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Abstract

The successful recent application of machine learning
methods to scientific problems includes the learning of flexible
and accurate atomic-level force-fields for materials and bio-
molecules from quantum chemical data. In parallel, the ma-
chine learning of force-fields at coarser resolutions is rapidly
gaining relevance as an efficient way to represent the higher-
body interactions needed in coarse-grained force-fields to
compensate for the omitted degrees of freedom. Coarse-
grained models are important for the study of systems at time
and length scales exceeding those of atomistic simulations.
However, the development of transferable coarse-grained
models via machine learning still presents significant chal-
lenges. Here, we discuss recent developments in this field and
current efforts to address the remaining challenges.
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Introduction

The definition of simplified models is central to
physical sciences; proteins are no exception [1,2].
Statistical mechanical approaches to describe protein
folding and dynamics [3—5], as well as the analysis of
long molecular dynamics (MD) trajectories [6—8],
have demonstrated that slow processes in large bio-
molecular systems can be described by a reduced
number of variables despite hundreds of thousands of
atoms comprising the full system. In this spirit, many
coarse-grained (CG) models have been proposed to
study proteins through MD and energy minimization.
These CG models have been used to investigate the
principles underlying protein folding [9—12], inter-
molecular  binding/interactions [13,14], protein-
mediated membrane phenomena [15,16], and to
make predictions about novel biological systems of
immediate medical interest [17,18].

Despite their successes, CG models of proteins have not
yet achieved the predictive performance of their atomistic
counterparts. CG models are primarily designed by speci-
fying their resolution, which defines the coarse degrees of
freedom (referred to as “sites” or “beads,” see Figure 1),
and by their effective energy function, which dictates how
these beads interact. Traditionally, the resolution is first
chosen using either chemical intuition or through optimi-
zation designed to reproduce chosen properties (e.g., the
study by Giulini et al. [19]). The model’s effective energy
function is then parameterized to reproduce experimental
or simulation data. The fundamental goal of the transferable
CG models discussed in this article is to predict the
conformational landscape of proteins not used for their
parameterization, ideally using only the primary structure
of the proteins of interest. Atomistic models have been
able to explore the relevant landscape of small globular
proteins [20—22]; however, it is still an open question as to
whether there exists a resolution at which a chemically
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Figure 1
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Sequential reduction in resolution of a variant of the miniprotein Chignolin (CLN025) from a solvated all-atom representation containing many thousands
of atoms, to an implicit solvent representation, to a heavy-backbone representation with Cg beads, and finally to a C, CG representation containing 10

beads.

transferable CG model can quantitatively describe the
configurational landscape of arbitrary proteins.

A transferable CG protein model would have significant
consequences. By employing special-purpose super-
computers [23] or distributed simulation combined
with Markov State Models [24,21,25], the dynamics of
small solvated proteins can be simulated over milli-
second timescales [20]. However, biological phenomena
routinely involve larger complexes and span longer
timescales (seconds or more). CG models promise to
reach such scales by reducing the computational cost via
decreasing the number of degrees of freedom and
increasing the effective simulation timestep. This
increased efficiency would vastly improve the use of MD
for both fundamental research and applications, for
example, in protein design.

There has been a surge of interest in using machine
learning (ML) methods for molecular simulation [26],
including learning CG models from large amounts of
data. In a sense, the development of ML CG models can
be seen as an extension of ongoing research on the
design of accurate atomistic force-fields from quantum
mechanical calculations. In this area, ML has already
produced highly accurate force-fields which have facili-
tated groundbreaking computational studies [27—29].
When combined with the field of bottom-up CG
[30,31], these approaches provide a seemingly clear
strategy to leverage ML to learn a CG force-field from
existing atomistic MD trajectories. Indeed, thanks to
the flexibility of ML algorithms, some frameworks
developed for the atomistic resolution [32,33] have
been transferred to the CG resolution [34—37].

Despite these advances, a completely bottom-up
transferable CG model still does not exist for proteins

or other biopolymers. This limited progress is due to
multiple outstanding challenges, which together firmly
differentiate the creation of ML bottom-up CG force-
fields from their atomistic counterparts. We here
discuss these difficulties and current efforts to over-
come them.

