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Abstract— Federated learning (FL) enables distributed joint 
training of machine learning (ML) models without the need 
to share local data. FL is, however, not immune to privacy 
threats such as model inversion (MI) attacks. The conventional 
FL paradigm often uses privacy-preserving techniques, and this 
could lead to a considerable loss in the model’s utility and con- 
sequently compromised by MI attackers. Seeking to address this 
limitation, this paper proposes a robust variational encoder-based 
personalised FL (RVE-PFL) approach that mitigates MI attacks, 
preserves model utility, and ensures data privacy. RVE-PFL 
comprises an innovative personalised variational encoder archi- 
tecture and a trustworthy threat model-integrated FL method to 
autonomously preserve data privacy, and mitigate MI attacks. 
The proposed architecture seamlessly trains heterogeneous data 
at every client, while the proposed approach aggregates data at 
the server side and effectively discriminates against adversarial 
settings (i.e., MI); thus, achieving robustness and trustworthiness 
in real-time. RVE-PFL is evaluated on three benchmark datasets, 
namely: MNIST, Fashion-MNIST, and Cifar-10. The experi- 
mental results revealed that RVE-PFL achieves high accuracy 
level while preserving data and tuning adversarial settings. It 
outperforms Noising before Model Aggregation FL (NbAFL) 
with significant accuracy improvements of 8%, 20%, and 59% 
on MNIST, Fashion-MNIST, and Cifar-10, respectively. These 
findings reinforce the effectiveness of RVE-PFL in protect- 
ing against MI attacks while maintaining the model’s utility. 
The source code for RVE-PFL can be found on GitHub: 
https://github.com/UNSW-Canberra-2023/RVE-PFL. 

Index Terms— Federated learning (FL), variational autoen- 
coder (VAE), model inversion (MI) attack, differential privacy 
(DP). 

I. INTRODUCTION 

EDERATED learning (FL) has gained widespread adop- 

tion in various applications, ranging from telecommu- 

nications to healthcare to different Internet of Things (IoT) 
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settings (e.g., Internet of Vehicles – IoV). This is not surprising 

since FL supports data privacy by allowing clients to keep 

their data on their local machines (e.g., devices) and train the 

models locally. According to the report by Research [1], for 

example, the FL market is expected to grow at a compound 

annual growth rate (CAGR) of 10.7% from 2022 to 2030, 

with a projection of reaching USD 266.77 million by 2030. 

This growth is partly driven by the increasingly privacy-aware 

society. FL presents several compelling advantages. Notably, 

FL excels in safeguarding the privacy of data stored on IoT 

devices, a critical aspect in sensitive domains like finance and 

healthcare. Additionally, FL offers scalability by facilitating 

the distributed training of large-scale ML models. This decen- 

tralized approach often leads to accelerated training times 

and reduced communication costs compared to traditional 

centralized methods. Ultimately, FL emerges as a promising 

solution for upholding privacy in ML for IoT, contributing to 

enhanced efficiency and security in IoT systems [2]. 

Susceptibility of FL to model inversion (MI) Attacks: It is, 

however, known that conventional FL does not entirely prevent 

information leakage during the sharing of trained models 

with the server(s). In other words, these models could be 

vulnerable to privacy attacks, such as membership inference, 

generative adversarial network (GAN) reconstruction attacks, 

and MI attacks [3], [4], [5]. In the context of MI attacks, 

an attacker can exploit the parameter exchanges between 

clients and the server to infer the training data, even if the 

data is not directly shared. Thus, the leakage of sensitive train- 

ing data has serious consequences. For instance, adversaries 

could (ab)use such information to facilitate nefarious activities 

(e.g., identity theft or financial fraud). Therefore, clients may 

be reluctant to participate in the FL process due to privacy 

leakage concerns. In the literature, there are three popular 

mitigation approaches, namely: cryptographic and differential 

privacy (DP) approaches [3], [6], [7], [8], and encoding-based 

techniques [9], [10], [11]. 

Limitations of cryptographic and DP Solutions: A num- 

ber of FL-based approaches are known to be susceptible to 

MI attacks [5], [12]. In addition, commonly used crypto- 

graphic approaches (e.g., homomorphic encryption and secure 

multi-party computation – SMC) often involve extra encryp- 

tion and decryption processes, which result in a substantial 

computation overhead. While DP ensures statistical privacy 

protection for individual records and guards against model 

inference attacks, the addition of noise during the training 
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process often leads to the generation of less precise models 

(i.e., models with low utility) [6], [13], [14], [15]. 

Limitations of encoding-based approaches: Several existing 

encoding-based approaches and frameworks rely on training 

autoencoder models on the clients for feature encoding, fol- 

lowed by transmitting the encoded features to the server for 

centralized model training. However, transmitting the encoded 

features from clients to the server can lead to privacy risks 

as the encoded features may contain sensitive or private 

information, which could be exposed during transmission 

[9], [10]. Alternatively, other approaches focus on centrally 

training the autoencoder, overlooking the data heterogeneity 

and decentralized nature of IoT devices [16], [17]. Another 

set of approaches involves local training of the autoencoder 

and classifier, with the parameters of all three components 

(encoder, decoder, and classifier) being sent to the server for 

aggregation. However, such an approach significantly increases 

the communication cost [17], [18]. 

Our proposed approach: In light of these limitations, 

it is imperative to implement effective privacy-preserving FL 

approaches, along with adversarial settings. Thus, the proposed 

RVE-PFL introduces an effort to safeguard against MI attacks 

in FL by utilising a variational encoder and personalised 

federated learning (PFL). In contrast to other encoding-based 

approaches that rely on central training of the encoder on a 

server-side dataset or send subsequent feature extraction by 

clients, our RVE-PFL involves jointly training and fine-tuning 

both the encoder and classifier on each client’s available data. 

To adhere to the principles of FL, we strictly exchange only 

the learned classifier parameters for model aggregation, rather 

than sharing labels or extracted features with the server. RVE- 

PFL incorporates personalised encoder locally on each client 

while sharing only the classifier parameters with the server. 

This ensures that the private data representation learned by 

the encoder remains confined to the client device, providing 

enhanced privacy protection and robustness against MI adver- 

sarial settings. 

Key Contributions: We propose RVE-PFL as a robust vari- 

ational encoder-based personalised FL approach that aims to 

address the risk of model inversion attacks while maintaining 

the global model’s utility. A summary of this work is as 

follows: 

• We propose RVE-PFL, which is a novel and simple 

approach that combines variational encoding with per- 

sonalised FL. RVE-PFL consists of two primary com- 

ponents, namely: a personalised variational encoder and 

a classifier. The personalised variational encoder con- 

verts the client-private data into a probabilistic latent 

space, while the classifier is locally trained on the 

transformed data and then aggregated globally by the 

server. Therefore, the encoder and local classifier are 

simultaneously trained and fine-tuned in each global 

round. 

• We use the MIFace [19], DLG [20], and iDLG [21] 

attacks to evaluate the resilience of RVE-PFL against 

MI attacks. The success of such attacks depends on 

whether the recovered data reveals sensitive informa- 

tion about a specific label. Therefore, we conducted a 

quantitative and qualitative analysis to investigate the 

attack’s performance. 

• We investigate the potential vulnerabilities of FL to model 

inversion attacks, which are launched by semi-honest or 
honest but curious adversaries. 

Paper Structure: The remainder of this work is organized as 

follows. Section II offers background information on person- 

alised FL and MI attacks, while Section III reviews the extant 

literature. Section IV outlines the proposed threat model, 

before introducing the proposed approach in Section V. The 

experimental setup and results are discussed in Section VI. 

Section VII outlines the conclusion and future directions for 

this work. 

 

II. PRELIMINARIES 

This section aims to provide comprehensive insights into 

personalised FL and the potentially detrimental impact of 

model MI on FL. 

