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Abstract
Remote reconnaissance missions are promising solutions for the assessment of earthquake-
induced structural damage and cascading geological hazards. Space-borne remote sensing 
can complement in-field missions when safety and accessibility concerns limit post-earth-
quake operations on the ground. However, the implementation of remote sensing tech-
niques in post-disaster missions is limited by the lack of methods that combine different 
techniques and integrate them with field survey data. This paper presents a new approach 
for rapid post-earthquake building damage assessment and landslide mapping, based on 
Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage clas-
sification approach exploits very high resolution post-earthquake SAR data integrated with 
building survey data. For landslide mapping, a backscatter intensity-based landslide detec-
tion approach, which also includes the separation between landslides and flooded areas, is 
combined with optical-based manual inventories. The approach was implemented during 
the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earth-
quake Engineering Field Investigation Team mission that followed the 2021 Haiti Earth-
quake and Tropical Cyclone Grace.

Keywords  Remote reconnaissance · Remote sensing · Haiti · Building damage · Landslides 
classification · SAR · Texture analysis · Intensity ratio image

1  Introduction

Assessing building and infrastructure damage shortly after an earthquake is critical to sup-
port effective disaster relief management (Schweier and Markus 2006). A rapid evalua-
tion of the extent, intensity and distribution of damage needs to include both earthquake 
primary effects, i.e. the direct consequences of ground shaking, and secondary effects, 
of which landslides are the most impactful (Marano et  al. 2010). Post-earthquake dam-
age assessment is typically carried out by teams of experts deployed to the field. How-
ever, whilst in-situ examinations provide important knowledge (Aktas et  al. 2022; Whit-
worth et al. 2022), field reconnaissance missions can be time-consuming and logistically 
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burdensome, especially for earthquakes affecting large regions, multiple state or country 
borders, or areas with challenging geopolitical circumstances.

Satellite-based remote sensing has been increasingly adopted in post-disaster manage-
ment to overcome the limitations of in-situ reconnaissance. Optical and radar imagery 
can provide a safe and rapid overview of extensive affected areas, with radar data offer-
ing the further advantage of independence from weather conditions and daylight (Ge et al. 
2020). However, the usefulness of advanced remote sensing techniques for post-earthquake 
assessment remains limited by the lack of a consistent framework for integrating field 
measurements and disparate remote sensing approaches, which are often context specific 
(Dong and Shan 2013).

In this paper we present a novel approach for the combined assessment of primary, i.e. 
building damage, and secondary, i.e. landslide, earthquake effects, based on the analysis 
of Synthetic Aperture Radar (SAR) data. The combined assessment addresses the need 
for comprehensive approaches that can be adopted in a multi-hazard scenario. We imple-
mented this approach in parallel with field survey and satellite optical techniques during 
the joint StEER/GHI and EEFIT mission that followed the 2021 Haiti earthquake (Whit-
worth et al. 2022), where the seismic event impacted several urban areas, induced a large 
number of landslides and was followed by a tropical storm.

In Sects.  1.1 and 1.2 we introduce our proposed approach in the context of state-of-
the-art satellite-based techniques for post-earthquake building and landslide assessment. 
Section  2 describes the Haiti 2021 earthquake case study, in which data were collected 
(Sect. 3) and our methodology was implemented (Sect. 4). Section 5 presents and discusses 
the results, and Sect. 6 summarises the main conclusions of this study.

1.1 � Previous approaches to remote building damage assessment

Building collapse is responsible for 75% of all fatalities during earthquakes (Cobum et al. 
1992). A rapid understanding of the extend of building damage and its spatial distribu-
tion is therefore critical to rescue operations and reconstruction efforts. Remote sensing 
techniques are increasingly being used to quickly assess the level and extent of structural 
damage in earthquake-affected areas (Joyce et al. 2009). At the same time, the use of such 
techniques in building damage assessment and disaster management has been formalised 
through initiatives such as the UNITAR Operational Satellite Applications Programme 
(UNITAR 2020).

The most common approaches use optical imagery to create damage assessment maps 
shortly after an event, e.g. Corbane et al. (2011). When weather conditions and daylight 
illumination allow it, optical imagery can be used for visual interpretation (Saito et  al. 
2005; Adams et al. 2005; Yamazaki et al. 2005; Ehrlich et al. 2009; Meslem et al. 2011; 
Fan et  al. 2017) or automated change detection (Gamba and Casciati 1998; Yusuf et  al. 
2001; Janalipour and Taleai 2017). However, optical techniques are limited by the require-
ment for clear weather conditions and daylight illumination (Ge et al. 2020). More recent 
studies have, therefore, exploited the all-time, all-weather potential of Synthetic Aperture 
Radar (SAR) satellites. Comparing pre- and post-event backscatter intensity and phase 
information reveals changes in building characteristics, which can then be correlated with 
earthquake-induced damage (Matsuoka et al. 2010; An et al. 2016; Cui et al. 2018; Yun 
et al. 2015; Sharma et al. 2017).

