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ABSTRACT Phenotypic adaptation is a universal feature of biological systems navigating highly variable environments.
Recent empirical data support the role of memory-driven decision making in cellular systems navigating uncertain future nutrient
landscapes, wherein a distinct growth phenotype emerges in fluctuating conditions. We develop a simple stochastic mathemat-
ical model to describe memory-driven cellular adaptation required for systems to optimally navigate such uncertainty. In this
framework, adaptive populations traverse dynamic environments by inferring future variation from a memory of prior states,
and memory capacity imposes a fundamental trade-off between the speed and accuracy of adaptation to new fluctuating envi-
ronments. Our results suggest that the observed growth reductions that occur in fluctuating environments are a direct conse-
quence of optimal decision making and result from bet hedging and occasional phenotypic-environmental mismatch. We
anticipate that this modeling framework will be useful for studying the role of memory in phenotypic adaptation, including in
the design of temporally varying therapies against adaptive systems.
SIGNIFICANCE A memory-driven stochastic decision-making framework is developed to describe optimal cell
phenotypic transitions for systems navigating fluctuating environments. Stochastic dynamic programming is applied for an
arbitrary environmental landscape to identify the optimal strategy that achieves the maximal attainable sum of expected
growth. When applied to study bacterial growth in oscillating nutrient environments, our model agrees with recent empirical
observations of growth reductions in fluctuating environments relative to constant ones. Growth reduction is a universal
feature in this model and arises as a consequence of phenotypic bet hedging, which suggests a methodology to identify
and exploit environmental states giving rise to maximal growth penalties. This foundational framework is applicable for
studying the dynamics of cellular systems optimally navigating uncertain environments.
INTRODUCTION

Biological systems commonly encounter and respond to
exogenous environmental fluctuations, and their consequent
adaptation generates a diversity of phenotypic responses at
the population level (1–4). In bacterial populations, dra-
matic phenotypic changes that lead to persistence and
long-term infection can occur as the result of relatively
few molecular changes in simple biological circuits (5–7).
Similar phenomena occur in mammalian systems and often
complicate medical intervention with resistance to drug and
targeted therapies (8–10).

Prior work has studied phenotypic switching in response
to fluctuating environments in several biological contexts.
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Deterministic modeling characterized the trade-off between
stress resistance and growth lag (11), where the mean
behavior in response to stochastic fluctuations was consid-
ered by invoking the law of large numbers over sufficiently
many cycles. In another study, combined modeling and
experimental analysis explored the rate of variable pheno-
typic switching relative to that of environmental fluctuation
(12). These results predicted that cells matching their rate of
phenotypic switching to the characteristic rate of environ-
mental fluctuation exhibited enhanced growth (1,2). A
similar phenomenon was explained theoretically in the
context of viral lytic and lysogenic decision making,
wherein viruses that match their lysogenic rate to the envi-
ronmental frequency of lytic collapse were found to maxi-
mize long-term population growth (13).

Cellular memory is a key defining feature of adaptive
cells in changing environments, and recent empirical evi-
dence has revealed a number of mechanisms by which this
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Optimal cellular adaptation
can occur at the single-cell level. Durable chromatin
modifications can persist across cell division (14). Prior
growth-factor signaling induces short-term memory that
tunes subsequent receptor sensitivity (15). Even oligomeric
protein condensates arising in response to previous environ-
mental encounters enable cells to change their future
behavior (16). Recent work has begun to highlight the
importance of memory-driven decision making in navi-
gating future environments, not just present ones (17–19).

The role of history dependence in cellular adaptation has
also been considered in several previous studies. Historical
effects of cell phenotypic switching in matched or mis-
matched fluctuating environments has provided more com-
plete descriptions of phenotypic selection in a diverse
ecology (20). Notably, (2) considered the difference in
responsive (or ‘‘informed’’) switching relative to stochastic
switching among a variety of phenotypes and environments.
This analysis considered two extremes where switching was
based either on perfect information of the current state via
sensing or no information at all in the stochastic case. More-
over, the existence and benefit of memory in cells navigating
fluctuating environments has also been demonstrated using
systems of ordinary differential equations in the context of
hysteresis and gene expression delays that result from prior
environmental cues in cell signaling networks (21).

Although all of these features are of direct importance for
a mechanistic understanding of cellular adaptation, the role
of a dynamic memory in stochastic optimal decision making
and its corresponding impact on cell fitness are at present
unknown. And, despite these approaches, the effects of prior
memory capacity on the decision making of cells in fluctu-
ating environments has not been quantitatively evaluated,
particularly when future environmental transitions must be
inferred from past environments. A corresponding theory
of stochastic optimal adaptation is also currently lacking.
To address this, and to further understand recent empirical
findings of reduced-growth phenotypes in fluctuating envi-
ronments (22), we developed a foundational mathematical
framework to model memory-driven phenotypic switching
in stochastic environments. In our model, adaptive popula-
tions leverage a memory of historical environmental expo-
sures to forecast the optimal phenotypic strategy for
unknown future landscapes. This simple model is amenable
to explicit analytic characterization of the optimal strategy
as a function of environmental history and memory capacity.

