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Abstract— Federated learning (FL) enables distributed joint
training of machine learning (ML) models without the need
to share local data. FL is, however, not immune to privacy
threats such as model inversion (MI) attacks. The conventional
FL paradigm often uses privacy-preserving techniques, and this
could lead to a considerable loss in the model’s utility and con-
sequently compromised by MI attackers. Seeking to address this
limitation, this paper proposes a robust variational encoder-based
personalised FL. (RVE-PFL) approach that mitigates MI attacks,
preserves model utility, and ensures data privacy. RVE-PFL
comprises an innovative personalised variational encoder archi-
tecture and a trustworthy threat model-integrated FL method to
autonomously preserve data privacy, and mitigate MI attacks.
The proposed architecture seamlessly trains heterogeneous data
at every client, while the proposed approach aggregates data at
the server side and effectively discriminates against adversarial
settings (i.e., MI); thus, achieving robustness and trustworthiness
in real-time. RVE-PFL is evaluated on three benchmark datasets,
namely: MNIST, Fashion-MNIST, and Cifar-10. The experi-
mental results revealed that RVE-PFL achieves high accuracy
level while preserving data and tuning adversarial settings. It
outperforms Noising before Model Aggregation FL (NbAFL)
with significant accuracy improvements of 8%, 20%, and 59%
on MNIST, Fashion-MNIST, and Cifar-10, respectively. These
findings reinforce the effectiveness of RVE-PFL in protect-
ing against MI attacks while maintaining the model’s utility.
The source code for RVE-PFL can be found on GitHub:
https://github.com/UNSW-Canberra-2023/RVE-PFL.

Index Terms— Federated learning (FL), variational autoen-
coder (VAE), model inversion (MI) attack, differential privacy
(DP).

1. INTRODUCTION

EDERATED learning (FL) has gained widespread adop-
tion in various applications, ranging from telecommu-
nications to healthcare to different Internet of Things (IoT)
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settings (e.g., Internet of Vehicles — IoV). This is not surprising
since FL supports data privacy by allowing clients to keep
their data on their local machines (e.g., devices) and train the
models locally. According to the report by Research [1], for
example, the FL market is expected to grow at a compound
annual growth rate (CAGR) of 10.7% from 2022 to 2030,
with a projection of reaching USD 266.77 million by 2030.
This growth is partly driven by the increasingly privacy-aware
society. FL presents several compelling advantages. Notably,
FL excels in safeguarding the privacy of data stored on IoT
devices, a critical aspect in sensitive domains like finance and
healthcare. Additionally, FL offers scalability by facilitating
the distributed training of large-scale ML models. This decen-
tralized approach often leads to accelerated training times
and reduced communication costs compared to traditional
centralized methods. Ultimately, FL emerges as a promising
solution for upholding privacy in ML for IoT, contributing to
enhanced efficiency and security in IoT systems [2].

Susceptibility of FL to model inversion (MI) Attacks: 1t is,
however, known that conventional FL does not entirely prevent
information leakage during the sharing of trained models
with the server(s). In other words, these models could be
vulnerable to privacy attacks, such as membership inference,
generative adversarial network (GAN) reconstruction attacks,
and MI attacks [3], [4], [5]. In the context of MI attacks,
an attacker can exploit the parameter exchanges between
clients and the server to infer the training data, even if the
data is not directly shared. Thus, the leakage of sensitive train-
ing data has serious consequences. For instance, adversaries
could (ab)use such information to facilitate nefarious activities
(e.g., identity theft or financial fraud). Therefore, clients may
be reluctant to participate in the FL process due to privacy
leakage concerns. In the literature, there are three popular
mitigation approaches, namely: cryptographic and differential
privacy (DP) approaches [3], [6], [7], [8], and encoding-based
techniques [9], [10], [11].

Limitations of cryptographic and DP Solutions: A num-
ber of FL-based approaches are known to be susceptible to
MI attacks [S], [12]. In addition, commonly used crypto-
graphic approaches (e.g., homomorphic encryption and secure
multi-party computation — SMC) often involve extra encryp-
tion and decryption processes, which result in a substantial
computation overhead. While DP ensures statistical privacy
protection for individual records and guards against model
inference attacks, the addition of noise during the training
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process often leads to the generation of less precise models
(i.e., models with low utility) [6], [13], [14], [15].

Limitations of encoding-based approaches.: Several existing
encoding-based approaches and frameworks rely on training
autoencoder models on the clients for feature encoding, fol-
lowed by transmitting the encoded features to the server for
centralized model training. However, transmitting the encoded
features from clients to the server can lead to privacy risks
as the encoded features may contain sensitive or private
information, which could be exposed during transmission
[9], [10]. Alternatively, other approaches focus on centrally
training the autoencoder, overlooking the data heterogeneity
and decentralized nature of IoT devices [16], [17]. Another
set of approaches involves local training of the autoencoder
and classifier, with the parameters of all three components
(encoder, decoder, and classifier) being sent to the server for
aggregation. However, such an approach significantly increases
the communication cost [17], [18].

Our proposed approach: In light of these limitations,
it is imperative to implement effective privacy-preserving FL
approaches, along with adversarial settings. Thus, the proposed
RVE-PFL introduces an effort to safeguard against MI attacks
in FL by utilising a variational encoder and personalised
federated learning (PFL). In contrast to other encoding-based
approaches that rely on central training of the encoder on a
server-side dataset or send subsequent feature extraction by
clients, our RVE-PFL involves jointly training and fine-tuning
both the encoder and classifier on each client’s available data.
To adhere to the principles of FL, we strictly exchange only
the learned classifier parameters for model aggregation, rather
than sharing labels or extracted features with the server. RVE-
PFL incorporates personalised encoder locally on each client
while sharing only the classifier parameters with the server.
This ensures that the private data representation learned by
the encoder remains confined to the client device, providing
enhanced privacy protection and robustness against MI adver-
sarial settings.

Key Contributions: We propose RVE-PFL as a robust vari-
ational encoder-based personalised FL approach that aims to
address the risk of model inversion attacks while maintaining
the global model’s utility. A summary of this work is as
follows:

- We propose RVE-PFL, which is a novel and simple
approach that combines variational encoding with per-
sonalised FL. RVE-PFL consists of two primary com-
ponents, namely: a personalised variational encoder and
a classifier. The personalised variational encoder con-
verts the client-private data into a probabilistic latent
space, while the classifier is locally trained on the
transformed data and then aggregated globally by the
server. Therefore, the encoder and local classifier are
simultaneously trained and fine-tuned in each global
round.

. We use the MIFace [19], DLG [20], and iDLG [21]
attacks to evaluate the resilience of RVE-PFL against
MI attacks. The success of such attacks depends on
whether the recovered data reveals sensitive informa-
tion about a specific label. Therefore, we conducted a
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quantitative and qualitative analysis to investigate the
attack’s performance.

- We investigate the potential vulnerabilities of FL to model
inversion attacks, which are launched by semi-honest or
honest but curious adversaries.

Paper Structure: The remainder of this work is organized as
follows. Section II offers background information on person-
alised FL and MI attacks, while Section III reviews the extant
literature. Section IV outlines the proposed threat model,
before introducing the proposed approach in Section V. The
experimental setup and results are discussed in Section VI.
Section VII outlines the conclusion and future directions for
this work.

II. PRELIMINARIES

This section aims to provide comprehensive insights into
personalised FL and the potentially detrimental impact of
model MI on FL.

A. Personalized Federated Learning (PFL)

PFL is a variant of FL that aims to train a model collabo-
ratively while handling non-1ID (Independent and Identically
Distributed) data and improving privacy preservation. Multiple
methodologies can be employed for implementing PFL, and
one of them involves two distinct stages. In the first stage,
a global model is learned collaboratively, whereas in the
second stage, each device fine-tunes the global model to its
local data to create a personalised model. In an alternative
methodology, the model parameters are split into two sections:
local parameters and global parameters. The first few layers
constitute the local parameters, whereas the last few layers
form the global parameters [22], [23], [24]. For example, the
authors of [25] proposed a personalised FL approach, Local
Global Federated Averaging (LG-FedAvg), that combines local
representation learning and global federated training to address
data heterogeneity and communication efficiency. The model
parameters are split into local and global parameters, and
devices train and update the whole model locally, but only
the global parameters are communicated with the server for
aggregation.

