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We investigate the quantum equation of motion (qEOM), a hybrid quantum-classical algorithm for computing

excitation properties of a fermionic many-body system, with a particular emphasis on the strong-coupling regime.

The method is designed as a stepping stone towards building more accurate solutions for strongly coupled

fermionic systems, such as medium-heavy nuclei, using quantum algorithms to surpass the current barrier in

classical computation. Approximations of increasing accuracy to the exact solution of the Lipkin-Meshkov-Glick

Hamiltonian with N = 8 particles are studied on digital simulators and IBM quantum devices. Improved

accuracy is achieved by applying operators of growing complexity to generate excitations above the correlated

ground state, which is determined by the variational quantum eigensolver. We demonstrate explicitly that the

qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements

from the configuration complexity. Postprocessing examination shows that quantum device errors are amplified

by increasing configuration complexity and coupling strength. A detailed error analysis is presented, and error

mitigation based on zero noise extrapolation is implemented.
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I. INTRODUCTION

During the past several decades, the progress in the nuclear

many-body problem has been driven by considerable advance-

ments in its two major building blocks: (i) nucleon-nucleon

(NN) interactions and (ii) quantum many-body methods. The

former is mainly focused on chiral perturbation theory for

bare interactions and density functional theory (DFT) for ef-

fective interactions, while the latter develops techniques for

modeling the in-medium dynamics of nucleons using NN

interactions as an input. Since the exact many-body solutions

for medium-heavy nuclei are beyond the reach of existing

computational capabilities, the major goal of theory is to

adequately capture the microscopic mechanisms of forma-

tion of the emergent collective effects, which considerably

redefine the bare forces in strongly correlated media. Such

effects are responsible for vibrational and rotational types of

motion, superfluidity, collective giant resonances, and more

exotic, less collective soft modes. An accurate description

of emergent collectivity dominating these modes is criti-

cal for many nuclear physics applications, ranging from the

study of exotic nuclei to astrophysics and the search for new

physics.

The success of early phenomenological models that in-

cluded collective variables established the notion of collective

degrees of freedom, such as rotational and vibrational quanta,

which can be introduced in the effective Hamiltonians in-

dependently of the single-nucleon degrees of freedom [1,2].

*elena.litvinova@wmich.edu

Such models, later evolved into more microscopic frame-

works, although quite successful, still have not reached

the spectroscopic accuracy of even hundreds of keV in

the description of excitation spectra and other properties

of medium-mass and heavy nuclei. The most advanced

approaches belonging to this class encompass various beyond-

mean-field (BMF) techniques [3–12] implemented on the base

of the latest energy density functionals (EDFs) [13–18]. De-

spite the convincing progress on both BMF methods and the

EDFs, it remains unclear to what degree the lack of accuracy

should be attributed to imperfections of the EDFs, inherent

deficiencies of the BMF models, or unavoidable limitations of

present computational capabilities.

Some hope to resolve these issues laid with “ab ini-

tio” approaches, which were supposed to use, as their only

input, the NN interaction in the vacuum. However, such

approaches (dominated by chiral perturbation theory (χPT)

combined with standard many-body methods [19–22]) leave

it unclear to what extent the emergent collectivity, crucial for

medium-heavy nuclei, can be addressed. Presently available

calculations of this kind require readjustments of the NN-

interaction to the properties of finite nuclei [23,24], thereby

partly absorbing the collective effects in the parameters.

Introducing three-nucleon forces in χPT enables a better de-

scription of some characteristics of finite nuclei and nuclear

matter, and further improvements are anticipated in future

developments [25]. Novel microscopic many-body techniques

and their combinations with collective-coordinate methods

demonstrate impressive progress in the description of the

ground and low-lying excited states in medium-light nuclei

[26–30].
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The complexity of the nuclear many-body problem is a

serious obstacle on the way to a spectroscopically accurate

theory, which considerably impedes its utility in applications

where highly accurate spectral computation for medium-

mass and heavy nuclei in wide energy limits is crucial.

Many-body response theory is the best tool to quantify the

excitation spectra of such nuclei, and the best-quality nuclear

response calculations beyond the simplistic (quasiparticle)

random phase approximation [(Q)RPA] only include config-

uration complexity up to (correlated) two-particle-two-hole

(2p2h) [8,9,31–37], and in rare cases 3p3h [10,11,38–40],

due to limitations in current computational capabilities. These

implementations are mostly based on effective NN inter-

actions, either schematic or derived from DFTs, although

calculations employing bare interactions have also become

available [41–47]. Both types of approaches to the nuclear

response still do not demonstrate consistent performance on

spectroscopic accuracy, and the absence of a clear link to

the exact equations of motion (EOMs) for the fermionic

correlation functions somewhat obscures their assessment. A

recent effort to surmount these shortcomings has been the

advancement of relativistic nuclear field theory in a fully

self-consistent approach to the nuclear response based on the

exact EOMs for fermionic propagators and including cor-

related 3p3h configurations in a large model space [12,48].

These calculations emphasize the importance of taking into

account high-complexity configurations in the parameter-free

formalism and pave the way to a spectroscopically accurate

and yet computationally feasible theory of nuclear spectral

properties that satisfy the standards of modern applications.

However, even with the advent of exascale computing,

the impediment of exponential growth of the Hilbert space

with configurations of growing complexity remains a serious

hurdle in classical numerical approaches. Therefore, quantum

algorithms have become an attractive alternative for practi-

tioners, although achieving the supremacy of quantum over

classical computing is debatable [49]. While a fully coher-

ent universal quantum computer remains unrealized, there

exist algorithms suitable for the presently available noisy

intermediate-scale quantum (NISQ) devices. In the nuclear

physics domain, during the last few years, several theoreti-

cal groups have reported applications of such algorithms to

nuclear systems and relevant model Hamiltonians, addressing

both their static and dynamic properties. The former, which

are based on the variational quantum eigensolver, include

computing the binding energy of light nuclei [50,51] and sim-

ulation of lattice models [52]. The latter includes a quantum

algorithm for linear response theory [53], the time evolution

of a nuclear many-body system [54], and simulation of non-

Abelian gauge theories with optical lattices [55]. Other efforts

in the field address efficient state preparation schemes [56–58]

and analysis of nuclear structure using entanglement [59,60].

The quantum EOM (qEOM) algorithm, first implemented

for quantum chemistry calculations [61] as a quantum ex-

tension of the VQE method [62], has attracted our attention

as it is best aligned with the strategy of building growing-

complexity solutions to the fermionic many-body problem

with controlled uncertainties, in the spirit of Refs. [12,48].

Furthermore, the qEOM algorithm is found to be more

resilient to noise compared with other currently available

methods, especially in its recently updated self-consistent

version [63], and it bypasses using a quantum computer for

the noise-sensitive step of solving the eigenvalue equation,

leaving it to a classical computer. While this method was orig-

inally only applied to molecular calculations, i.e., for weakly

coupled systems, in Ref. [64], we explored its performance

in strongly coupled regimes of a prototype Lipkin-Meshkov-

Glick (LMG) Hamiltonian, also known as Lipkin model. It

was found that qEOM shows a very reasonable performance

and has a large potential for improvement.