Thermodynamic consistency: Why is it
difficult?

Bottom-up coarse-graining typically models the following
free energy surface (U) [30,26,31] referred to as the
effective CG (free) energy:

UR) = =67 !n /6[R—M(r)]exp[—6u(r)]dr, 1)

where M maps all-atom configurations r € R* to their CG
counterparts R = M(r)€R* uis the reference all-atom
energy, and f is the inverse temperature. Intuitively, M
defines the CG resolution and U defines how particles at
this resolution interact; the design of a bottom-up CG
model then entails defining M and approximating U, and
the two tasks are interdependent. A CG energy that,up toa
constant, equals U is said to be thermodynamically consistent
with the atomistic counterpart. Such a U produces free
energy landscapes identical to the reference in any reaction
coordinates that are a function of the CG coordinates. We
note that the phrase thermodynamically consistent here does
not refer to thermodynamic observables (e.g., pressure), but
instead considers the configurational distributions of the
CG and atomistic force-fields. For information on thermo-
dynamic properties in CG models we defer to recent arti-
cles [38—40,31].

Although the thermodynamically consistent CG energy
is uniquely defined up to a constant by Eq. (1), the
integral cannot be solved for non-trivial systems [30]. As
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a result, multiple strategies [41,30,31] to approximate U
have been proposed. Traditionally, the functional forms
for CG (free) energy functions have been low body-
order with physically motivated terms [30,31]. Howev-
er, recent studies have employed higher body-order
terms parameterized by neural networks with success
[42—44,36,35]. Kernel methods have also been pro-
posed (e.g., the study by John et al. [34]) but have not
been applied to proteins. While exceptions exist
[42,45—47], for reasons of computational efficiency
existing MLL CG models [44,36,26] have been primarily
based on the Multiscale Coarse-Graining [48] (“force-
matching”) variational framework, primarily due to the
fact that it does not require the CG model to be simu-
lated during its parameterization.

In principle, Eq. (1) suggests that once the CG resolu-
tion has been chosen the creation of the CG model
should be straightforward. However, designing an ac-
curate MLL CG model is not trivial (see Figure 2). The
choices of reference atomistic system (#), of the reso-
lution (M), and of the different terms of U all entail
challenges unique to models designed at a CG resolu-
tion. These challenges are compounded by difficulties
with validation, which are also present in the develop-
ment of ML atomistic force-fields from quantum
chemical data. We address these challenges in detail,
beginning with the data used for training, continuing by
discussing the design of U and subsequently the reso-
lution of the CG model, and finishing by discussing

Figure 2
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validation and robustness. For brevity we only discuss
algorithms which are applicable to MLL CG force-fields;
for a more comprehensive introduction to bottom-up
coarse-graining we refer readers to recent perspective
articles [30,31].

The difficulty in training CG force-fields

The principal challenge in bottom-up coarse-graining
with machine-learned force-fields lies in finding a suit-
able ML formulation that directly or indirectly esti-
mates the intractable integral described in Eq. (1). The
situation is more difficult compared to learning atom-
istic potential energy surfaces from quantum mechani-
cal data, where reference energies and forces are known:
When learning a CG free energy, neither U nor its
gradient for a given CG structure R are known because
the integral Eq. (1) is intractable.

The most straightforward approach to Eq. (1) is to
directly estimate the behavior of the probability density
proportional to exp(—fU(R)) from simulation data.
This requires an equilibrium sample of atomistic con-
formations r, for example, obtained by MD simulations.
After mapping them to the CG resolution, a ML model
is then trained to approximate U(R), by minimizing the
Kullback—Leibler divergence between the CG and
atomistic probability densities. This is called relative
entropy minimization in the coarse-graining literature
[49,50,47] and maximum likelihood estimation in the
ML energy-based model community [51]. Similar
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A pipeline for creating and using ML CG models from atomistic simulation data and experimental measurements. A chosen CG mapping (resolution) can
reduce reference information into a CG dataset that can be used to train ML CG force-fields (FFs). This training can rely on both simulation and
experimental observables in order to reduce the complexity of the learning task and respect physical constraints. A trained ML CG model can then be

validated through CG MD and used for general property predictions.
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approaches [42,45,46], which estimate and reduce the
difference between a CG force-field and U or optimize
selected observables, in turn expand on other ap-
proaches from the ML community (eg, the study by
Gutmann et al. [52]).

