effect of increasing 
CO2 on photosynthesis for leaves in full sunlight. As shaded leaves 
experience stronger light limitation, which results in a lower sensitivity 
to CO2, COS-based estimates could thus reasonably be expected to be 
higher than the canopy integrated sensitivity. Our results indicate that 
such larger implied sensitivities are probably overestimates (Fig. 2).

The closer agreement between the updated RS approaches and 
the TBMs (Fig. 1) allows for their response to CO2 to be probed more 
deeply. The sensitivity of C3 photosynthesis to CO2 increases strongly 
with temperature28 (Fig. 3a; equations (2)–(7)) because the suppression 
of oxygenation by RuBisCO with increasing CO2 is greater at higher 
temperatures. Reduced RuBisCO oxygenation reduces photorespira-
tion at high temperatures, as represented by the temperature depend-
ence of the photosynthetic CO2 compensation point (Γ*, equation (3)). 
The resulting latitudinal gradient is reproduced by both the TBMs 
examined (Fig. 3b) and the updated RS approaches (Fig. 3c–e). The 
results indicate that the influence of CO2 on photosynthesis at high 
latitudes is limited due to low temperatures. Estimates of the long-term 
change in GPP from the updated RS approaches show large changes, 
particularly in areas of intensive agriculture such as the midwestern 
United States, central and northern Europe and India (Fig. 3c,d). Com-
pared to the RS approaches (Fig. 3d), the TBMs predict smaller increases 
in arid mid- and low-latitude regions, particularly in Australia and South 
Africa but much larger increases in the productive croplands and  
tropical and temperate forests (Fig. 3d). The lower TBM sensitivity, in 
particular of shrublands (Fig. 3f), is potentially due to poorly repre-
sented TBM processes such as the positive relationship between CO2 
and woody shrub expansion29. The lower TBM sensitivities could be 
from inaccurate representation of greening trends that arise from 
changes in land management practices such as reforestation30. The 
relatively higher TBM sensitivity regions, particularly tropical forests 
(Fig. 3), may be due to insufficient TBM representation of nutrient 
constraints31, or the saturation of RS vegetation indices at high leaf 
area32, reflecting large uncertainty about the response of tropical forest 
photosynthesis to CO2 (ref. 33). In general, the magnitude of the TBM 
and updated satellite βGPP

R

 suggests that the global terrestrial photo-
synthetic response to CO2 is consistent with the response of the 
light-limited photosynthetic rate which has also been suggested by 
observations of photosynthesis and biomass changes at the ecosystem 
scale34–36, theoretical models37,38 and by model results showing that 
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Fig. 2 | A constraint on the sensitivity of global terrestrial photosynthesis to 
CO2. a, The relationship between the modelled sensitivity of GPP to CO2 (βGPP

R

, 
TRENDY experiment S1: dynamic CO2 only) and the modelled cumulative 
terrestrial carbon sink (PgC, TRENDY experiment S3: dynamic CO2, climate and 
land use). Individual TRENDY model details and βGPP

R

 values are listed in 
Supplementary Table 2. The red line and shaded area show the best linear fit 
across models and the associated prediction standard error (dashed red) and 
standard deviation of prediction error (dashed grey) intervals. The vertical 

dashed lines shows the cumulative residual terrestrial carbon sink (mean, s.d.) 
between 1982 and 2016 as estimated by the Global Carbon Project27. b, The 
unconstrained probability density function (PDF) distribution of βGPP

R

 across all 
original estimates (TRENDY models and the original RS-based approaches; 
dotted line, grey bars) and the unconstrained PDF of βGPP

R

 across the TRENDY 
TBMs (dashed black line). The orange area represents the conditional probability 
distribution derived by applying the constraint from a to the model ensemble.
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electron-transport limited leaves are responsible for most global  
carbon assimilated through photosynthesis39.