In the setting of navigating metabolic environments, our
model quantifies the dynamical differences between fixed
cellular phenotypes and those that may select a phenotypic
strategy based on a memory of past experience to optimize
their growth potential. In studying the role of memory ca-
pacity, we identify a fundamental trade-off between the ac-
curacy of a cell’s estimation of the current environmental
state and the speed at which it may adapt to new environ-
ments. We quantify the efficiency of systems employing a
variable-memory scheme to balance constraints on adapta-
tion speed and accuracy when compared to their fixed-mem-
ory counterparts. When applied to understand cellular
growth rates in oscillating nutrient environments, our model
predicts that memory capacities in excess of the period of
environmental oscillation are most consistent with empiri-
cally observed dynamics. We show that memory-driven
cellular decision making can explain the observation of
slower growth in fluctuating nutrient environments when
compared to constant ones. Our model predicts that this
feature is universal across all fluctuating environments and
a direct consequence of bet hedging in optimal memory-
driven decision making.
MATERIALS AND METHODS

Environmental and phenotypic dynamics

Our model consists of single cells navigating type-A and type-B environ-

ments. Without loss of generality, the type-A environment represents a

beneficial or nutrient-high environment, whereas the type-B environment

represents a weakly beneficial or detrimental one. Cells exist in one of

two phenotypic states, correspondingly denoted by SA and SB based on their

fitness preference for environment A or B, respectively. The SA state may be

viewed as a fast-growing, or sensitive, phenotype (23). Similarly, the SB
phenotype devotes additional resources to mitigate the undesirable effects

of a nutrient-poor or overtly detrimental environment (24). We will also

distinguish adaptive cells—capable of phenotypic switching—from static

ones, which cannot adapt. We represent a fluctuating environmental land-

scape by a (possibly random) sequence Ln ˛ f0; 1g indicating the presence

of the B environment. In general, terms in this sequence may be correlated

in time, and their relative frequencies may also change over time. For foun-

dational understanding, we focus on environments identified by indepen-

dent and identically distributed sequences Ln. In this case, a stochastic

environment may be represented by a single parameter p denoting the likeli-
hood of the B environment:

p ¼ PðLn ¼ 1Þ ¼ PðBÞ: (1)

We also allow for possible diversity in the intensity, In, of each environ-

ment, which we assume to be Poisson distributed and environment specific:

IA;n � PoissonðnÞ; IB;n � PoissonðlÞ: (2)

In general, n and l are the intensity rates for each environment (applications

to empirical data will assume constant and equal intensity values IA;n ¼

IB;n ¼ 1). Of primary interest is the rate of benefit accrual per normalized

unit time for each phenotype, given by

RSA;n ¼ rð1 � LnÞIA;n � cLnIB;n

RSB;n ¼ r

a
ð1 � LnÞIA;n:

(3)

For the SA phenotype, type-A environments generate a per-unit benefit r,
whereas type-B environments incur a per-unit cost c. The SB phenotype

avoids this cost at the expense of less efficient navigation of type-A environ-

ments, parameterized by a> 1.

An equivalent formulation can be applied in the case of strictly bene-

ficial environments ð0 < rL < rHÞ with A ¼ low and B ¼ high, and

reversed interpretation of phenotypes SA ¼ SLow; SB ¼ SHigh. In this

case, replacement of a� 1 by b> 1 characterizes the relative efficiency

of the fluctuation-tolerant, slow-growth SLow phenotype over SHigh in

weakly beneficial environments. Lastly, Eq. 3 can also be written to
Biophysical Journal 122, 4414–4424, November 21, 2023 4415



FIGURE 1 Illustration of memory-driven phenotypic switching. (A) The model consists of cells capable of stochastic transition between two states, SA and

SB, where state Si has an advantage in the i-type environment. (B) The general model is applied to study cases where the environment may become hostile or

may represent low nutrient availability. (C) Cellular decision making uses a memory of prior environments to optimally respond to future ones by selecting

the phenotype that maximizes expected future growth.
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explicitly account for empirically observed growth rates for direct

comparisons with experimental data (see supporting material, Section

S7.3).

Although the above model can represent a variety of cellular features

that a system may actively optimize, including cellular signaling and

phenotypic sustainment of microenvironmental features, we henceforth

interpret benefit and cost with respect to a cell’s growth potential, or the

rate at which cells acquire resources that are available for growth and di-

vision, which can be mapped to observable growth rates via a convex

growth curve. A depiction of our phenotypic switching model is given

in Fig. 1.
Cellular memory

To navigate the p-fluctuating environment, the cell creates a dynamically

updated estimate, pn, of p after each environmental encounter. We represent

iterative updating through a Bayesian inference scheme, where at time n the

current estimate pn of environment p may be represented by a prior distri-

bution f0. Although this framework can, in general, handle arbitrary distri-

butions that may describe the system’s prior belief of the environmental

state, we shall consider

f0ðpnÞfpkn � 1ð1 � pÞNn � kn � 1
; (4)

where kn represents the observed number of type-B environments out

of a total recalled memory of Nn previous environments. Here, memory
refers to the extent of previous environmental exposures the system has

access to in making decisions about future phenotypes, which is ex-

pressed as the number of prior time steps in this discrete-time model.