As per [22], the mechanism which divides model param-
eters between private and global is a deliberate choice made
during architectural design. There are typically two approaches
used in decoupling parameters for deep neural networks. The
first is a “base layers + personalised layers” model. Here,
personalised deep layers are kept private by clients for local
training, enabling them to develop customized representations
for specific tasks, while the base layers are shared with the
FL server to learn generic, low-level features. The second
approach involves creating personalised feature representations
for each client. For instance, in [26], a bidirectional LSTM
architecture document classification model is trained utilising
FL by considering user embeddings as personal model param-
eters and character embeddings (i.e., LSTM and MLP layers)
as global model parameters.

It is noteworthy that our approach adheres to the
architecture-based PFL approaches, which are focused on
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Fig. 1. Procedure of model inversion attack.

achieving personalisation via the second model decoupling
approach mentioned above [22], [24]. To achieve this, our
approach utilises the second decoupling approach, which
involves the division of the model into two distinct com-
ponents. The first component, referred to as the encoding
part, consists of the personalised layers that are kept private
by each client. This component is responsible for extracting
and transforming features into a latent space. On the other
hand, the second component is the FL classifier, which can be
locally trained by the clients using the latent space and then
shared with the server for global aggregation. By segregating
these two components, we can achieve the desired level of
personalisation while preserving the security and privacy of
client data.

B. Model Inversion (MI) Attack

MI is widely acknowledged as one of the most powerful
privacy attacks against the confidentiality of ML models [27],
[28]. This attack aims to reconstruct the data that was utilised
to train the model. Hence, the concept behind model inversion
is that a learned model captures a mapping between the input
and output spaces (a relationship between the input and output
domains). This mapping can be used to make predictions in
one direction (from an input sample to an output), but it can
also be turned around to find an optimal input (reconstructed
data) that minimizes the difference between the predicted value
and the target response, such as a specific class label [29].

In the realm of FL, the inversion attack can be succinctly
described as a three-step procedure, as depicted in Figure 1.
In the initial step, the attacker procures either a local or
global-trained model. Subsequently, the attacker employs a
model inversion method (such as MIFAce [19] ) that leverages
gradient descent methods to optimize the local value of a loss
function, iteratively adjusting the input until a more accurate
solution is attained. Specifically, model parameter inversion
attacks often require solving an optimization problem. Initially,
the attacker retrieves the model parameters, denoted as W .
Next, the attacker generates dummy samples, denoted as
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X ", y"), and seeks to minimize the difference between the
received parameters # and the dummy parameters W

The dummy parameters are computed by running the
dummy samples through the target model using one forward-
backward pass. During the optimization process, the values
of the dummy samples are adjusted to better approximate the
original training data. Particularly, the values of the dummy
samples are tuned to approximate the training samples by
the end of the attack [30]. Lastly, the attacker is capable of
reconstructing data that is nearly indistinguishable from the
original training data. This reconstructed data can then be
utilised by the attacker to extract sensitive information about
the participants involved in the FL. Instances of MI attacks
that adhere to this methodology include Deep Leakage from
Gradients (DLG) [20] and its enhanced version, improved
Deep Leakage from Gradients (iDLG) [21].

DLG [20] constitutes an MI attack specifically tailored for
revealing sensitive information within collaborative learning
frameworks, exemplified by FL. DLG introduces an optimiza-
tion algorithm that can infer both training inputs and labels
through a limited number of iterations. The attack protocol
initiates by randomly generating a set of “dummy” inputs
and labels, followed by the execution of standard forward
and backward passes. Diverging from conventional training
procedures that optimize model weights, DLG uniquely directs
its optimization towards dummy inputs and labels. This opti-
mization process seeks to minimize the dissimilarity between
gradients derived from the dummy data and those emanating
from authentic training data. In the DLG, the authors generate
synthetic data and associated labels by leveraging shared
gradients. Despite this, DLG encounters challenges related to
convergence and the consistent identification of ground-truth
labels. Conversely, the improved DLG (iDLG) [21] method has
observed that the sharing of gradients inadvertently discloses
the actual labels. As a result, iDLG demonstrates the capability
to reliably extract the ground-truth labels, distinguishing itself
from DLG in this regard.

Specifically, Model inversion requires minimal knowledge
from an adversary to be successful [19]. The most essential
knowledge is understanding the model’s output and knowledge
of the model itself. The output knowledge enables the attacker
to comprehend the expected outcome, and the knowledge of
the model architecture and parameters is required to exe-
cute gradient descent for input optimization. Furthermore,
knowledge of the data that was used to train the model can
also be beneficial as it provides insight into the features and
characteristics that the model is looking for in the input data,
which can aid in the optimization process and enhance the
accuracy of the reconstructed input. It is worth noting that
the level of knowledge required may vary depending on the
specific task and model being targeted.

III. PRIVACY MECHANISMS IN FEDERATED
LEARNING: RELATED STUDIES

In this section, we will explore relevant studies that have
aimed to enhance privacy in FL.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 05,2024 at 16:19:51 UTC from IEEE Xplore. Restrictions apply.



ISSA etal.: RVE-PFL: ROBUST VARIATIONAL ENCODER-BASED PERSONALIZED FEDERATED LEARNING

A. Encryption and Differential Privacy-Based Approaches

A plethora of research has been proposed to address the
issue of data leakage through MI attacks. Thus, ensuring
the privacy of individual participants’ data is of paramount
importance in FL, where multiple parties work together to train
a global model. Not all participants may be fully trusted, and
thus it is essential to implement countermeasures to prevent
malicious actors from accessing and stealing sensitive infor-
mation. Therefore, it is important to use advanced techniques
to protect the privacy of participants [31]. Thus, Truex et al.
[32] presented a hybrid approach to privacy-preserving FL that
combines DP and SMC to protect against inference threats.

Huang et al. introduced InstaHide [33], a simple encryp-
tion technique designed specifically for training images in
distributed deep learning frameworks. InstaHide seamlessly
integrates into existing systems and utilises a “one-time secret
key” to encrypt each training image. The encryption process
involves a combination of the target image with randomly
selected images and the application of a random pixel-wise
mask. To mitigate the risk of MI attacks, Madi et al. [34]
employed a method incorporating Homomorphic Encryption
(HE) and Verifiable Computing (VC) techniques. This involves
conducting the federated averaging operation directly within
the encrypted domain using HE while ensuring the correctness
of the operation through formal proofs enabled by VC. Simi-
larly, Triastcyn and Faltings [8] proposed an approach utilising
a combination of Bayesian differential privacy and encryption
techniques to achieve privacy preservation in FL.

In [35], Xu et al. introduced HybridAlpha, a method for
privacy-preserving FL. To prevent model inversion attacks,
the method employs an SMC protocol that utilises func-
tional encryption. While homomorphic encryption and SMC
are commonly used cryptographic techniques, they require
additional encryption and decryption operations, leading to
a notable increase in computational workload. Zhang et al.
[36] presented a Privacy-Enhanced Momentum FL (PEMFL)
method to protect sensitive data in industrial cyber-physical
systems using DP and chaos-based encryption. However, the
PEMFL method has some shortcomings, including reduced
accuracy due to the addition of noise and increased computa-
tional complexity from the use of a chaotic system.

In a recent study, Wei et al. [6] presented a novel framework
that leverages the principles of DP to enhance privacy in
FL. This framework, named Noising before Model Aggrega-
tion FL (NbAFL), involves introducing artificial noise to the
parameters at the clients’ side before aggregation. The authors
highlight that this approach introduces a tradeoff between the
level of privacy protection and the convergence performance
of the FL process. Similarly, Wei et al. [37] introduced a novel
approach called Fed-CDP, which focuses on preserving privacy
in FL by incorporating per-training example-based client DP.
They also conducted a rigorous analysis of Fed-CDP, establish-
ing its (¢, §)—DP guarantee. A formal comparison was made
between Fed-CDP and server-coordinated DP approach code-
named as Fed-SDP regarding privacy accounting. According
to the authors, Fed-CDP incorporates a dynamic decay noise-
injection policy, which contributes to enhancing the accuracy
and resilience of the approach.
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In their research [38], Wei et al. proposed the Fed-aCDP
approach, which enhances traditional per-client methods by
incorporating per-example gradient perturbation and adap-
tive parameter optimizations. Firstly, Fed-aCDP introduces
DP-controlled noise to per-example gradients during local
training at the client level. Secondly, Fed-aCDP determines
the sensitivity of a differentially private FL algorithm using
the ,, max of gradients, resulting in reduced Gaussian noise
variance during local Stochastic Gradient Descent (SGD) at
the clients’ training stage. Lastly, Fed-aCDP implements a
dynamic decaying noise scale, o , to align Gaussian noise
variance and noise injection with the trend of gradient updates
during local SGD.

