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T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC)
interactions play a vital role in initiating immune responses against pathogens,
and the specificity of TCRpMHC interactions is crucial for developing optimized
therapeutic strategies. The advent of high-throughput immunological and
structural evaluation of TCR and pMHC has provided an abundance of data for
computational approaches that aim to predict favorable TCR-pMHC interactions.
Current models are constructed using information on protein sequence, structures,
or a combination of both, and utilize a variety of statistical learning-based
approaches for identifying the rules governing specificity. This review examines
the current theoretical, computational, and deep learning approaches for
identifying TCR-pMHC recognition pairs, placing emphasis on each method’s
mathematical approach, predictive performance, and limitations.
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1 Introduction

The adaptive immune system has the remarkable responsibility of recognizing and
eliminating foreign threats, which requires discriminating self from non-self-signatures. T
lymphocytes, or T cells, are the cellular mediators of adaptive immunity and accomplish this
feat by using their heterodimeric T cell receptors (TCRs). TCRs recognize short peptides
bound to and presented by class I and IT major histocompatibility complex (MHC) molecules
on the cell surface (p)MHC). TCR diversity is generated by genetic rearrangement through a V
(D)] recombination process (1) capable of generating a staggering diversity of TCRs
(estimates range from ~ 10%° to ~ 10°" possible receptors) (2). It is this total diversity
together with the relative sparsity of realized samples that complicates the development of
inferential modeling procedures capable of predicting TCR-pMHC specificity when test
systems differ moderately from training samples (3, 4). Solving this problem would have
numerous immunological implications that range from identifying improved antigen
vaccines to facilitating optimal selection of adoptive T cell therapy for cancer patients (5, 6).

T cell responses occur when their TCRs bind pMHC with an interaction that ‘appears’ to
the T cell as ‘non-self. In order to avoid detection of abundant self-signatures, T cell
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precursors (thymocytes) undergo central tolerance to a set of self-
signatures via a process called thymic negative selection (7), wherein
each thymocyte is exposed to a diverse set of self-antigens, and TCR
recognition of any of these self-antigents results in deletion. In
addition to central tolerance, a variety of peripheral tolerance
mechanisms exist to prevent self-recognition, including T cell
anergy, suppression by regulatory T cells (Tregs), and tolerance
induction through peripheral antigen exposure (7, 8). Collectively,
these mechanisms ensure that mature T cells are selectively
responsive to non-self antigens while maintaining a state of
immunological self-tolerance.

Owing to the sheer complexity of the adaptive immune response, a
number of theoretical and computational models have been explored
focusing on various aspects of the problem. These efforts have benefited
from the availability of advanced structural characterization
techniques, such as X-ray crystallography (9), NMR spectroscopy
(10), and cryoelectron microscopy (11), for validation. Moreover,
recent advances in high-throughput approaches (12, 13) have
significantly increased the available data on which inferential
learning-based models can be constructed. Consequently, a number
of computational models have been developed to address the need for
reliable TCR specificity prediction between a collection of known TCR
sequences and putative antigen targets.

In this review, we outline the recent theoretical and computational
approaches to TCR-pMHC specificity prediction, emphasizing their
strengths and limitations, and offer perspective on the future direction

10.3389/fimmu.2023.1228873

of this exciting modeling effort. In our description of the informatics-
based strategies for TCR-pMHC prediction, we discuss current
methodology and challenges in four main areas: modeling of TCR-
pPMHC complex interactions based on (1) sequence-based approaches
(Figure 1A) (2) structure-based approaches (Figure 1B), (3) deep
learning approaches, and (4) hybrid approaches (Figure 1C).

As we delve deeper into the complex matrix of TCR-pMHC
interactions, it becomes essential to illuminate the interplay
between specificity and cross-reactivity, two critical factors that
significantly shape the predictive modeling landscape. Recognizing
the delicate balance between these parameters not only enriches our
understanding of various modeling strategies but also refines our
approach to interpreting the multi-faceted nature of TCR-pMHC
interactions. Cross-reactivity, a fundamental characteristic of TCRs,
is an essential consideration in predicting TCR-pMHC interactions.
This attribute of TCRs enables them to interact with a myriad of
peptide antigens, providing our immune system with its remarkable
breadth of response. However, this same characteristic poses a
significant challenge in understanding T cell-based therapeutics
and similarly in TCR-pMHC specificity prediction. Single TCRs are
intrinsically capable of binding to multiple peptide antigens at once,
complicating predictions of specificity and off-target effects (14, 15).
Traditional prediction methods, which mostly rely on peptide
sequence similarities and biochemical similarity, often fail to
capture cross-reactivity’s complex nuances. As such, more
comprehensive approaches have emerged. For instance, tools like
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FIGURE 1