In this work, we expand the study of Ref. [64] in various

aspects. We note that the accuracy of the qEOM largely de-

pends on the configuration complexity αm of the excitation

operator O†
n(αm) where n denotes the nth excited state. In

general, an N-body problem with accurately defined bare

interactions requires complexity αm = N for the exact solu-

tion [12,65], whereas the advanced classical computation of

the response of medium-mass and heavy nuclei (N ≈ 100)

reaches at most the complexity of αm = 3 [12,48,66]. We

show that the qEOM exhibits a quantum benefit when building

a hierarchy of approximations ordered by α due to the inde-

pendence of the number of required quantum measurements

on this parameter. The number of measurements is found to

scale with the number of particles, thus given this number one

can increase the configuration complexity and achieve better

accuracy of the qEOM without performing more measure-

ments on the quantum computer. Using the efficient encoding

scheme introduced in Ref. [64], we show that the number of

required quantum measurements scales at most quadratically

with the number of particles for the Lipkin model, implying

that the method is feasible for large systems. Furthermore,

we show that for a given particle number, one can increase

the configuration complexity and achieve better accuracy of

the qEOM without performing more measurements on the

quantum computer.

To demonstrate this capability, we simulate the energy

spectrum with αm = {1, 2, 3} using IBM quantum computers

for the LMG Hamiltonian with N = 8 particles and running

coupling strength. The qEOM results for αm = 3, after per-

forming error mitigation, show a reasonable agreement with

the exact solution even in the domain of strong coupling. The

sensitivity of the algorithm to the decoherence of quantum

hardware and sampling errors is discussed.

II. EQUATION OF MOTION METHODS

In this section, we bridge two EOM methods, which are

essentially equivalent but usually employed in different con-

texts. The first EOM method is the backbone of the response

theory dealing with EOMs for fermionic propagators [5,67],

the major subject of study in nuclear and particle physics. The

second method is the EOM of Rowe [68], which directly tar-

gets the excited states of the many-body quantum system and

sets a common background for nuclear structure and quantum

chemistry. The latter EOM serves as a foundation for the

quantum EOM algorithm [61] utilizing the efficient computa-

tion of the many-body ground states by VQE. Here we extend

it to the computation of the transition matrix elements, thereby
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establishing a link with the response theory and accentuating

the universality of the approach and its applicability across the

subfields of quantum many-body physics.

A. Response theory

The strength (spectral) function, which determines the

excitations of a fermionic system in response to a weak os-

cillating external field F † is defined by Fermi’s golden rule:

S(ω) =
∑

ν>0

[|〈ν|F †|0〉|2δ(ω − ων ) − |〈ν|F |0〉|2δ(ω + ων )],

(1)

with the summation over all excited states |ν〉. The transition

matrix element 〈ν|F †|0〉, for the one-body external field oper-

ator in the second-quantized form, reads:

〈ν|F †|0〉 =
∑

12

〈ν|F ∗
12ψ

†
2 ψ1|0〉 =

∑

12

F ∗
12ρ

ν∗
21 . (2)

The matrix elements in Eq. (2) are the transition densities

ρν
12 = 〈0|ψ

†
2 ψ1|ν〉, which can be interpreted as the weights

of the pure particle-hole configurations ψ
†
2 ψ1 in the single-

particle basis {1}, built on top of the ground state |0〉, in the

excited states |ν〉. Approximating the δ functions in Eq. (1) by

the Lorentz distribution, one obtains

S(ω) = −
1

π
lim
)→0

Im*(ω + i)), (3)

where *(ω) is the polarizability of the many-body system:

*(ω) =
∑

ν

[

Bν

ω − ων

−
B̄ν

ω + ων

]

(4)

related to the transition probabilities Bν and B̄ν of absorption

and emission, respectively:

Bν = |〈ν|F †|0〉|2 B̄ν = |〈ν|F |0〉|2. (5)

Thus, the strength function associated with the given external

field operator F can be expressed as

SF (ω) = −
1

π
lim
)→0

Im
∑

121′2′

F12R12,1′2′ (ω + i))F ∗
1′2′ , (6)

where the response function R12,1′2′ (ω) is figuring in its spec-

tral representation

R12,1′2′ (ω) =
∑

ν>0

[

ρν
21ρ

ν∗
2′1′

ω − ων + iδ
−

ρν∗
12 ρν

1′2′

ω + ων − iδ

]

, (7)

with the poles at the energies ων = Eν − E0 of the excited

states relative to the ground-state energy and δ → +0.

The response function can be thus defined in terms of

the time-dependent fermionic field operators as the two-time

correlation function

R(12, 1′2′) ≡ R12,1′2′ (t − t ′)

= −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉, (8)

where 〈.〉 is a shorthand notation for the expectation value in

the ground state while ψ (1) ≡ ψ1(t1),ψ†(1) ≡ ψ
†
1 (t1) are the

fermionic field operators in Heisenberg picture. In Eq. (8) it

is implied that the number arguments in the brackets include

the time variables, t1 = t2 = t and t1′ = t2′ = t ′. The generic

many-body fermionic Hamiltonian is given by

H = H (1) + V (2) (9)

and confined here by the two-body interaction V (2). In the one-

body term H (1)

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑

12

v
(MF)
12 ψ

†
1 ψ2 ≡

∑

12

h12ψ
†
1 ψ2 (10)

the matrix elements h12 combine the kinetic and the mean-

field v
(MF) parts of the interaction. The two-body sector is

defined by the operator V (2)

V (2) =
1

4

∑

1234

v̄1234ψ
†
1 ψ

†
2 ψ4ψ3, (11)

via v̄1234 = v1234 − v1243, the antisymmetrized matrix element

of the interaction of two fermions in the vacuum, also called

the bare interaction. Three-body forces are neglected in this

work but can be included straightforwardly.

The EOM for the response function (8) is generated by

differentiation of (8) with respect to the time arguments. Tak-

ing the derivatives with respect to t and t ′, after a Fourier

transformation to the energy domain, yields

R12,1′2′ (ω) = R
(0)
12,1′2′ (ω)

+
∑

343′4′

R
(0)
12,34(ω)T34,3′4′ (ω)R

(0)
3′4′,1′2′ (ω), (12)

with the free (uncorrelated) particle-hole response R(0)(ω),

R
(0)
12,1′2′ (ω) =

N121′2′

ω − ε21

, (13)

and the T matrix T (ω), the Fourier image of T (t − t ′), which

splits into the instantaneous T (0) and the time-dependent T (r)

parts:

T12,1′2′ (t − t ′) = Ñ−1
121′2′

[

T
(0)

12,1′2′δ(t − t ′) + T
(r)

12,1′2′ (t − t ′)
]

,

T
(0)

12,1′2′ = −〈[[V,ψ†
1ψ2],ψ†

2′ψ1′ ]〉,

T
(r)

12,1′2′ (t − t ′) = i〈T [V,ψ†
1ψ2](t )[V,ψ†

2′ψ1′ ](t ′)〉. (14)

In Eqs. (13) and (14) N121′2′ is the norm kernel:

N121′2′ = 〈[ψ†
1 ψ2,ψ

†
2′ψ1′ ]〉 = δ22′〈ψ†

1 ψ1′〉 − δ11′〈ψ†
2′ψ2〉

(15)

and ε12 = ε1 − ε2, while ε1 and ε2 are the eigenvalues of the

one-body part of the Hamiltonian. The basis single-particle

states are, therefore, the eigenstates of H (1) and h12 = δ12ε1. If

the norm simplifies to the form N121′2′ = δ11′δ22′ (n1 − n2) ≡
δ11′δ22′N12, then Ñ121′2′ = N12N1′2′ , and the quantity n1 =