Despite the effectiveness of DP in protecting against MI
attacks, its use can significantly impact the model’s learning
ability. This is because achieving privacy often requires high
levels of noise, which can impede the model’s capacity to learn
from the data. These issues raise important questions about the
trade-offs between privacy and model utility and whether there
exist alternative approaches that can provide similar protection
without compromising the model’s learning ability. Moreover,
further research is necessary to fully understand the utility of
DP as a defense mechanism beyond privacy preservation and
explore other potential solutions that can protect the model
against privacy leakage attacks while preserving its learning
ability [3], [39].

B. Encoding-Based Approaches

Numerous investigations have been undertaken to tackle
privacy-related issues within the realm of deep and federated
learning by employing autoencoders (AE). Zhang et al. [9]
proposed a framework to safeguard the privacy of data own-
ers through the distribution of the machine learning process
between clients and a central server. Within this framework,
the clients undertake the responsibility of encoding the original
data using their respective autoencoder. Subsequently, the
encoded data, along with corresponding labels, is transmit-
ted to the server for centralized model training. During the
inference stage, clients extract features using their individual
encoders and transmit them to the central server for classifi-
cation.

Keshk et al. [10] introduced a novel framework that utilises
the combined potential of blockchain technology and deep
learning to enhance the privacy and security of smart power
networks. The framework leverages a VAE to transform data
into an encoded format, thereby mitigating the risks associated
with inference attacks. However, it is worth noting that this
approach has not been tested against model inversion attacks
and does not adequately account for the data heterogeneity
exhibited by IoT devices. Jiang et al. [16] presented DP-Fed-
WAE, a privacy-preserving framework specifically designed
for the collection of high-dimensional categorical data. The
proposed framework involves training a local autoencoder to
learn the representation of the data, followed by the application
of DP to perturb the autoencoder’s parameters.

In the context of privacy-preserving analysis of big data,
Alguliyev et al. [17] introduced a deep learning approach. The
primary objective of this approach is to convert the sensitive
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portion of personal information into non-sensitive data. Ma
et al. [18] proposed an innovative approach to enhance privacy
protection in collaborative learning, specifically addressing the
challenges posed by gradient-based reconstruction attacks. The
proposed scheme incorporates an initial permutation step that
applies a scalable block size transformation to the sensitive
training images. He et al. [40] introduced a defense mechanism
utilizing Dropout, wherein random neurons are deactivated
during inference to hinder adversaries from accurately recon-
structing original images from intermediate values. While this
defense mitigates the impact of model inversion attacks during
the inference stage, it does not protect during FL training,
where model parameters are exchanged between participants
and the server.

In another related study, Li et al. [41] introduced Resis-
tance Split FL (ResSFL), a two-step framework comprising
a pre-training step to establish a feature extractor with MI
resistance and a subsequent resistance transfer step, where

the resilient feature extractor initializes the client-side model
in the SFL scheme. While ResSFL mitigates the impact of
MI attacks, it deviates from FL principles as it relies on a
centralized dataset, posing privacy concerns. Additionally, the
pretraining step introduces additional computational overhead.
In contrast to the previous approach that relies on central
training of the encoder on a server-side dataset and subsequent
feature extraction by clients, our approach adopts a dis-
tinct architecture. We adopt a client-centric training paradigm
where both the encoder and classifier are jointly trained and
fine-tuned on each client’s available data. Additionally, instead
of directly sharing labels or extracted features with the server,
we strictly adhere to the principles of FL by only exchanging
the learned classifier parameters for model aggregation. Our
approach incorporates the concept of PFL by retaining the
encoder locally on each client while exclusively sharing the
classifier component with the server. This means that the
private data representation learned by the encoder remains
within the confines of the client device, enhancing privacy
protection.

IV. THREAT MODEL

The vulnerability of clients to inversion attacks constitutes a
fundamental issue in FL systems. This susceptibility emanates
from requiring clients to transmit their locally trained param-
eters to the server as a precondition for the global model
aggregation. Such transmission makes clients’ data vulnera-
ble to privacy violations and security breaches, underscoring
the importance of implementing robust security measures to
protect the integrity of FL and safeguard client data [12].

In this research, we investigate the potential vulnerabili-
ties of FL systems to MI attacks, which are launched by
semi-honest or honest-but-curious adversaries. These adver-
saries, who may be clients or servers within the FL system
or external passive attackers, attempt to extract sensitive
information about the training data that is not intended to be
shared. We specifically focus on the threat posed by these
adversaries, who, while adhering to the FL protocol, seek
to gather unauthorized information through the use of MI
techniques. Furthermore, we consider scenarios where the
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attacker has some knowledge of the FL system, referred to
as gray-box [29] settings, which can make the attack more
successful and challenging to defend against.

In the gray-box attack setting, we assume that the adversary
has a significant level of knowledge about the classifier being
used. This includes knowledge of the structure of the classifier
and access to the model parameters, which can be obtained
through the coordinating server or from the FL participants. It
is noteworthy that the structure of the model can be infringed
by the model-stealing attack [42]; however, we assume that the
attacker has this knowledge without performing such attacks.
Furthermore, the attackers are limited in their knowledge in
that they do not have access to the training data used to train
the classifier, except for the shape of the input.

This type of attack is considered more challenging for
the defender as the attacker has more information about
the classifier than in a black-box attack but less than in a
white-box attack. Additionally, it is important to mention that
gray-box attacks can be used to evaluate the robustness and the
vulnerability of the classifier in the case of an insider attacker
or a side-channel attacker. Regardless of whether the adversary
performing the model inversion attack is an honest and curious
aggregation server, participant, or external adversary, the goal
remains the same: to infer the corresponding training data from
the local or global model, leading to privacy leaks in FL.

Specifically, MI attacks can occur and obtain the trained
model parameters through four entry points. The first involves
the adversary compromising the FL participants and obtaining
a copy of their locally trained classifier. Additionally, the MI
attack can also be performed by the FL participant itself if
it is malicious. The second and third involve the adversary
compromising and intercepting the communication between
the edge server and the FL participating devices to obtain a
copy of the local or global classifier. Finally, the fourth entry
point involves the MI attack being performed by a malicious
edge server or by an external adversary who has compromised
and gained access to the edge server.

V. PROPOSED APPROACH (RVE-PFL)

This section outlines the details of RVE-PFL, a variational
encoder-based personalised FL approach, designed to defend
against MI attacks. The description includes the RVE-PFL
architecture, and the FL algorithm illustrating how clients
communicate with the edge server. The RVE-PFL approach
is reliant on personalised federated learning (PFL) and the
variational encoder. We highlight the pivotal roles of these
elements as essential milestones in the development of the
RVE-PF approach. Additionally, we present an overview of
the PFL technique that we utilised in designing the RVE-PF
approach.

Our emphasis is on a personalised approach to federated
learning, wherein a group of intelligent IoT devices, also
known as clients or participants, continuously monitor the
physical environment and store the gathered data in their
respective databases. These devices have inherent computa-
tional capabilities that allow them to train local models. An
edge server also takes charge of coordinating the collaboration
among the devices, improving their models by utilising data
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Fig. 2. Overview of proposed FL approach (RVE-PFL).

from other devices through the global model aggregation
method, all while maintaining a reasonable level of privacy
preservation and preserving the model’s utility. RVE-PFL
ensures that it becomes challenging for adversaries to execute
model inversion attacks against the exchanged local models
between the clients and server, or even against the global
model, as we will explain in the next paragraphs.

RVE-PFL also ensures the confidentiality of the data and
preserves the privacy of the participants against adversarial
settings (i.e., MI attacks). To do so, we consider M devices
participating in FL, where each device possesses its local
training dataset D,, = (X, ym), with X, representing a
feature space and y,, denoting the corresponding label vector.
RVE-PFL divides the model with parameters W, into two
dependent components. The first component represents the
personalised variational encoder with parameters We., that
is trained locally and is kept by the clients. The second
component of the model is the classifier with parameters W,
and it sends by the clients to the edger server for aggregation,

where:
Wi = Wenc,m U Wc,m (1)

The architecture of RVE-PFL is illustrated in Figure 2.
The model is divided into a personalised variational encoder
and a shared classifier for global aggregation and experience
exchange among participating clients. This design aims to
balance privacy preservation and model utility, ensuring that
the model achieves reasonable performance while preserving
the privacy of the client’s data. The edge server initialises the
model parameters and sends them to the clients to start the
local training. Every client receives the model parameter W
and starts to train its local model with parameters W, on its
own data using their objective function f,. This was achieved
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by minimising the following optimisation problem:
W = argmin fu,(Xm, Y, W),

@

where f.(Xwm, ym Wn) is the local objective function of client
m that should be minimised to find the best model parameters
Wk given dataset D, with (X,, y»). The superscript
denotes that we are looking for the optimal value of W, that
minimises the objective function f;,.