As with any application of the emergent constraint technique, it 
is important to highlight that many factors could lead to biases and 
undermine the robustness of the derived constraint. Of primary con-
cern is the potential for emergent constraints to rely on spurious 
cross-model correlations that are not based on a clear physical relation-
ship40. The constraint we identify is based on the relationship between 
CO2 and the land sink, for which there is ample observational and theo-
retical support3,4. Although CO2 fertilization is by no means the sole 
likely reason for an increasing land sink4 (other contributions arise 
from forest regrowth, nitrogen fertilization, growing season extensions 
and release from cold limitations), such processes are included in the 
models examined and contribute to the scatter in the relationship 
between βGPP

R

 and SLAND presented in Fig. 2a. That said, there are many 
processes inadequately represented in both TBMs and the satellite 
approaches that could lead to biases in the derived βGPP

R

. For example, 
models have been shown to poorly reproduce changes in the seasonal 
cycle of atmospheric CO2 (ref. 41) and demonstrate a range of responses 
when compared to results from experimental manipulation42. Nutrient 
limitation, thermal temperature acclimation, water stress, distur-
bances (including land-use change) and leaf area dynamics are all 
poorly represented in TBMs42,43. Future implementations of new pro-
cess representations or model structures may lead to updated infer-
ence on the response of photosynthesis to CO2.

A further source of uncertainty relates to the degree of structural 
similarity between models and the potential for systematic cross-model 
biases. For example, if all models in the ensemble had the same missing 
or biased process representation, which led to systematic bias in the 
modelled relationship between the sensitivity of photosynthesis to 
CO2 and the land sink across models, that could bias the emergent con-
straint reported here. Systematic cross-model biases with shared struc-
tural similarity could also lead to an underestimation of the uncertainty 
associated with the values derived from the emergent constraint40,44.

The models we examine represent the state-of-the-science for land 
surface modelling and have substantial diversity of process representa-
tions and responses to forcings45, even for well-studied processes such 
as photosynthesis. Because of this diversity, there are outlier models 
with high or low CO2 sensitivities or SLAND estimates and such ‘wrong’ 
models are necessary for the formation of an emergent constraint. 
Indeed, removal of some outlier models, in particular CABLE and 
VEGAS, degrades the derived relationship between βGPP

R

 and SLAND 
presented in Fig. 2a (to r = 0.5, 0.64; P = 0.03, 0.01, respectively) and 
removal of both models leads to no statistically significant relationship 
between βGPP

R

 and SLAND (P = 0.15). If future versions of current outlier 
models are more consistent with the ensemble, the constraint identi-
fied here may no longer be evident.

Global photosynthesis is the largest flux of CO2 in the global carbon 
cycle and small changes in terrestrial photosynthesis over time can lead 
to large changes in the net carbon sink. The resulting feedback from the 
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R
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1982 to 2012 from an ensemble of TBMs (TBMs; TRENDY-S1) (b); mean long-term 
changes in GPP from the two updated satellite methods, which includes a 
modelled direct (βLUE

R

) and measured indirect (βfAPAR
R

) effect of increasing CO2 on 
GPP, in addition to the effect of land use and climate changes on the fraction of 

absorbed radiation (fAPAR) (c); the difference between the data presented in  
b and c (d); the latitudinal distribution of long-term changes in gross primary 
photosynthesis (∆GPP, PgC) from 1982 to 2012, from the TBM ensemble (orange 
shaded area, mean, s.d. across models) and ∆GPP predicted from RS approaches 
with (black, mean, s.d. between MODIS and ML approaches) and without (red) a 
direct effect of CO2 on LUE (Methods) (e); and long-term changes in ∆GPP, 
separated by plant functional types (f). EBF, evergreen broadleaved forest;  
SAV, savanna; DBF, deciduous broadleaved forests; CRO, croplands; SH, 
shrublands; ENF, evergreen needleleaf forests; GRA, grasslands; WET, wetlands.
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effect of increasing CO2 on photosynthesis (the carbon–concentration 
feedback) has been estimated to be over four times larger and more 
uncertain, than the direct carbon–climate feedback46. The large differ-
ences between estimates of historic changes in GPP6–10,15 are therefore 
disconcerting and could potentially lead to incorrect inference about 
biases in current TBMs6,14 and long-term changes in related components 
of the global carbon cycle such as soil respiration11,47. The confluence of 
approaches we use bounds the plausible range of the historic effect of 
CO2 on global terrestrial photosynthesis to a βGPP