The difficulty with most of these approaches is that the
CG model must be periodically re-simulated during
training in order to evaluate the equilibrium density
generated by the current model of U(R). While this is
feasible for quickly equilibrating CG models, such as
those of liquids [47], it is extremely challenging for
models that exhibit rare events, such as realistic CG
models of protein folding. This limitation is even more
problematic for complex parameterizations of U (eg.,
neural networks) and significantly impedes simulta-
neously training over multiple molecules when creating
transferable models. Approaches have attempted to
reduce this burden by, for example, reweighting the
density of previous iterations [50,45,53] or by modifying
the sampling of the atomistic system [46]. However,
these approaches have not yet reached the simplicity
and applicability of approaches without itera-
tive simulation.

The most common bottom-up approach for approxi-
mating U is force-matching [48], which fits a CG free
energy such that its negative gradient matches projected
instantaneous atomistic forces on average. Critically, this
does not require simulations of the CG model during
training, and was proposed for ML CG protein force-
fields in the study by Wang et al. [44]. As many atom-
istic coordinates r map to the same CG coordinate R,
the instantaneous force is noisy, and the signal-to-noise
ratio becomes smaller the more degrees of freedom are
“CGed away”; thus CG force-matching requires more
data as compared to atomistic force-fields. A second
difficulty comes from the fact that U is obtained by
implicitly integrating the mean force, and as a result,
obtaining the free energy difference between minima
depends on estimates of the forces along the transition
path, where the uncertainties are the largest.

The recently proposed flow-matching method [54]
combines relative entropy estimation and force-
matching by employing generative deep learning: the
CG density is estimated by a normalizing flow, a neural
network that can generate one-shot samples of equi-
librium CG conformations. This flow can then generate
samples to train a downstream ML CG force-field by
force-matching. The limitation of this approach still
lies in finding flow architectures that can scale to
large macromolecules.

The distribution of atomistic configurations is funda-
mental to the discussed algorithms. Rare events are
important but infrequently sampled in the canonical

distribution; directing atomistic sampling towards bar-
riers and areas of “high uncertainty” may be beneficial.
While ML models are more expressive than, for
example, pair potentials, they require more data. For
example, MLL CG force-matching may use upwards of
one million canonically distributed samples covering the
configurational space for small proteins [36], in contrast
to harmonic models parameterized using short trajec-
tories in the folded state [55]. Modifying the distribu-
tion of samples may reduce data requirements [56], but
it is unclear how such approaches scale with
system complexity.

Concurrently, iterative methods may overcome their
computational barriers if non-canonical sampling is
used; expanding discriminative training may remove the
need for repeated training simulations [46], and biasing
potentials may promote diversity and produce more
accurate parameters [57]. However, approaches that
require data to be drawn from a modified distribution
impede the use of preexisting atomistic trajectories.
Nevertheless, these approaches will be critical to
expanding current ML CG success to multi-
domain proteins.

For a transferable ML, CG model, more requirements for
the training dataset arise. It is straightforward, and
important, to simultaneously force-match a model using
reference data from multiple proteins as evidence has
shown that extended ensembles can act as regulariza-
tion [58]. Previous pioneering work developing bottom-
up transferable CG models used this approach, but fell
short of unassisted folding and relied on artificially
lowering simulation temperatures to stabilize states of
interest [59]; we associate these inaccuracies to limita-
tions of the force-field basis and training set. We antic-
ipate that the proportion of structural motifs in the
dataset plays an important role. In the ideal case, a
general CG model of proteins would likely include
globular, fibrous, and intrinsically disordered proteins in
its training procedure. Such a transferable training setup
naturally expands the amount of atomistic data available
to train a given model; whether this will improve pre-
dictions on individual proteins remains to be seen.