 

A. Personalized Federated Learning (PFL) 

PFL is a variant of FL that aims to train a model collabo- 

ratively while handling non-IID (Independent and Identically 

Distributed) data and improving privacy preservation. Multiple 

methodologies can be employed for implementing PFL, and 

one of them involves two distinct stages. In the first stage, 

a global model is learned collaboratively, whereas in the 

second stage, each device fine-tunes the global model to its 

local data to create a personalised model. In an alternative 

methodology, the model parameters are split into two sections: 

local parameters and global parameters. The first few layers 

constitute the local parameters, whereas the last few layers 

form the global parameters [22], [23], [24]. For example, the 

authors of [25] proposed a personalised FL approach, Local 

Global Federated Averaging (LG-FedAvg), that combines local 

representation learning and global federated training to address 

data heterogeneity and communication efficiency. The model 

parameters are split into local and global parameters, and 

devices train and update the whole model locally, but only 

the global parameters are communicated with the server for 

aggregation. 

As per [22], the mechanism which divides model param- 

eters between private and global is a deliberate choice made 

during architectural design. There are typically two approaches 

used in decoupling parameters for deep neural networks. The 

first is a “base layers + personalised layers” model. Here, 

personalised deep layers are kept private by clients for local 
training, enabling them to develop customized representations 
for specific tasks, while the base layers are shared with the 

FL server to learn generic, low-level features. The second 

approach involves creating personalised feature representations 

for each client. For instance, in [26], a bidirectional LSTM 

architecture document classification model is trained utilising 

FL by considering user embeddings as personal model param- 

eters and character embeddings (i.e., LSTM and MLP layers) 

as global model parameters. 

It is noteworthy that our approach adheres to the 

architecture-based PFL approaches, which are focused on 
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Fig. 1.  Procedure of model inversion attack. 

 

 

achieving personalisation via the second model decoupling 

approach mentioned above [22], [24]. To achieve this, our 

approach utilises the second decoupling approach, which 

involves the division of the model into two distinct com- 

ponents. The first component, referred to as the encoding 

part, consists of the personalised layers that are kept private 

by each client. This component is responsible for extracting 

and transforming features into a latent space. On the other 

hand, the second component is the FL classifier, which can be 

locally trained by the clients using the latent space and then 

shared with the server for global aggregation. By segregating 

these two components, we can achieve the desired level of 

personalisation while preserving the security and privacy of 

client data. 

 

B. Model Inversion (MI) Attack 

MI is widely acknowledged as one of the most powerful 

privacy attacks against the confidentiality of ML models [27], 

[28]. This attack aims to reconstruct the data that was utilised 

to train the model. Hence, the concept behind model inversion 

is that a learned model captures a mapping between the input 

and output spaces (a relationship between the input and output 

domains). This mapping can be used to make predictions in 

one direction (from an input sample to an output), but it can 

also be turned around to find an optimal input (reconstructed 

data) that minimizes the difference between the predicted value 

and the target response, such as a specific class label [29]. 

In the realm of FL, the inversion attack can be succinctly 

described as a three-step procedure, as depicted in Figure 1. 

In the initial step, the attacker procures either a local or 

global-trained model. Subsequently, the attacker employs a 

model inversion method (such as MIFAce [19] ) that leverages 

gradient descent methods to optimize the local value of a loss 

function, iteratively adjusting the input until a more accurate 

solution is attained. Specifically, model parameter inversion 

attacks often require solving an optimization problem. Initially, 

the attacker retrieves the model parameters, denoted as W . 

Next, the attacker generates dummy samples, denoted as 

(Xˆ , yˆ), and seeks to minimize the difference between the 

received parameters W and the dummy parameters Wˆ . 
The dummy parameters are computed by running the 

dummy samples through the target model using one forward- 

backward pass. During the optimization process, the values 

of the dummy samples are adjusted to better approximate the 

original training data. Particularly, the values of the dummy 

samples are tuned to approximate the training samples by 

the end of the attack [30]. Lastly, the attacker is capable of 

reconstructing data that is nearly indistinguishable from the 

original training data. This reconstructed data can then be 

utilised by the attacker to extract sensitive information about 

the participants involved in the FL. Instances of MI attacks 

that adhere to this methodology include Deep Leakage from 

Gradients (DLG) [20] and its enhanced version, improved 

Deep Leakage from Gradients (iDLG) [21]. 

DLG [20] constitutes an MI attack specifically tailored for 

revealing sensitive information within collaborative learning 

frameworks, exemplified by FL. DLG introduces an optimiza- 

tion algorithm that can infer both training inputs and labels 

through a limited number of iterations. The attack protocol 

initiates by randomly generating a set of “dummy” inputs 

and labels, followed by the execution of standard forward 

and backward passes. Diverging from conventional training 

procedures that optimize model weights, DLG uniquely directs 

its optimization towards dummy inputs and labels. This opti- 

mization process seeks to minimize the dissimilarity between 

gradients derived from the dummy data and those emanating 

from authentic training data. In the DLG, the authors generate 

synthetic data and associated labels by leveraging shared 

gradients. Despite this, DLG encounters challenges related to 

convergence and the consistent identification of ground-truth 

labels. Conversely, the improved DLG (iDLG) [21] method has 

observed that the sharing of gradients inadvertently discloses 

the actual labels. As a result, iDLG demonstrates the capability 

to reliably extract the ground-truth labels, distinguishing itself 

from DLG in this regard. 

Specifically, Model inversion requires minimal knowledge 

from an adversary to be successful [19]. The most essential 

knowledge is understanding the model’s output and knowledge 

of the model itself. The output knowledge enables the attacker 

to comprehend the expected outcome, and the knowledge of 

the model architecture and parameters is required to exe- 

cute gradient descent for input optimization. Furthermore, 

knowledge of the data that was used to train the model can 

also be beneficial as it provides insight into the features and 

characteristics that the model is looking for in the input data, 

which can aid in the optimization process and enhance the 

accuracy of the reconstructed input. It is worth noting that 

the level of knowledge required may vary depending on the 

specific task and model being targeted. 

 

III. PRIVACY MECHANISMS IN FEDERATED 

LEARNING: RELATED STUDIES 

In this section, we will explore relevant studies that have 

aimed to enhance privacy in FL. 
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A. Encryption and Differential Privacy-Based Approaches 

A plethora of research has been proposed to address the 

issue of data leakage through MI attacks. Thus, ensuring 

the privacy of individual participants’ data is of paramount 

importance in FL, where multiple parties work together to train 

a global model. Not all participants may be fully trusted, and 

thus it is essential to implement countermeasures to prevent 

malicious actors from accessing and stealing sensitive infor- 

mation. Therefore, it is important to use advanced techniques 

to protect the privacy of participants [31]. Thus, Truex et al. 

[32] presented a hybrid approach to privacy-preserving FL that 

combines DP and SMC to protect against inference threats. 

Huang et al. introduced InstaHide [33], a simple encryp- 

tion technique designed specifically for training images in 

distributed deep learning frameworks. InstaHide seamlessly 

integrates into existing systems and utilises a “one-time secret 

key” to encrypt each training image. The encryption process 

involves a combination of the target image with randomly 

selected images and the application of a random pixel-wise 

mask. To mitigate the risk of MI attacks, Madi et al. [34] 

employed a method incorporating Homomorphic Encryption 

(HE) and Verifiable Computing (VC) techniques. This involves 

conducting the federated averaging operation directly within 

the encrypted domain using HE while ensuring the correctness 

of the operation through formal proofs enabled by VC. Simi- 

larly, Triastcyn and Faltings [8] proposed an approach utilising 

a combination of Bayesian differential privacy and encryption 

techniques to achieve privacy preservation in FL. 