〈ψ†
1 ψ1〉 is associated with the occupancy of the fermionic state

|1〉.
By introducing the irreducible interaction kernel K (t − t ′),

where irreducibility is implied with respect to R
(0)
12,1′2′ ,

K (t − t ′) = Ñ−1[K (0)δ(t − t ′) + K (r)(t − t ′)],

K (0) = T (0), K (r)(t − t ′) = T (r)irr (t − t ′). (16)
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Equation (12) transforms to a formally closed equation for

R(ω), similarly to the Dyson equation for the one-fermion

propagator, which is known as the Bethe-Salpeter-Dyson

equation (BSDE):

R(ω) = R(0)(ω) + R(0)(ω)K (ω)R(ω), (17)

where

T (ω) = K (ω) + K (ω)R(0)(ω)T (ω). (18)

Equations (12)–(18) express the response theory, which can

be applied for calculations of the strength distribution (1)

for a given F †. The excitation spectrum of the system is,

thereby, in principle, completely determined by the external

field and the bare fermionic interaction via the commutation

relations (14) and (15), which promote all the in-medium

physics. Because of the presence of higher-rank correlation

functions in the dynamical, or time-dependent, interaction

kernel K (r)(t − t ′) which give a feedback on its static coun-

terpart, in practice, certain approximations are made to obtain

solutions of Eq. (17) [12,69].

At the exact poles of the response function ω → ων BSDE

can be reformulated into a matrix equation for the transition

densities

ρν
21 =

∑

341′2′

R
(0)
12,34(ων )K34,1′2′ (ων )ρν

2′1′ . (19)

Under certain assumptions about the correlation content of

the ground and excited states, this relationship can be further

recast into the form of the generalized eigenvalue equation,

which appears in Rowe’s EOM method discussed in the next

subsection.

B. Quantum EOM algorithm and its quantum benefit

The EOM developed by Rowe [68] is another framework

for computing excitation properties of quantum many-body

systems. The goal is to find the excitation spectrum of a

quantum system obeying the Schrödinger equation

Ĥ |n〉 = En |n〉 , (20)

where Ĥ is the Hamiltonian operator, En is the energy of the

nth excited state, and |n〉 is the nth excited state. Following

tradition, in this subsection, we will denote operators explic-

itly with the “ˆ” symbol. The excited states |n〉 are generated

by the excitation operator Ô†
n which is defined by its action on

the ground state |0〉:

|n〉 = Ô†
n |0〉 , (21)

with the vacuum annihilation condition (VAC),

Ôn |0〉 = 0. (22)

The energies above the ground-state energy (En0 = En −
E0 ≡ ωn) are given by Ref. [70] as

En0 =
〈[Ôn, [Ĥ , Ô†

n]]〉
〈[Ôn, Ô

†
n]〉

. (23)

Therefore, the task of solving Eq. (20) has been reformu-

lated into calculating the energy spectrum Eq. (23) and the

associated wave functions of Eq. (21) using knowledge of

the excitation operator Ô†
n and the many-body ground state

|0〉. If Ô†
n or |0〉 is not known exactly, then some reasonable

techniques to approximate them can be used to initiate the

computation cycle.

The excitation operator can be written in its most general

form as an expansion over products of creation and annihila-

tion field operators

Ô†
n(αm) =

αm
∑

α=1

∑

µα

[

X α
µα

(n)K̂α
µα

− Y α
µα

(n)
(

K̂α
µα

)†]

, (24)

where

K̂1
µ1

= ψ̂†
pψ̂h, K̂2

µ2
= ψ̂†

pψ̂
†
p′ψ̂h′ψ̂h, . . . , (25)

the indices p, h, p′, and h′ denote the particle and hole states

(above and below the Fermi surface, respectively), α is the

degree of configuration complexity equal to the number of

particle-hole pairs, and µα is the collective index combining

the single-particle states involved in the given configuration.

In principle, with αm = N , the excitation operator in Eq. (24)

can generate exact solutions for the N-body system assuming

that |0〉 is exact. Thus, for αm < N , there is a hierarchy of

approximations that can be related to the Bogoliubov-Born-

Green-Kirkwood-Yvon hierarchy [71].

In general, many-body systems dominated by strong cou-

pling require higher configuration complexity αm of Ô†
n to

achieve certain accuracy than the weakly interacting systems.

At the same time, for nonperturbative theories that do not

rely on expansions in small parameters, building a hierarchy

of approximations with varying αm may serve as uncer-

tainty quantification, which is an important theory ingredient

[72]. Realistic calculations for medium-heavy nuclear systems

[12] indicate that the quality of description grows relatively

quickly with αm, and the spectral results saturate with this pa-

rameter. Establishing a quantitative link between accuracy and

configuration complexity would be of great value because the

required accuracy of a particular application (or comparison to

experimental data) would set the upper limit on the configura-

tion complexity of the corresponding EOM calculation. This

strategy can be implemented with an adaptive algorithm as an

alternative to the brute-force diagonalization of Ĥ , variants of

which are commonly called shell models [73]. Furthermore,

as previously noted, the EOM method can be conveniently

converted into a quantum algorithm qEOM and used in combi-

nation with the VQE method, which efficiently computes the

many-body ground state |0〉 on a quantum computer [61,63].

With a good approximation to |0〉 and a fixed Ô†
n, one

can solve Eq. (23) by minimization, i.e., setting the variation

δ(En0) = 0 in the parameter space spanned by the coefficients

of Eq. (24). This procedure leads to the generalized eigenvalue

equation (GEE), which, in the block-matrix form, reads:

(

A B

B∗ A∗

)(

Xn

Yn

)

= En0

(

C D

−D∗ −C∗

)(

Xn

Yn

)

. (26)

The matrix elements are found by taking expectation values

of the following commutators in the ground state |0〉:

Aµανβ
=

〈[(

K̂α
µα

)†
,
[

Ĥ , K̂β
νβ

]]〉

, (27)
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Cµανβ
=

〈[(

K̂α
µα

)†
, K̂β

νβ

]〉

, (28)

Bµανβ
= −

〈[(

K̂α
µα

)†
,
[

Ĥ ,
(

K̂β
νβ

)†]]〉

, (29)

Dµανβ
= −

〈[(

K̂α
µα

)†
,
(

K̂β
νβ

)†]〉

. (30)

The GEE (26) may be left for postprocessing on a classical

computer, for which methods of increasing efficiency have

been developed [74–76].

The major advantage of the qEOM algorithm resides in

the efficient evaluation of the required expectation values for

the GEE [61]. Another aspect of the qEOM’s computational

efficiency manifests in simulations of strongly coupled many-

body systems, which require higher configuration complexity

to obtain accurate results. Specifically, increasing the config-

uration complexity for a fixed system size is possible without

performing additional measurements on a quantum computer.

To illustrate this statement, note that the Hamiltonian of a

fermionic system can be expressed in terms of a product of

Pauli gates Pk ∈ {I, X,Y, Z} as follows:

H =
∑

i

hi

{

P0 ⊗ P1 ⊗ . . . Pnq

}i
, (31)

where nq is the number of qubits. Therefore, the basis excita-

tion operators and the matrix elements of A are given by

K =
∑

i

κi

{

P0 ⊗ P1 ⊗ . . . Pnq

}i
, (32)

A =
∑

i

ai

〈{

P0 ⊗ P1 ⊗ . . . Pnq

}i〉

, (33)

and analogous decompositions can be employed for the other

matrices B, C, and D. The quantum benefit is that the

number of qubits nq is fixed by the particle number N ;

thus, the number of measurements on a quantum computer

〈P0 ⊗ P1 ⊗ . . . Pq〉 is fixed. Increasing the configuration com-

plexity α increases the number of terms in the sums (31)–(33)

but does not affect the number of measurements. This implies

an efficient scheme for building a hierarchy of approximations

ordered by the degree of configuration complexity that is

needed for realistic nuclear structure computation within the

EOM framework.