R

 of 0.62 ± 0.14 (mean, 
s.d.; Fig. 2b) and helps to reconcile differences in previous estimates. 
The results also show that widely used RS-based estimates of global 
terrestrial photosynthesis need to incorporate the effect of increasing 
CO2 on photosynthetic LUE and provide a globally applicable approach 
that is broadly consistent with the TBMs examined. Together, our results 
suggest that increases in atmospheric CO2 have led to a large increase 
in global photosynthesis since 1982, representing a strong carbon–con-
centration feedback that has helped to slow down the accumulation of 
anthropogenic emissions in the atmosphere.
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Methods
The β metric of CO2 sensitivity
We quantified the apparent sensitivity of global terrestrial GPP to CO2 
in the RS, TBM and independent proxy estimates using two approaches: 
(1) the percentage change in GPP with respect to GPP at the start of 
the time period (equation (5) below) and (2) a β metric defined as the 
response ratio (R) of GPP with respect to CO2:

β

R

=

[GPP (t) − GPP (t

0

)] /GPP (t

0

)

[Ca (t) − Ca (t

0

)] /Ca (t

0

)

(1)

where GPP(t) is the value of GPP at time t and Ca(t) is the value of 
atmospheric [CO2] at time t. Although other methods to calculate the 
β-factor have been proposed (for example, ref. 48), we use equation 
(1) for ease of interpretation. A β of 1 represents direct proportional-
ity between the GPP CO2 response and the change in CO2. Note that to 
avoid undue influence of year-to-year variability in GPP, we estimated 
GPP(t) and GPP(t0) on the basis of a linear regression fit to the GPP  
time series.

Assessing the CO2-sensitivity of satellite-based GPP
Recent reports have highlighted that the most commonly used 
satellite-based estimates of GPP have a much lower CO2-sensitivity than 
that derived from TBMs6,11. However, most satellite-based estimates 
do not incorporate the universally observed direct effect of increas-
ing CO2 on the LUE of leaves of C3 vegetation13, which is not observ-
able from space14. The effect of increasing CO2 on global terrestrial C3 
photosynthesis that we examine here manifests through two primary 
pathways: though increasing the biochemical rate of photosynthesis 
on a leaf area basis49, which we refer to as the direct effect and through 
increases in leaf area on a ground area basis, allowing for the intercep-
tion of greater amounts of light50,51, which we refer to as the indirect 
effect. The former, direct response, arises because CO2 is a substrate 
for the photosynthetic enzyme, RuBisCO. Both CO2 and O2 compete 
at the active site of RuBisCO, so changes in the concentration of either 
affect the rate at which CO2 is assimilated, effectively changing the LUE 
of photosynthesis on a leaf area basis at a given light level. The latter, 
indirect response of increasing leaf area index (LAI51) and the result-
ing increase in the (fAPAR), reflects both the increased carbon avail-
able to invest in structural growth under elevated CO2 and potential 
changes in the hydrological equilibrium due to elevated CO2-induced 
increases in water-use efficiency, which can lead to increased leaf 
area in water-limited ecosystems52–54. Both response pathways are 
incorporated in TBMs24 and long-term proxies account for each to 
differing degrees. Most satellite-based estimates, however, do not 
account for the direct effect of increasing CO2 on the biochemical rate 
of photosynthesis14,55.

We assessed whether incorporating a CO2 sensitivity of LUE in 
RS-based approaches for estimating GPP reconciled the difference 
between the sensitivity of RS-based GPP to increasing CO2 and that 
implied by the emergent constraint. To do so, we develop a CO2 sensitivity  
function for incorporating the effect of increasing CO2 on the LUE of 
photosynthesis into satellite GPP estimates, based on the conservative 
assumption that the ecosystem-scale CO2 sensitivity is consistent with 
that of the electron-transport limited rate of photosynthesis (Aj). This 
is supported by reports that the observed CO2 response of photosyn-
thesis and biomass closely corresponds to the CO2-sensitivity of Aj (ref. 
35). In addition, it has been suggested that shaded, and thus primarily 
electron-transport limited, leaves contribute the most canopy36,56 
and global terrestrial photosynthesis39. The assumption is further 
supported by optimal coordination theory, which posits that photo-
synthesis under typical daytime field conditions is close to the point 
where RuBisCO-limited (Ac) and Aj are colimiting. The colimitation of Ac 
and Aj has been shown to hold across a range of ecosystems57, as has the 
downregulation of the maximum velocity of carboxylation (Vcmax) under 

elevated CO2 to maintain coordination58. Given that the sensitivity  
of Aj to CO2 is much smaller than that of Ac (ref. 59), the sensitivity of Aj 
to CO2 therefore represents a conservative approach to incorporate a 
CO2 sensitivity of LUE37 in RS estimates of photosynthesis. Note that 
we also make the conservative assumption that C4 plants operate at 
or near CO2 saturation60.

