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T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC)

interactions play a vital role in initiating immune responses against pathogens,

and the specificity of TCRpMHC interactions is crucial for developing optimized

therapeutic strategies. The advent of high-throughput immunological and

structural evaluation of TCR and pMHC has provided an abundance of data for

computational approaches that aim to predict favorable TCR-pMHC interactions.

Currentmodels are constructed using information on protein sequence, structures,

or a combination of both, and utilize a variety of statistical learning-based

approaches for identifying the rules governing specificity. This review examines

the current theoretical, computational, and deep learning approaches for

identifying TCR-pMHC recognition pairs, placing emphasis on each method’s

mathematical approach, predictive performance, and limitations.

KEYWORDS

TCR, pMHC, binding prediction, protein-protein interaction, machine learning,
deep learning
1 Introduction

The adaptive immune system has the remarkable responsibility of recognizing and

eliminating foreign threats, which requires discriminating self from non-self-signatures. T

lymphocytes, or T cells, are the cellular mediators of adaptive immunity and accomplish this

feat by using their heterodimeric T cell receptors (TCRs). TCRs recognize short peptides

bound to and presented by class I and II major histocompatibility complex (MHC) molecules

on the cell surface (pMHC). TCR diversity is generated by genetic rearrangement through a V

(D)J recombination process (1) capable of generating a staggering diversity of TCRs

(estimates range from ∼ 1020 to ∼ 1061 possible receptors) (2). It is this total diversity

together with the relative sparsity of realized samples that complicates the development of

inferential modeling procedures capable of predicting TCR-pMHC specificity when test

systems differ moderately from training samples (3, 4). Solving this problem would have

numerous immunological implications that range from identifying improved antigen

vaccines to facilitating optimal selection of adoptive T cell therapy for cancer patients (5, 6).

T cell responses occur when their TCRs bind pMHC with an interaction that ‘appears’ to

the T cell as ‘non-self’. In order to avoid detection of abundant self-signatures, T cell
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precursors (thymocytes) undergo central tolerance to a set of self-

signatures via a process called thymic negative selection (7), wherein

each thymocyte is exposed to a diverse set of self-antigens, and TCR

recognition of any of these self-antigents results in deletion. In

addition to central tolerance, a variety of peripheral tolerance

mechanisms exist to prevent self-recognition, including T cell

anergy, suppression by regulatory T cells (Tregs), and tolerance

induction through peripheral antigen exposure (7, 8). Collectively,

these mechanisms ensure that mature T cells are selectively

responsive to non-self antigens while maintaining a state of

immunological self-tolerance.

Owing to the sheer complexity of the adaptive immune response, a

number of theoretical and computational models have been explored

focusing on various aspects of the problem. These efforts have benefited

from the availability of advanced structural characterization

techniques, such as X-ray crystallography (9), NMR spectroscopy

(10), and cryoelectron microscopy (11), for validation. Moreover,

recent advances in high-throughput approaches (12, 13) have

significantly increased the available data on which inferential

learning-based models can be constructed. Consequently, a number

of computational models have been developed to address the need for

reliable TCR specificity prediction between a collection of known TCR

sequences and putative antigen targets.

In this review, we outline the recent theoretical and computational

approaches to TCR-pMHC specificity prediction, emphasizing their

strengths and limitations, and offer perspective on the future direction
Frontiers in Immunology 02
of this exciting modeling effort. In our description of the informatics-

based strategies for TCR-pMHC prediction, we discuss current

methodology and challenges in four main areas: modeling of TCR-

pMHC complex interactions based on (1) sequence-based approaches

(Figure 1A) (2) structure-based approaches (Figure 1B), (3) deep

learning approaches, and (4) hybrid approaches (Figure 1C).

As we delve deeper into the complex matrix of TCR-pMHC

interactions, it becomes essential to illuminate the interplay

between specificity and cross-reactivity, two critical factors that

significantly shape the predictive modeling landscape. Recognizing

the delicate balance between these parameters not only enriches our

understanding of various modeling strategies but also refines our

approach to interpreting the multi-faceted nature of TCR-pMHC

interactions. Cross-reactivity, a fundamental characteristic of TCRs,

is an essential consideration in predicting TCR-pMHC interactions.

This attribute of TCRs enables them to interact with a myriad of

peptide antigens, providing our immune system with its remarkable

breadth of response. However, this same characteristic poses a

significant challenge in understanding T cell-based therapeutics

and similarly in TCR-pMHC specificity prediction. Single TCRs are

intrinsically capable of binding to multiple peptide antigens at once,

complicating predictions of specificity and off-target effects (14, 15).

Traditional prediction methods, which mostly rely on peptide

sequence similarities and biochemical similarity, often fail to

capture cross-reactivity’s complex nuances. As such, more

comprehensive approaches have emerged. For instance, tools like
B

C

A

FIGURE 1

Modeling approach to TCR-pMHC prediction based on input data. (A) Models trained purely on TCR and peptide sequence input data feature
multiple sequence alignment (MSA) on input data matrices to identify patterns, followed by identification of potential interaction pairs using various
algorithms techniques. (B) Models trained on input structural data models commonly aim to identify the TCR-pMHC binding interface, along with
associated information on binding affinity. Predictions are often made by determining similarity in secondary structure in the interfacial region of the
binding interface, from which physical parameters like binding affinity and kinetic data (KD, Koff) can be estimated. (C) A third ‘hybrid’ category of
inferential model synergistically combines sequence and structural data in the training step.
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CrossDome (16) aim to predict potential off-target toxicities by

leveraging multiomics data from healthy tissues, structural

information on TCR-pMHC interactions, and amino acid (AA)

biochemical properties. This integrative methodology aids in

generating statistically supported predictions that assist in risk

assessments and enhance prediction specificity.
2 Random energy models of TCR-
pMHC interactions

An early quantitative understanding of TCR-pMHC specificity

began with the development of random energy models that aimed

to explain known properties of the interaction, including TCR

specificity versus degeneracy and the potential for self/non-self

discrimination. We present here an overview of affinity-driven

models, which characterize TCR-pMHC interactions by their free

energy of binding. Additional models have considered the effects of

kinetic features of the TCR-pMHC interaction (17–19), including

on- and off-rates (20), TCR-pMHC binding lifetime (21), and the

role of catch vs. slip bonds in TCR activation (22). Both binding

affinity and kinetics are likely important for determining the overall

outcome of a TCR-pMHC interaction (23–25). Significantly, these

approaches can effectively explain the kinetic proofreading aspect of

absolute ligand discrimination in a manner that is robust to antigen

concentration (24, 26). However, due to the abundance of data on

TCR-pMHC binding affinity (via estimated kD values), we focus our

discussion here on affinity-based models.

Early approaches modeled affinity-driven TCR-pMHC

interactions using paired strings (27, 28), as detailed in a study by

Perelson (29), and review various computational models for receptor

representation and properties (30). In these models, interacting TCRs

and peptides are represented by AA strings of length N. It is assumed

that the total TCR-pMHC binding energy can be represented by the

sum of individual pairs of interacting AAs:

E(t, q) =o
N

i=1
J(ti, qi) : (1)

In this case, E(t,q) is the free energy of interaction between

receptor t and antigen q. J(ti,qi) is the interaction energy between the

ith AAs on the hypervariable (CDR3) region of the TCR (ti) and the

peptide (qi), respectively, and N is the length of the variable regions

of the TCR. Using this framework, researchers formulated digit

string representations capable of explaining the large degree of

alloreactivity observed in post-thymic selection T cell repertoires

(31). The initial string model (27) used the set of bounded integers

to represent the ‘complementarity’ between AA pairs, ti,qi ∈ {1,2,…,

K}, with J(ti,qi) = |ti − qi|, and has been applied to successfully model

thymic selection and predict empirically observed T cell

alloreactivity rates (27, 28, 32).

Chakraborty and colleagues extended this modeling framework

(33) by substituting abstract digit string with experimentally observed

AA interactions. This was achieved by replacing J(ti,qi) with a pairwise

AA potential - chosen to be theMiyazawa–Jernigan energymatrix (34).