In [35], Xu et al. introduced HybridAlpha, a method for 

privacy-preserving FL. To prevent model inversion attacks, 

the method employs an SMC protocol that utilises func- 

tional encryption. While homomorphic encryption and SMC 

are commonly used cryptographic techniques, they require 

additional encryption and decryption operations, leading to 

a notable increase in computational workload. Zhang et al. 

[36] presented a Privacy-Enhanced Momentum FL (PEMFL) 

method to protect sensitive data in industrial cyber-physical 

systems using DP and chaos-based encryption. However, the 

PEMFL method has some shortcomings, including reduced 

accuracy due to the addition of noise and increased computa- 

tional complexity from the use of a chaotic system. 

In a recent study, Wei et al. [6] presented a novel framework 

that leverages the principles of DP to enhance privacy in 

FL. This framework, named Noising before Model Aggrega- 

tion FL (NbAFL), involves introducing artificial noise to the 

parameters at the clients’ side before aggregation. The authors 

highlight that this approach introduces a tradeoff between the 

level of privacy protection and the convergence performance 

of the FL process. Similarly, Wei et al. [37] introduced a novel 

approach called Fed-CDP, which focuses on preserving privacy 

in FL by incorporating per-training example-based client DP. 

They also conducted a rigorous analysis of Fed-CDP, establish- 

ing its (ϵ, δ)−DP guarantee. A formal comparison was made 

between Fed-CDP and server-coordinated DP approach code- 

named as Fed-SDP regarding privacy accounting. According 

to the authors, Fed-CDP incorporates a dynamic decay noise- 

injection policy, which contributes to enhancing the accuracy 

and resilience of the approach. 

In their research [38], Wei et al. proposed the Fed-αCDP 

approach, which enhances traditional per-client methods by 

incorporating per-example gradient perturbation and adap- 

tive parameter optimizations. Firstly, Fed-αCDP introduces 

DP-controlled noise to per-example gradients during local 

training at the client level. Secondly, Fed-αCDP determines 

the sensitivity of a differentially private FL algorithm using 

the l2 max of gradients, resulting in reduced Gaussian noise 

variance during local Stochastic Gradient Descent (SGD) at 

the clients’ training stage. Lastly, Fed-αCDP implements a 

dynamic decaying noise scale, σ , to align Gaussian noise 

variance and noise injection with the trend of gradient updates 

during local SGD. 

Despite the effectiveness of DP in protecting against MI 

attacks, its use can significantly impact the model’s learning 

ability. This is because achieving privacy often requires high 

levels of noise, which can impede the model’s capacity to learn 

from the data. These issues raise important questions about the 

trade-offs between privacy and model utility and whether there 

exist alternative approaches that can provide similar protection 

without compromising the model’s learning ability. Moreover, 

further research is necessary to fully understand the utility of 

DP as a defense mechanism beyond privacy preservation and 

explore other potential solutions that can protect the model 

against privacy leakage attacks while preserving its learning 

ability [3], [39]. 

 

B. Encoding-Based Approaches 

Numerous investigations have been undertaken to tackle 

privacy-related issues within the realm of deep and federated 

learning by employing autoencoders (AE). Zhang et al. [9] 

proposed a framework to safeguard the privacy of data own- 

ers through the distribution of the machine learning process 

between clients and a central server. Within this framework, 

the clients undertake the responsibility of encoding the original 

data using their respective autoencoder. Subsequently, the 

encoded data, along with corresponding labels, is transmit- 

ted to the server for centralized model training. During the 

inference stage, clients extract features using their individual 

encoders and transmit them to the central server for classifi- 

cation. 

Keshk et al. [10] introduced a novel framework that utilises 

the combined potential of blockchain technology and deep 

learning to enhance the privacy and security of smart power 

networks. The framework leverages a VAE to transform data 

into an encoded format, thereby mitigating the risks associated 

with inference attacks. However, it is worth noting that this 

approach has not been tested against model inversion attacks 

and does not adequately account for the data heterogeneity 

exhibited by IoT devices. Jiang et al. [16] presented DP-Fed- 

WAE, a privacy-preserving framework specifically designed 

for the collection of high-dimensional categorical data. The 

proposed framework involves training a local autoencoder to 

learn the representation of the data, followed by the application 

of DP to perturb the autoencoder’s parameters. 

In the context of privacy-preserving analysis of big data, 

Alguliyev et al. [17] introduced a deep learning approach. The 

primary objective of this approach is to convert the sensitive 
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portion of personal information into non-sensitive data. Ma 

et al. [18] proposed an innovative approach to enhance privacy 

protection in collaborative learning, specifically addressing the 

challenges posed by gradient-based reconstruction attacks. The 

proposed scheme incorporates an initial permutation step that 

applies a scalable block size transformation to the sensitive 

training images. He et al. [40] introduced a defense mechanism 

utilizing Dropout, wherein random neurons are deactivated 

during inference to hinder adversaries from accurately recon- 

structing original images from intermediate values. While this 

defense mitigates the impact of model inversion attacks during 

the inference stage, it does not protect during FL training, 

where model parameters are exchanged between participants 

and the server. 

In another related study, Li et al. [41] introduced Resis- 

tance Split FL (ResSFL), a two-step framework comprising 

a pre-training step to establish a feature extractor with MI 

resistance and a subsequent resistance transfer step, where 

the resilient feature extractor initializes the client-side model 

in the SFL scheme. While ResSFL mitigates the impact of 

MI attacks, it deviates from FL principles as it relies on a 

centralized dataset, posing privacy concerns. Additionally, the 

pretraining step introduces additional computational overhead. 

In contrast to the previous approach that relies on central 

training of the encoder on a server-side dataset and subsequent 

feature extraction by clients, our approach adopts a dis- 

tinct architecture. We adopt a client-centric training paradigm 

where both the encoder and classifier are jointly trained and 

fine-tuned on each client’s available data. Additionally, instead 

of directly sharing labels or extracted features with the server, 

we strictly adhere to the principles of FL by only exchanging 

the learned classifier parameters for model aggregation. Our 

approach incorporates the concept of PFL by retaining the 

encoder locally on each client while exclusively sharing the 

classifier component with the server. This means that the 

private data representation learned by the encoder remains 

within the confines of the client device, enhancing privacy 

protection. 

IV. THREAT MODEL 

The vulnerability of clients to inversion attacks constitutes a 

fundamental issue in FL systems. This susceptibility emanates 

from requiring clients to transmit their locally trained param- 

eters to the server as a precondition for the global model 

aggregation. Such transmission makes clients’ data vulnera- 

ble to privacy violations and security breaches, underscoring 

the importance of implementing robust security measures to 

protect the integrity of FL and safeguard client data [12]. 

In this research, we investigate the potential vulnerabili- 

ties of FL systems to MI attacks, which are launched by 

semi-honest or honest-but-curious adversaries. These adver- 

saries, who may be clients or servers within the FL system 

or external passive attackers, attempt to extract sensitive 

information about the training data that is not intended to be 

shared. We specifically focus on the threat posed by these 

adversaries, who, while adhering to the FL protocol, seek 

to gather unauthorized information through the use of MI 

techniques. Furthermore, we consider scenarios where the 

attacker has some knowledge of the FL system, referred to 

as gray-box [29] settings, which can make the attack more 

successful and challenging to defend against. 

In the gray-box attack setting, we assume that the adversary 

has a significant level of knowledge about the classifier being 

used. This includes knowledge of the structure of the classifier 

and access to the model parameters, which can be obtained 

through the coordinating server or from the FL participants. It 

is noteworthy that the structure of the model can be infringed 

by the model-stealing attack [42]; however, we assume that the 

attacker has this knowledge without performing such attacks. 

Furthermore, the attackers are limited in their knowledge in 

that they do not have access to the training data used to train 

the classifier, except for the shape of the input. 