The local parameters W, of client m are divided into two
components; the first one is for the personalised variational
encoder parameter and the second is for the classifier. The
encoder network produces two sets of output parameters: the
mean p and the standard deviation o . These parameters are
used to define a Gaussian distribution over the latent variables
z [43], [44], as follows:

z ~ N(u, 0?) 3

To generate a sample from this distribution, we use the
reparameterization trick:

z=U+0 *¢€

4

where € is a random sample from a standard Gaussian dis-
tribution, it is worth noting that the variational encoder is
employed in our approach to preserving privacy. It achieves
this by mapping input data to a probabilistic latent space,
which effectively conceals any sensitive information. Rather
than creating a deterministic mapping from input data to latent
space, probabilistic mapping is used, which allows the encoder
to provide a natural means of privacy protection.

In RVE-PFL, a different approach is considered to use the
variational encoder for privacy preservation. Instead of map-
ping the input data into a low-dimensional probabilistic latent
space, the proposed encoder maintains the same dimensions
as the input. This means that the latent space can be used
directly as input for the classifier without any information
loss resulting from compression. By maintaining the same
dimensions in the latent space as the input data, we can
preserve all of the original information while still achieving
a more compact representation of the data. This allows us
to more effectively preserve privacy while maintaining the
accuracy of the subsequent classifier. Thus, the variational
encoder acts as a feature transformation technique that allows
us to create a more compact representation of the input data
while still preserving privacy.

During local training, both the variational encoder and the
classifier are trained as a single model. Once the training is
complete, the clients keep their respective trained variational
encoders Weuem, Which serve as personalised feature trans-
formers. Meanwhile, the trained parameters of the classifier
W.m are sent to the edge server for global aggregation. This
approach ensures that the shared classifier is trained on the
probabilistic latent space rather than the original data, making
it challenging for adversaries to perform an MI attack. This is
due to the probabilistic latent space that is non-deterministic
and thus not easy to reconstruct. By using this approach,
we can preserve the privacy of the individual clients’ data
while still being able to train a robust classifier.
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After the clients complete the local training, they upload the
classifier parameters W, to the edge server. Then, the local
classifiers W, are combined into the global classifier W,
using Federated Averaging (FedAvg) [45]. This can be done
using the following equation:

| Ny Wc,m
Wc,g = §M ’
m=1"m

®)

where M is the total number of clients, n, is the number of
samples used for training by client m, and W,,, is the local
classifier of client m. FedAvg [45] is a popular FL algorithm
that allows multiple clients to collaboratively train a machine
learning model without sharing their data with a central server.

In this algorithm, each client trains a local model on its

own data and sends the model updates to the server. The

server aggregates the model updates using FedAvg to generate
a global model that is sent back to the clients for further
training. By using FedAvg, the clients can collectively learn
from each other’s data without compromising their privacy
to some extent. In the proposed approach, since all clients
have the same numpber of data samples in this scenario, the
weighting term 3, is the same for all clients, and the

. m =" .
FedAvg equation r ed uces to a simple average as follows:

¥

m=1

The outcome is that the global model becomes the arith-

c’m

metic mean of the local models of all clients. This approach
ensures that each client has an equal contribution to the global
model, regardless of the number of data samples it has.

Algorithm 1 RVE-PFL - Server Side

1 Input: AM: the number of clients, Wc, m: the
classifier models from the clients m € 1,2,..., M,
R: the number of communication rounds

2 Output: W,,: federated trained global classifier
model
3 Edge server do:
4 Initialize: the full model parameters W,
5 Send: the initial full model parameters W, to the
clients me 1,2,..., M
6 forrinl,...,R do
7 Receive: the local classifier models updates
We, m fromthe clientsm € 1,2,...,

Aggregate: Wog =, " | Wem.

9 Send: the aggregated global classifier model
(federated trained global classifier model)
W, to the clients 1,2,..., M.

10 end

11 end

More specifically, the proposed approach is comprised of
two distinct sides, which are elucidated in Algorithms 1
and 2. The server-side is presented in Algorithm 1, while
the client-side is elaborated upon in Algorithm 2. From the
perspective of the server side, the edge server initializes
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Algorithm 2 RVE-PFL - Client Side

1 Input: 7 learning rate, L: batch size, E: local epochs,
Wo: the initial full model parameters, and D,,: local
dataset, r: current global round index

2 Output: W, the local classifier model updates and
W,: the full model including the personalised
encoder Wenc,m and the classifier model W,

if == 0 then
Download: the initial full model parameters W,
Set: W,, — W

3

4

5

¢ end
7 else
8

Download: the global classifier model parameters
Weo

9 Split: W, into Weue,m and W,

10 Set: Wem — Weg

1 Set: Wi — Wenen U Weg

12 end

13 Calculate: number of batches B — |D,|/L.

dforeinl,..., £ do

15 Set: Wio — Whn

16 Compute number of batches: B < [|Dy|/L]

17 forbinl,..., B do

18 Compute local 1088 Lu,s(Xm, Yy Wons)

19 Compute local gradient

8mb — vab Lm b(Xml Ym W,

m, b)

20 l;@i}iate locg] model qughts
mb — Wmb—1 — 11— 8mb

x Set: Wi — Wup

2 end

23 end

24 Split: W, into Wepe,m and W,
25 Keep Wenem as a personalised feature transformation.
26 Send W, to the edge server for aggregation.

the full model parameters Wy, and broadcasts them to all
clients. In each communication round, the server receives the
local classifier model updates W, from each client. These
updates are aggregated by computing the average of the local
models from all clients, resulting in the federated trained
global classifier model W, as in Equation 6. The server then
sends the aggregated model W, back to all clients to start a
new global training round. This process is repeated until the
number of communication rounds reaches R.

On the client side, each client begins the collaborative
training by checking if the global round index is zero. If it
is, each client downloads the initial full model parameters
and sets the full model ¥, to be equal to these parameters.
Otherwise, the client downloads the global classifier model
parameters W, and splits the full model W, into the per-
sonalised encoder W, and the classifier model W,,. The
local classifier model parameters W.,, is then updated with the
global classifier model W.,, while the personalised encoder
parameters are kept on the client side. Then, the full model
W, is set to be equal to the union of personalised encoder
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Wenem and the global classifier model W, to start a new
collaborative training round (Lines 3-12 Algorithm 2).

Next, each client calculates the number of batches B in the
local dataset D,, based on the given batch size L. Accordingly,
each client proceeds to update the local model weights for each
epoch and batch using SGD with a fixed learning rate 1. For
each epoch, the clients set the initial model weights W, to be
equal to the current full model weights #,, and compute the
number of batches B. For each batch, the algorithm calculates
the local loss and gradient and then updates the local model
weights accordingly (Lines 18-21, Algorithm 2). Then, the
current full model parameters I, are then set to be equal to
the updated local model parameters W, .

Finally, the client splits the full model 7, into the per-
sonalised encoder W,,., and the classifier model W,,. The
personalised encoder W, is kept as a personalised feature
transformation on the client side, while the classifier model
W.m is sent to the edge server for aggregation with the updates
from other clients in the FL system.

VI. EXPERIMENTAL SETTINGS AND EVALUATIONS

This section presents a comprehensive overview of the
experimental setup, discussing how the experimental results
evaluate the privacy preservation and utility of RVE-PFL.

A. Experimental Settings

1) Datasets: Three well-known datasets are used in the
experiments (i.e., MNIST, Fashion-MNIST, and CIFAR-10),
which have become standard benchmarks in the field of
machine learning research. The MNIST dataset is composed of
60,000 training images and 10,000 test images of handwritten
digits (0-(9), each of which is a grayscale image of size 28 X
28 pixels. On the other hand, the Fashion-MNIST dataset was
developed to provide a more challenging alternative to MNIST,
containing 60,000 training images and 10,000 test images of
10 different clothing items such as T-shirts, dresses, and shoes,
with each image being a grayscale image of size 28X28 pixels.
Lastly, the CIFAR-10 dataset contains 60,000 32 X 32 color
images of 10 different classes, including airplanes, cars, and
cats, with 50,000 training images and 10,000 test images. This
dataset poses a more significant challenge than the former two
datasets, as it necessitates models to recognize and classify
images with more intricate features and colors.