Since these approaches rely on the difference between intensity and coherence of 
pre- and post-event SAR images, they cannot be used when pre-event images are not 
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available. This challenge has led to an increased demand for techniques using only post-
event imagery, such as differences in backscattering, texture and bright areas (Dell’Acqua 
and Polli 2011; Zhao et al. 2013; Kuny et al. 2015; Wu et al. 2016; Gong et al. 2016; Bai 
et al. 2017; Ge et al. 2019). Such post-event studies are still limited (Ge et al. 2020), and 
more investigation is needed to exploit the recent launches of very high resolution (VHR) 
satellite constellations, as well as the possible complementary use of rapid field survey 
data.

In this work, we present a building damage classification approach based on texture 
analyses of post-earthquake VHR data acquired by the Capella SAR constellation over the 
urban area of Les Cayes, which was impacted by the 2021 Haiti earthquake. The proposed 
approach exploits VHR data that is made available only after a disaster, and it is integrated 
with the analysis of building survey jointly collected by StEER and GHI immediately after 
the 2021 event (Kijewski-Correa et al. 2021). The work represents a step forward in the 
combined use of new generation satellite data within the recently proposed framework of 
post-disaster hybrid reconnaissance missions (Aktas et al. 2022; Whitworth et al. 2022).

1.2 � Previous approaches to remote landslide detection

Landslides are one of the the leading cause of fatalities induced by earthquakes’ second-
ary effects (Marano et  al. 2010). Understanding and mitigating these highly destructive 
events requires accurate techniques for the detection and mapping of landslides (Reichen-
bach et al. 2018; Froude and Petley 2018; Roback et al. 2018; Williams et al. 2018). While 
field techniques have been traditionally used to build landslide inventories, the temporal 
and logistical challenges currently limit their use to conduct detailed investigations of land-
slides with critical anthropogenic implications (Jones et  al. 2020), or to validate limited 
portions of remotely developed inventories (Rabby and Li 2019), or to map regions where 
remote imagery is unavailable or of poor quality (Eeckhaut et al. 2007). As an alternative, 
extensive use has been made of remote sensing methods based on optical satellite data, 
using both manual (Harp and Jibson 1996; Massey et  al. 2020) and semi-automated or 
automated approaches (Amatya et al. 2021; Hölbling et al. 2015; Lu et al. 2019; Mondini 
et al. 2011; Stumpf and Kerle 2011).

Semi- and fully automated landslide detection involves using statistical models, algo-
rithms, or machine learning-based approaches to map landslides without the need for 
someone to individually delineate the boundaries of each separate landslide (Amatya 
et al. 2021; Hölbling et al. 2015; Lu et al. 2019; Mondini et al. 2011; Stumpf and Kerle 
2011). The resulting faster mapping is particularly useful when landslide data are required 
at speed following a disaster event (Robinson et  al. 2017). These methods also have the 
potential to be used to build up large-area multi-temporal databases that would be too 
time consuming and expensive to develop manually. A typical semi-automatic landslide 
detection and mapping scheme involves the development of index-based change maps that 
automatically highlight landslide attributes relative to the rest of the landscape. For exam-
ple, Normalised Difference Vegetation Index (NDVI) or Brightness Index (BI) percentage 
change maps can be automatically derived from a variety of multi-spectral satellite inputs 
(Scheip and Wegmann 2021) before applying simple thresholds or classification techniques 
to try and separate out specific landslide boundaries (Amatya et al. 2021; Close et al. 2021; 
Ma et al. 2016; Hölbling et al. 2015; Rau et al. 2014).

One issue that commonly affects both manual and semi- or fully-automated remote 
sensing-based landslide detection techniques is cloud cover (Lacroix et al. 2018; Robinson 
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et al. 2019), as the optical imagery used to develop indices such as NDVI and BI are unable 
to penetrate cloud. This is problematic in many landslide prone locations such as Nepal and 
Haiti, and can render such methods useless if rapid post-disaster detection is needed (e.g., 
because it is not possible to wait for cloud-free images to be available). One solution to 
this is to use methods using wavelengths that are capable of penetrating cloud cover such 
as SAR. Furthermore, the radar signal is sensitive to ground surface properties, roughness, 
and moisture content (Aimaiti et al. 2019), making it possible to observe changes on the 
ground due to landslide scars between two SAR acquisitions (Burrows et al. 2019).