This type of attack is considered more challenging for 

the defender as the attacker has more information about 

the classifier than in a black-box attack but less than in a 

white-box attack. Additionally, it is important to mention that 

gray-box attacks can be used to evaluate the robustness and the 

vulnerability of the classifier in the case of an insider attacker 

or a side-channel attacker. Regardless of whether the adversary 

performing the model inversion attack is an honest and curious 

aggregation server, participant, or external adversary, the goal 

remains the same: to infer the corresponding training data from 

the local or global model, leading to privacy leaks in FL. 

Specifically, MI attacks can occur and obtain the trained 

model parameters through four entry points. The first involves 

the adversary compromising the FL participants and obtaining 

a copy of their locally trained classifier. Additionally, the MI 

attack can also be performed by the FL participant itself if 

it is malicious. The second and third involve the adversary 

compromising and intercepting the communication between 

the edge server and the FL participating devices to obtain a 

copy of the local or global classifier. Finally, the fourth entry 

point involves the MI attack being performed by a malicious 

edge server or by an external adversary who has compromised 

and gained access to the edge server. 

V. PROPOSED APPROACH (RVE-PFL) 

This section outlines the details of RVE-PFL, a variational 

encoder-based personalised FL approach, designed to defend 

against MI attacks. The description includes the RVE-PFL 

architecture, and the FL algorithm illustrating how clients 

communicate with the edge server. The RVE-PFL approach 

is reliant on personalised federated learning (PFL) and the 

variational encoder. We highlight the pivotal roles of these 

elements as essential milestones in the development of the 

RVE-PF approach. Additionally, we present an overview of 

the PFL technique that we utilised in designing the RVE-PF 

approach. 

Our emphasis is on a personalised approach to federated 

learning, wherein a group of intelligent IoT devices, also 

known as clients or participants, continuously monitor the 

physical environment and store the gathered data in their 

respective databases. These devices have inherent computa- 

tional capabilities that allow them to train local models. An 

edge server also takes charge of coordinating the collaboration 

among the devices, improving their models by utilising data 
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m 

by minimising the following optimisation problem: 

W ∗ = arg min fm(Xm, ym, Wm), (2) 
m 

Wm
 

where fm(Xm , ym, Wm) is the local objective function of client 

m that should be minimised to find the best model parameters 
∗ given dataset Dm with (Xm, ym). The superscript ∗ 

denotes that we are looking for the optimal value of Wm that 

minimises the objective function fm. 

The local parameters Wm of client m are divided into two 

components; the first one is for the personalised variational 

encoder parameter and the second is for the classifier. The 

encoder network produces two sets of output parameters: the 

mean µ and the standard deviation σ . These parameters are 

used to define a Gaussian distribution over the latent variables 

z [43], [44], as follows: 
 

 

 

 

 

Fig. 2.  Overview of proposed FL approach (RVE-PFL). 

 

 

from other devices through the global model aggregation 

method, all while maintaining a reasonable level of privacy 

preservation and preserving the model’s utility. RVE-PFL 

ensures that it becomes challenging for adversaries to execute 

model inversion attacks against the exchanged local models 

between the clients and server, or even against the global 

model, as we will explain in the next paragraphs. 

RVE-PFL also ensures the confidentiality of the data and 

preserves the privacy of the participants against adversarial 

settings (i.e., MI attacks). To do so, we consider M devices 

participating in FL, where each device possesses its local 

training dataset Dm = (Xm, ym), with Xm representing a 

feature space and ym denoting the corresponding label vector. 

RVE-PFL divides the model with parameters Wm into two 

dependent components. The first component represents the 

personalised variational encoder with parameters Wenc,m that 

is trained locally and is kept by the clients. The second 

component of the model is the classifier with parameters Wc,m 

and it sends by the clients to the edger server for aggregation, 

where: 

Wm = Wenc,m ∪ Wc,m (1) 

The architecture of RVE-PFL is illustrated in Figure 2. 

The model is divided into a personalised variational encoder 

and a shared classifier for global aggregation and experience 

exchange among participating clients. This design aims to 

balance privacy preservation and model utility, ensuring that 

the model achieves reasonable performance while preserving 

the privacy of the client’s data. The edge server initialises the 

model parameters and sends them to the clients to start the 

local training. Every client receives the model parameter W 

and starts to train its local model with parameters Wm on its 

own data using their objective function fm. This was achieved 

z ∼ N(µ, σ 2) (3) 

To generate a sample from this distribution, we use the 

reparameterization trick: 

z = µ + σ ∗ ϵ, (4) 

where ϵ is a random sample from a standard Gaussian dis- 

tribution, it is worth noting that the variational encoder is 

employed in our approach to preserving privacy. It achieves 

this by mapping input data to a probabilistic latent space, 

which effectively conceals any sensitive information. Rather 

than creating a deterministic mapping from input data to latent 

space, probabilistic mapping is used, which allows the encoder 

to provide a natural means of privacy protection. 

In RVE-PFL, a different approach is considered to use the 

variational encoder for privacy preservation. Instead of map- 

ping the input data into a low-dimensional probabilistic latent 

space, the proposed encoder maintains the same dimensions 

as the input. This means that the latent space can be used 

directly as input for the classifier without any information 

loss resulting from compression. By maintaining the same 

dimensions in the latent space as the input data, we can 

preserve all of the original information while still achieving 

a more compact representation of the data. This allows us 

to more effectively preserve privacy while maintaining the 

accuracy of the subsequent classifier. Thus, the variational 

encoder acts as a feature transformation technique that allows 

us to create a more compact representation of the input data 

while still preserving privacy. 

During local training, both the variational encoder and the 

classifier are trained as a single model. Once the training is 

complete, the clients keep their respective trained variational 

encoders Wenc,m, which serve as personalised feature trans- 

formers. Meanwhile, the trained parameters of the classifier 

Wc,m are sent to the edge server for global aggregation. This 

approach ensures that the shared classifier is trained on the 

probabilistic latent space rather than the original data, making 

it challenging for adversaries to perform an MI attack. This is 

due to the probabilistic latent space that is non-deterministic 

and thus not easy to reconstruct. By using this approach, 

we can preserve the privacy of the individual clients’ data 

while still being able to train a robust classifier. 

W 
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Σ 

Wc g = 
 1  Σ 

Wc m (6) 

Wc,g =   m=1  , (5) 

M m=1 

M 

After the clients complete the local training, they upload the 

classifier parameters Wc,m to the edge server. Then, the local 

classifiers Wc,m are combined into the global classifier Wc,g 

using Federated Averaging (FedAvg) [45]. This can be done 

using the following equation: 
ΣM nm Wc,m 

 
 

 Algorithm 2 RVE-PFL - Client Side  

1 Input: η learning rate, L: batch size, E : local epochs, 

W0: the initial full model parameters, and Dm: local 

dataset, r : current global round index 

2 Output: Wc,m: the local classifier model updates and 

Wm: the full model including the personalised 

m=1 nm 

enc,m 

3 if r == 0 then 
c,m 

where M is the total number of clients, nm is the number of 4 Download: the initial full model parameters W0 

samples used for training by client m, and Wc,m is the local 5 Set: Wm ← W0 

classifier of client m. FedAvg [45] is a popular FL algorithm 6 end 

that allows multiple clients to collaboratively train a machine 7 else 

learning model without sharing their data with a central server.  8 

In this algorithm, each client trains a local model on its 

own data and sends the model updates to the server. The  9 

server aggregates the model updates using FedAvg to generate 10 

a global model that is sent back to the clients for further 11 

Download: the global classifier model parameters 
Wc,g 

Split: Wm into Wenc,m and Wc,m 

Set: Wc,m ← Wc,g 

Set: Wm ← Wenc,m ∪ Wc,g 

training. By using FedAvg, the clients can collectively learn 

from each other’s data without compromising their privacy 

to some extent. In the proposed approach, since all clients 

12 end 

13 Calculate: number of batches B ← |Dm|/L. 
14 for e in 1, . . . , E do 

have the same number of data samples in this scenario, the 15   nm  Set: Wm,0 ← Wm 
weighting term ΣM  

nm  
is the same for all clients, and the 16 Compute number of batches: B ← ⌈|Dm|/L⌉ 