The cell is thus tasked with identifying the most likely environment—

in the form of a posterior distribution for the estimated environment

pnþ 1—given the most recent observation Lnþ 1. This distribution can

be written as

f ðpnþ 1j Lnþ 1Þfp
kn þ Lnþ 1 � 1
nþ 1 ð1� pnþ 1ÞNn �ðkn þ Lnþ 1Þ � 1

: (5)

Moreover, for a uniform prior ðf0 ¼ 1Þ representing no bias in pn, the

maximum likelihood estimate of p, given by pn ¼ kn=Nn, agrees with

the maximum a posteriori probability, so it suffices to track the number

of observed B environments, kn, at each time n having memory capacity

Nn. To account for the additional possibility that cells may dynamically

change their memory capacity (25,26), we consider cells possessing either

a fixed memory capacity or an adaptive memory capacity as they navigate

fluctuating environments.
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Dynamic programming and optimal adaptation

The intriguing empirical observation of cellular decision making capable of

navigating future events based on present decisions (13,17,18) is particu-

larly well suited for the application of stochastic optimal decision making.

Toward this end, we apply dynamic programming to characterize the

optimal phenotypic strategy for cells that optimize their maximal attainable

expected growth potential. The optimal phenotypic policy satisfies the time-

homogeneous Bellman equation (27), which relates the time-n value—or

present maximal attainable growth potential—to the value in the future

(at time n þ 1). An estimate of p can be obtained by averaging the history

of B environments: pn ¼ kn=Nn. The optimal program can, in general, be

written for systems with adaptive memory (see supporting material, Section

S5) using the value function V. For the fixed-memory case with memory

size N and kn;N denoting the sum of the N most recent B environments at

time n, the optimal program is given by:

V

�
kn;N
N

�
¼ R

�
kn;N
N

�
þ d

�
1 � kn;N

N

�
V

�
kn;N� 1

N

�

þ d
kn;N
N

V

�
kn;N� 1 þ 1

N

�
:

(6)

where 0< d< 1 is an exponential discount factor assigning greater utility to

earlier gains in growth potential, and R is the expected growth assuming the
optimal action is taken. Our analytical results are evaluated against large-

scale stochastic numerical simulations.
RESULTS

The following section presents the main findings of our
analysis (full mathematical details are provided in the sup-
porting material).
Environmental parameters determine preferred
phenotype

The expected growth potential for each phenotype is
given by

E½RSA � ¼ rnð1 � pÞ � clp; E½RSB � ¼ rna�1ð1 � pÞ:
(7)



Optimal cellular adaptation
This implies that the SA phenotype is preferred over SB
whenever the mean benefit-to-cost ratio exceeds the odds
of the B environmental frequency normalized by the ineffi-
ciency of the SB-phenotype:� a

a � 1

� p

1 � p
<
rn

cl
: (8)

Eq. 8 can equivalently be solved to identify a unique
indifference probability pI:

pI ¼ ða � 1Þrn
ða � 1Þrn þ acl

: (9)

pI describes the environmental landscape for which neither
phenotype is preferred on average. Its value is determined

by the relative fitness values of phenotypes matched or
mismatched in each environment. The SA (resp. SB) pheno-
type is preferred in stochastic environments having p< pI
(resp. p> pI). In addition to the mean dynamics, we also
find that there is always a variance premium incurred for
the SA phenotype, and, in this case, the cost and Poisson in-
tensity terms decouple (see supporting material, Section
S2.3).
FIGURE 2 Maximal attainable growth potential in fluctuating environ-

ments. The value function for cells optimally selecting their phenotypic

state based on a history of fluctuating environmental states is given as a

function of the underlying environmental parameter p for (A) systems

with infinite-memory and variable a together with limiting behavior

(a ¼ 1 and a/N). (B) For systems with finite memory capacity, the value

functions are plotted for a ¼ 2 over increasing memory size, along with

the infinite-memory limit (in all cases, rn ¼ 2, cl ¼ 1, d ¼ 0:9).
Optimal strategy and maximal total growth

The solution to the two-state problem in Eq. 6 along with its
infinite memory analog can be analytically solved. The
optimal decision RðpnÞ at each time is given by selecting
a phenotype based on the historical abundance of previous
B environments through pn, and the growth potential is
given by

RðpnÞ ¼
�
rn � ðrn þ clÞpn; pn % pI;
rnð1 � pnÞ=a; pn > pI:

(10)