2) Data Partitioning: We randomly combine the training
and test data and then randomly split it equally among the
ten clients participating in FL. In this manner, we ensure that
each client has a representative sample of the data that does
not overlap with any of the other clients. We then split each
client’s local data into a training set and a test set. The training
set is used to train the local model, while the test set is used
to evaluate the performance of the global model. This split
is performed by allocating a certain percentage of the data
(typically 90%) to the training set and the remaining data to the
test set (typically 10% from the client’s local data. Hence, the
test set of each client is employed to assess the performance
of the global model, and subsequently calculate the average
across all clients in FL.
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3) Computational Settings: In this research, the experi-
ments were carried out on a computing system consisting of
an AMD® Ryzen Threadripper 1950 X 16-core processor,
along with an NVIDIA Titan (X, Xp), and GeForce GTX
1080 Ti GPU. The system is also equipped with 128 GB
of RAM, providing significant computational resources. The
experiments were conducted on the Ubuntu 22.04.1 LTS
operating system, ensuring a stable and reliable environment
for testing and analysis. In addition, the implementation of the
models and data preprocessing was carried out using popular
deep learning frameworks including TensorFlow, Keras, and
PyTorch.

4) Variational Encoder: The Convolutional Variational
Encoder (CVE) model is made up of seven layers. The first
two layers are convolutional layers with 32 and 64 filters,
respectively. This is followed by a fully connected layer with
512 nodes and a dropout layer with a 25% dropout rate.
The next two layers are also fully connected with the same
flattened input size. These layers are used to create a latent
space with the same dimensions as the input data using a
reparameterization trick layer. The purpose of generating a
latent space with the same dimensions as the input is to prevent
information loss resulting from a low latent space size. Thus,
the CVE model is personalised and is kept by each client
to transform their local data into the randomized latent space.
The randomized latent space is then reshaped to create an input
for the classifier. This classifier is trained collaboratively as a
global model by all participants.

5) Classifier: The classifier model consists of seven layers.
The first layer is a convolutional layer with 32 filters, followed
by a max-pooling layer with a stride of 2. The third layer is
also a convolutional layer with 64 filters, followed by another
max-pooling layer with a stride of 2. The fifth layer is a
fully connected layer with 256 nodes, which is followed by a
dropout layer with a dropout percentage of 25%. The last layer
is a softmax layer with nodes equal to the number of classes,
which is responsible for producing the final predictions.

6) Baselines: RVE-PFL approach was evaluated and com-
pared against four baselines to demonstrate its effectiveness,
privacy preservation, and generalization. The first baseline
was the traditional FL method (FedAVG), where the server
distributes the global model to clients for local training and
then aggregates the locally updated models. This process is
repeated until a certain number of global rounds are com-
pleted. The second baseline involved the use of NbAFL,
a popular technique for privacy preservation in FL. The third
and fourth baselines, namely Fed-CDP and Fed-aCDP, address
privacy preservation in FL by integrating client DP based on
per-training examples. Our experiments with NbAFL, Fed-
CDP, and Fed-aCDP aimed to highlight the robustness of the
RVE-PFL approach compared to DP, which is a well-known
privacy-preserving technique in the FL literature.

7) Hyperparameters: In our experiments, we set the num-
ber of FL clients, M , to 10. The total number of global rounds,
R, is set to 100, and the number of local epochs, E, is set to
10. We use a batch size of L of 256 and a learning rate n
of 0.001. For the optimization algorithms, we use the Adam
optimizer with le=* weight decay and epsilon € = le~7 to
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train the RVE-PFL approach. For FedAvg, we also use the
Adam optimizer but without epsilon € = le~’. For NbAFL,
we use the DPSGD optimizer supported by the TensorFlow
Privacy framework. We set the L, norm clipping to be 1, the
number of micro-batches to be 1, and the noise multiplier
to be 1.1. For Fed-CDP and Fed-aCDP, we use the DPSGD
optimizer as well and we set the L, norm clipping to be 1,
the number of micro-batches to be 1, the noise multiplier to
be 0.5, the batch size 1, the gradient accumulation steps to be
64, and the learning rate to be 0.05.

B. Experimental Evaluation and Analysis

1) Evaluation Metrics for Privacy Leakage: The perfor-
mance of RVE-PFL for preserving data privacy in FL is
evaluated using the following metrics:

a) Mean squared error (MSE): MSE measures the
pixel-wise squared error between the original image x and
the reconstructed image x". When both x and x" are of size
M X N, the MSE can be denoted as:

1

2
MSE(x,x') = (xij — x _.]2 (7)

M XN Y

i=1j=1
A lower value of MSE between the original x and the
reconstructed image x " indicates a higher degree of similarity
between the two. This implies that the reconstructed image
has a smaller difference from the original image.

b) PSNR (peak signal-to-noise ratio): PSNR is a widely
used image quality metric that measures the quality of a
reconstructed or compressed image compared to the original
image.

{

) max(x)?
PSN R(x, x') = 10log;,

MSE(x,x) "’ ®)

where x is the original image, x " is the reconstructed or
compressed image, max(x) is the maximum possible pixel
value, and MSE(x, x ) is the mean squared error between the
original and reconstructed or compressed images. The PSN R
formula essentially calculates the ratio between the maximum
possible pixel value and the mean squared error of the two
images. A higher PSN R value indicates that the reconstructed
image is closer to the original image in terms of quality, while
a lower PSN R value indicates a larger difference between the
two images.

¢) Structural similarity (SSI M): SSI M is a
perception-based metric that measures the similarity between
two images by comparing their luminance, contrast, and
structure. It ranges from 0 to 1, with a value of 1 indicating
perfect similarity. The SS/ M index can be calculated as:

. Quepy + )20 + ¢2)
SSIM(x,x) = + > ¥ eJlo? +o? +c ) O
X X X x' 2
YRS a0k Hne T aSniEa Of i B SovEeRRSstvERy
X x xx
c1 and ¢, are constants that stabilize the division by weak
denominator.
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d) FID (fréchet inception distance): FID is a popular
image quality metric that measures the similarity between the
distribution of real and reconstructed images. The FID metric
is calculated based on the statistics of the features extracted
by the Inceptionv3 neural network trained on the ImageNet
dataset. Given two sets of images, the real images x and the
reconstructed images x’, the FID distance is defined as:

FID(xx") = |lpe — w | 1> + Tr(Z: + Zv — 2(5:20)"),
(10)

where u, and u,’ are the mean feature vectors of the real
and reconstructed images, respectively, and X, and X, are
their covariance matrices. 7r denotes the trace operator, and
[I.|| denotes the Frobenius norm. A lower FID value indicates
a higher degree of similarity between the two distributions,
implying that the reconstructed images are closer to the real
visual quality.

2) Experimental Results and Discussion: Initially,

we conducted a performance evaluation of traditional FL
(FedAvg) and (NbAFL, Fed-CDP, Fed-aCDP, ResSFL,

and Dropout), that utilised as defense mechanisms against
model inference attacks, including MI attacks. Subsequently,
we conducted an experimental verification of the effectiveness
of the RVE-PFL approach in defending against model
inversion attacks in FL, as compared to the state-of-the-
art approaches in the literature. Specifically, we assessed
the effectiveness of RVE-PFL in two aspects: privacy
preservation, as determined by the degree of similarity
between the reconstructed image and the original image, and
model utility, as determined by the impact of utilising DP,
feature transfer (ResSFL), Dropout, and our approach (las
a defense against model inversion attacks) on the model’s
performance. Our experimental results demonstrate our
approach’s effectiveness in improving privacy preservation
and model utility in FL scenarios.

a) Performance and convergence: Tables 1, Il and
Figure 3 show the performance evaluation results of RVE-
PFL, FedAvg, NbAFL, Fed-CDP, Fed-aCDP, ResSFL, and
Dropout. Notably, our approach achieves performance that is
comparable to FedAvg, while also surpassing NbAFL, Fed-
CDP, Fed-aCDP, ResSFL, and Dropout in terms of accuracy,
precision, recall, and F1-score on both training and test data.
To report our results, we conducted experiments on the three
datasets for 100 communication rounds. At the end of each
communication round, we evaluated the global model on the
local test data of each participating client and calculated the
average performance across all clients. We then reported the
final results by computing the overall average and standard
deviation for the 100 rounds. This was necessary as perfor-
mance results may vary from one round to another, and we
needed to express the model’s overall performance across all
training rounds. We applied this measurement criterion to both
the training and test datasets and reported the performance

i Its in T, ILLII.F indj i
ytapion results iny Tables bl hor exampley gy indisiey in
the Cifar-10 data set. This means that the model’s estimated
accuracy is 99% with a margin of error of 0.053.
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Fig. 3. Performance comparison on training and test data.