FedAvg equation r
m

ed
=1

uces to a simple average as follows: 17 

M 
18 

19 
, 

M 
, 

m=1 
20

 

The outcome is that the global model becomes the arith- 

for b in 1, . . . , B do 

Compute local loss Lm ,b(Xm, ym, Wm,b) 
Compute local gradient 

gm,b ← ∇Wm,b Lm ,b(Xm, ym, Wm,b) 
Update local model weights: 

Wm,b ← Wm,b−1 − η  1 gm,b 

metic mean of the local models of all clients. This approach 21 

ensures that each client has an equal contribution to the global 22 
Set: Wm 

end 

B 

← Wm,b 

model, regardless of the number of data samples it has. 
23 end 

  24 Split: Wm into Wenc,m and Wc,m 

 Algorithm 1 RVE-PFL - Server Side  

1 Input: M : the number of clients, Wc, m: the 

classifier models from the clients m ∈ 1, 2, . . . , M , 

R: the number of communication rounds 

2 Output: Wc,g: federated trained global classifier 

model 

3 Edge server do: 

4 Initialize: the full model parameters W0 

5 Send: the initial full model parameters W0 to the 

clients m ∈ 1, 2, . . . , M 

6 for r in 1, . . . , R do 
7 Receive: the local classifier models updates 

Wc, m from the clients m ∈ 1, 2, . . . , M 

25 Keep Wenc,m as a personalised feature transformation. 

26 Send Wc,m to the edge server for aggregation. 
 

 

 

 

the full model parameters W0, and broadcasts them to all 

clients. In each communication round, the server receives the 

local classifier model updates Wc,m from each client. These 

updates are aggregated by computing the average of the local 

models from all clients, resulting in the federated trained 

global classifier model Wc,g as in Equation 6. The server then 

sends the aggregated model Wc,g back to all clients to start a 

8 Aggregate: Wc,g =  1  
Σm

 Wc,m . 
new global training round. This process is repeated until the 

9 Send: the aggregated global classifier model 

(federated trained global classifier model) 

Wc,g to the clients 1, 2, . . . , M . 

10 end 

11 end 
 

 

More specifically, the proposed approach is comprised of 

two distinct sides, which are elucidated in Algorithms 1 

and 2. The server-side is presented in Algorithm 1, while 

the client-side is elaborated upon in Algorithm 2. From the 

perspective of the server side, the edge server initializes 

On the client side, each client begins the collaborative 

training by checking if the global round index is zero. If it 

is, each client downloads the initial full model parameters 

and sets the full model Wm to be equal to these parameters. 

Otherwise, the client downloads the global classifier model 

parameters Wc,g and splits the full model Wm into the per- 

sonalised encoder Wenc,m and the classifier model Wc,m. The 

local classifier model parameters Wc,m is then updated with the 

global classifier model Wc,g, while the personalised encoder 

parameters are kept on the client side. Then, the full model 

Wm is set to be equal to the union of personalised encoder 

encoder W and the classifier model W 

number of communication rounds reaches R. 
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Wenc,m and the global classifier model Wc,g to start a new 

collaborative training round (Lines 3-12 Algorithm 2). 

Next, each client calculates the number of batches B in the 

local dataset Dm based on the given batch size L. Accordingly, 

each client proceeds to update the local model weights for each 

epoch and batch using SGD with a fixed learning rate η. For 

each epoch, the clients set the initial model weights Wm,0 to be 

equal to the current full model weights Wm and compute the 

number of batches B. For each batch, the algorithm calculates 

the local loss and gradient and then updates the local model 

weights accordingly (Lines 18-21, Algorithm 2). Then, the 

current full model parameters Wm are then set to be equal to 

the updated local model parameters Wm,b. 

Finally, the client splits the full model Wm into the per- 

sonalised encoder Wenc,m and the classifier model Wc,m. The 

personalised encoder Wenc,m is kept as a personalised feature 

transformation on the client side, while the classifier model 

Wc,m is sent to the edge server for aggregation with the updates 

from other clients in the FL system. 

 

VI. EXPERIMENTAL SETTINGS AND EVALUATIONS 

This section presents a comprehensive overview of the 

experimental setup, discussing how the experimental results 

evaluate the privacy preservation and utility of RVE-PFL. 

 

A. Experimental Settings 

1) Datasets: Three well-known datasets are used in the 

experiments (i.e., MNIST, Fashion-MNIST, and CIFAR-10), 

which have become standard benchmarks in the field of 

machine learning research. The MNIST dataset is composed of 

60,000 training images and 10,000 test images of handwritten 

digits (0-(9), each of which is a grayscale image of size 28 × 

28 pixels. On the other hand, the Fashion-MNIST dataset was 
developed to provide a more challenging alternative to MNIST, 
containing 60,000 training images and 10,000 test images of 

10 different clothing items such as T-shirts, dresses, and shoes, 
with each image being a grayscale image of size 28×28 pixels. 

Lastly, the CIFAR-10 dataset contains 60,000 32 × 32 color 

images of 10 different classes, including airplanes, cars, and 

cats, with 50,000 training images and 10,000 test images. This 

dataset poses a more significant challenge than the former two 

datasets, as it necessitates models to recognize and classify 

images with more intricate features and colors. 

2) Data Partitioning: We randomly combine the training 

and test data and then randomly split it equally among the 

ten clients participating in FL. In this manner, we ensure that 

each client has a representative sample of the data that does 

not overlap with any of the other clients. We then split each 

client’s local data into a training set and a test set. The training 

set is used to train the local model, while the test set is used 

to evaluate the performance of the global model. This split 

is performed by allocating a certain percentage of the data 

(typically 90%) to the training set and the remaining data to the 

test set (typically 10% from the client’s local data. Hence, the 

test set of each client is employed to assess the performance 

of the global model, and subsequently calculate the average 

across all clients in FL. 

3) Computational Settings: In this research, the experi- 
ments were carried out on a computing system consisting of 

an AMD® Ryzen Threadripper 1950 × 16-core processor, 

along with an NVIDIA Titan (X, Xp), and GeForce GTX 
1080 Ti GPU. The system is also equipped with 128 GB 

of RAM, providing significant computational resources. The 

experiments were conducted on the Ubuntu 22.04.1 LTS 

operating system, ensuring a stable and reliable environment 

for testing and analysis. In addition, the implementation of the 

models and data preprocessing was carried out using popular 

deep learning frameworks including TensorFlow, Keras, and 

PyTorch. 

4) Variational Encoder: The Convolutional Variational 

Encoder (CVE) model is made up of seven layers. The first 

two layers are convolutional layers with 32 and 64 filters, 

respectively. This is followed by a fully connected layer with 

512 nodes and a dropout layer with a 25% dropout rate. 

The next two layers are also fully connected with the same 

flattened input size. These layers are used to create a latent 

space with the same dimensions as the input data using a 

reparameterization trick layer. The purpose of generating a 

latent space with the same dimensions as the input is to prevent 

information loss resulting from a low latent space size. Thus, 

the CVE model is personalised and is kept by each client 

to transform their local data into the randomized latent space. 

The randomized latent space is then reshaped to create an input 

for the classifier. This classifier is trained collaboratively as a 

global model by all participants. 

5) Classifier: The classifier model consists of seven layers. 