In the past decades, SAR data have played an important role in landslide detection 
(Colesanti and Wasowski 2006; Hilley et al. 2004; Greif and Vlcko 2012; Bianchini et al. 
2012; Konishi and Suga 2018). However, most of the available literature focuses on the 
development of Interferometric SAR (InSAR) techniques, where ground surface deforma-
tion is estimated from the differences in phase content of the radar signal between subse-
quent acquisitions (Handwerger et al. 2019; Huang et al. 2017; Intrieri et al. 2018; Schlögel 
et al. 2015). Only a limited number of studies are currently available on the use of back-
scatter intensity variations to detect changes on the ground surface that can be correlated 
to earthquake-induced landslides (Mondini et al. 2019). Recently, new methodologies have 
been proposed using freely available data, e.g. from Sentinel-1, processed directly on free 
cloud-based online platforms such as Google Earth Engine (GEE), to incentivise a wide-
spread use of backscatter intensity data for rapid landslide detection (Handwerger et  al. 
2022). However, these approaches have so far only been used to highlight areas with high 
density of landslides, and have not been widely applied to actual landslide mapping and 
classification in an operational scenario.

In this paper, we build on these recent advances in backscatter intensity-based land-
slide detection in order to classify landslides triggered by the 2021 Haiti earthquake. Both 
unsupervised and supervised methods are applied to the intensity ratio image generated by 
using multi-temporal stacks of Sentinel-1 data extending over the earthquake date. A clas-
sification method to separate landslides from flooded areas is included, and quantitative 
comparison of the classification results are made with optical-based manual inventories.

2 � The 2021 Haiti earthquake

The Mw 7.2 Nippes earthquake occurred on 14 August 2021, at 8:29 am Eastern Day-
light Time (Haitian Local Time). Figure 1 shows the earthquake-induced surface displace-
ment maps (Whitworth et  al. 2022). The earthquake epicentre was slightly to the north 
of the mapped trace of the Enriquillo–Plaintain-Garden fault, which runs approximately 
east–west along the Tiburon peninsula in south-east Haiti (Saint Fleur et al. 2020). This 
fault has been mapped, and included in hazard maps, as vertical and left-lateral (Frankel 
et al. 2011) but the earthquake had both strike-slip and reverse components, possibly in two 
sub-events (Calais et al. 2022; Okuwaki and Fan 2022; Maurer et al. 2022). This complex 
faulting emphasises the need, first made clear in the Mw 7.0 earthquake which struck Hai-
ti’s capital, Port-au-Prince, in January 2010, for a more detailed understanding of the tec-
tonics and faulting of Hispaniola, and southern Haiti in particular. The largest aftershock of 
the 2021 earthquake was a Mw 5.7 event the day after the mainshock. In combination with 
Tropical Cyclone Grace, which skirted Haiti on 16 August 2021, these events triggered 
several thousand landslides (Martinez et al. 2021) and caused extensive flooding across the 
study area (see Sect. 5.2 on landslide detection below).
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The estimated death toll from the Nippes earthquake was 2000, with a further 15,000 
injured (UN OCHA 2021). This death toll is two orders of magnitude lower than that for 
the 2010 earthquake, despite the 2021 earthquake releasing approximately twice as much 
energy. This is largely due to the epicentre of the 2021 event being much further from the 
major population centre of Port-au-Prince and the fact that the housing stock in the affected 
regions is mostly single storey constructions (Kijewski-Correa et al. 2021). The recovery 
from the 2010 earthquake, both in terms of the enormous death toll and the associated 
economic impacts, was ongoing at the time of the 2021 earthquake. In addition, in 2016 
Hurricane Matthew caused severe damage across much of Haiti, including the depart-
ments affected by the 2021 earthquake. As a result, the recovery needs of US$ 1.98 bil-
lion estimated in the Post-Disaster Needs Assessment (PDNA) will compound an already 
strained financial situation (UNDP 2015). The coincidence of the Nippes earthquake with 
the Covid-19 pandemic and ongoing political instability in Haiti emphasised the need to 
rapidly collect perishable post-earthquake data using remote methodologies (Whitworth 
et al. 2022).

3 � Data

Following the earthquake, the StEER/GHI team deployed a hybrid response mission by 
mobilising local non-experts to record building damage (Kijewski-Correa et al. 2022) and 
coordinating with teams of experts operating remotely, e.g. the Earthquake Engineering 
Field Investigation Team (EEFIT), for the assessment of photographic materials and the 
collection and processing of remote sensing data (Whitworth et al. 2022).

3.1 � Building data

The StEER/GHI Fulcrum dataset (Kijewski-Correa et al. 2022) included the approximate 
geolocation, relevant photographs, and assigned damage level of 11,669 buildings. Among 
these, 215 records fell into the defined area of interest over Les Cayes (Fig.  2). Each 
assessed building was classified according to its structural typology. These classes were: 
Reinforced Concrete with infill masonry shear walls (RC), Confined Masonry (CM), Unre-
inforced Masonry bearing walls (URM), Reinforced Masonry bearing walls (RM), Wood 

(a) Sentinel-1 ascending, images acquired on 5
August and 17 August 2021

(b) Sentinel-1 descending, images acquired on
3 August and 15 August 2021

Fig. 1   Surface displacement maps obtained by processing a pair of SAR Sentinel-1 images acquired before 
and after the earthquake (Whitworth et al. 2022). The yellow star indicates the earthquake epicentre. Black 
lines are onshore active faults from Saint Fleur et al. (2020). LOS indicates the satellite Line Of Sight
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Light frames (WL), Wood with Stone infills (WS), and Unknown (UN). The damage level 
was rated as No Visible Damage, Minor, Moderate, Severe and Partial or Total Collapse 
(Miranda 2021).