The mechanistic photosynthesis model proposed by ref. 49 
captures the biochemical controls of leaf photosynthesis and 
responses to variations in temperature, light and CO2 concentration. 
According to the model, the gross photosynthesis rate, A, is limited 
by either the capacity of the RuBisCO enzyme for the carboxyla-
tion of ribulose-1,5-bisphosphate (RuBP), the electron-transport 
capacity for RuBP regeneration. In the case of the limitation by the 
electron-transport capacity for RuBP regeneration, the photosynthetic 
rate (Aj, µmol m−2 s−1) is given by:

A

j

= φ

0

I

c

i

− Γ ∗

c

i

+ 2Γ ∗

(2)

where φ0 is the intrinsic quantum efficiency, I is the absorbed light 
(µmol m−2 s−1), ci (Pa) is the leaf-internal CO2 concentration and Γ* (Pa) 
is the CO2 compensation point. Parameter Γ* depends on temperature, 
as estimated through a biochemical rate parameter (r)61:

Γ ∗

= r

25

e

ΔH(T−298.15)

298.15RT

(3)

where R is the molar gas constant (8.314 J mol−1 K−1), r25 = 4.22 Pa, is 
the photorespiratory point at 25 ˚C, ∆H is the activation energy for 
Γ* (37.83 kJ mol−1) and T is the temperature in K. Assuming the CO2 
sensitivity of light-limited photosynthesis allows for the development 
of an index of the effect of CO2 on photosynthetic LUE37, which can 
be incorporated in any RS-based LUE model or empirical upscaling 
estimate of GPP.

By rewriting equation (2), substituting ci by the product of 
atmospheric CO2 (ca) and the ratio of leaf-internal to leaf-ambient CO2 
(χ = ci/ca), the sensitivity of GPP and LUE to CO2 can be described as:
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(4)

where ϕ
CO

2

=

c

a

χ−Γ ∗

c

a

χ+2Γ ∗

 and LUE = GPP/φ0I. Note that the indirect effect of 
CO2 on GPP through φ0I, is explicitly accounted for in satellite-based 
methods through changes in the fAPAR and considered here as an 
independent effect. However, the direct effect, through changes in 
LUE, (ϕ

CO

2

), is not. We used equation (4) to derive a scalar, f (CO
2

)

, to 
account for the direct effect of CO2 in any LUE-based estimate of GPP 
(for example, satellite or empirical upscaling approaches). To do so, 
we calculated ∆GPP in year t due to the effect of CO2 on LUE as 
GPP(t = 0) × f (CO

2

)

, where:

f (CO

2

) =

(ϕ

t

CO

2

− ϕ

1982

CO

2

)

ϕ

1982

CO

2

(5)

f (CO

2

)

 thus represents the fractional increase in LUE due to the 
direct effect of CO2 relative to a baseline period (here 1982, the start of 
the time series for the satellite-based methods considered).

The sensitivity of LUE to CO2 thus depends on both Γ*, which is 
calculated by means of equation (3), and χ. We estimated χ using the 
least-cost hypothesis19,62. This states that an optimal long-term effective 
value of χ can be predicted as a result of plants minimizing their total 
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carbon costs associated with photosynthetic carbon gain and explicitly 
expressed with the following model:

χ ≈

ξ

ξ +

√

D

,where ξ =

√

bK

1.6η

∗

(6)

where D is vapour pressure deficit and η* is the viscosity of water relative 
to its value at 25 °C (ref. 63) and b is the ratio of the cost of maintain-
ing carboxylation relative to that of maintaining transpiration19. The 
Michaelis–Menten coefficient of RuBisCO (K) is given by:

K = K

c

(1 +

P

o

K

o

) (7)

where Kc and Ko are the Michaelis–Menten coefficient of RuBisCO 
for carboxylation and oxygenation, respectively, expressed in par-
tial pressure units and Po is the partial pressure of O2. K responds to 
temperature through Kc and Ko, the temperature responses for which 
are described using a temperature response function described by 
equation (3) with specific parameters: ∆H is 79.43 kJ mol−1 for Kc and 
36.38 kJ mol−1 for Ko, r25 is 39.97 kPa for Kc and 27.48 kPa for Ko (ref. 61). We 
applied this derived sensitivity to the RS approaches detailed below, on 
a per-pixel basis in proportion to the percentage of C3 plants in a given 
pixel64, as C4 plants operate at or near CO2 saturation60. We thus make 
the conservative assumption of no direct CO2 effect on LUE in the C4 
proportion of each pixel.