The first layer is a convolutional layer with 32 filters, followed 

by a max-pooling layer with a stride of 2. The third layer is 

also a convolutional layer with 64 filters, followed by another 

max-pooling layer with a stride of 2. The fifth layer is a 

fully connected layer with 256 nodes, which is followed by a 

dropout layer with a dropout percentage of 25%. The last layer 

is a softmax layer with nodes equal to the number of classes, 

which is responsible for producing the final predictions. 

6) Baselines: RVE-PFL approach was evaluated and com- 

pared against four baselines to demonstrate its effectiveness, 

privacy preservation, and generalization. The first baseline 

was the traditional FL method (FedAVG), where the server 

distributes the global model to clients for local training and 

then aggregates the locally updated models. This process is 

repeated until a certain number of global rounds are com- 

pleted. The second baseline involved the use of NbAFL, 

a popular technique for privacy preservation in FL. The third 

and fourth baselines, namely Fed-CDP and Fed-αCDP, address 

privacy preservation in FL by integrating client DP based on 

per-training examples. Our experiments with NbAFL, Fed- 

CDP, and Fed-αCDP aimed to highlight the robustness of the 

RVE-PFL approach compared to DP, which is a well-known 

privacy-preserving technique in the FL literature. 

7) Hyperparameters: In our experiments, we set the num- 

ber of FL clients, M , to 10. The total number of global rounds, 

R, is set to 100, and the number of local epochs, E , is set to 

10. We use a batch size of L of 256 and a learning rate η 
of 0.001. For the optimization algorithms, we use the Adam 

optimizer with 1e−3 weight decay and epsilon ϵ = 1e−7 to 
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train the RVE-PFL approach. For FedAvg, we also use the 

Adam optimizer but without epsilon ϵ = 1e−7. For NbAFL, 

we use the DPSGD optimizer supported by the TensorFlow 
Privacy framework. We set the L2 norm clipping to be 1, the 

number of micro-batches to be 1, and the noise multiplier 

to be 1.1. For Fed-CDP and Fed-αCDP, we use the DPSGD 

optimizer as well and we set the L2 norm clipping to be 1, 

the number of micro-batches to be 1, the noise multiplier to 

be 0.5, the batch size 1, the gradient accumulation steps to be 

64, and the learning rate to be 0.05. 

 

B. Experimental Evaluation and Analysis 

1) Evaluation Metrics for Privacy Leakage: The perfor- 

mance of RVE-PFL for preserving data privacy in FL is 

evaluated using the following metrics: 

a) Mean squared error (MSE): MSE measures the 
pixel-wise squared error between the original image x and 

the reconstructed image x ′. When both x and x ′ are of size 

M × N , the MSE can be denoted as: 

d) FID (fréchet inception distance): FID is a popular 

image quality metric that measures the similarity between the 

distribution of real and reconstructed images. The FID metric 

is calculated based on the statistics of the features extracted 

by the Inceptionv3 neural network trained on the ImageNet 

dataset. Given two sets of images, the real images x and the 

reconstructed images x ′, the FID distance is defined as: 

F I D(x, x ′) = ||µx − µx′ ||2 + Tr(Σx + Σx′ − 2(Σx Σx′ )1/2), 

(10) 

where µx and µx′ are the mean feature vectors of the real 

and reconstructed images, respectively, and Σx and Σx′ are 

their covariance matrices. Tr denotes the trace operator, and 

||.|| denotes the Frobenius norm. A lower FID value indicates 

a higher degree of similarity between the two distributions, 

implying that the reconstructed images are closer to the real 

visual quality. 

2) Experimental  Results  and  Discussion:  Initially, 

we conducted a performance evaluation of traditional FL 

M  N 
(FedAvg) and  (NbAFL,  Fed-CDP,  Fed-αCDP, ResSFL, 

MSE(x ,  x ′) = 
 1  Σ Σ

(xi j − x ′ )2 (7) and Dropout), that utilised as defense mechanisms against 

M × N i j 

i =1 j =1 
model inference attacks, including MI attacks. Subsequently, 

we conducted an experimental verification of the effectiveness 

A lower value of MSE between the original x and the 

reconstructed image x ′ indicates a higher degree of similarity 

between the two. This implies that the reconstructed image 
has a smaller difference from the original image. 

b) PSNR (peak signal-to-noise ratio): PSNR is a widely 

used image quality metric that measures the quality of a 

reconstructed or compressed image compared to the original 

image. 

of the RVE-PFL approach in defending against model 

inversion attacks in FL, as compared to the state-of-the- 

art approaches in the literature. Specifically, we assessed 

the effectiveness of RVE-PFL in two aspects: privacy 

preservation, as determined by the degree of similarity 

between the reconstructed image and the original image, and 

model utility, as determined by the impact of utilising DP, 

feature transfer (ResSFL), Dropout, and our approach (as 
a defense against model inversion attacks) on the model’s 

PSN R(x, x ′) = 10 log10 

max(x)2 

MSE(x , x ′) 
,
 

(8) performance. Our experimental results demonstrate our 

approach’s effectiveness in improving privacy preservation 

where x is the original image, x ′ is the reconstructed or 

compressed image, max(x) is the maximum possible pixel 

value, and MSE(x ,  x ′) is the mean squared error between the 

original and reconstructed or compressed images. The PSN R 

formula essentially calculates the ratio between the maximum 

possible pixel value and the mean squared error of the two 

images. A higher PSN R value indicates that the reconstructed 

image is closer to the original image in terms of quality, while 

a lower PSN R value indicates a larger difference between the 

two images. 

c) Structural similarity (SSI M): SSI M is a 

perception-based metric that measures the similarity between 

two images by comparing their luminance, contrast, and 

structure. It ranges from 0 to 1, with a value of 1 indicating 

perfect similarity. The SSI M index can be calculated as: 

SSI M(x, x ′) = 
  (2µx µx′ + c1)(2σxx′ + c2) 

, (9)
 

(µ2 + µ2
′ + c1)(σ 2 + σ 2 + c ) 

and model utility in FL scenarios. 

a) Performance and convergence: Tables I, II and 

Figure 3 show the performance evaluation results of RVE- 

PFL, FedAvg, NbAFL, Fed-CDP, Fed-αCDP, ResSFL, and 

Dropout. Notably, our approach achieves performance that is 

comparable to FedAvg, while also surpassing NbAFL, Fed- 

CDP, Fed-αCDP, ResSFL, and Dropout in terms of accuracy, 

precision, recall, and F1-score on both training and test data. 

To report our results, we conducted experiments on the three 

datasets for 100 communication rounds. At the end of each 

communication round, we evaluated the global model on the 

local test data of each participating client and calculated the 

average performance across all clients. We then reported the 

final results by computing the overall average and standard 

deviation for the 100 rounds. This was necessary as perfor- 

mance results may vary from one round to another, and we 

needed to express the model’s overall performance across all 

training rounds. We applied this measurement criterion to both 
x x x x ′ 2 

the training and test datasets and reported the performance 

where µx and µx′ are the means of x and x ′, respectively, 
σ 2 and σ 2 are their variances, σ  ′ is their covariance, and 

evaluation results in Tables I, II. For example, as indicated in 
Table I, our approach achieves an accuracy of 0.99 ± 0.053 on 

x x ′ xx 

c1 and c2 are constants that stabilize the division by weak 

denominator. 

the Cifar-10 data set. This means that the model’s estimated 

accuracy is 99% with a margin of error of 0.053. 

{ 
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Fig. 3.  Performance comparison on training and test data. 