This modeling framework demonstrated that thymic negative selection
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favors TCR AAs with moderate interaction strengths to avoid T cell

deletion due to high energy interactions with a small set of thymic self-

peptide (33, 35). When applied to understand the selective pressures

imposed on TCR recognition in the setting of HIV, this framework

showed how the peptide binding characteristics of a particular HLA

allele restriction resulted in enhanced recognition of viral epitopes (36).

Subsequent modeling efforts have investigated how thymic

selection impacts the recognition of tumor-associated antigens

using the above framework applied to diagonalized TCR-pMHC

interactions (4). Here, the diagonalized interaction assumption

simplifies the TCR-pMHC binding interface into a set of one-to-

one contacts between the AA residues of the peptide and binding

pockets of the TCR. This framework demonstrated that post-

selection TCRs may capably recognize single AA differences in

point-mutated self-peptides at nearly the same rate as unrelated

foreign antigens. This work was then extended to describe the

effects of non-diagonal interactions (37), which allow for multiple

pairwise TCR-peptide AA contacts. These intricate contacts,

identified from the proximity of TCR-peptide AAs in known

crystal structures, represented by a TCR-peptide contact map.

From this, subtle variations in TCR-peptide binding recognition

profiles manifest in variable weights of interaction assigned to each

of the peptide AA positions. An extension to (33) considered non-

uniformity of these weights (37). The contact map W = (Wij)

contains weights Wij for interactions between t and q in a given

structure, and an associated AA interaction coefficient,

E(t, q) =o
i,j
WijJ(ti, qj) (2)

Using this framework, non-uniformities in contact maps, which are

highly variable for given MHC allele variants, can result in high-

contacting peptide AA positions. At these positions, single-amino acid

changes in wild-type peptides, such as cancer neoantigens or single

nucleotide polymorphism peptide variants, result in an enhanced

difference in the binding interaction that may ultimately enhance or

break immunogenicity. Intriguingly, these statistical models predict a

high likelihood of point-mutated self-peptide recognition, which

suggests that thymic selection is more akin to a T cell memorization

task directed at a list of important self-antigens to avoid rather than an

intricately curated list of self-peptides whose tolerance confers wider

immune protection. In order to improve forecasting capabilities and

reduce the experimental efforts required to search for meaningful TCR-

pMHC pairs, advanced machine learning algorithms have been

incorporated into biophysical and probabilistic models to create data-

driven and trainable predictive models. Figure 2 provides a non-

exhaustive summary of recent open-source computational methods.
3 TCR-pMHC specificity
prediction methods

The TCR-pMHC specificity prediction methods leverage

advanced computational techniques to predict the highly specific

interactions between TCRs and pMHC that are crucial to the

initiation and effectiveness of adaptive immune responses. The
frontiersin.org
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methods discussed in this review can be classified into sequence-

based, structure-based, and hybrid models. Each category uses

different strategies to evaluate TCR-pMHC specificity, with

sequence-based models relying on sequence similarities, structure-

based models using three-dimensional structural information, and

hybrid models combining these strategies. Various models have

been developed to accomplish this, and their performance was

assessed based on model generalization and robustness. However,

the study found that these models struggle with generalization to

peptides not seen in the training data and that their performance

fluctuates depending on data size and balance, indicating that

predicting TCR-pMHC binding specificity remains a significant

challenge. Thus, additional high-quality data and innovative

algorithmic approaches are necessary for further advancements.
3.1 Sequence-based approaches

Arguably the greatest challenge in predicting TCR specificity

arises from the diversity of possible TCR and peptide combinations

relative to those that can be studied or even realized in a single

individual (38, 39). To experimentally identify relevant TCR-pMHC

pairs, pMHC tetramers are often used to experimentally identify

TCRs that interact with sufficient binding affinity. The affinity-based

screening of TCRs can be done in a high-throughput manner (40). In

addition to theoretical modeling, inferential statistical learning

provides a complementary approach for studying this problem by

imputing known (non-) examples of favored TCR-peptide

interactions interactions. These computational models (Figure 1A)

can be distinguished based on whether or not previously identified

TCR-pMHC interactions are used in training, which are given by

supervised and unsupervised learning approaches, respectively.

3.1.1 Supervised learning
Sequence-based prediction models refer to machine learning

algorithms designed to learn a predictive function that identifies
Frontiers in Immunology 04
informative features and from them accurately predicts the cognate

epitope of an input T cell receptor (TCR) with unknown specificity.

Features are learned based on a set of known examples and non-

examples of TCR-peptide pairs provided in a training dataset.

Capietto et al. (41) demonstrated that peptide mutation positions

matter in neoantigen prediction pipelines, and the use of this feature

led to improved neoantigen ranking. Other studies found that

immunogenic peptides have more hydrophobic AAs at TCR

interaction sites and that AAs molecular weight, size, and charge

are useful for TCR-pMHC complexes (42–44).Numerous

computational tools now exist that use known TCR and peptide

sequences to predict TCR-epitope interactions by binary

classification, including such as NetTCR (45), TCRex (46), TCRGP

(47), and ATM-TCR (48). Furthermore, there has been a progression

towards developing TCR-epitope binding prediction models that are

not limited to specific peptides, such as SwarmTCR (49), ERGO (50),

pMTnet (51), ImRex (52), TITAN (53), and TCRconv (54) which

instead utilize known binding TCRs to train the models. While these

models work well with peptides having an abundance of known TCR

interactions, they often struggle in predicting behavior for peptides

having few known interactions or those not included in the training

data, attributed to the large diversity of the interaction space. Many

approaches consider TCRs and peptides as linear sequences of AAs,

while others include a description of their three-dimensional

orientations during the TCR-pMHC interaction.

Each of the above cases utilizes different machine learning

procedures to achieve a variety of descriptions of TCR-pMHC

specificity. NetTCR implements convolutional neural networks

(CNN) (55, 56) in conjunction with multiple dense layers (Section

4) to learn the interactions between TCRs and epitopes associated with

the most common human MHC allele variant, HLA-A*02:01. This

method faces limitations due to the vastness of the TCR-pMHC space

and insufficient experimental training data, which challenge current

computational algorithms. ImRex, and TITAN are state-of-the-art

TCR-epitope binding prediction models utilizing CNNs. ImRex,

inspired by image processing CNNs, transforms CDR3 and epitope
FIGURE 2

List of commonly used inference-based models of TCR-pMHC specificity partitioned by approach: sequence-based, structure-based, and hybrid.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1228873
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghoreyshi and George 10.3389/fimmu.2023.1228873
sequences into interaction maps. It considers the pairwise differences

of selected physicochemical properties of the AAs in the sequences,

making the maps interpretable as multi-channel images, and predicts

TCRepitope binding through a multi-layer CNN. ImRex’s strength

rests in its ability to recognize TCR-specific epitopes from unseen

sequences that resemble the training data, improving its generalization

performance for TCRepitope recognition. On the other hand, TITAN

employs a one-dimensional CNN with a contextual attention

mechanism (Section 4). It separately feeds encoded CDR3 and

epitope sequences into convolutional layers, uses context attention

layers for each, and concatenates attention weights. Significantly,

TITAN extends beyond simple encoding by employing SMILES

sequences for epitopes at the atomic level. In combination with

transfer learning, this sophisticated method expands the input data

space and enhances model performance. TITAN’s attention heatmaps

provide insights into biological patterns and suggest that data scarcity

in epitopes can implicitly treat them as distinct classes, which could

impact unseen epitope performance in complex models. Both models

apply feature attribution extraction methods to explore underlying

biological patterns.

TCRex utilizes a series of decision trees (57), which combines

with classifiers and ensemble regression trees, to build an epitope-

specific prediction model. While this method has been successfully

applied for data classification and regression, several challenges

involve a lack of generalizability to non-HLA A*02:01 cases and

susceptibility to overfitting. EpiTCR (58), which uses the Random

Forest algorithm, also integrates several crucial elements for

increased precision, can significantly mitigate these issues. These

include sequence encoding based on BLOSUM62, zero-padding to

maintain sequence uniformity, and utilization of peptide-presenting

MHC data in the predictions, providing a comprehensive approach

to TCR-peptide specificity prediction. This is done by utilizing a

large dataset from various public databases (over 3 million), which

are encoded by a flattened BLOSUM62 matrix, and is known for

their high sensitivity and specificity in detecting such interactions.