The GEE yields the complete set of excitation energies En0

and amplitudes X α
µα

,Y α
µα

which can be used to compute the

strength function (1) associated with a given external field

F̂ . The relevant matrix element [e.g., the complex conjugate

of Eq. (2)] can be expressed via an expectation value of the

commutator of the external field and excitation operators,

〈0| F̂ |n〉 = 〈0| [F̂ , Q̂†
n(αm)] |0〉 , (34)

by employing the VAC (22). As in Eq. (23), the commutator

form is used to reduce the rank of operators acting on the

correlated ground state. The general second-quantized form

of a one-body operator

F̂ =
∑

i j

Fi jψ̂
†
i ψ̂ j, (35)

formally contains all types of contributions: Fph, Fhp, Fpp, and

Fhh (where the Latin subscripts in Eq. (35) mark the same

single-particle basis denoted by number indices in Sec. II A).

The commutator in (34) thus expands as

[F̂ , Q̂†
n(αm)] =

∑

i j

Fi j

αm
∑

α=1

∑

µα

(

X α
µα

(n)
[

ψ̂
†
i ψ̂ j, K̂α

µα

]

−Y α
µα

(n)
[

ψ̂
†
i ψ̂ j, K̂α†

µα

])

, (36)

with, for α = 1 and α = 2,
[

ψ̂
†
i ψ̂ j, K̂1

µ1

]

≡ [ψ̂†
i ψ̂ j, ψ̂

†
pψ̂h] = δp jψ̂

†
i ψ̂h − δhiψ̂

†
pψ̂ j,

[

ψ̂
†
i ψ̂ j, K̂2

µ2

]

≡ [ψ̂†
i ψ̂ j, ψ̂

†
pψ̂

†
p′ψ̂h′ψ̂h]

= −δihψ̂
†
pψ̂

†
p′ψ̂h′ψ̂ j + δih′ψ̂†

pψ̂
†
p′ψ̂hψ̂ j

− δ j p′ψ̂
†
i ψ̂†

pψ̂h′ψ̂h + δ j pψ̂
†
i ψ̂

†
p′ψ̂h′ψ̂h, (37)

the analogous expressions for α ! 3 and respective counter-

parts with p ↔ h, p′ ↔ h′, . . . . The ground-state expectation

values of these commutators depend on the correlation content

of the model ground state. For instance, with the uncorrelated

ground state of the Hartree or Hartree-Fock (HF) type |0〉 =

|HF〉, which is defined as the particle vacuum ψ̂p |HF〉 = 0,

one obtains

〈0| F̂ |n〉 =
∑

ph

[

FhpX 1
ph(n) + FphY

1
ph(n)

]

. (38)

This means that in the HF approximation to the ground state

ρn
ph = X 1

ph(n), ρn
hp = Y 1

ph(n), and only α = 1 amplitudes con-

tribute to the transition probabilities even in the presence

of higher-complexity configurations in the operator Q̂†
n(αm).

Equation (38) is most commonly used in response theory and

neglects the ground-state correlations.

The simplest and often most relevant is the external field

operator of one-body character with nonvanishing ph and hp

components:

F̂0 =
∑

ph

(Fphψ̂
†
pψ̂h + Fhpψ̂

†
h
ψ̂p). (39)

In this case, the transition amplitudes read:

〈0| F̂0 |n〉 =
∑

ph

{

Fph

αm
∑

α=1

∑

µα

[

X α
µα

(n)
〈[

K̂1
ph, K̂α

µα

]〉

− Y α
µα

(n)
〈[

K̂1
ph, K̂α†

µα

]〉]

+ (p ↔ h)

}

, (40)

where the expectation values on the right-hand side are taken

in the formally exact ground state. In the VQE+qEOM ap-

proach, we deal with correlated ground states of unspecified

correlation content. However, the expectation values entering

Eq. (40) are already contained in the set of the Pauli strings

measured for constructing the GEE matrix since
〈[

K̂1
ph, K̂α

µα

]〉

= D∗
ph,µα

〈[

K̂1
ph, K̂α†

µα

]〉

= −C∗
ph,µα

, (41)

so that the quantum advantage extends to the computation of

the transition amplitudes and strength functions (1).

Two-body and higher-rank terms can also be present in the

external field operators. Of particular interest are two-body

currents, which are expressed by two-body operators and can,
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therefore, nontrivially couple to the correlated ground state.

Strength function studies on a quantum computer for various

types of external fields will be considered in a separate publi-

cation.

III. QEOM APPLICATION TO LIPKIN MODEL

A. Lipkin model

The LMG model is a test bed for approximate techniques

of solving fermionic quantum many-body problem [77–81].

It describes a system of N interacting fermions constrained

to two N-fold degenerate energy levels with E = ±ε/2. The

particles interact via a monopole-monopole force where, in

the quasispin formulation, the Hamiltonian is given by

Ĥ = εĴz −
V

2
(Ĵ2

+ + Ĵ2
−) −

W

2
(Ĵ+Ĵ− + Ĵ−Ĵ+). (42)

The operators Ĵz and Ĵ± are related to the fermionic field

operators via

Ĵz =
1

2

N
∑

m=1

∑

σ=±

σψ̂†
σmψ̂σm, Ĵσ =

N
∑

m=1

ψ̂†
σmψ̂−σm, (43)

and satisfy the angular momentum commutation algebra,

while the index σ = ± differentiates the upper and lower

levels. The interaction term associated with V scatters two

particles from the same energy level up or down, and W

scatters one particle up and another down or vice versa from

different energy levels. The wave functions of the system can

be expressed via the eigenstates |J, M〉 of the operators Ĵz

and Ĵ2 = 1
2
{Ĵ+, Ĵ−} + Ĵ2

z , and |J, M〉 serves as a convenient

basis. These eigenstates are labeled by the quantum numbers

J = j1 + j2 + · · · + jN , which is the total spin, and its pro-

jection M in the z direction. Symmetries of this model can

be exploited to significantly reduce the size of the relevant

Hilbert space. The first symmetry arises from the invariance of

the Hamiltonian under the exchange of particles within the set

of two levels. Additionally, in the case of W = 0 in Eq. (42),

the interaction term only couples states that differ by spin

M ± 2; hence we can block-diagonalize the Hamiltonian. This

leads to the maximally efficient encoding scheme (J scheme)

introduced in Ref. [64]. In this encoding scheme, the problem

of finding eigenvalues of Eq. (42) reduces to the diagonaliza-

tion of smaller matrices of dimensions J and (J + 1), where

J = 1
2
N . Therefore, with the condition W = 0, the dimen-

sion of the LMG Hamiltonian scales as O(N ), which enables

efficient implementations on NISQ devices with a modest

number of qubits and circuit depth.

The exact analytical solution of the LMG model with W =

0 for systems with a few particles is given in Refs. [77,82],

which we use in this study to benchmark the accuracy of

our quantum algorithm. Some extensions of the Lipkin model

have been proposed, such as the Agassi model [83,84], the

three-level Lipkin model [85], and the generalized Lipkin

model [86], all of which could be interesting test-beds for

quantum algorithms.