 

According to the observations from Figure 3, RVE-PFL 

exhibits similar convergence behavior to that of the stan- 

dard FL (FedAvg), as the curves of FedAvg and RVE-PFL 

match after a small number of global rounds, achieving 

a reasonable performance compared to NbAFL, Fed-CDP, 

and Fed-αCDP. This is indicated by the fact that RVE-PFL 

converges to a global model that attains high accuracy on the 

test data during the early rounds of communication. Moreover, 

we observed that RVE-PFL (represented by the purple colour 

in Figure 3) exhibits an earlier convergence to a reasonable 

level of accuracy compared to FedAvg. This experimental 

evidence supports the effectiveness of RVE-PFL on both 

the training and test datasets. By contrast, NbAFL, Fed- 

CDP, and Fed-αCDP demonstrate poor convergence behavior 

and fail to achieve satisfactory performance results, which 

leads to a degradation in the utility of the global model. 

However, we add a moderate amount of noise with a noise 

multiplier of 1.1 and 0.5, which means that if we add more 

noise, the NbAFL, Fed-CDP, and Fed-αCDP will converge 

more slowly and be less effective. This conclusion is con- 

sistent with the findings of other studies [15], [31], [46] 

that indicate that the addition of DP during model training 

results in a trade-off between utility and privacy, which 

consequently negatively impacts the global model’s perfor- 

mance. Thus, we suggest RVE-PFL as a solution to enable 

the development of FL with reasonable utility and privacy 

levels. 

The ResSFL and Dropout exhibit comparable performance 

to RVE-PFL during training. However, in the testing phase, 

RVE-PFL outperforms ResFL and Dropout by 2% and 5% on 

the MNIST and Fashion-MNIST datasets, and by 3% and 7% 

on the CIFAR-10 dataset, respectively. Despite Dropout incur- 

ring no additional computational cost compared to ResSFL 

and RVE-PFL, it provides a lower level of privacy than 

our approach. Moreover, Dropout may only mitigate privacy 

leakage during the inference stage. 
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TABLE I 

PERFORMANCE EVALUATION ON TRAINING DATA 
 

 

 

 

 

 

 

 

TABLE II 

PERFORMANCE EVALUATION ON TEST DATA 
 

 

 

 

 

 

 

The complexity of a dataset can have a significant impact on 

the efficiency of approaches. The Fashion-MNIST dataset is 

more intricate than the MNIST dataset, as the images contain 

more intricate shapes and textures. In addition, the dataset 

contains greater variation within each class, making accurate 

classification more challenging. The CIFAR-10 dataset, on the 

other hand, is more complex than both MNIST and Fashion- 

MNIST due to its use of colour images and intricate shapes 

and textures. Even greater variation exists within each class, 

making the dataset extremely difficult to accurately classify. 

The empirical results align with these observations, as evi- 

denced by Tables I, II. The complexity of a dataset hurts the 

performance of NbAFL, Fed-CDP, and Fed-αCDP, as these 

algorithms struggle to achieve high accuracy on datasets such 

as CIFAR-10 and Fashion-MNIST. Specifically, NbAFL’s per- 

formance does not surpass 41% on the CIFAR-10 dataset and 

81% on the Fashion-MNIST dataset. However, the Fed-Avg 

and RVE-PFL continue to achieve reasonable performance on 

the CIFAR-10 dataset, with an average performance of 97% 

and 99%, respectively. Interestingly, when it comes to the 

MNIST and Fashion-MNIST datasets, RVE-PFL and Fed-Avg 

perform similarly and achieve the same level of reasonable 

accuracy with an average performance of 99%. On the other 

hand, the performance of NbAFL, Fed-CDP, and Fed-αCDP is 
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degraded, despite the relative simplicity of the MNIST dataset. 

This is due to the additive noise used in NbAFL, Fed-CDP, 

and Fed-αCDP. Interestingly, ResSFL and Dropout achieve 

intermediate levels of accuracy on test data, ranging from 

92.5% to 97%. Overall, RVE-PFL has proven to be robust, 

achieving superior performance without being affected by the 

complexity of the dataset. This highlights the effectiveness of 

RVE-PFL in handling complex datasets and demonstrates its 

potential for use in real-world scenarios. 

b) Privacy leakage: MIFace, DLG, and iDLG MI attacks 

are employed to test the resilience of RVE-PFL to mitigate the 

MI attack. The success of MI attacks is contingent upon deter- 

mining if recovered data reveals sensitive information about 

a target label. Thus, we investigate the attack performance 

both quantitatively and qualitatively. Qualitative analysis of the 

attack performance occurs via visual inspection of the attack 

outputs, and quantitative analysis is based on analysis of four 

metrics; MSE, PSNR, SSIM, and FID. These are individually 

outlined above. Table III shows a comparison of the robustness 

of RVE-PFL against MI attacks using MIFace, in comparison 

to the state-of-the-art approaches: FedAvg, NbAFL, Fed-CDP, 

Fed-αCDP, ResSFL, and Dropout. Additionally, this table 

demonstrates the efficacy of the MI attacks and their ability to 

infer sensitive information about the participants in FL, based 

on the model structure and trained parameters. 

It is evident from Figure 4 that the MIFace attack can 

successfully target deep learning models in the context of 

FL and expose sensitive features related to the participants’ 

private data. Specifically, in the case of FedAvg, ResSFL, and 

Dropout, Figure 4 provides visual evidence of the attack’s 

ability to infer meaningful patterns related to the participants’ 

private data. However, in the case of NbAFL, Fed-CDP, Fed- 

αCDP, and RVE-PFL, the attack is hardly able to infer visually 

meaningful features close to the ground truth. Also, it became 

evident that the MI attack has the potential to reveal training 

data information embedded in the model parameters obtained 

through ReSFL and Dropout. Additionally, distinct features of 

the training data were discernible in the reconstructed images 

derived from the model parameters trained using ResSFL and 

Dropout. The robustness of RVE-PFL is further evident in 

Figure 5 which displays the reconstructed training data through 

DLG and iDLG model inversion attacks. Our observations 

indicate that RVE-PFL does not exhibit any discernible pat- 

terns related to the training data. 

At this point, The significance of the quantitative metrics 

for evaluating model inversion attacks becomes evident for 

demonstrating that although some images in Figure 4 may not 

have obvious patterns, they still contain sensitive information 

that is quantitatively similar to the ground truth. Therefore, 

Table III presents the quantitative metrics for the model 

inversion attack. 

Based on the quantitative measurements presented in 

Table III, we can see that RVE-PFL achieves higher MSE and 

FID rates but lower PSNR and SSIM rates across all three 

datasets. This exemplifies the inferior quality of the recon- 

structed images obtained from the MI attack when RVE-PFL 

was used in the development of the FL system. These results 

also imply that RVE-PFL outperforms NbAFL, Fed-CDP, and 

Fed-αCDP in terms of privacy preservation, as it produces 

greater MSE and FID and lower PSNR and SSIM, regardless 

of the dataset’s complexity. As demonstrated in the section 

on performance and convergence analyses, RVE-PFL also 

maintains an outstanding level of model utility while limiting 

privacy leakage. In addition, RVE-PFL has an outstandingly 

high level of model utility, as we have shown in the part of the 

discussion devoted to performance and convergence analysis. 

Table IV presents the improvement rates of privacy- 

preserving evaluation metrics for RVE-PFL versus the FedAvg, 

NbAFL, Fed-CDP, Fed-αCDP, ResSFL, and Dropout. It is 

observed that RVE-PFL outperforms FedAvg in terms of 

privacy preservation, as indicated by the average results. 

Specifically, we observe a 41.93% increase in MSE, a 15.93% 

decrease in PSNR, a 45.99% decrease in SSIM, and a 16.92% 

increase in FID. Notably, RVE-PFL demonstrates higher 

improvement rates over FedAvg compared to NbAFL, Fed- 

CDP, and Fed-αCDP, likely because FedAvg lacks additional 

mechanisms for privacy preservation. 