For the SAR-based damage assessment we used a single Capella-5 (Stringham et  al. 
2019) Very High Resolution (VHR) X-band SAR image that was acquired over Les Cayes, 
Haiti, on 16 August 2021, 2 days after the mainshock. The Capella post-event SAR image 
was acquired in Spotlight mode from a descending pass with a look angle of 48.8◦ and HH 
polarization. The image has range and azimuth resolutions of 0.59 m and 0.63 m respec-
tively, and covers an area of 5 × 5  km2. Range-compression, detection, focusing, multi-
looking, and terrain-height correction were already performed by the provider. Specifi-
cally, a multi-looking factor of 1 × 9 (range × azimuth) was used to enhance radiometric 
resolution.

3.2 � Landslide data

To allow for a comparison between the SAR data with optical-based manual inventories, 
Sentinel-2 optical data were obtained from the USGS Earth Explorer (USGS 2022) for the 
landslide region of interest for a pre- and post- event time slice with as little cloud as pos-
sible. The pre-event imagery was taken on 4 August 2021, whilst the post-event imagery 
was taken on 14 August 2021, the day of the earthquake. Sentinel-2 sensors comprise 13 
spectral bands with spatial resolutions of 10–60 m and re-visit times (temporal resolution) 
of 2–5 days depending on latitude. This makes Sentinel-2 data ideal for landslide mapping, 

Fig. 2   StEER/GHI Fulcrum dataset over the area of interest in Les Cayes
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as the short temporal resolution and high spatial resolution allow for the identification of 
medium to large ( > 100 m2 ) landslides at short timescales following a triggering event.

Sentinel-1 C-band SAR data in high resolution Ground Range Detected (GRD) format 
were obtained from GEE as backscatter intensity coefficient images in 10 m pixel spacing 
resolution. We also used Sentinel-1 data in Interferometric Wide Swath (IW) mode. The 
backscatter intensity coefficient is defined as the target backscattering area (radar cross-
section) per unit ground area. GRD products consist of intensity data only and provide 
information on the changes in the ground surface. They are multi-looked, radiometrically 
calibrated, and terrain-corrected using an Earth ellipsoid model (GEE 2022). In this study, 
two stacks of 1169 ascending (i.e., 1117 pre-event and 49 post-event) and 618 descending 
(i.e., 579 pre-event and 31 post-event) GRD VH polarization products, acquired before and 
after a 7-day window which included the earthquake date, were obtained from GEE.

4 � Methodology

4.1 � Building damage assessment

For this work we processed the post-event Capella SAR image through the SNAP Senti-
nel-1 toolbox (SNAP 2022) to extract Grey Level Co-occurrence Matrix (GLCM) texture 
features (Haralick et al. 1973). To estimate the GLCM texture features we used a window 
size of 15 × 15 m2 . Given the high resolution of the data (about 50x50 cm in range and 
azimuth), this value was comparable with the average size of buildings in the study area, 
which is about 100 m2 on average. The selected window size is also in line with previous 
studies (Kuny et al. 2015; Zhao et al. 2013). Since we were not interested in the direction-
ality of the textures, the GLCM features were computed along several directions, i.e., 0 ◦ , 
45◦ , 90◦ and 135◦ , and results from different directions were averaged. We estimated a 
total of ten texture features: contrast, dissimilarity, homogeneity, Angular Second Moment 
(ASM), energy, maximum probability (MAX), entropy, mean, variance, and correlation.