The corresponding value function, representing the
maximal sum of future expected growth potential, can be
identified for both finite- and infinite-memory cases (see
supporting material, Section S5). In the infinite-memory
case, its value matches Eq. 10 normalized by ð1 � dÞ�1.
The value function is plotted for a variety of intermediate
and limiting (a ¼ 1, a/N) a values in Fig. 2 A. A similar
calculation can be made for systems with finite memory (see
supporting material, Section S5.1). In that case, the value
function is discretized over available values of p, with res-
olution proportional to memory capacity. The finite-mem-
ory case converges to the infinite-memory one as N
becomes large (Fig. 2 B). Using this updating scheme, the
current value perceived by the adaptive system in the pre-
sent decreases linearly as a function of p, the observed B
environmental frequency, thereby quantifying the detriment
to value resulting from an increasingly hostile environment.
The inflection point emergent for larger memories
ðN R 100Þ illustrates the relative difference in marginal
value between each environment around their point of indif-
ference pI .
Optimized phenotypic decision making hedges
against future environmental uncertainty

One immediate consequence of memory-driven phenotypic
adaptation is that populations faced with uncertain future
environments capably adapt based on their estimates of
the prior state. When the fluctuating environment is main-
tained at some pspI , a corresponding fixed-phenotype state
(either SA or SB) is always preferred over phenotypic switch-
ing. Dynamic cells in unknown environments therefore
experience reduced growth potential relative to their fixed-
strategy, environmentally matched counterparts, but, in do-
ing so, achieve enhanced growth potential across all envi-
ronments, which contrasts with static phenotypes (Fig. 3
A). This is especially relevant for navigating detrimental B
environments, wherein dynamic cells are able to maintain
positive growth despite environmental uncertainty. Thus,
Biophysical Journal 122, 4414–4424, November 21, 2023 4417



FIGURE 3 Growth in fluctuating environments.

Representative stochastic trajectories of (A) cumula-

tive growth potential and (B) averaged cumulative

growth potential are depicted for cells navigating

A-predominant (left), neutral (middle), and B-pre-
dominant (right) environments. Adaptive systems

(blue) capable of phenotypic switching have lower

growth potential than static phenotypes (red, yellow)

matched to the proper environment, but outperform

those phenotypes whenever the environment is mis-

matched. Growth dynamics for all strategies collapse

to a common process in the neutral environment (in

all cases, rn ¼ 2, cl ¼ 1, a ¼ 2, d ¼ 0:9, N ¼
20).
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the benefit of phenotypic decision making is a hedge against
environmental uncertainty that enables systems to survive
changing environmental landscapes. This hedge results in
reductions to the expected growth potential compared to
what would otherwise be achieved in the best fixed-pheno-
typic state (Fig. 3 B), and the corresponding growth dy-
namics converge to the analytically predicted long-term
expected behavior (see supporting material, Section S7.2).
Lastly, the stochastic growth potential for static and dy-
namic strategies all collapse to a common process whenever
p ¼ pI .

Motivated by recent empirical evidence supporting
distinct growth phenotypes in fluctuating environments
(22), we next consider optimal decision making in
nutrient-rich vs. nutrient-depleted environments. For the
remainder of the results, we focus on studying strictly bene-
ficial high (type-A, r ¼ rH) and low (type-B, r ¼ rL)
nutrient environments with corresponding SHigh and SLow
matched phenotypes and bha� 1 > 1 (see supporting mate-
rial, Section S7). In constant environments, memory size has
no influence over the preference of fixed or adaptive pheno-
types since the environmental parameter p and estimate pn

always coincide (pn ¼ p for p˛ f0; 1g).
In fluctuating environments, larger memories mitigate

estimation error by enhancing the resolvability of the
environment relative to its indifference point, jp � pI j
(see supporting material, Section S4.3). When switching
4418 Biophysical Journal 122, 4414–4424, November 21, 2023
from a constant to a fluctuating environment, cells with
larger memory capacities trade longer adjustment pe-
riods—resulting in slower phenotypic transitions—for
higher environmental estimation accuracy, which ultimately
yields enhancements in long-term growth. This accuracy de-
pends on both memory and on the proximity of the environ-
mental state to indifference jpI � pj (Figs. 4 A, B, and S4).
Memory capacity thus strikes a trade-off between the rate of
adaptation and long-term growth efficiency.
Adaptive memory balances long-term growth
enhancement with short-term reduction

In our model, phenotypic dynamism enables cells to execute
optimal decisions, and their accuracy is proportional to total
memory capacityNn. Givenmemory’s role in cellular decision
making (14,15), we next asked how cellular systems with dy-
namic memory capacities compare to their fixed-memory
counterparts when encountering fluctuating environments.