Transitioning from this approach, another promising

methodology is presented by the Predicting T cell Epitope-specific

Activation against Mutant versions (P-TEAM) model (59). P-

TEAM, a Random Forest-based model, proficiently predicts the

effect of epitope point mutations on T cell functionality. It provides

quantitative predictions for altered peptide ligands and unseen

TCRs, showcasing high performance and potential applicability in

immunotherapy development. Several bioinformatic approaches,

including SwarmTCR, predict antigen specificity from sequences.

These tools optimize CDRs to enhance TCR specificity predictions

using labeled sequence data. With robust performance on both

single-cell and bulk sequencing data, it offers biologically

interpretable weights, providing crucial insights into immune

responses related to various conditions. TCRconv, a state-of-the-

art deep learning model, is designed for predicting TCRs and

epitope interactions. Using a protein language model and

convolutional networks, it identifies contextualized motifs,

improving the accuracy of TCR-epitope predictions. TCRconv,

applied to COVID-19 patients’ TCR repertoires, provides

enhanced understanding of T cell dynamics and disease
Frontiers in Immunology 05
phenotypes, highlighting potential applications in infectious

diseases, autoimmunity, and tumor immunology. TCRGP relies

on analyzing both a and b chains of the T cell receptor (TCR) in a

Gaussian process method in order to determine which CDRs are

crucial for epitope recognition. ERGO incorporates Long Short-

Term Memory (LSTM) (60) and autoencoder (AE) (61) models

(Section 4) on a variety of inputs, including the TCRab sequences

and the VJ genes for each TCR (50). Similarly, ATM-TCR predicts

the affinity between TCR and epitope based on a computational

model. According to this model, AA residues within TCR and

epitope sequences are considered in the context of how they interact

with each other using a multi-head self-attention network (Section

4) (62). The TCR-pMHC binding prediction network (pMTnet)

approach is a computational model that applies transfer learning

(63) (Section 4), a form of deep learning that leverages knowledge

gained from prior tasks, to predict TCR binding specificities for

neoantigens and other antigens presented by class I MHCs. This

model is directed at addressing the challenge of predicting TCR-

antigen pairing and has demonstrated significant advancements

over previous methods. As validated through the characterization of

TCR-pMHC interactions in human tumors, pMTnet provides

superior predictive accuracy. It effectively distinguishes between

neoantigens and self-antigens, evaluates TCR binding affinities, and

calculates a neoantigen immunogenicity effectiveness score (NIES).

This ability allows for a comprehensive analysis of tumor

neoantigens’ role in tumor progression and immunotherapy

treatment response, emphasizing the method’s important

contribution to understanding immunogenic tumor antigens and

their relationship to T cell proliferation. On the other hand, pMTnet

exhibits inferior performance in the few-shot settings and fails to

recognize TCR binding to novel peptides in zero-shot settings,

despite their robust performance in settings with an ample volume

of known TCR binding data. Conversely, the effective

implementation of the TITAN model, trained specifically with

COVID-19 data using peptides with sparse known binding TCRs,

is limited by the breadth of available empirical data, thus posing a

significant hurdle to the prediction of TCR interactions with new or

rare peptides.

Another perspective by Meysman et al. (64) compares TCR-

pMHC binding approaches and concludes by stressing the need for

an independent benchmark. The authors find improvements in

predictions accuracy when including CDR1/2 information, but leave

open a complete investigation of the impact of data imbalance with

respect to the biological context of included training examples, size, and

overtraining on model performance. The lack of standardization for

these factors complicates TCR-pMHC binding prediction and

comparative benchmarks. Subsequent evaluations by Meysman’s

group underscored the unpredictability of unseen epitope

predictions, reinforcing the call for advanced models and rigorous,

standardized evaluation protocols (65).

In this application, T cell receptor (TCR) sequences are

transformed into numerical representations through a process

called encoding. Encoding methodologies commonly utilize

physicochemical properties or one-hot encoding, which is a

technique where each unique AA in a sequence is represented by
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its own unique binary code, making each one distinct for

computational models. The immuneML (66) platform extends the

capabilities of earlier methods like DeepRC (67), GLIPH2 (68), and

TCRdist (3) to train and evaluate machine learning classifiers at

the receptor level, and it accomplishes this by incorporating a

variety of encoding methods for sequence data, including k-mer

frequency decomposition, one-hot encoding, disease-associated

sequence encodings, and repertoire distance encodings,

facilitating comprehensive sequence analyses. This platform offers

a variety of models, encompassing K-Nearest Neighbours (KNN),

logistic regression, random forests, and the TCRdist classifier,

among others, providing a versatile toolkit for receptor analysis.

The inclusion of the TCRdist classifier allows for meaningful

distance measurements between receptors, taking into account the

unique characteristics of TCRs, like their exceptional variability and

adaptability in recognizing different antigens. These models,

therefore, provide a versatile toolkit for receptor analysis. The

enhanced reproducibility, transparency, and interoperability

offered by ImmuneML effectively overcomes traditional challenges

in Adaptive Immune Receptor Repertoires (AIRR) machine

learning. The review (69) provides a comprehensive overview of

other advanced methods and computational tools emerging in this

area of research, which facilitate a more complete and nuanced

understanding of T cell receptor sequences and their functional

implications. These include V(D)J recombination (70), single cell

sequencing (71), multimodal experiments (72), flow cytometry (73),

mass cytometry (CyTOF) (74), RNA sequencing, feature barcoding,

and cell hashing.

A persistent challenge for these approaches is that such models

often make incorrect predictions because of limited validated pMHC-

TCR interaction data (38, 39, 75). According to Deng et al.’s study,

the effectiveness of these models is significantly affected by the data

balance and size (75). Furthermore, the models exhibited limitations

in generalizing to untrained peptides, emphasizing the need for

improved data collection and algorithmic improvements. Similarly,

epitope binding affinitymodels such as TCRGP and TCRex cannot be

used to investigate novel or understudied systems since they require

that a new model be constructed for each epitope once there are a

sufficient number of identified cognate TCRs. NetTCR, ERGO, and

ATM-TCRmodels are all capable of predicting novel or rare epitopes,

but they perform poorly overall as evaluated by the area under the

receiver-operating characteristic curve (ROC-AUC) metric. A

promising approach that addresses this issue is the Pan-Peptide

Meta Learning (PanPep) (76), a meta-learning method combined

with a Neural Turing Machine (NTM) (77). Meta-learning allows for

the model to learn from a set of tasks and then apply insights gained

to predict binding specificity for new and unknown tasks, such as

predicting binding specificity for neoantigens or exogenous peptides.

Using a NTM adds external memory to the system, ensuring

retention of learned tasks and thereby improving prediction

accuracy for TCR binding specificity to unknown peptides. Despite

meta-learning’s effectiveness when there are few examples available,

its reliance on labeled data can limit its application. A powerful

alternative to manual labeling, unsupervised learning is capable of

extracting meaningful patterns from unlabeled data.
Frontiers in Immunology 06
3.1.2 Unsupervised learning
In contrast to supervised learning, unsupervised learning does

not rely on the availability of known TCR-peptide pairs, instead

learning to group TCR, antigen, or HLA inputs based on statistical

variation inherent in their sequences. Consequently, a number of

approaches have attempted to train unsupervised models. The

GLIPH (Grouping Lymphocyte Interactions by Paratope

Hotspots) method utilizes high throughput data analysis to

identify distinct TCR sequences that recognize the same antigen

based on motifs shared in their CDR3 sequences (78), has a

significant place in TCR-antigen interaction studies, and enhances

TCR specificity prediction when combined with other resources,

such as the V(D)J database. This clustering assists in pinpointing

known TCR specificities. It’s crucial, though, to understand the

inherent constraints of GLIPH, including challenges in managing

large datasets and the model’s reliance on other resources for direct

antigen interaction predictions. Understanding the specificity of the

T cell repertoire in this context requires the identification of related

systems from a small training subset in a high-dimensional space.