According to the observations from Figure 3, RVE-PFL
exhibits similar convergence behavior to that of the stan-
dard FL (FedAvg), as the curves of FedAvg and RVE-PFL
match after a small number of global rounds, achieving
a reasonable performance compared to NbAFL, Fed-CDP,
and Fed-aCDP. This is indicated by the fact that RVE-PFL
converges to a global model that attains high accuracy on the
test data during the early rounds of communication. Moreover,
we observed that RVE-PFL (represented by the purple colour
in Figure 3) exhibits an earlier convergence to a reasonable
level of accuracy compared to FedAvg. This experimental
evidence supports the effectiveness of RVE-PFL on both
the training and test datasets. By contrast, NbAFL, Fed-
CDP, and Fed-aCDP demonstrate poor convergence behavior
and fail to achieve satisfactory performance results, which
leads to a degradation in the utility of the global model.
However, we add a moderate amount of noise with a noise
multiplier of 1.1 and 0.5, which means that if we add more

noise, the NbAFL, Fed-CDP, and Fed-aCDP will converge
more slowly and be less effective. This conclusion is con-
sistent with the findings of other studies [15], [31], [46]
that indicate that the addition of DP during model training
results in a trade-off between utility and privacy, which
consequently negatively impacts the global model’s perfor-
mance. Thus, we suggest RVE-PFL as a solution to enable
the development of FL with reasonable utility and privacy
levels.

The ResSFL and Dropout exhibit comparable performance
to RVE-PFL during training. However, in the testing phase,
RVE-PFL outperforms ResFL and Dropout by 2% and 5% on
the MNIST and Fashion-MNIST datasets, and by 3% and 7%
on the CIFAR-10 dataset, respectively. Despite Dropout incur-
ring no additional computational cost compared to ResSFL
and RVE-PFL, it provides a lower level of privacy than
our approach. Moreover, Dropout may only mitigate privacy
leakage during the inference stage.
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TABLE I
PERFORMANCE EVALUATION ON TRAINING DATA

Dataset Approach Metrics
Accuracy Precision Recall I'1-score
FedAvg [45] 0.99=0.002 099 £0.002 0.99£0.002 099 £ 0.002
MNIST NbAFL [6] 0.91 = 0.087 091 £0.078 091 £0.03%  0.91 £0.092
Fed-CDP [37] 0890 = 0,072 089 £0.061  088£0.071  0.83 = 0.08]
Fed-aCDP [38]  0.90 £ 0.071 0.90 £0.060  0.29£0.073  0.89 £ 0.080
ResSFL [41] 0.99 = 0.005 0,99 £ 0.00 ’. 0.99 £ 0.00: '- 0.99 £ 0.003
Dropout [40] 0.99 = 0.001 0.99 £ 0.00 0.99 £ 0.00 0.99 £ 0.001
RVE-PFL 0.99 + 0.001 0.99 — l}.Illll 01L.99 + u.nm 0.99 = 0.001
FedAvg [45] 0.99 £ 0.020 0.99 £ 0.02 0.99 £ 0.020 099 £ 04 zll
FMNIST  NbAFL [6] 0.79 = 0.06G 0.72 + 0063 0.7 £0.066 0.7 +0.07
Fed-CDP |37] 0.76 = 0,060  0.76 £0.050  0.76 £ 0.060  0.75 = HJT
Fed-aCDP [38]  0.77 £ 0.059 TTX£0.049  0.77£0.059  0.75£0.072
ResSFEL [41] lJf :[HJ l 0.99 £ 0.0 0.99£0.012 099=£0 JI
Dropout [40] 0.99 = 0.03 0,99 £ 0.030 099 £0.031  0.99 £ 0.03
RVE-PFL II.99 + ILINIH 0,99 + 0.007 0,99 =0.008 099 = (}.(}llﬂ
FedAvg [45] 0.97 £ 0.07 0.97 £0.069 097 = 0.071 0.97 = 0.071
Cifar-10 NbAFL [6] 041 +£0.070 040 £ 0.064  0.41 £0.070  0.39 +0.077
Fed-CDP [37] 0.39 £ 0.056  0.39 +£0.053  0.39 £ 0.056  0.38 +0.059
Fed-oCDP [38]  0.39 £ 0.055  0.39 4+ 0.052  0.39 £ 0.055  0.385 +0.058
ResSFL [41] 0.9% £+ 0.06 0.98 + 0.059 0.98 + 0.057 0.98 + 0.052
Dropout [40] 098 £0.062  0.93£0.063  0.98£0.062  0.9%5 = 0.062
RVE-PFL 01L.99 = 0,053 099 £ 0,052 0.99 £ 0,053 0,99 £ 0,055
TABLE II
PERFORMANCE EVALUATION ON TEST DATA
Dataset Approach Performance Metrics
Accuracy Precision Recall Fl-score
FedAvg [45] lJ.!JfJ:I:l ).002  0.99£0.003  0.99£0.002  0.99 £ 0.003
MNIST NbAFL |6] 91 £0.087 091 £0.077 091 £0.08% 091 £ 0.093
Fed-CDP [37] 11 ‘\‘J E0.073  0.80+0.063  0.8040.075 0. w E0.082
Fed-aCDP [38]  0.90 4 0.072  0.90 4+ 0.062 090+ 0.074  0.80 £ 0.081

0.97 + 0.074
0.94 £ 0.051
0.99 + 0.003

0.97 + 0.074
0.94 + 0.052
0,99 £+ 0.004

0.97 = 0.075
0.94 + 0.053
0,99 = 0.004

0.99 £ 0.020

0.99 £ 0.020

0,99 £ 0.020

ResSFL [41] 0.97 £+ 0.076
Dropout [40] 0.94 £ 0.052
RVE-PFL 0.99 £ 0.004
FedAve [45] 0.99 = 0.020
Fashion-MNIST ~ NbAFL |6] 0.79 = 0.066

0.76 = 0.060
0.77 = 0.060

Fed-CDP [37]
Fed-aCDP [38]

0.78 £0.078
0.71£0.073
0.75 £ 0.072

0.78 £ 0.066
0.76 = 0.054
0.77 £0.053

0.79 £ 0.066
0.76 £ 0.060
0.77 £ 0.060

ResSEL [41] 097 £0.082 097 £0.082 097 £ 0084 097 £ 0.082
Dropout [40] 0.94 =0.062  0.94x£0.063 094 £0.062  0.94 £ 0.064
RVE-PFL 0,99 £ 0.017 099 £+ 0014 0.99 £ 0.017 0.99 £0.018
FedAve [43] 0.97 £ 0.071 0.97 £0.069 097 £0.071  0.97 =0.072
Cifar-10 NbAFL [6] 0.40 £ 0,070 040 £ 0.065 040 = 0070 0.39=0.077
Fed-CDP [37] 0.22 = 0.18 0.22+£0.17 (.22 £ 0.18 0.20 £ 0018
Fed-aCDP |38] 0.22=0.18 0.22+0.17 0.22+0.17 0.20 £ 018

ResSFL [41]
Dropout [40]
RVE-PFL.

0.90 £ 0.032
0.92 £ 0.044
0.99 + 0.082

0.96 = 0.034
0.92 4 0.043
0.99 + 0.072

0.96 £ 0.034
0.92 = 0.042
0.99 + 0.081

0.90 £ 0.032
(.92 = 0.043
0.99 + 0.086

The complexity of a dataset can have a significant impact on
the efficiency of approaches. The Fashion-MNIST dataset is
more intricate than the MNIST dataset, as the images contain
more intricate shapes and textures. In addition, the dataset
contains greater variation within each class, making accurate
classification more challenging. The CIFAR-10 dataset, on the
other hand, is more complex than both MNIST and Fashion-
MNIST due to its use of colour images and intricate shapes
and textures. Even greater variation exists within each class,
making the dataset extremely difficult to accurately classify.