To identify the texture features that are better correlated with damage, we analysed each 
feature in relation to ground truth data, i.e., the StEER/GHI Fulcrum dataset. First, we 
assigned each Fulcrum damage record to the corresponding building footprint. Depending 
on data availability in the analysed area, the proposed approach can be used with differ-
ent building footprint maps, such as OpenStreetMap (OSM 2021) and Microsoft Build-
ing Footprints (Microsoft 2023), or more detailed datasets provided by local authorities. 
Since a cadastral dataset was not available for our study area and the OpenStreetMap build-
ing dataset for Les Cayes is not sufficiently accurate, building footprints were digitised 
manually in a Geographical Information System (GIS) environment for a region in central 
Les Cayes (Fig. 2). We used a 2-cm-resolution, post-event orthophoto that was acquired 
by aerial drone on 18 August 2021 and released by HaitiData (HaitiData 2021), a web-
based platform developed after the 2010 Haiti earthquake to disseminate GIS and other 
cartographic data in support of disaster management. To deal with the shape of totally or 
partially collapsed buildings, an 8-cm-resolution drone orthophoto dated back to October 
2016 was also used. This resulted in the mapping of a total of 4116 building footprints. For 
each texture, pixels belonging to the buildings assigned to the StEER/GHI Fulcrum dataset 
were classified according to the corresponding damage level. This was useful for identify-
ing the most representative texture features to be used for the final damage classification.
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To highlight areas with different concentrations of heavily damaged structures, we 
divided our area of interest into 75 city blocks, with an average of 48 buildings per block. 
We considered a city block as the smallest group of buildings that is surrounded by streets, 
and therefore derived the city blocks from the OpenStreetMap road network (OSM 2021). 
Notably, the reflections associated with open spaces, e.g., car park, bare ground, and veg-
etation present within a specific block, can have a large impact on the average texture 
(Dell’Acqua and Polli 2011). For example, the textural signature of heaps of debris and 
high vegetation can be very similar (Kuny et al. 2015). To mitigate the impact of vegeta-
tion and open spaces on the final damage classification, only the pixels within building 
footprints were used to estimate the average texture within the corresponding block. This 
approach also mitigates the possible influence of city block size on the final results, as long 
as there are no city block including only a few buildings. City blocks were then classified 
into five damage classes, based on the averaged value of the relevant texture feature com-
puted within the block. The five damage levels, from 1 to 5, were labelled as “very low”, 
“low”, “intermediate”, “high” and “very high”.

4.2 � Landslide detection

For the first stage of the optical-based landslide detection methodology, we developed a 
fully manual inventory of earthquake-induced landslides from the Sentinel-2 imagery. This 
was done by processing the imagery to false colour RGB images with the red band set to 
the near-infrared multispectral band and the green and blue bands kept to the green and 
blue multispectral bands. The pre- and post-event imagery was then inspected to locate 
bare-earth features that appeared between the timeslices. Landslides bare earth attributes 
were distinguished from characteristics related to other processes, such as anthropogenic 
land-use change relating to road cuts, deforestation or land clearing, or fluvial processes 
such as channel bank erosion. Each feature identified as a landslide was delineated within 
a GIS environment as a polygon that included the source, runout, and deposition zone of 
each landslide. Care was taken to avoid landslide amalgamation, where multiple intersect-
ing landslides can be erroneously mapped as one single polygon (Marc and Hovius 2015). 
Finally, we exported all identified landslides into a single shapefile, which constitutes the 
final landslide inventory.

In the second stage of the optical-based landslide detection methodology, we imple-
mented a semi-automatic mapping process. We used a GIS raster composite band func-
tion to create rasters that included only the multispectral bands required for (a) Normalised 
Difference Vegetation Index, NDVI (visible and near-infrared, B8, and red, B4), and (b) 
Brightness Index, BI (red, B4, and green, B3) calculations, for both the pre-event and post-
event imagery. These bands were then combined using the following equations to obtain 
pre- and post- event rasters of NDVI and BI (SNAP 2022):

We then subtracted the pre-event from the post-event imagery for both the NDVI and BI 
outputs to obtain NDVI and BI change maps, before running an unsupervised classifica-
tion on both change maps. The unsupervised method allows the classification model to 
automatically determine how many classes to classify the change map inputs into. For the 
NDVI change map, the unsupervised classifier defined four classes, whilst it defined eight 
classes for the BI change map. In both cases we then manually defined a landslide class 

(1)NDVI =
(B8 − B4)

(B8 + B4)
; BI =

(B4 × B4) + (B3 × B3)

2
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from the pre-defined classes (i.e., the class that most closely matched the known landslide 
locations), plus various other landscape or cloud related classes.

Finally, to overcome the cloud coverage limitations of optical data, we implemented 
a landslide classification based on a SAR intensity ratio image. For the SAR backscatter 
intensity-based analysis we combined a stack of pre-event backscatter intensity images 
from 2015 to the event date (14 August 2021) and a stack of 2-month post-event backscat-
ter intensity data from 7 days after the event (21 August–13 October 2021). For each stack 
we first calculated the median of the pre- and post-event SAR backscatter intensity VH 
data, for both the ascending and descending geometries. Then, the average of both geom-
etries’ backscatter intensity coefficient I was calculated for both the pre- and post-event 
stack ( Ipre and Ipost ). Finally, the intensity ratio describing the change in backscatter inten-
sity coefficient was calculated (Handwerger 2022a; Handwerger et al. 2022):

On the resulting intensity ratio image, we initially applied unsupervised classification, with 
the aim of performing a rapid separation of landslides from the surrounding areas. For 
the unsupervised classification we used the Expectation Maximization (EM) Cluster algo-
rithm embedded in the SNAP Sentinel-1 toolbox (SNAP 2022). EM is a generalisation 
of the k-means algorithm where each cluster is defined by an ellipsoid with a centre and 
covariance matrix. The algorithm minimises the intra-cluster variances iteratively, and is 
independent of different scales of data dimensions and their correlations (Dempster et al. 
1977). Random seed points are used to initialise the pseudo-random number generator of 
the initial cluster.