Given the absence of a priori identified specificity groups, to

clustering methods may outperform traditional supervised

classification schemes. In comparison to randomly grouped

clones, TCRs within the cluster exhibited highly correlated gene

expression and shared a common specificity. TCRs are clustered by

GLIPH based on two similarity indexes: 1) global similarity, which

refers to the difference between CDR3 sequences up to one AA, and

2) local similarity, which refers to the fact that two TCRs share a

common CDR3 motif of 2, 3, or 4 AAs (enriched relative to that of a

random subsampling of unselected repertoires). Moreover, the

GLIPH algorithm, by adeptly recognizing shared motifs within

the CDR3 of TCR sequences, has a significant place in TCR-

antigen interaction studies and enhances TCR specificity

prediction when combined with other resources, such as the V(D)

J database. This combination assists in pinpointing known TCR

specificities. It’s crucial, though, to understand the inherent

constraints of GLIPH, including challenges in managing large

datasets and its reliance on other resources for direct antigen

interaction predictions

TCR sequences with a shared epitope specificity carry motifs

that are statistically enriched in the peptides they mutually

recognize. A method that builds on GLIPH to include motif-

based clustering (GLIPH2) (68) is fast but lacks specificity, while

clusTCR (79) is faster because it encodes CDR3 sequences using

physiochemical features by representing them as integers with an

assigned Hamming distance. This comes with the tradeoff of lacking

TCR variable gene information, and thus clusTCR has lower

clustering purity defined as the proportion of items in a cluster

that belong to the most common category or group. To address this

challenge, the Geometric Isometry-based TCR Alignment

Algorithm (GIANA) (80) transforms CDR3 sequences using the

Nearest Neighbor (NN) search in high-dimensional Euclidean

space to solve the problem of sequence alignment and clustering.

In these methods, similar features are found among TCRs

recognizing the same target. Similar TCRs can be grouped/

clustered by predicting which targets they will recognize in this
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way. Various additional factors, including alignment of T cell

receptors and identification of TCR-antigen interactions using

high-throughput pMHC binding data, are also considered in

other methods (13, 81).

The identification of Tumor-Associated Antigen (TAA)-TCR

specificity as a subset of the overall predictive task has historically

been challenging in large part owing to the fact that a majority of

TAAs are point-mutated self-peptide. Given the tremendous

clinical value of reliably predicting TCR-TAA specificity, several

algorithms have been developed for this specifically. In one case,

called TCR Repertoire Utilities for Solid Tumors (TRUST),

assembles hypervariable CDR3 regions of TCRs, and then applies

a clustering method called immuno-Similarity Measurement using

Alignments of Receptors of T cells (iSMART) to group TCRs based

on their antigen specificity (81). Despite these advances, no

systematic evaluation of these methods has been conducted on

large and noisy datasets, and experiments to reduce nonspecific

multimer binding, validate correct folding, and improve signal-to-

noise ratios are still required. Integrated COntext-specific

Normalization (ICON) (13) is a notable development in this field

that identifies TCRantigen interactions in high-throughput pMHC

binding experiments. The experimental approach consists of initial

filtering of T cells based on single-cell RNA-seq, followed by

background noise estimation via single-cell dCODE-Dextramer-

seq, and then lastly TCR identification via paired ab single cell TCR

sequencing. The TCRAI neural network predicts and characterizes

these interactions and in doing so reveals conserved motifs and

binding mechanisms. The combination of ICON and TCRAI leads

to the discovery of novel subgroups of TCRs that interact with a

given pMHC via diverse mechanisms.

Although many clustering-based approaches have been

developed, conventional clustering methods usually perform

poorly on high-dimensional data often as a result of inefficiencies

in the defined similarity measures (82–84). On large-scale datasets

required for studying TCR-pMHC specificity, these methods are

generally computationally formidable. Consequently, raw data is

often mapped into a more suitable feature space where existing

classifiers can separate the generated data more easily, followed by

dimensionality reduction and feature transformation. A number of

existing transformation methods have been applied to this problem,

including linear methods like Principal Component Analysis (PCA)

(13) as well as non-linear strategies such as kernel methods and

spectral methods (85). Clustering methods often encounter

difficulties when dealing with complex structures owing to the

fact that their clustering criteria are based on simplified criteria,

in contrast to Feed-Forward neural networks and Deep Neural

Networks (DNNs), that provide highly non-linear transformations

of data that can be used to cluster the data. Further advancements in

artificial intelligence have led to deep learning surpassing other

statistical methods in many domains (86–91). Unlike traditional

machine learning algorithms, which often struggle to assimilate

complex features from data, the success of deep learning relies on

understanding and interpreting data, which occurs by first learning

simple patterns at initial levels of the algorithm and complex

patterns at higher ones (92).
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Several developed approaches utilize deep learning in an

unsupervised manner, and although we discuss the specifics of the

deep learning algorithms in Section 4, we will touch briefly on several

here. One area where unsupervised deep learning applied to identify

meaningful sequences includes the application of Natural Language

Processing (NLP) algorithms based on word embedding, such as

Word2Vec (93) and ProtVec (94). These algorithms offer a novel

approach to understanding the relationship between TCR sequences

and antigen binding. By leveraging the concept of word embedding

from NLP, they are capable of capturing semantic or functional

similarities among TCR sequences, much like similar words in a

language (95). Therefore, if two TCR sequences share commonmotifs,

it suggests they may bind to similar antigens. Consequently, these

algorithms are valuable tools in immunoformatics, converting raw

TCR sequence data into a format conducive to modeling and

predicting TCR-antigen interactions. Word2Vec interprets non-

overlapping 3-mer sequences of AAs, while ProtVec represents

proteins as the sum of overlapping sequence fragments of length k.

These approaches had several limitations, including limited

interpretability due to the lack of biophysical meaning of three-

residue segments of protein sequences, and overlapping models

often do not out-perform non-overlapping models (94). Recurrent

Neural Networks(RNN) (96) were proposed to improve these initial

schemes. The RNNmodel is a sequence-based representation method

averaging over the representations of each residue to produce a fixed-

length real representation of arbitrary-length protein sequences. This

scheme is further improved by implementing a transformer, which

differs from RNNs by its incorporation of parallel task assignment.

Models based on the transformer were found to be superior to

traditional LSTM-based approaches (a variety of RNNs introduced

in Section 3.1 and discussed further in Section 4) (60) when applied to

tasks such as TCR-pMHC interactions, protein docking, and protein

structure prediction, since in these cases the RNN model struggles to

capture long-range relationships and does not include parallelizability

(97, 98).

More recently, AlphaFold, an artificial intelligence system

developed by DeepMind that predicts protein structure using

primary sequence information, has been applied to the TCR-

pMHC specificity problem (99). This method is a transformer

model that utilizes an attention mechanism in order to operate

within each row of a Multiple Sequence Alignment (MSA), which

generally the alignment of multiple protein sequences of similar

length to maximize the positional correspondence of homologous

residues across these sequences. This attention mechanism (100)

allows the model to focus on specific parts of the sequence, providing

a more comprehensive understanding of the relationship between

residues and protein folding. The ultimate output is in the form of an

accurate 3-dimensional structure that can be assessed for binding

specificity. We note that because of this, AlphaFold is a pure

sequenced-based prediction model since no structural data is used

as input (101).

Lastly, AEs and Variational Autoencoders (VAEs) (102), which

stochastically map the input space to the latent space, have

surpassed former techniques in the field of sequence-based

representation. In contrast, the VAE model is designed to capture
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the dynamics of the peptide-MHC binding process and to identify

per-residue binding contributions by providing a stochastic map

between the input and latent space. VAEs in peptide-MHC binding

optimization have great potential for advancing the design of

vaccines and immunotherapies (103). One recent study, TCR–

Epitope Interaction Modelling at Residue Level (TEIM-Res)

(104), uses the sequences of TCRs and epitopes as inputs to

predict pairwise residue distances and contact sites. An epitope

feature vector generated by an AE is fed into an interaction

extractor for global epitope information. Using this approach, the

method was able to predict TCR-epitope interactions at the residue

level, outperforming existing models and demonstrating versatility

in mutation and binding pattern analyses.