Here, memory capacity may be viewed as the control vari-
able through which a cell tunes its ability to switch pheno-
types. We considered several governing principles for
adaptive decision making (see supporting material, Section
S6), the one presented here is based on proximity to pI as fol-
lows: since estimationof theoptimal phenotype becomesdiffi-
cult for small jpI � pj, one plausible response for dynamical
systems detecting a smaller distance dn ¼ jpn � pI j is an



FIGURE 4 Dynamics of fixed and adaptive-memory systems navigating constant-to-fluctuating nutrient environments. (A) Fixed-memory cells experi-

encing low-constant to high-fluctuating nutrient environments undergo phenotypic switching. The maximal growth potential and switching times both

vary directly with memory capacity. (B) Illustration of the probability distribution for the estimate pn of p for varying memory sizes as in (A). Successful

estimation occurs whenever pn > pI (green arrow; right of dashed line). The probability of environmental mis-estimation occurs whenever pn < pI (red ar-

row; left of dashed line). Cumulative averaged growth potential and memory sizes are plotted in time for adaptive cells undergoing (C) constant-high to

fluctuating-low and (D) constant-low to fluctuating-high nutrient environments (in all cases, rL ¼ 0:05, rH ¼ 1 giving bC ¼ 1þ rH=rL. b ¼ bC= 2 giving

pI ¼ 0:32. All initial memory capacities tend toward a unique long-term limit (dashed horizontal lines). For (B) and (C) Nmin ¼ 3, Nmax ¼ 20, high-fluc-

tuating environments were given by p ¼ 0:60, low-fluctuating by p ¼ 0:20, and memory was updated based on detected distance to environmental indif-

ference dn ¼ jpn � pI j. A total of 104 stochastic simulations were averaged to generate growth and memory curves. Two stochastic realizations are depicted

for initial memory sizes N0 ¼ Nc selected in via linear interpolation between Nmin and Nmax of the initial distance between pI and the high- (resp. low-)

constant environments, modeled by p0 ¼ 1 (resp. 0).

Optimal cellular adaptation
increased memory capacity to more reliably estimate p,
whereas larger dn values benefit from smaller memories in
their ability to quickly adapt to future changes. Although
many functional forms can achieve this, we for simplicity
considered linear interpolation between an upper ðNmaxÞ and
lower ðNminÞ memory limit based on proximity of pn to pI

Nn ¼ Nmax � ðNmax � NminÞjpn � pIj (11)
with incremental transitions so thatNnþ 1 � Nn ˛ f� 1; 0; 1g.
These dynamics describe a simple update scheme that allo-

cates additional memory capacity when higher resolution is
needed for resolving the environmental state. We also
considered alternative schemes based on the system’s esti-
mate of environmental variance (see supporting material,
Section S6.1).

We applied this framework to compare growth trajec-
tories for systems adopting fixed versus adaptive memory
strategies. Our analysis was performed for cells transition-
ing from a constant A environment ðp ¼ 0Þ to a B-predom-
inant fluctuating one ðpI < p < 1Þ (Fig. 4 C), from a constant
B environment ðp ¼ 1Þ to an A-predominant fluctuating one
ð0 <p < pIÞ (Fig. 4 D), and the analogous fluctuating-to-
constant landscapes (Fig. S3). We plot the cumulative aver-
aged growth potential to highlight both transient changes in
growth during environmental switching and long-term equi-
librium rates. In each case, we find that larger memory ca-
pacity improves long-term growth potential.

In constant-to-fluctuating environmental transitions,
adaptive memories with lower initial memory correct
more quickly than adaptive systems with large memory,
demonstrating that fixed large memory capacities are not
always the optimal choice (Fig. 4 D). On the other hand,
fixed low-memory systems adjust more quickly but are ul-
timately eclipsed by their adaptive counterparts in the long
run (Fig. 4 A). Moreover, adaptive systems with variable
initial memory have growth dynamics that converge to a
single predicted equilibrium state and a unique mean-re-
verting long-term memory capacity (see supporting mate-
rial, Section S6.2). Collectively, our results predict
additional adaptation enhancement in systems with adap-
tive memory when navigating changing environments rela-
tive to systems with a fixed memory size.
Memory-driven adaptation in oscillating
environments

Our analysis thus far has focused on random environments
with phenotypic switching determined by the environmental
Biophysical Journal 122, 4414–4424, November 21, 2023 4419



FIGURE 5 Phenotypic adaptation in oscillating environments. Adaptation dynamics are studied by considering the fluctuation experiment in (22) and

imputing estimates of the corresponding growth rates for each phenotype-environment pair. (A) The average growth rate distribution of 100 adaptive cells

in an oscillating-nutrient environment with period T ¼ 60minutes is depicted as a function of time assuming intrinsic noise in each cell’s ability to identify

the past environmental encounters. Model application for a variety of memory sizes N recapitulates empirically observed timescales of adaptation memory

sizes that are in excess of environmental oscillations. (B) Focusing on growth trajectories with memory size N ¼ 3T, the average growth rates over the

nutrient-high ðRhighÞ, nutrient-low ðRlowÞ, and total ðRavgÞ time intervals are plotted (error bars depict standard deviation) and recover the dynamics observed

in (22) (pnoise ¼ 0:4 as in see supporting material, Section S7.3).
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parameter p, yet many experimental observations, including
the dynamics observed in (22), occur in periodic (determin-
istic) environments, which are a specific restriction of
environmental landscapes that comprise realizations of our
general model. In prior empirical work, researchers tracked
Escherichia coli cells grown for 3.5 h in a low-nutrient envi-
ronment and then frequently measured their growth rates
while subjecting cells to 60-min oscillating high- and low-
nutrient environments. Their results demonstrate a distinct
‘‘adaptation-enhanced’’ phenotype capable of increasing
its growth rate over six periods.