The empirical results align with these observations, as evi-
denced by Tables I, II. The complexity of a dataset hurts the

performance of NbAFL, Fed-CDP, and Fed-aCDP, as these
algorithms struggle to achieve high accuracy on datasets such
as CIFAR-10 and Fashion-MNIST. Specifically, NbAFL’s per-
formance does not surpass 41% on the CIFAR-10 dataset and
81% on the Fashion-MNIST dataset. However, the Fed-Avg
and RVE-PFL continue to achieve reasonable performance on
the CIFAR-10 dataset, with an average performance of 97%
and 99%, respectively. Interestingly, when it comes to the
MNIST and Fashion-MNIST datasets, RVE-PFL and Fed-Avg
perform similarly and achieve the same level of reasonable
accuracy with an average performance of 99%. On the other
hand, the performance of NbAFL, Fed-CDP, and Fed-aCDP is
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degraded, despite the relative simplicity of the MNIST dataset.
This is due to the additive noise used in NbAFL, Fed-CDP,
and Fed-aCDP. Interestingly, ResSFL. and Dropout achieve
intermediate levels of accuracy on test data, ranging from
92.5% to 97%. Overall, RVE-PFL has proven to be robust,
achieving superior performance without being affected by the
complexity of the dataset. This highlights the effectiveness of
RVE-PFL in handling complex datasets and demonstrates its
potential for use in real-world scenarios.

b) Privacy leakage: MIFace, DLG, and iDLG MI attacks
are employed to test the resilience of RVE-PFL to mitigate the
MI attack. The success of MI attacks is contingent upon deter-
mining if recovered data reveals sensitive information about
a target label. Thus, we investigate the attack performance
both quantitatively and qualitatively. Qualitative analysis of the
attack performance occurs via visual inspection of the attack
outputs, and quantitative analysis is based on analysis of four
metrics; MSE, PSNR, SSIM, and FID. These are individually
outlined above. Table III shows a comparison of the robustness
of RVE-PFL against MI attacks using MIFace, in comparison
to the state-of-the-art approaches: FedAvg, NbAFL, Fed-CDP,
Fed-aCDP, ResSFL, and Dropout. Additionally, this table
demonstrates the efficacy of the MI attacks and their ability to
infer sensitive information about the participants in FL, based
on the model structure and trained parameters.

It is evident from Figure 4 that the MIFace attack can
successfully target deep learning models in the context of
FL and expose sensitive features related to the participants’
private data. Specifically, in the case of FedAvg, ResSFL, and
Dropout, Figure 4 provides visual evidence of the attack’s
ability to infer meaningful patterns related to the participants’
private data. However, in the case of NbAFL, Fed-CDP, Fed-
aCDP, and RVE-PFL, the attack is hardly able to infer visually
meaningful features close to the ground truth. Also, it became
evident that the MI attack has the potential to reveal training
data information embedded in the model parameters obtained
through ReSFL and Dropout. Additionally, distinct features of
the training data were discernible in the reconstructed images
derived from the model parameters trained using ResSFL and
Dropout. The robustness of RVE-PFL is further evident in
Figure 5 which displays the reconstructed training data through
DLG and iDLG model inversion attacks. Our observations
indicate that RVE-PFL does not exhibit any discernible pat-
terns related to the training data.

At this point, The significance of the quantitative metrics
for evaluating model inversion attacks becomes evident for
demonstrating that although some images in Figure 4 may not
have obvious patterns, they still contain sensitive information
that is quantitatively similar to the ground truth. Therefore,
Table III presents the quantitative metrics for the model
inversion attack.

Based on the quantitative measurements presented in
Table III, we can see that RVE-PFL achieves higher MSE and
FID rates but lower PSNR and SSIM rates across all three
datasets. This exemplifies the inferior quality of the recon-
structed images obtained from the MI attack when RVE-PFL
was used in the development of the FL system. These results
also imply that RVE-PFL outperforms NbAFL, Fed-CDP, and
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Fed-aCDP in terms of privacy preservation, as it produces
greater MSE and FID and lower PSNR and SSIM, regardless
of the dataset’s complexity. As demonstrated in the section
on performance and convergence analyses, RVE-PFL also
maintains an outstanding level of model utility while limiting
privacy leakage. In addition, RVE-PFL has an outstandingly
high level of model utility, as we have shown in the part of the
discussion devoted to performance and convergence analysis.
Table IV presents the improvement rates of privacy-
preserving evaluation metrics for RVE-PFL versus the FedAvg,
NbAFL, Fed-CDP, Fed-aCDP, ResSFL, and Dropout. It is
observed that RVE-PFL outperforms FedAvg in terms of
privacy preservation, as indicated by the average results.
Specifically, we observe a 41.93% increase in MSE, a 15.93%
decrease in PSNR, a 45.99% decrease in SSIM, and a 16.92%
increase in FID. Notably, RVE-PFL demonstrates higher
improvement rates over FedAvg compared to NbAFL, Fed-
CDP, and Fed-aCDP, likely because FedAvg lacks additional
mechanisms for privacy preservation.

The results also show that RVE-PFL outperformed the
NbAFL, Fed-CDP, and Fed-aCDP approaches in terms of all
four privacy metrics. Hence, RVE-PFL achieved an average
improvement of 25.07% in MSE, a decrease of 8.05% in
PSNR, a decrease of 37.95% in SSIM, and an increase of
13.18% in FID compared to the NbAFL approach. These
results indicate that RVE-PFL is more effective in preserving
privacy and more robust in mitigating MI attacks than the
NbAFL approach. Specifically, on MNIST, RVE-PFL achieved
an improvement rate of 3.125% for MSE and 2.18% for FID.
On Fashion-MNIST, the improvement rates were 23.08% for
MSE and 14.02% for FID, while on CIFAR-10, they were
50% for MSE and 24.34% for FID. In contrast, RVE-PFL
achieved improvement rates for PSNR and SSIM for all three
datasets, which implies that the reconstructed images obtained
by the MIFace attack on RVE-PFL were of lower quality than
those obtained on NbAFL. Notably, RVE-PFL outperforms
ResSFL and Dropout in enhancing privacy preservation met-
rics. Specifically, when juxtaposed with ResSFL, RVE-PFL
attains a substantial average improvement rate of 19.70% in
MSE, 11.92% in PSNR, 52.33% in SSIM, and 21.23% in FID
across MNIST, Fashion-MNIST, and Cifar-10 datasets. Sim-
ilarly, in comparison with Dropout, RVE-PFL demonstrates
a noteworthy average improvement rate of 25.18% in MSE,
11.01% in PSNR, 46.98% in SSIM, and 17.42% in FID.

The results also show that the level of improvement varies
depending on the complexity of the dataset. The CIFAR-10
dataset shows the highest improvement rates, while MNIST
has the lowest improvement rates. This implies that the robust-
ness and effectiveness of RVE-PFL will mitigate the model
inversion attacks and consequently preserve privacy despite
the complexity of the dataset and the deep learning model.

Table IV reveals interesting findings when comparing RVE-
PFL with Fed-CDP and Fed-aCDP approaches. RVE-PFL
demonstrates significantly higher privacy improvement rates
compared to Fed-CDP, Fed-aCDP, ResSFL, and Dropout,
as well as outperforms NbAFL in terms of privacy preser-
vation. These results suggest that Fed-CDP and Fed-aCDP,
which rely on per-example DP, might not be sufficient to
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TABLE 1II
PRIVACY-PRESERVING EVALUATION METRICS BETWEEN THE GROUND TRUTH IMAGES AND THE RECONSTRUCTED IMAGES BY MIFACE ATTACK

Dataset Approuch Privacy Metrics
MSE + PSNR | SSIM | FID*
FedAvg [45] 0.21 6.85 0.22 6.31
MNIST NbAFL 6] 0.32 5.05 0.07 6.41
Fed-CDP [37] 0.16 7.95 0.13 4.16
Fed-aCDP [38] 0.17 7.85 0.12 4.21
ResSEL [41] 0.26 6.6 .17 5.40
Dropout [40] 0.27 6.5 0.15 5.46
RVE-PFL 0.33 4.78 0.02 6.55
FedAvg [45] 0.12 9.34 0.14 3.9
Fashion-MNIST — NbAFL [6] 0.13 9.57 0.17 4.07
Fed-CDP [37] 0.12 9.51 0.13 3.87
Fed-aCDP [38] 0.12 9.40 0.13 392
ResSEL [41] 0.13 9.12 0.15 3.46
Dropout [40] 0.12 9.25 0.14 3.86
RVE-PFL 0.16 8.78 0.12 4.64
FedAve [45] 0.09 10.91 0.13 .47
Cifar-10 NbAFL [6] 0.08 11.22 0.1 3.57
Fed-CDP [37] 0.07 11.49 0.14 336
Fed-aCDP [38] 0.07 11.35 0.13 3.40
ResSFL [41] 0.11 10.20 0.16 4.10
Dropout [40] 0.10 10.29 0.15 3.96
RVE-PFL 0.12 9.76 0.09 4.44
Original F‘E_dAyg ! L D.-r—npnu‘l RVEV-P'FL Original FEH:V-‘Q NbAFL Fed-CDP Fed-aCDP Res.:f: Dropout R\IEVP‘FL Original FedAvg AFL Fed-CDP Fed-aCDP ResSFL Dropout RVE-PFL
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L=t b T TR U .
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2 2 ) MBS m R
- - 2 - .
> 3§ EEE R AN EEN
§ @ | MME EEEEEEEN
cE@EEBRE  EEEEEEEN
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(2) MNIST