In addition to supervised and unsupervised learning

methodologies, negative data plays a crucial role in enhancing

model accuracy and preventing overfitting. By providing

contrasting data, negative data aids in identifying patterns and

trends in positive data, leading to a more enriched learning process

(105). However, while useful for TCR–epitope binding prediction,

this study also uncovers the potential pitfalls of its application. The

bias it introduces can lead to a dip in model performance in

practical scenarios. For instance, the PanPep model was observed

to underperform with shuffled negative data. As a result, it is

imperative to seek more effective strategies to preserve model

practicality while also enhancing applicability, including the

uniform employment of a negative sampling strategy during both

the training and testing phases (106).
3.2 Structure-based approaches

Whereas sequence-based approaches contain no explicit spatial

information on the interacting system, several alternative strategies

have leveraged structural knowledge of the TCR-pMHC interaction

to aid in understanding specificity. When available, structural

templates couple primary sequence data with significant spatial

information of the interacting pairs, thereby enabling sophisticated

computational methods for representing and analyzing structures

(Figure 1B). Additionally, two models have been developed to

explain the T cell’s ability to discriminate between self and

non-self pMHCs that utilize the identification of a specific

conformational change in the TCR complex and kinetic

thresholding (23–25). Direct measurements of signaling molecules

and pMHC-TCR ligand interactions are used to develop a model

that accounts for the characteristics of T cell signaling in response

to antigens.

Despite a large abundance of protein crystal structures

(currently over one million in the Protein Data Bank), the

number of identified TCR-pMHC crystal structures is quite

limited (on the order of hundreds of TCR-pMHC complexes),

likely due to the difficulty in producing these complexes in large

quantities and in conditions suitable for crystallization.

Computational methods for structure representation and analysis

include Molecular Dynamics (MD) simulations, homology

modeling (107), machine learning, alchemical free energy

perturbation (108), and hybrid approaches.
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MD simulations have also been used to establish a detailed, all-

atom description to better understand TCR-pMHC specificity (109,

110). MD analysis provides an in-depth, mechanistic understanding

of TCR and pMHC interactions. However, due to the high

computational cost of these approaches, an MD-derived

understanding of TCR-pMHC specificity is at present restricted

to a small collection of TCRs and peptides in a given analysis.

Nonetheless, these insights are critical to predicting TCR-pMHC

specificity, as they allow for an understanding of the molecular

behaviors and relationships that underpin this complex biological

interaction. In this way, MD simulations effectively bridge the gap

between fundamental biophysical interactions and the

computational prediction of TCR-pMHC binding. This approach

begins by generating an initial structure, which can be achieved

through side-chain substitution, homology modeling (107), and

ligand-protein docking (111), and proceeds using time-dependent

simulations of atomic motions in the system, MD simulations

account for both the main-chain conformational flexibility and

the solvation and entropy effects. The simulation protocols

themselves can be accelerated through the use of coarsegraining,

increased masses (112), virtual sites (113), n-bead models (114), or

the movement of rigid protein regions (115). A variety of pertinent

features, including RMSD, RMSF, Solvent-Accessible (SASA), PCA,

and hydrogen bonds can be analyzed based onMD simulations, and

geometric approaches (116) have also been developed to analyze the

binding orientation between the heavy and light chains of

antibodies and the TCR a and b chains. Collectively, this

approach can provide highly detailed information on the

dynamics of TCR-pMHC systems. However, the high

computational cost of performing full MD simulations limits

feasible analyses to several TCR-pMHC pairs (117).

Molecular Mechanics (MM) provides a complementary

approach to study the bound TCR-pMHC complex using

molecular docking techniques. The molecular docking process has

two key applications: binding mode prediction and virtual

screening. The former involves optimizing the 3D conformation

of a peptide when it binds to its target receptor, while the latter

entails evaluating a vast number of potential peptides to identify

those that can bind to the target receptor (118). In studying the

TCR-pMHC interaction, both MD and MM approaches are both

challenged by cases having significant peptide flexibility, since a

peptide with more flexible bonds can adopt more conformations. In

addition to the position and orientation of the peptide inside the

receptor’s binding cleft, docking methods must consider these

alternative conformations in order to determine the most suitable

binding mode.

The field of MM utilizes simulation-based prediction methods,

which involve tracking the time evolution of a molecular system

through the use of an energy potential. The quality of the potential,

or score function, plays a crucial role in protein structural modeling,

as it describes the potential energy landscape of a protein. Score

functions may also contain knowledge-based terms to distinguish

native from non-native conformations. MD or Monte Carlo (MC)

simulations with advanced force fields or score functions can

accurately reproduce the statistical behavior of biomolecules. The

MM-based task of learning a force field with predictive utility has
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recently been augmented by incorporating deep learning-based

approaches. These approaches represent each atom’s chemical

environment through graph convolutions (119) and by doing so

aim to enhance the accuracy and reliability of MM predictions,

through the capture of complex atomistic relationships in local and

global chemical environments and generation of transferable,

interpretable features that facilitate end-to-end learning. These

approaches can broadly be categorized into two categories: graph-

based and fingerprint-based.

Graph-based approaches construct a mathematical graph of

molecules, containing atoms as nodes and chemical bonds as edges.

They maintain structural and chemical information and preserve

topological complexity to facilitate more detailed and complex

molecular structural analyses, which can be used to predict

chemical reactions and molecular docking. In contrast,

fingerprint-based approaches represent molecules as binary digits.

While these methods provide a computationally efficient, fixed-

length representation, they simplify the molecular structure and

may lose fine-grain detail about the exact structure and topology.

Dual methods that combine both strategies also exist and have been

applied to studying the TCR-pMHC interaction. Collectively, these

approaches have been shown to enhance the accuracy of molecular

modeling in describing simple molecular pairs and possess potential

for describing more complex biological processes, including protein

complex interactions. The current methodology for computational

Protein-Protein Interaction (PPI) prediction is largely based on

deep learning methods.

One example of a dual methodology is a multiscale graph

construction of HOLOPROT (120), which connects surface to

structure and sequence, demonstrates the utility of hierarchical

representations for binding and function prediction. Using

geometric deep learning and mesh CNN (55, 56) embed protein

surface patches into fingerprints for fast scanning and binding site

identification, eliminating the need for hand-crafted or expensive

pre-computed features. Importantly, these methods do not perform

structural blind docking, which involves determining the binding

site, orientation, and location of the two molecules, and internal

conformational deformations during binding. Consequently, they

capture and predict molecular interactions based on effective

molecular representations and efficient learning algorithms,

without explicitly simulating binding dynamics.

Another example includes Graph Deep Learning (GDL) methods.

While they are reliant on known structural data, GDL approaches offer

unique advantages in capturing the complex, non-linear relationships

between features, making them potentially valuable for predicting

protein structures (121), interactions (122), and functions (123).

AlphaFold has revolutionized PPIs modeling with its sophisticated

end-to-end approach, which outperforms traditional docking methods.

In order to accurately model complex interactions, such as T cell

receptor-antigen complexes, further enhancements are needed. This

challenge might be addressed by building upon AlphaFold or

integrating it with geometric deep learning (124).

Notably, AlphaFold’s prowess lies in its ability to deduce a

protein’s 3D configuration from its primary amino acid sequence.

From this, AlphaFold’s EvoFormer module learns complex patterns

of AA interactions and predicts the distances and orientations of
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those interactions in 3D space, with the goal of essentially providing

an estimated structural representation. Moreover, it uses a

structure-based method for refining the coordinates of all heavy

atoms within a protein (101). Because AlphaFold can generate

detailed structural predictions from primary sequence information

alone, its use in identifying relevant TCR-pMHC interactions is

particularly intriguing. A recent approach utilizes a modified

version of AlphaFold to resolve correct and incorrect peptide

epitopes in TCR-pMHC interactions (125). This study suggested

that supervision is required for appropriately applying the

AlphaFold approach to TCR-pMHC systems: In comparison to

the default AlphaFold (126), AlphaFold-Multimer (99), designed

specifically to interrogate protein-protein structural complexes,

more capably predicts TCR-pMHC binding specificity at a lower

computational cost and higher accuracy.
4 Deep learning approaches

Deep learning, a machine learning subclass, is dramatically

transforming the exploration and comprehension of TCR

specificity. Machine learning excels in pattern recognition and

prediction, making it versatile in applications like predicting cell

types or antibody affinity based on gene expression profiles.