In applying our model to this setting, the intensities can
be assumed to be fixed quantities that are equal (IA;n ¼
IB;n ¼ 1 from Eq. 2). We evaluate our framework in this
experimentally constrained setting by utilizing a fixed-
memory description of phenotypic transitions. We use a
variation of our model capable of direct incorporation of
measured growth rates (see supporting material, Section
S7.3). We then directly estimate observed growth rates
(Fig. 5 of (22)), which are then applied to study the distribu-
tional response of cell growth rates under variable memory
size and intrinsic noise. These values give an estimate of
the indifference probability pI ¼ 0:44, which is close
to the environmental parameter p ¼ 0:5 in symmetric
environments.

We find that memory sizes in excess of the environmental
oscillation frequencies are most consistent with the dynamics
and timescales of adaptation observed in the aforementioned
experiments (Fig. 5 A). This observation is consistent with
the earlier finding that largememory sizes are preferredwhen-
ever jpI � pj is small, as is the case here. Moreover, these
distributional trajectories are in qualitative agreement with
the experimentally observed timescales of growth rate stabili-
zation across successive periods (Fig. 5 B). We also observe
that average growth rates of cell populations with larger
4420 Biophysical Journal 122, 4414–4424, November 21, 2023
phenotypic memory can also be enhanced by intrinsic noise
(Fig. S5).
Reduced growth in fluctuating environments
results from inherent nutrient variability and
memory-dependent environmental mis-
estimation

Figs. 3 and 4 highlight the hedging strategy of a dynamic
cellular phenotype. Namely, dynamic cells opt for lower ex-
pected growth potential relative to corresponding static phe-
notypes appropriately matched to a (fixed) environmental
state in exchange for the ability to adapt and thus avoid large
penalties in any environment of interest. On the other hand,
the extent of relative growth reduction observed across all
allowable environmental parameters remains unknown. To
address this, we next consider how growth under rapid fluc-
tuation compares to the corresponding weighted-average
behavior between high and low states comprehensively for
all random environments. In the empirical paper analyzed
above, researchers identified growth reductions for cells in
fluctuating environments relative to those in constant ones.
Intriguingly, these reductions persisted even after account-
ing for those expected to result from the convexity of the
growth-vs.-nutrient curve from Jensen’s inequality.

Since our model tracks the (linear) underlying growth po-
tential as a function of phenotype and environment, Jensen’s
inequality holds at equality, allowing us to directly compare
the growth potential of dynamic cells in fluctuating environ-
ments with the corresponding weighted-average potential in
constant environments (Fig. 6 A). Of course, our representa-
tion of available nutrients for growth can be mapped via
one-to-one correspondence to growth rate via a convex trans-
formation, but our goal here is to quantify the inherent deficit
in the fluctuating growth phenotype that is independent of the



FIGURE 6 Growth deficits due to phenotypic switching in stochastic environments. Cavg describes the average environment given by the convex combi-

nation pChigh þ ð1 � pÞClow against which the rapidly fluctuating p environment can be compared. (A) The dynamics of cumulative averaged growth po-

tential for fixed- and adaptive-memory cells navigating fluctuating and comparable constant environments (p ¼ 0:4, pI ¼ 0:2, b ¼ bCrit=4). Across all

environmental parameters, p, and allowable growth coefficients, b, simulated long-run growth potential for (B) p-random and (C) p-averaged constant en-

vironments reveal a universal growth deficit (D) of the p-fluctuating case relative to Cavg, which is particularly pronounced in the p ¼ pI environment. (E and

F) The total expected growth deficit of fluctuating environments consists of an intrinsic contribution maximized at p ¼ pI and an extrinsic contribution

(illustrated for adaptive cells with limited N ¼ 3 memory capacity) owing to the risk of environmental phenotypic mismatch. In all cases, rL ¼ 0:01,

rH ¼ 1, bCrit ¼ 1þ rH=rL, and 103 stochastic simulations were evaluated for each simulation in (A) over time and at each parameter value in (B)–(F).

Optimal cellular adaptation
convexity of the growth-vs.-nutrient curve. Our calculations,
performed for all allowable fluctuating environments p and
corresponding (weighted-average) constant ones, recover
the experimentally observed deficits (Figs. 6 A and S6).
Moreover, our results suggest that this deficit is universal
across all feasible parameter choices (Figs. 6 B, C and
S6) and greatest for near-indifferent environments pzpI
(Fig. 6 D).