To classify the landslides more accurately and separate landslides from water areas, we 
later applied supervised Random Forest (RF) classification (Breiman 2001). The RF clas-
sifier was applied to fourteen different features. Twelve of these features were derived from 
SAR data, and include: intensity ratio image, ten GLCM textural features from intensity 
ratio image, and a combination of SAR VV and VH backscatter data from ascending and 
descending acquisition geometries. Two features, slope and aspect, were derived from a 
30-m-resolution Shuttle Radar Topography Mission (SRTM). The GLCM features were 
obtained by using a relatively small window size of 5 pixels, to increase the possibility of 
detecting small landslides. For the combination of SAR VV and VH backscatter data from 
different acquisition geometries, first we calculated the temporal median images of both 
ascending (17 August 2022 and 23 August 2022) and descending data (15 August 2022 
and 21 August 2022), and then we averaged the median images.

To account for the flood event that occurred 2 days after the earthquake (see Sect. 2), in 
the supervised classification we explicitly included the flood water as an additional class, 
leading to the classification of three classes: landslides, flood water and others. To train 
the model and then evaluate the classification, samples were collected using the manually 
derived polygons from the optical imagery mapping (Sentinel-2 data acquired on 4 August 
2021 and 14 August 2021) and Sentinel-2 data acquired on 19 August 2021. The latter 
date was selected for its limited cloud coverage, in order to complement the optical-based 
manual inventory. Additionally, and specifically for a more accurate collection of water 
samples, the Normalized Difference Water Index (NDWI) (McFeeters 1996) obtained from 
Sentinel-2 data was used as an indicator of changes in water content. The Sentinel-2 data 
were acquired on 19 August 2021, i.e. 3 days after cyclone Grace skirted Haiti.

Finally, to reduce the noise due to misclassification effects, we applied a Sieve filter 
implemented in the Geospatial Data Abstraction Library (GDAL/OGR contributors 2020) 

(2)Iratio = 10 × log10(Ipre∕Ipost )
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to the results of both the unsupervised and supervised classifications. This filter removes 
raster polygons smaller than a predefined threshold size (in pixels) and replaces them with 
the pixel value of the largest neighbour polygon.

5 � Results

5.1 � Building damage assessment

The relationship between the ten texture features derived from the post-event Capella SAR 
image and the five damage levels used to rate the StEER/GHI Fulcrum records were ana-
lysed with box plots, as shown in Fig. 3. A boxplot is a method used in descriptive statis-
tic to show the distribution of data groups by dividing the number of data points within 
each group into four parts of equal size, or quartiles. In each boxplot, the box identifies 
the range where 50% of data values lay, and ranges between the 25th percentile of data, or 
lower quartile, and the 75th percentiles of data, or upper quartile. The lines extending from 
the box, called whiskers, show the distribution of data values outside the upper and lower 

Fig. 3   Box plot relationships between Capella-based texture features and StEER/GHI Fulcrum damage lev-
els. In each box, the round and the flat central markers indicate the mean and the median values, respec-
tively. Diamond markers indicate outliers. The box edges correspond to the 25th and 75th percentiles
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quartiles. Each whisker identifies a range where about 25% of data values lay. All values 
that differ significantly from most of the data, i.e., outliers, are plotted as individual points 
beyond the whiskers. The minimum and maximum correspond to the lowest value (exclud-
ing the outliers) at the end of the left whisker, and the highest value (excluding the outliers) 
at the end of the right whisker, respectively. The vertical line that divides the box in two 
parts is the median or middle value in the data, while the circle inside the box corresponds 
to the mean or average value.

For each texture feature, texture pixel values associated with buildings surveyed in cen-
tral Les Cayes were classified according to the corresponding Fulcrum damage level. Fig-
ure 3 shows that an increase in average entropy (Fig. 3a) and a decrease in average homo-
geneity (Fig.  3b) values can be connected with ‘Partial or Totally Collapsed’ buildings. 
This is because, for collapsed structures, a reduced regularity that causes an increase in 
disorder, i.e. entropy, and conversely a decrease in homogeneity, is expected in the SAR 
backscatter intensity image. These observations are also in line with previous studies 
(Dell’Acqua and Polli 2011; Zhao et al. 2013) and can be explained by the large texture 
variation exhibited by the collapsed portion of the structure. Additionally, the vertical or 
semi-vertical perspective of the satellites can limit their capability to identify minor dam-
age, damage within structures, and cracks on the walls. While the specific range of values 
in Fig. 3 are data-dependent, as the GLCM textures describe the frequency in the spatial 
relationships between pixels in a neighbourhood, similar trends can be expected in different 
events (Hall-Beyer 2017).

Figure  4 shows the classification results at the city block level based on the entropy 
texture derived from the post-event Capella SAR image. The map represents the distribu-
tion of average entropy values within each block. City blocks associated with low entropy 
values are likely characterised by a low density of damaged buildings, while high entropy 
values likely indicate a high concentration of damaged structures. We found that for 11% of 
city blocks the average entropy level is very low, for 20% of city blocks the average entropy 
is low, 39% of city blocks show an intermediate level of average entropy, for 21% of blocks 
the average entropy is high, and for 9% of them the average entropy texture is very high.