B. Efficient encoding

In Ref. [64], we introduced the most efficient encoding

scheme of the LMG Hamiltonian (42) with W = 0 on a quan-

tum computer. This section briefly describes this encoding

scheme dubbed as the J scheme. As mentioned above, the

multiplet representation |J, M〉 of the basis states helps reveal

and exploit symmetries of the Hamiltonian. Each block con-

tains a ladder of states with spin projections that differ by an

even number of units. The first block can be mapped to qubits

as follows:

|J,−J〉 ≡ |0〉 → |bin(0)〉 ,

|J,−J + 2〉 ≡ |1〉 → |bin(1)〉 ,

· · ·

|J, J − 2〉 ≡ |d − 2〉 → |bin(d − 2)〉 ,

|J, J〉 ≡ |d − 1〉 → |bin(d − 1)〉 , (44)

where the Gray code (GC) is employed for |bin(k)〉, and the

mapping of the other block is done similarly. The GC orders

the binary values such that any two adjacent entries differ by

only a single bit [87]. The GC has been shown to be more

efficient than standard binary coding for Hamiltonian simula-

tions on a quantum computer [88,89]. Thus, the dimensionless

Hamiltonian H̄ = Ĥ/ε is recast as

H̄ =

d−1
∑

k=0

ak |k〉 〈k| +

d−2
∑

k=0

bk (|k〉 〈k + 1| + |k + 1〉 〈k|), (45)

where the states |k〉 are mapped to |bin(k)〉 by the GC and the

coefficients are given by

ak = M, (46)

bk = −
v

2
× {[J (J + 1) − M(M + 1)]

× [J (J + 1) − (M + 1)(M + 2)]}
1
2 , (47)

where M = 2k − J and v = V/ε. In this work, we consider

a system of N = 8 particles, thus J = 4, which corresponds

to a total multiplet of nine states that decomposes into two

disconnected subblocks of even and odd values of M denoted

by A and B:

|4,−4〉 ≡ |0〉A → |000〉 |4,−3〉 ≡ |0〉B → |00〉
|4,−2〉 ≡ |1〉A → |001〉 |4,−1〉 ≡ |1〉B → |01〉

|4, 0〉 ≡ |2〉A → |011〉 |4,+1〉 ≡ |2〉B → |11〉
|4,+2〉 ≡ |3〉A → |010〉 |4,+3〉 ≡ |3〉B → |10〉
|4,+4〉 ≡ |4〉A → |110〉 , (48)

where the GC single bit that changes in subsequent states is

shown in bold. The Hamiltonian for block B is given by the

ansatz

H̄B = a0 |00〉 〈00| + a1 |01〉 〈01| + a2 |11〉 〈11| + a3 |10〉 〈10|

+ b0(|00〉 〈01| + |01〉 〈00|)

+ b1(|01〉 〈11| + |11〉 〈01|)

+ b2(|11〉 〈10| + |10〉 〈11|), (49)
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FIG. 1. Ansatz circuit for block B of the Lipkin system with N =

8 particles.

with the following coefficients:

a0 = −3, a1 = −1, a2 = 1, a3 = 3,

b0 = −3
√

7v, b1 = −10v, b2 = −3
√

7v. (50)

The Hamiltonian of Eq. (49) is then rewritten in terms of Pauli

matrices by noting that the operators associated with ak are

given by

|00〉 〈00| = P
(0)
1 P

(0)
0 = 1

4
(I + Z0 + Z1 + Z1Z0),

|01〉 〈01| = P
(0)
1 P

(1)
0 = 1

4
(I − Z0 + Z1 − Z1Z0),

|11〉 〈11| = P
(1)
1 P

(1)
0 = 1

4
(I − Z0 − Z1 + Z1Z0),

|10〉 〈10| = P
(1)
1 P

(0)
0 = 1

4
(I + Z0 − Z1 − Z1Z0), (51)

where P
(0)
i = 1

2
(Ii + Zi ) and P

(1)
i = 1

2
(Ii − Zi ) are the projec-

tion operators acting on the ith qubit. Similarly, the operators

associated with bk can be expressed as

|00〉 〈01| + |01〉 〈00| = P
(0)
1 X0 = 1

2
(X0 + Z1X0),

|01〉 〈11| + |11〉 〈01| = X1P
(1)
0 = 1

2
(X1 − X1Z0), (52)

|11〉 〈10| + |10〉 〈11| = P
(1)
1 X0 = 1

2
(X0 − Z1X0).

After substituting Eqs. (50)–(52) into Eq. (49), the Hamilto-

nian of block B reads

H̄B = −2Z1 − Z1Z0 − 3
√

7vX0 − 5vX1 + 5vX1Z0. (53)

The associated GC wave function for block B is given by

|ψB〉 = cos φ0 |00〉 + sin φ0 cos φ1 |01〉
+ sin φ0 sin φ1 cos φ2 |11〉
+ sin φ0 sin φ1 sin φ2 |10〉 , (54)

which can be represented by the ansatz circuit shown in Fig. 1.

One can follow the same procedure to obtain the block-A

Hamiltonian:

H̄A = − (IIZ + ZZI ) +
1

2
(ZII − 3IZI − IZZ − ZIZ )

+
3
√

10

4
v(ZXZ + ZXI − IXZ − IX I )

+

√
7

2
v(ZZX + IZX − ZIX − IIX )

−
v

4
(3

√
10 + 2

√
7)(XII + XIZ )

+
v

4
(3

√
10 − 2

√
7)(XZI + XZZ ), (55)

where the subscripts {2, 1, 0} marking the qubits are dropped

for readability. The associated wave function for block A can

FIG. 2. Ansatz circuit for block A of the Lipkin system with N =

8 particles.

be represented by the ansatz circuit shown in Fig. 2. Here we

employ an optimized circuit constructed by removal of the re-

dundant entangling gates similar to the procedure of Ref. [90].

This optimization has the benefit of reducing the circuit depth,

which in our case results in an order-of-magnitude reduction

of errors on the quantum computer. Since this circuit is not

exact, it introduces some approximation errors, which in-

crease with the effective interaction strength. However, for the

range of couplings studied in this work, this increase remains

negligible compared to the noise from the quantum computer.

More details of the error analysis are given in Sec. V.

In general, for an arbitrary N , the Hamiltonian is split into

block form as

H̄
(N )
J =

(

H̄A 0

0 H̄B

)

, (56)

where the dimension of block A and B is dA = J + 1 and dB =

J for the even values of N and dA = dB = 1
2
(N + 1) for the

odd values of N . In Ref. [64], we showed that this encoding

leads to a logarithmic scaling of the number of qubits nq with

respect to the number of particles N given by

nq =

⌊

log 2

(

N

2
+ 1

)⌋

. (57)

This O(log(N )) scaling of the number of qubits is the critical

factor that enables the realization of the quantum benefit.

C. Scaling of qEOM

VQE+qEOM algorithm consists of four steps character-

ized by scaling with the number of particles N in the system,

namely

(1) The number of qubits required to accommodate all the

system states.

(2) The number of independent parameters (angles) that

express the many-body wave function of the system.

(3) The number of measurements of the basis Pauli-gates

on a quantum computer required to evaluate the qEOM

matrix elements.

(4) The dimension of the GEE solved on a classical com-

puter.

In this section, we determine the scaling of each algorithmic

step for the Lipkin model. As mentioned in Sec. III B, the

number of qubits scales logarithmically with N . The number

of angles na is defined by

na = 2nq − 1 = 2[.log 2( N
2
+1)/] − 1 ≈

N

2
. (58)
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Hence, the number of angles to be optimized for the wave-

function ansatz scales as O(N ), i.e., linearly with N .