The total deficit can be decomposed into a sum of deter-
ministic ðDIÞ and random ðDEÞ terms:

Dtot ¼ DI þ DE: (12)

The intrinsic deficit DI , given by

DI ¼
�

rHp; p% pI;
ðb � 1ÞrLð1 � pÞ; p> pI:

(13)

occurs when an adapting cell under rapid environmental
fluctuation correctly selects the best phenotype. The fluctu-

ation, however, results in mismatch on occasion, and at a
frequency that increases as the environment p approaches
the state of indifference pI . DI therefore represents a best-
case minimal deficit provided that the cell selected the cor-
rect phenotype. In the event that the phenotype is mis-
matched to the environment ðImiss ¼ 1Þ, there is an
additional extrinsic deficit:

DE ¼ jðb � 1ÞrLð1 � pÞ � rHpjImiss: (14)

The expected value of DE therefore depends on the prod-
uct of its magnitude with the miss probability, PðImiss ¼ 1Þ.
The effective cost of a mismatched phenotype increases
linearly away from pI , whereas the miss probability (see
supporting material, Section S7.4) varies inversely with
larger memory, is maximized at pI , and decreases for larger
p deviations. This analytic description of deficit is in quan-
titative agreement with large-scale stochastic simulations of
the process across all parameter values (Fig. 6 E and F).

Collectively, our results provide a statistical justification
for observed growth deficits of fluctuating environments:
adaptive cells encountering sufficiently rapid environmental
fluctuations select their phenotypes based on the most
recent past encounters. In the best case, the system correctly
identifies the most likely environment relative to pI and se-
lects the correct phenotype accordingly. In fluctuating land-
scapes, both environmental states occur, and so growth
reductions inevitably result when the anomalous environ-
ment appears despite appropriate phenotypic selection.
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Should the system mis-estimate the environment—a risk
mitigated by increasing memory capacity—it suffers a
higher frequency of stochastic mismatch, thus further
reducing growth.
DISCUSSION

The dynamics underlying phenotypic cellular decision mak-
ing is central to a variety of clinically significant phenom-
ena, including drug resistance and disease progression.
Analytical modeling approaches offer direct mathematical
frameworks for studying the nature and extent of cellular
adaptation, which can be applied to generate relevant and
directly testable predictions for follow-up validation. Recent
empirical findings implicate the role of phenotypic memory
in adaptable systems, along with intelligent decision making
that can anticipate future events. Given this, the precise
impact of prior environmental memory on phenotypic dy-
namics, through observable signals such as growth, are of
central importance.

Our predictions suggest that transient reductions in
growth capacity followed by long-term optimization is an
emergent and defining feature of systems with dynamical
memory capacity that is absent in fixed-memory systems.
This difference presents a means by which memory-driven
adaptation could be distinguished experimentally. In our
model, memory capacity is represented by the extent to
which past environments are recalled, which, along with dy-
namic differences in memory size, depends on the underly-
ing molecular mechanisms giving rise to cellular memory
(28,14,15,16). Their mechanistic link to phenotypic deci-
sion making is a central question that will benefit from
further experimental studies.

Here, we considered a generalized stochastic model of
adaptation driven by cells choosing their optimal phenotype
based on memory-driven estimation of fluctuating environ-
ments. By comparing the growth potential for cells in
random environments to the corresponding weighted-
average values in constant environments, we demonstrated
that adaptation serves as a bet-hedging strategy that mani-
fests as a growth reduction for cells navigating uncertain
landscapes. Our model provides a statistical explanation
for this growth deficit: the theoretically predicted extent of
this deficit occurs due to the system’s existence in a stochas-
tic environment, which inevitably experiences instances of
phenotype-environment mismatch. Moreover, our model
predicts that this effect can be mitigated, but never outright
eliminated, by larger memory sizes.

Our results suggest the existence of fluctuating environ-
ments for which adapting cells perform most poorly, which
has significant therapeutic implications for targeting adap-
tive threats such as infectious diseases and cancer. For
example, careful environmental selection based on the time-
scale of cellular memory could lead to growth reductions.
This intriguing possibility will benefit from subsequent
4422 Biophysical Journal 122, 4414–4424, November 21, 2023
mechanistic experimental and theoretical follow-up to
determine conditions under which memory-driven stochas-
tic versus deterministic growth strategies occur. The time-
scales and magnitudes of changes determining whether
cellular systems perceive their environment as fluctuating
or deterministic are poorly defined. Further empirical
follow-up and model refinement will improve our under-
standing of the rules precisely governing such transitions,
which we do not address here.

In addition to recapitulating empirical findings, our re-
sults offer testable strategies for further elucidating the dy-
namics of memory-driven phenotypic decision making.
For example, identification of fluctuating environments giv-
ing rise to equal abundances of distinct cellular phenotypes
having no significant difference in growth is one way of
experimentally identifying the predicted critical indiffer-
ence environment pI . Our results predict that cells in a
neighborhood around this environment experience large
growth deficits relative to cells in comparable constant
environments. Moreover, rapid cycling or randomization be-
tween high and low nutrient states in a small neighborhood
around pI could be performed to identify the environment at
which the maximal deficit occurs, pmax. Lastly, our theory
suggests that deviation of pmax from pI decreases for
increasing memory sizes and larger SB efficiency b.