Incorporating a CO2 sensitivity into satellite-based GPP
The approach for incorporating a CO2 sensitivity we outline above 
(equation (5)) can be incorporated into any satellite-based photo-
synthesis product. Here, we test it on two broadly used approaches. 
The first, the MODIS MOD17 algorithm (GPPMODIS (ref. 65)) and the 
second an empirical upscaling method based on a model tree ensemble  
(GPPMTE (ref. 66)). We applied the MODIS MOD17 GPP algorithm driven 
by 30-year (1982–2012) Global Inventory Modeling and Mapping Stud-
ies (GIMMS3g) fAPAR data67, to calculate a new 30-year global monthly 
gridded (0.5°) dataset of MODIS-derived GPP:

GPP

′

MODIS

= GPP

MODIS

× (1 + f(CO

2

))

= fAPAR × PAR × LUE

max

× f(D) × f(T

min

) × (1 + f(CO

2

))

= fAPAR × PAR × LUE

(8)

where LUEmax represents biome-specific maximum LUE, f(D) represents 
a water stress reduction scalar based on the atmospheric vapour pres-
sure deficit and f (T

min

)

 represents a low-temperature stress reduction 
scalar. LUEmax, f(D) and f (T

min

)

 are parameterized according to ref. 68. 
Value f (CO

2

)

 is estimated on a per-pixel basis using equation (5). We 
used global monthly gridded (0.5°) weather data, provided by the 
Climate Research Unit at East Anglia University (CRU TS4.01). The total 
available photosynthetically active radiation (PAR) and D were calcu-
lated from insolation and CRU climate data using a simple 
process-based bioclimatic model (STASH69).

To incorporate a CO2 sensitivity in a global empirical upscal-
ing dataset based on a model tree ensemble ML technique (GPPMTE, 
1982–201266), which does not account for the direct effect of CO2 on 
LUE, we followed the approach outlined for the MODIS GPP product. 
Specifically, we applied the CO2 function (equation (5) to spatially 
distributed GPPMTE, as:

GPP

′

MTE

= GPP

MTE

(1 + f(CO

2

)) (9)

Early RS GPP models37,70 advocated for including a CO2 effect on 
LUE, though primarily used the larger, light-saturated, sensitivity. 
A recent review7 found that the most widely used modern RS GPP 

approaches65,66 do not include a CO2 effect on LUE and of the 3 that did 
(out of 14 assessed) 2 are enzyme kinetics, not LUE, models (BESS72 and 
BEPS70). The third (cFix71) assumes the light-saturated CO2 sensitivity, 
which is not suitable for global application given the large contribu-
tion of RuBP regeneration-limited leaves36,73. Some recent studies12,74,75 
incorporated a CO2 effect on LUE but the approach taken typically 
requires the reparameterization of the LUE model and is thus not eas-
ily applicable to other RS GPP products. The approach proposed here 
provides a generic and conservative method for incorporating CO2 
effects on LUE in any RS GPP product, which allows us to quantify the 
relative importance of incorporating a CO2 effect in RS GPP products 
and reconciles the large difference between RS and TBM-derived sen-
sitivities to CO2.

Constraining terrestrial photosynthesis CO2 sensitivity
Emergent constraints have gained prominence in recent years as a 
means by which to infer unobserved quantities of interest in land 
surface and climate models21–23. The underlying core concept is that, 
although there is a large spread in the model estimates of an observed 
variable X and an unobserved variable Y across models, the relation-
ship linking the two is sometimes tightly constrained across mod-
els. Given the existence of a strong and robust relationship across 
models between X and Y, observations of X can be used to generate a 
probabilistic inference, or constraint, on Y. This approach has been 
termed ‘emergent’ because the functional relationship cannot be 
diagnosed from a single model but rather emerges from examining the  
model spread21–23.