The total number of measurements M needed to construct

the qEOM matrix elements is determined by counting the

combinations Pk of choosing k Pauli strings from the set of

four Pauli strings {I, X,Y, Z} including repetitions:

M = 4k − 1 = (2k )2 − 1 ≈ N2, (59)

where k = nq is the number of qubits in the system. There-

fore, since k scales logarithmically with N , the number of

measurements M scales as O(N2), i.e., quadratically with N .

In practice, not all the Pauli strings in Pk enter the matrix

elements; thus, the total measurements are much less than

N2, which represents the worst-case scenario. For the Lipkin

model with W = 0 the quadratic scaling makes the quan-

tum benefit accessible by high-complexity approximations for

strongly coupled systems.

Finally, the scaling of the GEE matrix dimensions is found

by computing the total number of unique excitations on an nq-

qubit quantum computer. According to the set theory, the total

number of distinct proper subsets of the set {0, 1, . . . q − 1} is

given by s = 2nq − 1. We note that a proper subset excludes

the original set but includes the null set {∅}, whereas, in

the case of unique excitations, we include the original set

and exclude the null set; hence, the count is the same. The

dimension of the GEE matrices is given by

2s = 2 × (2nq − 1) ≈ N. (60)

Thus the GEE matrix dimension scales linearly as O(N ) for

the Lipkin model with the efficient J scheme.

In general, assuming no symmetries can be exploited in

the model Hamiltonian, the number of Pauli-gate measure-

ments on a quantum computer and the dimension of the GEE

solved by the classical computer grows exponentially with

the number of particles in the system. However, in practical

implementations of the EOM, and in nuclear structure in par-

ticular, the particle-hole pairs in the operators F̂ and Q̂† are

coupled either to a good angular momentum (in the spherical

symmetry) or to a total angular momentum projection (in the

axial symmetry) [91]. Accordingly, separate EOMs are solved

for each set of quantum numbers, such as spin, isospin, and

parity, which define an eigenmode or are transferred by an

external field. This is an essential factor that moderates the

scaling considerably.

IV. QUANTUM SIMULATION RESULTS

The energy spectrum of the Lipkin Hamiltonian (42) with

W = 0 and N = 8 is displayed in Fig. 3. The spectrum was

obtained using a classical simulation of an ideal quantum

computer with no noise errors, often called a simulator, with

the running effective interaction strength ṽ = (N − 1)v. The

results obtained on the simulator served as a benchmark for

the real noisy quantum device calculations. The ground E0 and

first excited E1 states were found via the VQE minimization

procedure for blocks A and B, respectively. The approach

of finding the optimal angles on the simulator was used. As

justified in Ref. [64], in the case of only a few angles, those

for the ground-state energy on the noisy quantum processor

FIG. 3. Simulator results for the energy spectrum of the Lipkin

model as a function of the effective interaction strength ṽ for a system

of N = 8 particles. The square, circle, and cross symbols represent

calculations with the maximal configuration complexity αm = 1, 2,

and 3. The dashed lines are the exact solutions for the energy levels.

can be approximated by the angles found on the simulator.

This enables more economical VQE execution on currently

available noisy quantum devices.

The higher-energy states {E2, E4, E6, E8} and {E3, E5, E7}

are obtained by accordingly applying the excitation operator

(24) on the two lowest-energy states. The excited-state ener-

gies of block A are found using the qEOM algorithm with α =

1, 2, and 3 configuration complexities of the excitation opera-

tor, while the energies of block B were obtained with α = 1,

2. In the efficient J-scheme encoding of the Lipkin model, the

maximal configuration complexity is αm = nq, where nq is the

number of qubits in the ansatz. As nq = 3 for block A and

nq = 2 for block B, all the possibilities were realized in the

calculations. The approximations to the excitation operator

with the maximal configuration complexities αm = 1, 2, and

3 are dubbed as α1, α2, and α3, respectively. As the ground

state is obtained by minimization and accounts for many-body

correlations nearly exactly, these approximations differ from

the regular RPA, second RPA, and third RPA based on the

quasiboson approximation [70]. Therefore, the maximal con-

figuration complexity index αm is used for identification of the

approach to the excitation operator.

We are particularly interested in how the increase in con-

figuration complexity influences the results across coupling

regimes. By construction of the excitation operator, it is ex-

pected that (i) larger αm should lead to a more accurate

solution and (ii) terms with larger α should become increas-

ingly important with the growing interaction strength. Indeed,

one can see in Fig. 3 that both trends manifest in both blocks

A and B of the model Hamiltonian.

Because of the presence of the ground-state correlations,

the α1 solutions avoid the anomalous behavior of RPA at ṽ =

1 and rather resemble the pattern of the self-consistent RPA

[69,92]. With the ṽ increase, the α1 solutions exhibit large

deviations from the exact ones. Introducing the α = 2 con-

figurations into the excitation operator enables considerably

more accurate solutions for all the energy levels. The αm = 2
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FIG. 4. Basis expectation values as a function of the effective

interaction strength for a three-qubits ansatz of the Lipkin model.

The graph labels “ibmq” and “zne” represent computation performed

on IBM quantum computers without error mitigation and with error

mitigation employing the ZNE method, respectively. The solid lines

labeled “sim” represent the values computed by the state-vector

simulator.

approximation demonstrates a very good performance for the

E2–E5 and E7 excited states for almost all interaction strength

values except for a few deviations in E2 from the exact en-

ergies at strong coupling. The higher-energy αm = 2 block-A

solutions E6 and E8 start to deteriorate already near ṽ = 1.

Finally, with the maximal possible configuration complexity

α = 3 for block A, one can see a significant improvement of

the results approaching the exact values. Thus, maximal pos-

sible configuration complexities generate nearly exact results

with the VQE+qEOM algorithm on the simulator.

Although the same trends manifest in the solutions on the

quantum computer, the hardware results are affected by noise,

which is especially pronounced at strong coupling. To reduce

systematic errors from noise, zero-noise extrapolation (ZNE)

error mitigation was adopted from Refs. [93,94] and applied to

the final expectation value measurements. ZNE consists of (i)

amplifying the noise in the circuit by creating multiple circuit

copies with varying multiplication factors of the U †U type or

local folding of single gates, (ii) making measurements for the

multiplied circuits, thereby generating varying levels of noise,

and (iii) using the results of the measurements to extrapolate

down to the ideal setting with theoretically zero noise.

The effect of the ZNE application on the single Pauli

strings is illustrated in Fig. 4 for the selected elements

〈IZZ〉, 〈IXZ〉, 〈ZII〉, and 〈ZIY 〉 of the block-A computation.

The hardware results before and after the error mitigation

are displayed in comparison with the simulator results. The

expectation values of the first two Pauli strings are systemati-

cally underestimated, while somewhat oscillating behavior is

observed for the other two. Remarkably, the errors generally

do not increase with the ṽ value, i.e., the strong coupling is not

problematic at this step. The major trend in the ZNE results

is a systematic reduction of hardware errors. One case where

the ZNE does not improve the result is the strong-coupling

regime with 1.0 " ṽ " 2.0 for the ZII string; however, the

FIG. 5. Energy spectrum of the Lipkin model as a function of

the effective interaction strength ṽ for a system of N = 8 particles.

Energy levels of the Hamiltonian matrix block A are shown. The

graph labels “ibmq” and “zne” represent computation performed on

IBM quantum computers without error mitigation and with error

mitigation employing the ZNE method, respectively.

corresponding hardware values are quite close to the ones

obtained on the simulator, i.e., not much affected by the noise.