When directly applied to study empirical data on growth
rates in rapidly oscillating nutrient environments, our model
predicted that the observed memory size, and hence the
baseline phenotypic transition period, are greater than that
of the periodic oscillations driving the fluctuating environ-
ment. Our findings deviate from prior predictions of optimal
adaptation occurring with matched environmental and
phenotypic switching (1,2). Intriguingly, such unmatched
rates have more recently been predicted in the setting of
growth rate asymmetries between each phenotype (29),
which we predict to also hold in this experimental context.
Our results support this more recent finding and, in the
case of large asymmetries in phenotypic growth rates, offer
a probabilistic explanation for low transitions rates relative
to the oscillation period in optimal adaptation. Lastly, sys-
tem-intrinsic noise increased the population’s average rate
of adaptation during transitions from constant to oscillating
environments. Our results demonstrate that memory-driven
adaptation using statistical inference in stochastic environ-
ments may in fact be enhanced by intrinsic noise, which is
reminiscent of stochastic resonance-stabilized sensing es-
tablished previously in physical systems (30,31).

Since the convexity of the growth-versus-nutrient curve
complicates quantification of phenotypic efficiency in bio-
logical systems (22), we focused our general analysis on
growth potential, which is a linear function of the environ-
mental parameter. In doing so, we were able to avoid the
technicalities of invoking Jensen’s inequality when calcu-
lating phenotypic efficiency. To compare these cases, we
assumed that nutrient availability for growth in constant
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environments interpolates linearly between low- and
high-nutrient conditions and represents a distinct pheno-
typic program from cells in fluctuating environments, driven
in our model by experiencing rapid stochastic fluctuations.

This model is not without limitations. Implicit in our
modeling framework is an assumed constant energetic
cost across all available memory capacities and zero cost
for transitioning. We studied memory capacities assuming
instant updates between successive time points. In reality,
lags and energetic costs in environmental estimation and
phenotypic switching may affect the optimal cellular strat-
egy. This model considers how environmental changes
affect cellular adaptation, but not the converse; in reality,
phenotypic variability can play an equally important role
in modulating the surrounding microenvironment. A more
complete description of mutual phenotypic and environ-
mental feedback is relevant to understanding a number of
biological systems and is a topic of future research efforts.
Applications of our model to describing empirical growth
rate dynamics all considered environments that result in
cell growth for both phenotypic states. Future efforts to
further develop and apply this model to bacterial and cancer
treatments will require an analysis of both cell division and
death.

Historical inference in our model was assumed to be
either perfect or uniformly imperfect based on intrinsic
noise representing a decay in memory fidelity, which we
assumed was fixed with respect to the age of individual
memories. This assumption, along with possible diversity
in the functional forms for memory-driven inference, can
be expanded in describing particular biological mechanisms
of memory-driven inference. Inference in our model
occurred on arbitrary environments, where larger memories
lead to more accurate environmental estimates. We applied
our model to oscillating environments, which were compa-
rable through p by matching the relative abundances of en-
vironments over one period. We remark that periodic
(deterministic) environments possess additional structure,
and it is plausible that cellular adaptation mechanisms
capably infer such global structure in a more complex
scheme. Here, however, we describe optimal dynamics
assuming that the environmental frequencies are what is be-
ing estimated.

The optimization objective we focused on was maxi-
mizing mean growth. It is possible that many biological
settings are better represented by an alternative objective,
such as variance minimization for settings requiring strictly
uniform growth. Although our current results are capable
of quantifying the variance profiles of dynamic decision
making, additional model development would be required
to identify the optimality conditions and solve for a
corresponding optimal phenotypic strategy. This and other
extensions, including an account of multiple indepen-
dent environmental signals, are the topic of subsequent
investigations.
In this work, we present a two-state, two-environment
model. Although useful for characterizing memory-driven
phenotypic transitions in some contexts (28), in others,
multiple nutrient and signaling cues likely influence cellular
decision making, with the possibility of several allowable
phenotypic states (32–34). In these more complicated cases,
the number of stable phenotypic states, along with their cor-
responding fitness in fluctuating landscapes, are important
to evaluate. These scenarios will benefit both from extend-
ing the above modeling framework to characterize optimal
decision making (35) along with data-driven analysis to
define the phenotypic response to more complex environ-
mental signatures. At present, our model does not account
for durable alteration mechanisms, such as genetic muta-
tions, that may also contribute to improved adaptation
over time. Such mechanisms and their associated impact
on phenotypic response are important for many evolutionary
processes such as cancer; their incorporation is a priority for
future model development. Nonetheless, we anticipate that
this model can be used to establish microscopic environ-
mental fluctuations as a generator of phenotypic diversity
for single-cell populations and multicellular systems.
APPENDIX

Supporting material with full mathematical details are provided in the

attached document.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2023.10.019.
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