The results of the entropy-based damage classification were analysed in combination 
with the StEER/GHI Fulcrum records and a 2-cm-resolution drone-based orthophoto 
acquired on 18 August 2021. For example, Fig. 5 shows a close-up of a city block charac-
terised by a very low level of average entropy texture. A comparison with the StEER/GHI 
Fulcrum records available for some of the buildings within the same block shows that the 
surveyed structures are characterised by ‘Minor’ or ‘Moderate’ damage level, showing a 
good correlation with the corresponding entropy class. Figure 6 shows an example of city 
block characterised by very high average entropy, likely indicating that the block was heav-
ily damaged during the earthquake. A visual comparison with an aerial orthophoto shows 
that several large buildings within the block were partially or totally collapsed, correlating 
well with the very high entropy class.

5.2 � Landslide detection

Figure 7 shows the final landslide inventory derived from the manual mapping using opti-
cal satellite imagery. In total 477 landslides were delineated with a total area of 15.9 km2. 
As is clear from Fig. 7, there is a large area where mapping was not possible due to the 
cloud cover.
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Figures 8 and 9 show the final NDVI and BI change maps, whilst Figs. 10 and 11 
show the results of the unsupervised classifications. It is evident that whilst the NDVI 
change map (Fig.  8) does allow visual detection of landslides, the unsupervised clas-
sification applied to this map (Fig.  10) was unable to sufficiently delineate landslides 
relative to other image features such as clouds. Conversely, whilst it is slightly harder 
to visually identify landslides in the BI change map (Fig. 9), the unsupervised classi-
fication applied to this map (Fig. 11) is more accurate at delineating landslide bounda-
ries relative to other features. However, the BI classification still cannot fully distin-
guish landslides from clouds. Furthermore, in both cases, in common with the manual 
approach, the presence of clouds makes mapping using this method impossible for much 
of the study region.

To mitigate the issue of cloud coverage in optical data, we also implemented clas-
sification approaches based on SAR intensity ratio image. Figure  12 shows the 7-day 
intensity ratio image of the landslide area of interest.

First, we applied the EM unsupervised classification to the SAR intensity ratio image, 
in order to distinguish landslides from non-landslide areas. A different number of seed 
and iteration parameters were tested, leading to the final selection of 100 seeds and 30 
iterations. Figure  13 shows that the EM Cluster algorithm appeared to isolate pixels 
associated with landslides reasonably well. However, flood water areas were wrongly 
classified as landslides, as similar SAR reflections were observed in the intensity ratio 
image. Table 1 shows the confusion matrix of the unsupervised classification results.

Fig. 4   Entropy-based damage classification at the city block level in central Les Cayes, Haiti. Increasing 
entropy is likely correlated with increasing damage. The entropy texture was derived from a Capella SAR 
image acquired on 16 August 2021. The areas highlighted by the rectangles 1 and 2 indicate two regions for 
which a closeup is given in Figs. 5 and 6, respectively
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For this reason, we also performed a Random Forest (RF) supervised classification. 
The textural and SRTM-derived features were included in the classification procedure 
to increase the possibility of separating landslides from flood water areas. A RF classi-
fier with 150 trees was applied to the SAR and SRTM-derived features (see Sect. 4). We 
used a total of 41,553 samples: 70% (29,069) and 30% (12,484) of the samples (Fig. 14) 
were used for training the classifier and evaluating the classification results, respec-
tively. We used 10,556 training samples for the landslide class, 15,554 for the non-land-
slide class and 2,959 training samples for the water class. The training model has an 
accuracy of 0.97 for landslides, 0.95 for non-landslides and 0.98 for water. Figure 15 
shows the classified map obtained from the RF classification. It is clear that the super-
vised classification approach helped to discriminate flood water areas from landslides. 
Additionally, if compared with the unsupervised result, the landslide extents appear to 
be more accurately delineated.

Table 2 shows the confusion matrix of the RF classification result.
The overall accuracy of approximately 83% was obtained, indicating good performance 

of the RF classifier in landslide mapping for this case study. Generally, the water and non-
landslide areas were reasonably well classified; however, some misclassifications of land-
slides and non-landslide areas with water were observed in the results. The misclassifica-
tion of non-landslide and water areas can be related to the saturation of agricultural fields 
within the area of interest, which is likely a consequence of the flood event.