However, the laborious feature extraction process, particularly

with vast, feature-rich data, is a limitation. Deep learning

alleviates this with an automated approach for feature extraction.

Its layered structure facilitates capturing complex, high-

dimensional data patterns, despite its interpretability challenges.

CNN and RNN, two key Deep learning models, find varied

biological applications, from image processing to protein

engineering. Deep learning is poised to revolutionize TCR

specificity understanding, and possesses the potential for ushering

in the design of optimized immune treatment strategies.
4.1 Deep learning architecture

In contrast with the computational approaches discussed in

detail thus far, which use physical equations and modeling to

predict data, machine learning algorithms infer a relationship

between inputs and outputs by learning from a set of hypotheses.

This can be described by a collection of K training samples that may

contain features x in an input space X (e.g. AA sequences), and

corresponding labels y in output spaces Y (e.g. pairwise residue

distances), where fxj, yjgNj=1 are sampled independently and

identically (i.i.d) from some joint distribution. Additionally, an

identified function f :X → Y maps inputs to labels, and a

corresponding loss function l :Y � Y → R measures how far f (x)

deviates from its corresponding label y. In supervised learning, the

goal is to find a function f that minimizes the expected loss, E(x,y)~p

[l(f(x),y)], for (x, y) jointly sampled from. Parameterization of the

hypothesis class depends on the allowable choice of the network f in

some allowable space F .

Data analysis and deep learning predictions often overcome the

traditional challenges of feature extraction in ML by recognizing
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relevant features, constructing hierarchical representations,

handling large datasets effectively, providing end-to-end learning,

and facilitating transfer learning, overcoming the limitations of

classical approaches. High-dimensional data tasks can be efficiently

handled with deep learning algorithms using hierarchical artificial

neural networks. However, the interpretability of neural networks

and deep learning can be a problem, due to their complexity, non-

linearity, and the lack of physical interpretation and transparency

due to their black-box nature. We will describe in detail the use of

several common architectures (Figure 3), such as CNNs, RNNs,

VAEs, and Generative Adversarial Networks (GANs), which have

been developed for different applications, including biological

problems such as cancer immunology (127).

4.1.1 Convolutional neural networks
CNNs are a subtype of deep learning network architecture that

have historically performed well on two-dimensional data with grid-

like topologies, including images, and this approach is also applicable

to other problems requiring shift-invariance or covariance (128). In

order to capture this translational invariance, CNNs use convolutional

kernels (feature extraction) for layer-wise affine transformations.

There are three factors involved in the learning process of a CNN:

sparse interaction, parameter sharing, and equivariant representation
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(129). CNNs utilize convolutional layers for sparse interaction,

enabling efficient processing of high-dimensional data while

reducing computational demands. Parameter sharing across input

data locations decreases required parameters, enhancing training and

inference efficiency. Lastly, equivariant representation ensures the

network’s output remains invariant to input transformations,

promoting generalization across diverse input variations. CNN has

been applied to predict protein residue distance maps based on AA

sequences (130) (Figure 3A). Convolutional operation ∗ with respect

to the Kernel W and 2D data X (in this case, represented by residue-

residue distance maps from AA sequences) can be expressed as

(X*W)(i, j) =o
m
o
n
X(m, n)W(i −m, j − n), (3)

Where (X ∗ W)(i,j) denotes the convolution output at position

(i,j), and X(m,n) andW(i −m,j − n) represent the value of the input

X at position (m,n) and the parameter of the kernel at position (i−m,

j−n), respectively. One important variation on this general scheme

that is relevant to the TCR-pMHC problem, called Residual

Network (ResNet) (131), includes skip-connections between

layers to recover spatial information lost during down-sampling.

AlphaFold is one example of such an approach that uses ResNets to

predict inter-residue distance maps of primary AA sequences (132).
B

C D

A

FIGURE 3

A schematic illustration of various deep learning architectures employed for TCR-pMHC interaction prediction: (A) 2D CNN-based prediction of
TCR-pMHC interactions: The pairwise features of protein sequences are encapsulated in a 2D matrix representation, which serves as input for the
2D CNN. The CNN systematically samples the entire protein pairwise feature space, processing the data to facilitate the learning of TCR-pMHC
interactions, (B) RNNs utilize auto-regressive learning to generate sequences, which can be applied in the context of TCR-pMHC interaction
prediction, (C) In the GAN framework, a mapping from a prior distribution to the design space can be obtained through adversarial training, enabling
the generation of novel TCR-pMHC interaction predictions, (D) VAEs can be jointly trained on protein sequences and their properties to construct a
latent space that correlates with the properties of interest, for example, the TCR binding capacity of unevaluated target peptides.
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CNNs can also be used to treat 3D protein structure prediction

as a computer vision problem by voxelizing a given structure. One

example is DeepSite (133), which uses voxelized representations of

different atom types and deep CNNs to predict binding sites.

Despite DeepSite’s potential to capture more interactions using

voxelized representations and larger datasets, its performance

appears lower than an alternative, template-free machine learning

method (P2Rank) that applies clustering to score regions of a

protein’s solvent accessible surface to identify candidate binding

pockets (134). This discrepancy is possibly due to the CNN

approach requiring even larger training dataset or differences in

training set distributions. Yet another method employs a CNN-

based segmentation model inspired by U-Net to predict binding

sites in a single step (135). In general, U-Net is a CNN architecture

originally designed to segment biomedical images. It utilizes

symmetric encoder-decoder structures with skip connections

between mirrored layers in both encoding and decoding paths,

which allows accurate localization and the preservation of detailed

information. In this method, a three-dimensional grid is generated

around the protein, and each voxel within the grid is assigned a

probability of being part of a binding pocket. The U-Net-inspired

approach offers a more streamlined prediction process compared to

traditional methods and has shown improved performance in

detecting binding when compared to DeepSite, another

prominent tool in the field. Overall, both P2Rank and U-Net-

inspired methods offer unique advantages for the identification and

prediction of protein-ligand binding sites.

4.1.2 Recurrent neural networks
RNNs are neural networks that operate on sequential data (96),

such as time series data, written text (i.e., NLP), and AA sequences

(Figure 3B). The RNN algorithm can be represented by in the

following mathematical setup, where a hidden state h(n) is

recursively solved using an initial value h(0) and sequential data

[x(1),x(2),…,x(N)], via

h(n) = z(n)(x(n), x(n−1),…, x(2), x(1)) = g(h(n−1), x(n); q) :

Here, q represents the RNN parameters, which include the weights

and biases associated with the network’s connections, learned during

the training process. The function g represents the update function

describing the transformation from one position to another and utilizes

the previous hidden state h(n−1), current input x(n), and q parameters to

produce the updated hidden state h(n). z(n) represents the cumulative

transformation for position n. The hidden state vector contains all

previously observed information at position i. Using this approach,

sequential data of variable length can be fed to an RNN. This approach

can be susceptible to a vanishing gradient, complicating optimization,

and the ‘explosion problem’ (the error signal decreases or increases

exponentially during training), potentially affecting the predictive

accuracy and robustness of TCR-pMHC model. Specifically, the

recurrence relation h(n) = g(h(n−1),x(n);q) in this context becomes

especially vulnerable. When back-propagating through time over

multiple steps, the gradient with respect to the loss function L, which

measures the discrepancy between predicted and actual outcomes, can

either shrink or grow exponentially. This behavior is due to the
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repeated multiplication by the weight matrix, as described by ∂L/

∂h(n−t). If the network’s weights, in the context of TCR-pMHC

modeling, are not properly initialized or regularized, it can lead to

gradients significantly diverging from the ideal range. Consequently,

LSTM networks (60), which are commonly used to mitigate this (136).