This may be a feature of this particular kind of combinations

(Pauli gates with two identity elements) that are less affected

by hardware noise than others.

The IBM hardware results obtained by the same algorithm

are demonstrated in Figs. 5 and 6 in comparison with the exact

solution. Figure 5 shows the even energy levels of block A of

the Lipkin Hamiltonian, and Fig. 6 displays the odd energy

levels from its block B. The results were collected before

and after the ZNE was applied to the basis Pauli-gates ex-

pectation value measurements and augmented with error bars

determined as described in Sec. V. The results before and after

applying ZNE are marked by “ibmq” and “zne,” respectively,

and include computation with varying maximal configuration

complexity αm of the excited states. The ground-state and first

excited-state energies are the outputs of the VQE for block

A and block B, correspondingly. One can observe systematic

inaccuracies in the VQE calculations, which return slightly

014306-9



HLATSHWAYO, NOVAK, AND LITVINOVA PHYSICAL REVIEW C 109, 014306 (2024)

FIG. 6. Same as in Fig. 5 but for block B of the Hamiltonian

matrix.

larger energy values regardless of the interaction strength.

While consistency and stability of VQE are discussed in

Sec. V, here we note that the application of ZNE definitely

helps reduce the inaccuracies in the ground-state energy in

all the coupling regimes. However, even after the error miti-

gation, the ground-state description is imperfect, so one can

expect propagation of the remaining errors to the expectation

values and, therefore, their nonnegligible contribution to the

errors in the excitation energies.

The overall observation across the LMG spectrum is that,

for the excited states, the hardware noise generates system-

atic errors following the same trends as the accuracy: The

errors are amplified with the increase of αm and growth of

the interaction strength. As noted above, the hardware errors

of single quantum measurements do not grow with the inter-

action strength; however, the role of larger α becomes more

important with stronger coupling, while the increase of αm

leads to more terms in the GEE matrix elements and eventu-

ally to postprocessing higher-rank matrices. These two factors

together, therefore, lead to larger errors in the resulting energy

spectrum at large ṽ. Overall, in the strong-coupling regime,

the reduction of theoretical errors by introducing higher com-

plexity terms in the excitation operator comes at the price of

amplified hardware errors.

In most cases, the ZNE allows for a significant reduction

in the errors originating from the hardware noise, according to

the trend for the single Pauli strings. However, as follows from

the sampling noise analysis discussed in Sec. V, sampling

errors in certain coupling regimes may dominate over the

hardware errors.

V. ERROR ANALYSIS

Two sources of error were considered and investigated

for this analysis: inaccuracies in the parametrization of the

ground-state wave function and noise from the quantum

computer. The primary source of the former is inconsistent

convergence of the VQE, while the latter arises from the prob-

abilistic nature of the computation and noise in NISQ devices.

To get an approximate confidence interval for the expectation

value measurements on a quantum computer, we employ a

simple statistical model assuming that sampling variances are

the dominant source of errors.

A. VQE consistency and stability

VQE is a stochastic algorithm [62], and there is neither a

guarantee that it will converge to the global energy minima

nor that repeated iterations will converge to the same local

minima. In practice, it was observed that repeated iterations

of VQE converged to a consistent set of solutions that varied

smoothly with ṽ. Figure 7 illustrates the “optimal” angles

generated by VQE for 500 uniformly distributed values of ṽ

from 0.0 to 3.0. As is shown in Fig. 2, the ground-state wave

function of block A of the Lipkin model for N = 8 is parame-

terized by 4 angles (labeled θi; i ∈ [0, 1, 2, 3]), and block B by

3 angles (labeled θi; i ∈ [0, 1, 2], see Fig. 1). Adjacent values

of ṽ are not necessarily continuous, but a band structure is

visible. In practice, it was found that these different sets of

optimal angles generated effectively identical energy spec-

tra and so are presumably equivalent. Ground-state energies

were calculated directly, on a simulator, from the angles in

Fig. 7 and found to agree with exact solutions within 10−4.

Likewise, a separate analysis was performed in simulation

for 25 uniformly distributed values of effective interaction

strength, where the energy spectra were calculated 50 times

using a different set of “optimal” angles generated by VQE.

The resulting energy spectra were consistent within numer-

ical precision. As noted in Sec. III B, the optimized circuit

for block A is relatively shallow, which is the cause of the

smooth behavior of the respective error. Without employing

the optimization and using the circuit directly obtained for

the block-A Hamiltonian (55), we found that the ground-state

energy errors show stochastic behavior, similar to that of block

B. The peculiar behavior of the errors at small couplings ṽ is

likely an algorithmic effect of the VQE used in this work.

The presence of multiple sets of optimal angles and the

consistency of their quality suggests that there exist multiple

minima in the VQE parameter space that are effectively equiv-

alent. To study this, the ground-state energy was calculated

across the entire range of the angles parametrizing block A

with ṽ = 0. A discrete uniform sampling of 10 steps was taken

for each of the four angles from −π to π , and the ground

state was calculated using a simulator. Figure 8 illustrates

this analysis, as well as sets of angles returned by VQE. The

same analysis was performed for ṽ > 0, and the results were

materially similar but with the locations of the minima shifted
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FIG. 7. Angles parametrizing the ground-state wave functions.

The top four panels display the value of the angles returned by VQE

as a function of ṽ for blocks A and B. The bottom panel shows the

error in the ground-state energy (E0) and the first excited state (E1, the

ground state of block B) calculated using the corresponding angles.

See text for details.

corresponding to the shift in the band structure seen in Fig. 7.

The results reported in Fig. 8 provide an important insight into

the stability of VQE. The dark blue spots in the center of the

plot represent a region of lower energy close to or equal to

the ground-state energy E0. We observe that the radius of this

region is large; that is, θ0 and θ1 can be changed by up to

π/2 from the “optimal” values, and the energy will still be

relatively close to E0. This implies the VQE minimization, at

least in this case, is robust against small changes in the optimal

parameters. In other words, if the dark blue region were small

such that small changes of ε on the optimal angles resulted in

energy solutions far from E0 (in the light blue region), then

VQE would be unstable and susceptible to the barren plateau

problem.

A similar analysis was performed on the effect of small

changes in the ground-state parametrization on the excited-

state energies. The expectation values of the Pauli operators

were calculated for one set of optimal angles found by VQE

FIG. 8. Ground-state energy of Lipkin model with N = 8 as a

function of block A parametrization computed on a simulator. Dark

blue corresponds to lower energy, and bright yellow to higher en-

ergy. Each row of the grid is a single value of θ1, and the value is

incremented continuously for each row. Each column of the gird is

a single value of θ0, and the value is incremented for each column.

Each cell of the grid is a heat map with θ2 on the x axis and θ3 on

the y axis. The angles have all been shifted so that the center of the

figure corresponds to an arbitrarily chosen set of optimal angles from

VQE. The red X markers indicate specific sets of angles found by

VQE, rounded to the nearest values used for the sampling. Note that

ε represents the angle variation and is not to be confused with the

energy scale of the Lipkin model.

and kept constant for all subsequent calculations. The analysis

was done using a discrete uniform sampling of seven steps for

θi; i ∈ {0, 1, 2, 3} of the ground-state wave function of block

A from −π/4 to π/4. The results of this analysis for E7, con-

figuration complexity α = 2 for ṽ = 0.0 and 1.7 are displayed

in Figs. 9 and 10, respectively. In general, the effect of small

changes to the parametrization is small, indicating robustness

against small misparameterization. However, in some cases

(such as shown in Fig. 10), the energy spectra are highly

sensitive to the ground-state parametrization. These cases are

associated with regions of high sensitivity to sampling noise,

as discussed in Sec. V B.