Choice of the CG representation

In the design of an atomistic force-field, the Born-
Oppenheimer approximation justifies the separation
between electronic and nuclear degrees of freedom and
provides the framework for effective nuclear potential
energy surfaces. However, the separation of scales is less
clear for CG models. Consequently, the selection of the
CG resolution (M from Eq. (1)) is non-trivial and in-
fluences the free energy surface that must be learned.
The fundamental questions in this area are which res-
olutions are “easy to learn” and which are conducive to
creating transferable models. These points highlight the
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challenges of validating MLL CG models that are capable
of extrapolating to unseen systems. For certain resolu-
tions, it may be easier to learn an effective CG energy
and extrapolate into unknown regions of phase space.
On the other hand, certain resolutions may be conducive
to accurate ML, CG models but may be difficult
to interpret.

Current successful CG ML protein applications
[42,44,36,46,54] typically focus on a single site per
residue (typically Cgy); however, this appears to be
mostly due to simplicity and not systematic validation.
“Optimal” resolutions have been studied [60,61], but it
is unclear how they impact ML. CG models. Back-
mapping, that is, reconstructing details from CG
models, is a current area of investigation [62] and may
alleviate interpretability constraints on the CG resolu-
tion. Views which link back-mapping with potential
optimization can facilitate a joint optimization of the
representation alongside the CG energy model [63];
however, these approaches do not yet in themselves
search for transferable resolutions.

Functional form of the many-body effective CG (free)
energy

In practice, training ML. CG models via force-matching
from equilibrium data requires a baseline (or “prior”)
potential to reduce catastrophically incorrect extrapo-
lation into unphysical regions of phase space [44,36,64].
Ultimately, a good prior potential incorporates physical
principles, reduces learning complexity, and allows for
stable simulation. Similar to A-learning [65] for atom-
istic force-fields [66,67], the CG energy is usually
decomposed into:

U(Rv 0) = U/)rior(R) + Um'l(R§ 0) (2)

where U,,R; 6) is a trainable multibody potential
expressed by an ML model with parameters 6 and Upriosr(R)
is the prior energy.

Designing the priors is non-trivial as it depends on an
interplay between the CG resolution, the ML archi-
tecture, and the training data. Poor choices of priors can
significantly reduce the performance of an ML force-
field [47,68]. Currently, the prevailing strategy in-
volves proposing a prior inspired by the low body-order
terms from classical force-fields, and then iteratively
developing an ML, CG model over both the prior terms
and traditional hyperparameters [44,36,35,37,47]. Sys-
tematic strategies have yet to be developed to design
prior  energies that are transferable to
different molecules.

While priors help enforce important physical asymptotic
interactions, the ML model architecture itself should
respect basic physical constraints. These include
invariance with respect to permutations of particles of

ML CG Protein Force-Fields Durumeric et al. 5

the same type, invariance to translations and rotations of
the reference frame, and curl-free force predictions
[69,44]. A way to allow the learnable energy U,, from
Eqg. (2) to be transferable [36] is to decompose it bead-
wise such that:

Unr(R,2) = 3 (R = Ry ), 3)

where, R; is the ith bead (with type «;) in the configuration
R so that R—R; are the relative displacements of all beads
around bead R;, and #,,, is the bead-wise contribution to
the potential.

On top of these constraints, bottom-up coarse-graining
involves additional architectural challenges. Coarse-
graining a variety of different groups of atoms leads to
a large number of CG bead types, for example, at least
20 types (one for each amino acid) for proteins at the Cy
resolution. Furthermore, as mentioned above, training
with noisy forces requires a large number of training
configurations. As a result, the ML approach must
accommodate large training sets (indicating that neural
networks may be preferable over kernel methods) and
should not scale with the number of bead types so that
evaluation times do not increase when considering
transferable models. This constraint favors the use of
deep learning architectures like SchNet [33] over
models based on fixed representation, for example,
symmetry functions [70,71].

Validation and robustness

While atomistic ML force-field development has
matured, there exists no appropriate set of best prac-
tices for probing stability and robustness. It is common
to assess atomistic model accuracy with point wise
metrics, such as the mean force error, over fixed test
datasets [27]. However, without an understanding of
how models extrapolate into data-poor regions, these
metrics cannot be used as indicators of simulation sta-
bility or accuracy [72,64], as simulations may explore
uncovered configurations. For MLL CG models, even
with the use of prior energy terms, force error does not
guarantee a stable model [68].