An example of an LSTM approach in the context of specific TCR-

Peptide binding prediction is using embedding vectors of AAs to

construct a single vector, which can then be used as an LSTM (137) to

learn long-range interactions within AA sequences; however, their

efficacy depends on the formulation of the problem, the dataset

characteristics, and the network architecture. In some situations,

alternative deep learning approaches, such as CNNs and transformers,

may be more applicable.

As an alternative to the recurrent network architecture, the

attention mechanism is a method that can be used to improve the

information processing ability of the neural networks (100). This

mechanism is inspired by human biological systems that process

large amounts of information by focusing on distinct parts and works

by preventing the system from processing available information

simultaneously (62). Attention-based models have several

advantages over RNN models, including their parallelizability and

ability to capture long-range relationships. The transformer model

(62), a groundbreaking deep learning architecture is characterized by

its self-attention mechanism, which enables the processing of input

sequences in parallel rather than sequentially, distinguishing it from

traditional attention mechanisms that typically rely on recurrent or

convolutional layers. AlphaFold-Multimer (99) is one example of a

transformer model that employs the attention-based model to

generate models of TCR-pMHC interaction, which can then be

used to distinguish correct peptide epitopes from incorrect ones

with substantial accuracy. In directing these approaches to TCR-

pMHC data in the future, these methods could be particularly helpful

for predicting a target residue or the desired residue-specific

properties of a target residue from the AA sequence of a protein.

For example, transformer-based models have already been used to

generate protein sequences conditioned on target structure and learn

protein sequence data to predict protein-protein binding

interfaces (138).

4.1.3 Variational autoencoder
The AE neural network is an unsupervised learning algorithm

based on backpropagation that sets its target values equal to the

input values (61). This is typically accomplished by mapping input

to latent space in the encoder and reverse mapping in the decoder

(Figure 3D). The latent space’s dimension is less than the dimension

of the original input and is constrained in some way (for example,

by sparsity). In this framework, one assumes a set of unlabeled

training vectors, {x(1),x(2),x(3),…}, where x(i) ∈ Rn. AE attempts to

approximate the identity function in order to produce output y that

is similar to x with respect to a loss function L: n

q = argmin
y(i)∈Rn

1
no

n

i=1
L(x(i), y(i)) (4)

In one AE application directed at TCR-pMHC interaction

prediction (139), researchers predicted PPIs from AA sequences
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in order to identify key antigenic features to gain a more detailed

understanding of the underlying immune recognition process.

VAEs (102) build on AEs by providing a stochastic mapping

between the input space and a lower dimensional latent space,

which is particularly useful when the input space follows a complex

distribution. The latent space distribution typically takes a much

simpler functional form, such as a multivariate Gaussian.

Variational Inference (VI) (140) is a machine learning technique

used in VAEs that approximates complex probability densities

through optimization, allowing for efficient learning and data

compression in the transformed latent space. Comparatively, it is

faster than classical methods, such as Markov chains and MC

sampling. In the VI method, the stochastic encoder is trained so

that it approximates the true posterior distribution pq(z|x) of the

representation z given the data x with parameters q, by means of the

inference model qf(z|x) with parameters f, and weights

parameterized by the data. In contrast, a decoder gives an

estimate of the data given the representation, pq(x|z). However,

direct optimization is not computable; thus, training is done by

maximizing the evidence lower bound (ELBO), Lq,f(x), which gives

a lower bound on the log-likelihood of the data:

Lq,f(x) = Ez∼qf (zjx)log pq(x z) − DKL(qf(z
�
�

�
�x)jjpq(z x))j (5)

where in generalEz∼qf (zjx)log pq(zjx) represents the expected value
of a function log pq(zjx) with respect to the conditional distribution

qf(zjx), which measures the average value of the function log pq(zjx)
when considering all possible values of z, weighted by the probabilities

assigned to them via qf(zjx). DKL(qf jjpq) is the Kullback-Leibler

divergence quantifying the distance between two distributions qf and

pq , which represents the similarity of the latent space distribution with

the target distribution p(z). An example of VAE prediction in the TCR-

pMHC interaction prediction field includes the CASTELO approach,

which was used in combination with MD simulations to identify

mutated versions of a knownWT peptide that lead to enhancements in

TCR-pMHC binding (103). Future applications of VAE-based

prediction schemes will likely make an impact on describing TCR-

pMHC interactions in combination with other preexisting strategies.
4.1.4 Generative adversarial networks
GANs (141) are an emerging technique for both semi-

supervised and unsupervised learning (142) that provide a

method to obtain deep representations without the necessity to

employ extensive training data annotations. In contrast to VAEs,

GANs are trained through adversarial games between two models

or networks (Figure 3): a generator network, G, which maps from

latent space Rjzj of dimension jzj, to the space of data, G :G(z) →
Rjxj, where z ∈ Rjzj is a sample from latent space or simple

distribution pz(z) (e.g. Gaussian), x ∈ Rjxj is a data-point, D is a

discriminator function that maps an example to the probability that

the example belongs to the real data distribution rather than the

generator distribution (fake data), D :D(x) → (0, 1). This game-

based setup trains the generator model G ∈ G by maximizing the

error rate of the discriminator, D, so that the discriminator is fooled.

On the other hand, the discriminator D ∈ D is trained to recognize

fooling attempts. It is expressed as the following objective (143):
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min  
G∈G

max
D∈D

V(D,G) = Ex∼pdata(x)½log D(x)� + Ez∼pz (z)½log (1 − D(G(z)))�
(6)

In training, this loss function is optimized stochastically. Both

the generator and discriminator are trainable via Standard Gradient

Descent (SGD) algorithms. The discriminator can be updated M

times for every generator update. After training, synthetic data is

created using only the generator network.

GANs have been making rapid progress in continuous domains,

but mode collapse and instabilities can occur when training this

GAN objective and has made analyzing discrete sequences a

significant challenge. One variation, referred to as the Wasserstein

GAN (WGAN) (144, 145), introduces a penalty to constrain the

gradients of the discriminator’s output, resulting in a more stable

and trainable model. While GANs utilize a sigmoid function in the

last layer for binary classification, the WGAN approach removes

this function to approximate the Wasserstein distance (146), using

Lipschitz discriminators: namely, that for discriminator function D

there exists a constant L such that jD(x) − D(y)j ≤ Ljjx − yjj for any
two points x and y in the input space. This ensures that the gradient

of the discriminator’s output with respect to its input is bounded by

some constant K : ‖∇ðD(x)) ‖ ≤ K .

GANs can be used in protein modeling to produce new protein-

like folds by learning the distribution of protein backbone distances. In

one application, one network, G, generates folds, while a second

network, D, distinguishes generated folds from fake ones (147).

While WGAN models have not yet been widely applied to study

TCR-pMHC specificity, they have been used to generate genomic

sequence data (148).While their optimization behavior is generally well

behaved,WGANs can exhibit undesired behavior in some applications.

For example, in generating sequences containing particular motifs in

the above application, in some cases, a strong motif match appeared

twice in the same generated sequence because the final predictor score

was insensitive to the presence of two motifs (the best match is used).

Biologically, such sequences can be undesirable. Other technical issues

that impact GAN approaches include unstable objective functions,

mode collapse, variable length structure generation, conditioning

difficulty, and the need to sample from a distribution instead of

predicting a single output (149), and various approaches (144, 145,

150–153) have attempted to address these issues. GANs have

influenced the field of sequence design, both when conditioning

structural information (154) and when not (155, 156).

Diffusion models, an alternative to GANs, address many of

these issues. Diffusion models are a class of latent variable models

modeling the data generation process as iterative denoising of a

random prior. They use a specific parameterization of the

approximate posterior distribution that can be interpreted as an

unobserved fixed prior diffusing to the observed posterior

distribution (157). The diffusion model addresses some

limitations of GANs by enabling explicit density estimation,

reducing the mode collapse problem often seen in GANs, and

providing more stable training procedures.