(b) Fashion-MNIST

aQ

(c) Cifar-10

Fig. 4. Visual results of the MIFace attack on the three datasets.

safeguard against privacy leakage through MI attacks while
also struggling to maintain satisfactory model utility, as evi-
denced by the performance metrics presented in Tables I
and II, and Figure 3. Hence, RVE-PFL emerges as a promis-
ing alternative, offering improved privacy protection without
compromising on model performance, making it a more robust
choice for privacy-preserving federated learning scenarios.

It is noteworthy that the positive values in Table IV represent
improvements in the positive direction, while the negative
values indicate improvements in the negative direction. For
example, in the MSE column, all values are positive, indicating
that RVE-PFL has higher MSE values than NbAFL, Fed-
CDP, and Fed-aCDP, which is desirable. On the other hand,
in the SSIM column, all values are negative, indicating that
RVE-PFL has lower SSIM values than NbAFL, Fed-CDP, Fed-
aCDP, ResSFL, and Dropout which is desirable for privacy
preservation.

¢) Computational cost: The RVE-PFL approach entails
a computational cost of 41.04 million floating-point operations

(FLOPs) and encompasses 20.52 million parameters, demand-
ing an approximate memory allocation of 78.06 megabytes
(MB). In contrast, the baseline FL incurs 4.1 million FLOPs
with 0.824 million parameters, necessitating a memory space
of 3.15 MB. Despite the incremental computational load of
RVE-PFL, it manifests a commendable equilibrium between
utility and privacy preservation. Notably, it remains well-
suited for deployment on resource-constrained IoT devices,
demonstrating a judicious memory footprint of 78.06 MB. This
underscores its aptitude for scenarios characterized by limited
computational resources.

d) The impact of adding more clients: We assessed
the performance of RVE-PFL across various numbers of FL.
participants on the Fashion-MNIST dataset, as detailed in
Table VI. Our findings indicate that as the number of clients
increases, RVE-PFL maintains comparable privacy measures
with a marginal decrease in accuracy.

e) Comparison with related encoding-based approaches:
Table V presents a comparison of the performances of
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TABLE IV

IMPROVEMENT RATES FOR PRIVACY-PRESERVING EVALUATION METRICS OF RVE-PFL

Privacy Metrics

Approach Dataset
MSET PSNR, SSIM, FIDT
MNIST S7.04%  -30.24%  9091%  3.80%
Fushion-MNIST — 33.33%  -5.99%  -1429%  18.97%
FedAvg [45] CIFAR-10 33.33%  -1056%  -30.77%  28.00%
Average 41.93%  -1593%  -45.99%  16.92%
MNIST 3025%  -5.35%  71.43%  2.18%
Fashion-MNIST — 23.08%  -R.23% 2941  14.02%
NPAFL [o] CIFAR-10 S0% 118G -10%  24.34%
Average 25.07 % -8.05% -37.95% 13.18%
MNIST 106.25%  -30.37%  -84.62%
Fashion-MNIST 3333 % -7.537% -7.69%
Fed-COP[37] (ypapr-10 T143%  -15.02%  -35.71%
Average T067%  -2065%  -42.00%
MNIST 94.12%  -A001%  -R3.33% 55827
Fashion-MNIST — 33.33% 6386  -7.069%  18.37%
4 - M b
Fed-aCDP L3R cipagiio T143%  -13.99%  30.77%  30.59%
Average 66.29%  -19.83%  -M60%  34.26%
MNIST 2602% 271587  R824%  21.30%
Fashion-MNIST 23.08% -3.87% -25.0% 34.10%
ResSFL [41] CIFAR-10 9.09% 431%  -4375%  8.29%
Average 19.70%  -1192%  -52.33%  21.23%
MNIST 3222%  2640%  R6.61%  19.93%
Fashion-MNIST 33336  -1.42%  -1420%  2021%
Dropout [401 (A R-10 200%  -516%  -400%  12.12%
Average 25.18%  -1L01%  -46.98%  17.42%
TABLE V

COMPARISON OF PERFORMANCES OF RVE-PFL AND ENCODING-BASED APPROACHES
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Approach / Dataset MNIST Fashion-MNIST  Cifar-10
Classification-Compliant Autoencoder [18]  97.63 N/A 80.30
Distributed Encoders [9] 9945 81.82 85.02
InstaHide [33] 98.240.2 N/A 91.4-£0.2
RVE-PFL 0.99£0.001  0.99=0.008 0,990,053
Original Fedfwg Mb&AFL RWE-FFL TABLE VI
E Far ‘. ‘_ =i PERFORMANCE AND ROBUSTNESS OF RVE-PFL ACROSS MULTIPLE
bk i = CLIENTS ON THE FASHION-MNIST DATASET
m !{ ¥ G M Acc Privacy Metrics
MSE t PSNR | SSIM | FID 1
e ) ‘_ 10 99.01% 0163 878 0.125 4.04
: 2 . x 40 08.98% 0.163 873 0.126 4.01
> e 70 98.97%  0.1064 8.74 0.124 4.63
E S o Gy 100 98.98%  0.162 8.77 0.125 4.62
T o 3 150  98.97%  0.163 8.73 0.123 4.64
T o e included in the comparison are the Classification-Compliant
e pgete A, Autoencoder [18], Distributed Encoders [9], InstaHide [33],
: and RVE-PFL. In terms of accuracy, RVE-PFL consistently
H s Tk achieves high performance across all three datasets, with an
e accuracy of 0.99+0.001 for MNIST, 0.99+0.008 for Fashion-

Fig. 5.  Visual representations of training data reconstructions obtained MNIST, and 0.99+0.053 for Cifar-10.
Comparatively, the Classification-Compliant Autoencoder

through DLG and iDLG model inversion attacks.

achieves an accuracy of 97.63% on MNIST and 80.36%
RVE-PFL and related approaches on different datasets named  on Cifar-10, while no value is reported for Fashion-MNIST.
MNIST, Fashion-MNIST, and Cifar-10. The approaches Distributed Encoders perform well with an accuracy of 99.45%
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on MNIST, 81.82% on Fashion-MNIST, and 85.02% on Cifar-
10. InstaHide shows an accuracy of 98.2+0.2% on MNIST and
91.4%0.2% on Cifar-10, with no reported value for Fashion-
MNIST. Overall, the results indicate that RVE-PFL achieves
competitive accuracy on all three datasets when compared to
the related approaches, demonstrating its effectiveness in PFL
and protection against MI attacks.

VII. CONCLUSION

We have introduced an RVE-PFL approach for enhancing
the privacy of FL systems that uses a personalised varia-
tional encoder to protect against MI attacks while preserving
model utility. RVE-PFL consists of two components: person-
alised encoding and the FL classifier. The former transforms
client-private data into a probabilistic latent space, while
the latter is locally trained using the latent space and glob-
ally aggregated by the server. RVE-PFL has demonstrated
satisfactory performance in terms of privacy protection and
model utility. Specifically, our approach has proven effective
at mitigating inversion attacks, a common privacy risk in
FL applications and machine learning applications in general.
However, as concerns about data privacy continue to grow,
techniques that can effectively protect sensitive data while still
maintaining the model’s utility will become increasingly valu-
able. Thus, RVE-PFL is a step in this direction, and we believe
it has the potential to inform future efforts to develop FL
systems that are more secure and effective. In the future, the
proposed approach should be further evaluated and expanded
to include not only image datasets but also tabular and text
data. This expansion would allow the application of the RVE-
PFL approach in a wider range of use cases and provide
additional insights into its effectiveness and generalizability.
As part of future work, it would be valuable to evaluate the
robustness of our approach against membership and property
inference attacks.
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