The emergent constraint identified in this study links the  
sensitivity of GPP to CO2 (βGPP

R

, see definition below) to the magnitude 
of the cumulative residual terrestrial sink (SLAND) between 1982 and 
2016. It is derived from a linear regression across an ensemble of TBMs 
between the modelled cumulative SLAND and the sensitivity of GPP to 
CO2. We use global simulations from 15 TBMs (Supplementary  
Table 2) run as part of the Trends in Net Land–Atmosphere Exchange 
(TRENDY v.6) initiative (https://sites.exeter.ac.uk/trendy) (v.6 data are 
reported in ref. 76). In TRENDY, common input forcing data were pre-
scribed for a series of model experiments from 1901 to 2015. Here we use 
both the results of the TRENDY v.6 scenario S3 simulations (temporally 
dynamic climate, CO2 and land use) as reported in the Global Carbon 
Project (GCP76) and the TRENDY v.6 scenario S1 simulations (CO2-only: 
temporally dynamic CO2, time-invariant climate; pre-industrial land-use 
mask). For more details on the TRENDY project see ref. 24 and for details 
of the TRENDY v.6 simulations used here see ref. 76.

We estimated βGPP
R

 for each TRENDY v.6 TBM from annual GPP from 
the S1 (CO2-only) simulations, performed by 15 models (Supplementary 
Table 2), using equation (1) over the 1982–2012 period (to maintain 
consistency with the RS methods assessed). Cumulative SLAND (PgC) is 
calculated from the annual SLAND (PgC yr−1) reported by the GCP76 for 
each TRENDY v.6 TBM, which represents the annual total net biome 
productivity plus emissions from land-use change.

The emergent constraint approach relies on a statistical relation-
ship between a model predicted variable for which an observational 
constraint exists and one for which there is no observational constraint 
available21–23. In the case of the relationship between βGPP

R

 and SLAND, 
estimates of SLAND are made annually by the Global Carbon Project, 
along with the associated uncertainties25. The SLAND values we use as the 
constraint are the cumulative reported annual values of the residual 
land sink from the Global Carbon Project25 over the period from 1982 
to 2016. Note that the period we used was chosen to both coincide with 
the satellite observations we use and to be sufficiently long so as to 
minimize the effect of macroclimatic events such as strong El Nino 
periods and volcanic eruptions.

The Global Carbon Project reports SLAND uncertainty both on an 
annual, decadal and a cumulative basis, with an average uncertainty of 
0.9 PgC yr−1 for each of the four decades included in this study. For the 
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1960–2020 period where direct atmospheric CO2 measurements are 
available, the Global Carbon Project estimates residual land carbon 
uptake of 135 ± 25 GtC (mean ± s.d.; ref. 25, Table 8), with a near-zero 
unattributed budget imbalance. The budget closure is interpreted as 
evidence of a coherent community understanding of the emissions 
and global sinks for this period25. This provides a cumulative SLAND  
reference uncertainty of 18.5%, which we apply to the cumulative fluxes 
of the period examined (1982 to 2016). It should be noted that the 
uncertainty on cumulative SLAND is itself uncertain and is estimated by 
the Global Carbon Project based on the most up-to-date versions of 
the land surface models they use25. Any future reduction in cumulative 
SLAND uncertainty would decrease the uncertainty of βGPP

R

 reported here.

Data availability
All data used to support the findings of this study are available publicly 
or on request. TRENDY model simulations are available on reasonable 
request from TRENDY coordinator S. Sitch (s.a.sitch@exeter.ac.uk; 
https://globalcarbonbudgetdata.org/). The Multivariate ENSO Index is 
available from https://psl.noaa.gov/enso/mei/. The GIMMS fAPAR data 
are available on request from R. Myneni, Boston University (https://sites. 
bu.edu/cliveg/contact/). Climate forcings used are available from 
Climate Research Unit at East Anglia University (https://crudata.
uea.ac.uk/cru/data/hrg/). Upscaled GPP data are available from the  
FluxCom initiative of the Max Planck Institute for Biogeochemistry 
(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).

Code availability
Code used to support the findings of this study is publicly avail-
able in the GitHub repository77 at https://github.com/trevorkeenan/
gpp-co2-ncc.
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