Fig. 5   Close up to a city block showing a very low level of average entropy texture in overlap with StEER/
GHI Fulcrum records. The close up corresponds to the area 1 highlighted in Fig. 4. Photographs A, B, C, 
and D correspond to buildings surveyed as part of the StEER/GHI hybrid response. Building footprints 
within each block are outlined in grey
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The same testing samples were also used to evaluate the results obtained from the 
unsupervised classification. The overall accuracy was approximately 75%, with only 
53% correct landslide pixels. The comparison, detailed in Table 3, indicates a lower per-
formance of the unsupervised classification. As such, following a combined earthquake 
and flood scenario, unsupervised classifications such as this should be used only for 

Fig. 6   Close up to a city block showing a very high level of average entropy texture. The close up cor-
responds to the area 2 highlighted in Fig. 4. Imagery data A, B, C, and D correspond to buildings visually 
inspected in a 2-cm-resolution drone orthophoto acquired on 18 August 2021. Building footprints within 
each block are outlined in grey

Fig. 7   Optical manual landslide inventory map
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rapid overview assessments. Whenever testing and training data is available, supervised 
classification of intensity ratio images rapidly obtained from free online cloud-based 
platforms can guarantee a better level of accuracy. This approach also shows promise for 
developing multi-temporal landslide inventories over large areas, which are becoming 

Fig. 8   NDVI change map generated from difference in NDVI between pre- and post-event Sentinel-2 
imagery

Fig. 9   BI change map generated from difference in NDVI between pre- and post-event Sentinel-2 imagery
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increasingly important given recent findings pertaining to landslide time-dependency 
(Marc et al. 2015; Parker et al. 2015; Jones et al. 2021a, b; Roberts et al. 2021; Samia 
et al. 2017).

Fig. 10   Unsupervised classification of NDVI change map. Note that it cannot distinguish cloud and land-
slides

Fig. 11   Unsupervised classification of BI change map. Note that it has better capabilities to distinguish 
cloud and landslides, but cannot fully delineate them, with cloud fringes still showing as landslides
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Fig. 12   Intensity ratio image over the landslide area of interest

Fig. 13   EM unsupervised classification map
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Table 1   Unsupervised 
classification confusion matrix

Predicted classes

Landslide Non-landslide Total

Actual classes
Landslide 1968 1752 3720
Non-landslide 663 6465 7128
Total 2631 8217 10,848

Fig. 14   Distribution map of training and testing samples collected for the RF supervised classification. 
Each point indicates the centroid of the polygon containing the pixels used as samples

Table 2   Random forest 
confusion matrix

Predicted classes

Landslide Non-landslide Water Total

Actual classes
Landslide 2547 919 250 3716
Non-landslide 221 6226 681 7128
Water 3 50 1587 1640
Total 2771 7195 2518 12,484
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6 � Conclusion

In this paper we presented a new approach for the assessment of building damage and 
the classification of triggered landslides shortly after a combined seismic and flooding 
event.

The proposed building damage assessment is based on a texture analysis of VHR SAR 
data in integration with rapid building surveys. From the application of this approach to the 

Table 3   Accuracy evaluation of testing samples for unsupervised and supervised classification

The producer accuracy indicates the number of correctly classified samples divided by the total number 
of samples for a given class, while the user accuracy indicates the number of correctly classified samples 
divided by the total number of samples

Unsupervised Supervised

User’s Accuracy ( %) Producer’s Accuracy 
( %)

User’s Accuracy ( %) Producer’s 
Accuracy ( %)

Landslide 74.80 52.90 91.91 68.54
Non-landslide 78.67 90.69 86.53 87.34
Water 63.02 96.76

Overall acc. 74.94 % Overall acc. 82.98 %
Kappa coeff. K = 0.458 Kappa coeff. K = 0.706

Fig. 15   RF supervised classification map
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urban area of Les Cayes, which was impacted by the 2021 Haiti earthquake, we concluded 
that:

•	 Entropy and homogeneity texture features show a good correlation with observed dam-
age;

•	 A city block-level classification based on entropy can provide a rapid overview of the 
extension of damage in different urban areas, as confirmed by visual comparison with 
the StEER/GHI Fulcrum records and drone-based ortophotos;

•	 The city block-level classification is a convenient approach for regions where no accu-
rate building footprint maps are available, providing that the effect of vegetation is 
removed from the analysis.

The proposed landslide classification is based on backscatter intensity SAR data in com-
bination with optical-based landslide inventories, and includes separation between land-
slide and flooded areas. Results of the application to landslides which were triggered by the 
2021 Haiti Earthquake and Tropical Cyclone Grace showed that:

•	 While limited by the cloud coverage, results of optical-based landslide inventories 
are useful to validate the proposed automated classification based on amplitude-ratio 
image;

•	 Unsupervised classification of intensity ratio images can provide a rapid identification 
of landslide boundaries in all weather conditions, although they are not always able to 
distinguish between landslides and non-landslide areas with water;

•	 Supervised classification of intensity ratio images provides a better accuracy in distin-
guishing between landslides and flooded areas, and is therefore recommended in case 
of concurrent earthquake and flooding hazards.

Through the integration between advanced remote sensing methods and field data, the pro-
posed approach contributes to the advance of hybrid post-disaster missions for the assess-
ment of earthquake-induced damage and cascading geological hazards.
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