Due to the difficulty in constructing comprehensive test
sets, the robustness and accuracy of a trained MLL model
can only be ascertained through extensive sampling, for
example, by using the model to run long MD simula-
tions. Recent investigations into ML architectures have
revealed the need for such metrics for both atomistic
and CG ML models [64,68]. Unfortunately, obtaining a
converged CG MD simulation can require several
million force evaluations; for large systems and complex
architectures this may present a computational bottle-
neck [73]. Validation difficulties impede hyper-
parameter optimization (e.g., regularization strength,
cutoff, or prior potential), as searches may become

www.sciencedirect.com
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prohibitively expensive. We note, however, that existing
applications provide suitable initial choices of hyper-
parameters for select architectures and resolutions (see
the study by Husic et al. [36]), but that the introduction
of novel architectures naturally requires substantial
effort for the initial hyperparameter search.

Even once MD has been used to characterize a ML CG
model, validation still poses difficulties. When charac-
terizing atomistic force-fields on selected configurations
it is typically possible to compare the model’s energy
and force predictions to noiseless reference values; un-
fortunately, these are not available at the CG resolution
(Eq. (1)). Instead, analysis typically projects CG con-
figurations onto low-dimensional collective variables
(e.g., Figure 3). However, as MLL CG models are now able
to reproduce such collective variable surfaces, the need
for more rigorous validation is emerging. Recent work
[75] has proposed classification as an approach to
generate energy-like errors for CG models and may
provide an avenue for connecting atomistic and CG
force-field validation.

A related challenge is presented by model uncertainty:
How robust is a MLL model to different training seeds or
data partitioning strategies? For neural networks, these
can be expensive questions to answer. However, recent
advances have started to enable estimates of uncertainty

Figure 3

[76,77]. A promising strategy involves estimating the
uncertainty of predictions and minimizing it either
before or during model deployment, either through
iterative training or through “on-the-fly” frameworks
[78] where data is added to the training set based on
such estimates.

Conclusion

At the moment of writing, state-of-the-art ML CG
models can quantitatively reproduce the behavior of
small proteins, as shown in Figure 3 for Chignolin and in
the study by Kohler et al. [54] for Trpcage, BBA, and
Villin. Currently, the largest barrier to describe larger
proteins is gathering sufficient training data. To what
extent such an approach can be extended to define
transferable CG models remains an open question. [t may
be possible only for a class of proteins, or at particular
resolutions. Before the advent of ML methods, these
questions remained challenging to answer, as thermo-
dynamic consistency between an atomistic and a CG
model (Eq. (1)) could only be approximately enforced;
it was not clear whether the limitations of transferable
models [59,79—81,39] were due to the limited expres-
sivity of the CG energy and limited reference data or to
more fundamental problems with transferability. Now,
as ML CG models can quantitatively enforce thermo-
dynamic consistency for single proteins (as shown in
Figure 3), we have the tools to address these questions

All-Atom Reference

CGSchNet

Free Energy/kT

TIC 2

o FH N W pH U O N
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State-of-the-art performance for a C, CG ML model on the benchmark protein CLN025. a) Comparison of the CG free energy landscape of CLN025
(produced using MD) for a learned CG ML model with the corresponding free energy for the reference all-atom dataset projected onto slow degrees of
freedom (TICA) [74]. b) Ensembles of structures sampled from the CG ML model MD simulation (in red) are superimposed onto all-atom reference
structure counterparts (in blue). Basin 1 represents the unfolded state, basin 2 the misfolded state, and basin 3 the folded state.
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and explore the trade-off between accuracy and trans-
ferability. Here, we have discussed the practical chal-
lenges towards this goal, but we remain optimistic that
such a line of research can be pursued.

Even if a transferable bottom-up ML, CG model can be
defined, eventually, the success of a computational model
relies on its comparison to experiments. Bottom-up CG
models rely on the reference atomistic models and
necessarily inherit their inaccuracies and flaws. With the
improvements in atomistic force-fields, we expect CG
models to also become more accurate. However, even
small inconsistencies between the CG and atomistic
models may compound into a significant deviation from
experimental data. We believe that ultimately bottom-up
ML CG will need to be merged with top-down models
for their useful and predictive applications.
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