Due to several key differences, data-driven generative modeling

methods have not had the same impact in the protein modeling

setting as in the image generation setting. The first difference between

proteins and images is that proteins cannot be represented on a
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discretized grid that is amenable to the straightforward application of

generative models. Inconsistencies in the predictions of the pairwise

distance matrix of a protein’s atoms lead to nontrivial errors when

optimization routines are used to recover the final 3D structure when

using existing models (158). Furthermore, proteins are not naturally

oriented in a canonical manner like images. Therefore, rotationally

invariant methods must account directly for this factor of variation in

model weights. This reduces the amount of effective model capacity

that can be dedicated to structural variation.
5 Hybrid approaches

In modeling natural systems, the exponential family of pairwise

models is an important class of distributions to consider, which

enjoys mathematically interpretable forms and is sufficiently general

to include many of the common distributions, such as Gaussian,

Poisson, and Bernoulli distributions (159). Additionally, pairwise

models are commonly used in the statistical physics community for

the analysis of categorical sequence data. There have been many

successful applications of pairwise models such as the Ising model

(160) or the generalized Potts model (91). One of the open

questions in this area is how to train such models when

additional higher-order interactions are present in the data that

cannot be included in a pairwise model. Hybrid models addressed

these issues, which combine a pairwise model with a neural network

and can significantly improve pairwise interaction reconstruction.

These hybrid approaches can often demonstrate performance

improvements over alternative methods. We will focus on one

particular example of a hybrid model recently developed to

characterize systems-level TCR-pMHC specificity.

The Rapid Coarse-Grained Epitope TCR (RACER) (161, 162)

model utilizes high-throughput TCR and peptide data, crystal

structures, and a pairwise energy model to accurately predict TCR-

peptide binding affinities. In this approach, supervised machine

learning is applied to pre-identified TCR-peptide structures (45,

137) and experimental data to derive a coarse-grained, chemically

accurate energy model of the TCR-pMHC interaction. While deep

learning algorithms can implicitly capture higher-order interactions,

they may still be limited by the availability of sequences. To mitigate

this, RACER uses pairwise potentials to reduce the requirement for

extensive sequence data. The optimization framework employed by

RACER utilizes the AWSEM force field (163) to represent direct PPIs:

Vdirect = o
i ∈ TCR
j ∈ peptide

g (ai, aj)Q
I
ij (7)

Where gij(ai, aj) denotes the pairwise interaction between one of

20 AA residues ai and aj at positions i and j in the index TCR and

peptide, respectively. QI
ij describes a sigmoidally decreasing

‘switching function’ that inversely weights each pairwise

interaction based on inter-residue distance. In this model, TCR-

peptide accurately assessed in a computationally efficient manner

across entire immune repertoires using supervised machine

learning to differentiate strong and weak binding pairs, assisting
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in identifying T cells specific to tumor antigens and enhancing

cancer immunotherapy. Of course, the compromise for requiring

fewer training sequences is the added requirement of a reasonable

structure for the system of interest.

As we mentioned in Section 4, AlphaFold-Multimer (99),

developed by DeepMind, can also be categorized as a hybrid

model since this approach uses both sequence and structural

information in training and predicting steps. AlphaFold-Multimer

algorithm consists of two key processing elements, the input derived

from MSAs and the evaluation of interatomic distances between

AAs within a protein complex structure. A distance matrix provides

spatial information for each AA pair, while the MSA aspect

preserves and analyzes AA conservation and covariant properties.

AlphaFold-Multimer uses the attention-based model to generate

models of TCR-pMHC interaction that can be used to distinguish

correct peptide epitopes from incorrect ones with substantial

accuracy (164). In the future, AlphaFold’s ability to predict a

collection of key structures could significantly enhance the

predictive power of other hybrid approaches that rely on

structural templates like RACER.
6 Discussion

This review has presented an overview of recent efforts to predict

TCR-pMHC using theoretical, computational, and deep learning

approaches, emphasizing both their strengths and limitations. We

have explored sequence-based, structure-based, and hybrid

methodologies for predicting TCR-pMHC interactions across

species, emphasizing the growing importance of these computational

techniques within the field. Predicting TCR-pMHC interactions based

on AA sequences offers a number of advantages, including leveraging

an abundance of publicly available data and using deep learning to

extract meaningful features. This representation, however, is also

inherently sparse and sample-inefficient, posing challenges. A

traditional method of representing AA sequences often fails to

encapsulate all essential information, despite the possibility of

adding physical descriptors and biological characteristics.

Structure-based models incorporate 3D information crucial for

binding and signaling. Nonetheless, challenges arise from the

complexity of raw 3D data and the high interdependence of

variables within the structure. While graph-based and surface-

based representations via Graph Neural Networks and geometric

deep learning frameworks have shown promise, they require

meticulous model design and implementation, and the invertibility

of 2D projections to the original 3D structure is not guaranteed.

Hybrid models, combining pairwise models with neural networks,

effectively address the issue of higher-order interactions unaccounted

for in traditional pairwise models, leading to improved performance

in reconstructing pairwise interactions. Hybrid models, despite their

ability to handle higher-order interactions, are limited by the

requirement for well-defined system structures and extensive

sequence data, and their complexity may hinder interpretability

and computational efficiency.

With respect to understanding TCR-pMHC specificity, Recent

modeling approaches commonly integrate deep neural network
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techniques with more traditional methods like cluster analysis. To-

date, successful models of TCR-pMHC interactions attempt to

deliver on a subset of important objectives, including 1)

Computationally efficient characterization for large-scale

implementation, 2) Sensitivity in recognizing novel favorable TCR-

pMHC pairs, 3) Specificity in predictions through demonstrating the

identification of non-recognition pairs, 4) Accurate predictions on

data that are far away from the training data, including completely

new test TCRs or peptide and 5) Accurate predictions on exhaustive

test data that is very close to training examples, including the

classification of all point-mutations of a previously identified

peptide. At present, no current model adequately addresses all of

these objectives. Because of the sheer allowable diversity of TCR and

peptide feature space, sparsity in available training data will be a

persistent challenge in future applications.

Because of the significant clinical implications of successful

models of TCR-pMHC specificity, the number of newly developed

approaches is rapidly expanding. As a result, we advocate for

standardization in the testing protocols. Because new models are

often trained on data that is distinct from that of other previous

models, comparative performance is often highly sensitive to the

choice of test data. This can artificially enhance the perceived

predictive utility of a new model or unreasonably diminish the

ability of existing models. Comparative predictive assessments, when

performed, should utilize data with neutral similarity to either model.

Despite considerable progress in this domain, numerous challenges

and future research directions remain. To gain valuable biological

insights from TCR-pMHC binding prediction models, current

limitations must be addressed and their generalizability,

interpretability, and precision must be improved. Enhancing

precision involves integrating diverse data modalities and high-

quality sources, with special attention given to those reflecting

epitope mutations. Improving generalizability entails training

models on comprehensive datasets that span both known and novel

epitopes, ensuring robustness across varied biological conditions.

Crucially, models must be interpreted in a way that translates

complex computational outputs into biologically meaningful

insights, advancing our understanding of immune responses beyond

mere computational contexts. Such targeted improvements will

catalyze the development of potent and precise immunotherapies.

TCR-pMHC interactions are expected to benefit substantially from

new advances in data availability and computational techniques as the

availability of high-quality data increases. As a result, innovative

therapeutic approaches and tailored medical treatments will be

developed based on a deeper understanding of their functions in

human health and disease.
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In the exhaustive analysis of various methodologies for inferring

TCR specificity, our study finds no single superior approach. Rather,

we propose a dynamic, integrated strategy that transcends traditional

methods and embraces a confluence of techniques while remaining

receptive to continual advancements. This multifaceted approach

emphasizes the importance of harnessing unlabelled TCR sequences

and leveraging data augmentation techniques. It also calls for the

integration of both sequence- and structure-aware features, coupled

with the application of cutting-edge computational techniques.

Furthermore, we underscore the critical need for a collaborative

ecosystem that fosters interactions among experts from disparate

domains, including immunology, machine learning, and both

translational and industrial sectors. Such synergy is pivotal in

driving forward-thinking solutions, and we advocate for the

unobstructed accessibility of successful models to promote open

collaboration and accelerate progress in TCR specificity prediction.
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