The results also show that RVE-PFL outperformed the 

NbAFL, Fed-CDP, and Fed-αCDP approaches in terms of all 

four privacy metrics. Hence, RVE-PFL achieved an average 

improvement of 25.07% in MSE, a decrease of 8.05% in 

PSNR, a decrease of 37.95% in SSIM, and an increase of 

13.18% in FID compared to the NbAFL approach. These 

results indicate that RVE-PFL is more effective in preserving 

privacy and more robust in mitigating MI attacks than the 

NbAFL approach. Specifically, on MNIST, RVE-PFL achieved 

an improvement rate of 3.125% for MSE and 2.18% for FID. 

On Fashion-MNIST, the improvement rates were 23.08% for 

MSE and 14.02% for FID, while on CIFAR-10, they were 

50% for MSE and 24.34% for FID. In contrast, RVE-PFL 

achieved improvement rates for PSNR and SSIM for all three 

datasets, which implies that the reconstructed images obtained 

by the MIFace attack on RVE-PFL were of lower quality than 

those obtained on NbAFL. Notably, RVE-PFL outperforms 

ResSFL and Dropout in enhancing privacy preservation met- 

rics. Specifically, when juxtaposed with ResSFL, RVE-PFL 

attains a substantial average improvement rate of 19.70% in 

MSE, 11.92% in PSNR, 52.33% in SSIM, and 21.23% in FID 

across MNIST, Fashion-MNIST, and Cifar-10 datasets. Sim- 

ilarly, in comparison with Dropout, RVE-PFL demonstrates 

a noteworthy average improvement rate of 25.18% in MSE, 

11.01% in PSNR, 46.98% in SSIM, and 17.42% in FID. 

The results also show that the level of improvement varies 

depending on the complexity of the dataset. The CIFAR-10 

dataset shows the highest improvement rates, while MNIST 

has the lowest improvement rates. This implies that the robust- 

ness and effectiveness of RVE-PFL will mitigate the model 

inversion attacks and consequently preserve privacy despite 

the complexity of the dataset and the deep learning model. 

Table IV reveals interesting findings when comparing RVE- 

PFL with Fed-CDP and Fed-αCDP approaches. RVE-PFL 

demonstrates significantly higher privacy improvement rates 

compared to Fed-CDP, Fed-αCDP, ResSFL, and Dropout, 

as well as outperforms NbAFL in terms of privacy preser- 

vation. These results suggest that Fed-CDP and Fed-αCDP, 

which rely on per-example DP, might not be sufficient to 
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TABLE III 

PRIVACY-PRESERVING EVALUATION METRICS BETWEEN THE GROUND TRUTH IMAGES AND THE RECONSTRUCTED IMAGES BY MIFACE ATTACK 
 
 

 

 

 

 

 

 

 

Fig. 4.  Visual results of the MIFace attack on the three datasets. 

 

safeguard against privacy leakage through MI attacks while 

also struggling to maintain satisfactory model utility, as evi- 

denced by the performance metrics presented in Tables I 

and II, and Figure 3. Hence, RVE-PFL emerges as a promis- 

ing alternative, offering improved privacy protection without 

compromising on model performance, making it a more robust 

choice for privacy-preserving federated learning scenarios. 

It is noteworthy that the positive values in Table IV represent 

improvements in the positive direction, while the negative 

values indicate improvements in the negative direction. For 

example, in the MSE column, all values are positive, indicating 

that RVE-PFL has higher MSE values than NbAFL, Fed- 

CDP, and Fed-αCDP, which is desirable. On the other hand, 

in the SSIM column, all values are negative, indicating that 

RVE-PFL has lower SSIM values than NbAFL, Fed-CDP, Fed- 

αCDP, ResSFL, and Dropout which is desirable for privacy 

preservation. 

c) Computational cost: The RVE-PFL approach entails 

a computational cost of 41.04 million floating-point operations 

(FLOPs) and encompasses 20.52 million parameters, demand- 

ing an approximate memory allocation of 78.06 megabytes 

(MB). In contrast, the baseline FL incurs 4.1 million FLOPs 

with 0.824 million parameters, necessitating a memory space 

of 3.15 MB. Despite the incremental computational load of 

RVE-PFL, it manifests a commendable equilibrium between 

utility and privacy preservation. Notably, it remains well- 

suited for deployment on resource-constrained IoT devices, 

demonstrating a judicious memory footprint of 78.06 MB. This 

underscores its aptitude for scenarios characterized by limited 

computational resources. 

d) The impact of adding more clients: We assessed 

the performance of RVE-PFL across various numbers of FL 

participants on the Fashion-MNIST dataset, as detailed in 

Table VI. Our findings indicate that as the number of clients 

increases, RVE-PFL maintains comparable privacy measures 

with a marginal decrease in accuracy. 

e) Comparison with related encoding-based approaches: 

Table V presents a comparison of the performances of 
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TABLE IV 

IMPROVEMENT  RATES  FOR  PRIVACY-PRESERVING  EVALUATION  METRICS  OF  RVE-PFL 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE V 

COMPARISON OF PERFORMANCES OF RVE-PFL AND ENCODING-BASED APPROACHES 
 

 
 

 

Fig. 5. Visual representations of training data reconstructions obtained 
through DLG and iDLG model inversion attacks. 

 

RVE-PFL and related approaches on different datasets named 

MNIST, Fashion-MNIST, and Cifar-10. The approaches 

TABLE VI 

PERFORMANCE AND ROBUSTNESS OF RVE-PFL ACROSS MULTIPLE 

CLIENTS ON THE FASHION-MNIST DATASET 
 
 

 

 

 

 

included in the comparison are the Classification-Compliant 

Autoencoder [18], Distributed Encoders [9], InstaHide [33], 

and RVE-PFL. In terms of accuracy, RVE-PFL consistently 

achieves high performance across all three datasets, with an 
accuracy of 0.99±0.001 for MNIST, 0.99±0.008 for Fashion- 

MNIST, and 0.99±0.053 for Cifar-10. 

Comparatively, the Classification-Compliant Autoencoder 

achieves an accuracy of 97.63% on MNIST and 80.36% 

on Cifar-10, while no value is reported for Fashion-MNIST. 

Distributed Encoders perform well with an accuracy of 99.45% 
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on MNIST, 81.82% on Fashion-MNIST, and 85.02% on Cifar- 

10. InstaHide shows an accuracy of 98.2±0.2% on MNIST and 

91.4±0.2% on Cifar-10, with no reported value for Fashion- 

MNIST. Overall, the results indicate that RVE-PFL achieves 

competitive accuracy on all three datasets when compared to 

the related approaches, demonstrating its effectiveness in PFL 

and protection against MI attacks. 

 

VII. CONCLUSION 

We have introduced an RVE-PFL approach for enhancing 

the privacy of FL systems that uses a personalised varia- 

tional encoder to protect against MI attacks while preserving 

model utility. RVE-PFL consists of two components: person- 

alised encoding and the FL classifier. The former transforms 

client-private data into a probabilistic latent space, while 

the latter is locally trained using the latent space and glob- 

ally aggregated by the server. RVE-PFL has demonstrated 

satisfactory performance in terms of privacy protection and 

model utility. Specifically, our approach has proven effective 

at mitigating inversion attacks, a common privacy risk in 

FL applications and machine learning applications in general. 

However, as concerns about data privacy continue to grow, 

techniques that can effectively protect sensitive data while still 

maintaining the model’s utility will become increasingly valu- 

able. Thus, RVE-PFL is a step in this direction, and we believe 

it has the potential to inform future efforts to develop FL 

systems that are more secure and effective. In the future, the 

proposed approach should be further evaluated and expanded 

to include not only image datasets but also tabular and text 

data. This expansion would allow the application of the RVE- 

PFL approach in a wider range of use cases and provide 

additional insights into its effectiveness and generalizability. 

As part of future work, it would be valuable to evaluate the 

robustness of our approach against membership and property 

inference attacks. 
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