B. Analyzing noise from quantum measurements

The probabilistic nature of quantum computation and the

presence of stochastic noise in NISQ devices necessitates run-

ning all computations multiple times (known as the number

of “shots”) and calculating mean values. Broadly speaking,

two types of error can be considered: sampling noise (arising

from a finite number of shots) and systematic errors inherent

in the nature of the hardware. The error bars in this work
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FIG. 9. Deviation of E7/ε from the exact solution for the Lipkin

model with N = 8, configuration complexity α = 2, and ṽ = 0. Each

row of the grid is a single value of θ1, and the value is incremented

continuously for each row. Each column of the gird is a single

value of θ0, and the value is incremented for each column. Each

cell of the grid is a heat map with θ2 on the x axis and θ3 on the

y axis. The color scale is logarithmic with dark blue corresponding

to a smaller deviation and bright yellow to a larger deviation. The

minimum and maximum values of the color scale are the same as

in Fig. 10. The angles have all been shifted so that the center of the

figure corresponds to an arbitrarily chosen set of optimal angles from

VQE. This figure corresponds to the second panel from the top in

Fig. 11 at ṽ = 0.

represent the uncertainty from sampling noise, and no attempt

has been made to calculate error bars for systematic errors. As

discussed above, ZNE demonstrates the ability to mitigate the

effect of noise-induced systematic errors.

In this analysis, we conjecture that the individual mea-

surements (i.e., the individual shots) can be taken from a

binomial distribution (appropriately scaled). In practice, when

considering the individual measurements, if the hardware is

stable (and ignoring the complexities involved in performing

and postprocessing the measurements), then there should be

no difference between one run of 50 000 shots and 50 runs

of 1000 shots, as they are all coming from the same binomial

distribution with the same expectation value. Given this obser-

vation, one can note two things: First, the sampling noise is a

function of the expectation value and the number of samples

taken and, second, it is trivial to simulate this sampling noise

without the need for the quantum computer. This observation

was verified for a subset of the measurements taken on the

quantum computer.

A more rigorous approach for modeling the noise would

also consider error sources from (i) hardware infidelities in

FIG. 10. Same as Fig. 9 but with ṽ = 1.7. The minimum and

maximum values of the color scale are the same as in Fig. 9. This

figure corresponds to the second panel from the top in Fig. 11 where

the error band gets large at ṽ = 1.7.

the form of depolarizing Pauli noise, (ii) state preparation

and measurement errors, and (iii) decoherence in the form

of thermal relaxation and dephasing, see Refs. [95,96]. But

for the Lipkin model with a few particles, we found that the

reported variances from the quantum computer are consistent

with the binomial model, and the variance of the measured

expectation values is consistent with our simple statistical

model of the noise. Hence we computed error bars of the

measured expectation values from a quantum computer using

our simple model.

The relationship between the noise from the quantum com-

puter and the energy spectra is nontrivial because of the

multistep nature of the qEOM algorithm. In practice, it de-

pends on the number of particles considered, the circuit built

to accommodate the Hamiltonian, the encoding scheme, and

the eigensolver used. We assessed the effect of sampling noise

on the energy spectra by calculating the spectra multiple times

using different values of each measured operator. For the

calculation considered, the GEE was solved 100 times using

for each operator a value sampled from a binomial distribution

with an expectation value given by the quantum computer (or

the simulator) and a sample size of 213 = 8192. The result-

ing distributions for the energy spectra are highly variable,

depending on energy level, ṽ, and configuration complexity

αm and, in most cases, highly asymmetric so the error bars

presented are the range from first to third quartiles.

To further verify the validity of the simple statistical noise

model, we computed the excitation energies on a simulator

with noise from our model, which, for clarity, we shall call
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FIG. 11. Energy spectra of excited states for the Lipkin model

with N = 8 calculated using the emulator for configuration complex-

ities α = 1, 2, and 3. Error bands represent the effect of noise. See

text for details.

an emulator. Figure 11 shows the emulator results for the

excited states where the error bands represent the effect of

noise, the marker corresponds to calculations without noise,

and the error bars represent the range from the first to third

quartiles. Comparing the results of Fig. 11 with those shown

in Figs. 5 and 6 suggests that the noise is strong in the regimes

where large errors are observed, for instance, in the vicinity

of ṽ = 1.7. This is the same range of coupling strength where

the VQE is highly sensitive to the sampling noise.

Furthermore, as the ground state |0〉 is computed by

VQE, i.e., in a procedure separate from the qEOM for the

excited states, the vacuum annihilation condition given by

Eq. (22) is not necessarily satisfied in practice. The reason

is that the ground-state wave function and excitation op-

erator are adopted with different correlation contents. This

may potentially introduce theoretical errors; however, the self-

consistency can be restored in a straightforward way. Some

relevant methods are discussed in Refs. [97,98], and a unitary

transformation of the excitation operator restoring the VAC is

implemented in Ref. [63] in the framework of the quantum

self-consistent EOM applied to molecular calculations. We

leave an exploration of a self-consistent qEOM with strong

coupling for future endeavors.

VI. SUMMARY AND OUTLOOK

In this work, we explored the potential of the VQE+qEOM

method for quantum hardware computation of strongly cou-

pled fermionic systems. Based on the maximally efficient

encoding scheme [64], the method was implemented for the

Lipkin Hamiltonian across the regimes between weak and

strong couplings and executed on NISQ devices. For the

system of N = 8 fermions, the method allows generating ex-

citations with up to 3p3h configuration complexity. While the

quantum chemistry realm is confined by the weak-coupling

regime and thus qEOM provides an accurate description

of electronic systems at the 2p2h level [61,63], in sys-

tems dominated by strong interactions higher configuration

complexity is often needed for an adequate theoretical de-

scription of spectral phenomena. We show explicitly how

higher-complexity configurations become increasingly impor-

tant with the increase of the effective interaction strength,

including the particle number scaling factor. This effect is

related to the emergence of collective behavior of strongly

coupled fermions.

The quantum benefit of the qEOM method was demon-

strated. We found that increases in configuration complexity

only increase the number of terms in the matrix elements

of the generalized eigenvalue equation but do not affect the

number of quantum measurements. The latter is fixed by

the number of qubits employed in implementing the model

Hamiltonian. NISQ simulations on IBM quantum computers

confirmed the robustness of the algorithm and demonstrated

good resilience to noise across the coupling regimes. The

noise profile of the quantum measurements generating the

GEE matrix elements slightly varies for each Pauli string but

is independent of effective interaction strength. However, at

considerably large coupling strength, the computational errors

start to dominate over the theoretical ones, which is attributed

to the increase of the GEE matrix rank with configuration

complexity. The ZNE error mitigation method was applied to

reduce the systematic error in the latter regimes and showed

its effectiveness. However, the sampling noise remains

significant for certain strong-coupling regimes where the al-

gorithm is sensitive to the degeneracy of the VQE ground

state.

The qEOM approach admits further improvements and

optimizations without compromising its advantages and major
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qualities. The most immediate developments are introducing

self-consistency between the ground-state wave function and

the excitation operator and transitioning from npnh ansätze

to the particle-vibration coupling ones, accentuating the ef-

fects of emergent collectivity. With the demonstrated quantum

benefit, reasonable scaling with the system size, and noise

resilience, the qEOM is one of the most promising methods to

be implemented for realistic strongly interacting systems. Of

particular interest are nuclear systems, which will be targeted

in future work.
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