Modeling approach to TCR-pMHC prediction based on input data. (A) Models trained purely on TCR and peptide sequence input data feature
multiple sequence alignment (MSA) on input data matrices to identify patterns, followed by identification of potential interaction pairs using various
algorithms techniques. (B) Models trained on input structural data models commonly aim to identify the TCR-pMHC binding interface, along with
associated information on binding affinity. Predictions are often made by determining similarity in secondary structure in the interfacial region of the
binding interface, from which physical parameters like binding affinity and kinetic data (Kp, Kog) can be estimated. (C) A third ‘hybrid’ category of
inferential model synergistically combines sequence and structural data in the training step.
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CrossDome (16) aim to predict potential off-target toxicities by
leveraging multiomics data from healthy tissues, structural
information on TCR-pMHC interactions, and amino acid (AA)
biochemical properties. This integrative methodology aids in
generating statistically supported predictions that assist in risk
assessments and enhance prediction specificity.

2 Random energy models of TCR-
pMHC interactions

An early quantitative understanding of TCR-pMHC specificity
began with the development of random energy models that aimed
to explain known properties of the interaction, including TCR
specificity versus degeneracy and the potential for self/non-self
discrimination. We present here an overview of affinity-driven
models, which characterize TCR-pMHC interactions by their free
energy of binding. Additional models have considered the effects of
kinetic features of the TCR-pMHC interaction (17-19), including
on- and off-rates (20), TCR-pMHC binding lifetime (21), and the
role of catch vs. slip bonds in TCR activation (22). Both binding
affinity and kinetics are likely important for determining the overall
outcome of a TCR-pMHC interaction (23-25). Significantly, these
approaches can effectively explain the kinetic proofreading aspect of
absolute ligand discrimination in a manner that is robust to antigen
concentration (24, 26). However, due to the abundance of data on
TCR-pMHC binding affinity (via estimated kp, values), we focus our
discussion here on affinity-based models.

Early approaches modeled affinity-driven TCR-pMHC
interactions using paired strings (27, 28), as detailed in a study by
Perelson (29), and review various computational models for receptor
representation and properties (30). In these models, interacting TCRs
and peptides are represented by AA strings of length N. It is assumed
that the total TCR-pMHC binding energy can be represented by the
sum of individual pairs of interacting AAs:

N
E(t,q) = D)t q;) - (1)
i=1

In this case, E(t,q) is the free energy of interaction between
receptor ¢ and antigen q. J(,¢;) is the interaction energy between the
i™ AAs on the hypervariable (CDR3) region of the TCR (t;) and the
peptide (g,), respectively, and N is the length of the variable regions
of the TCR. Using this framework, researchers formulated digit
string representations capable of explaining the large degree of
alloreactivity observed in post-thymic selection T cell repertoires
(31). The initial string model (27) used the set of bounded integers
to represent the ‘complementarity’ between AA pairs, t,q; € {1,2,...,
K}, with J(t,q;) = |t; — qi, and has been applied to successfully model
thymic selection and predict empirically observed T cell
alloreactivity rates (27, 28, 32).

Chakraborty and colleagues extended this modeling framework
(33) by substituting abstract digit string with experimentally observed
AA interactions. This was achieved by replacing J(t;g;) with a pairwise
AA potential - chosen to be the Miyazawa—Jernigan energy matrix (34).
This modeling framework demonstrated that thymic negative selection
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favors TCR AAs with moderate interaction strengths to avoid T cell
deletion due to high energy interactions with a small set of thymic self-
peptide (33, 35). When applied to understand the selective pressures
imposed on TCR recognition in the setting of HIV, this framework
showed how the peptide binding characteristics of a particular HLA
allele restriction resulted in enhanced recognition of viral epitopes (36).

Subsequent modeling efforts have investigated how thymic
selection impacts the recognition of tumor-associated antigens
using the above framework applied to diagonalized TCR-pMHC
interactions (4). Here, the diagonalized interaction assumption
simplifies the TCR-pMHC binding interface into a set of one-to-
one contacts between the AA residues of the peptide and binding
pockets of the TCR. This framework demonstrated that post-
selection TCRs may capably recognize single AA differences in
point-mutated self-peptides at nearly the same rate as unrelated
foreign antigens. This work was then extended to describe the
effects of non-diagonal interactions (37), which allow for multiple
pairwise TCR-peptide AA contacts. These intricate contacts,
identified from the proximity of TCR-peptide AAs in known
crystal structures, represented by a TCR-peptide contact map.
From this, subtle variations in TCR-peptide binding recognition
profiles manifest in variable weights of interaction assigned to each
of the peptide AA positions. An extension to (33) considered non-
uniformity of these weights (37). The contact map W = (W;)
contains weights W;; for interactions between ¢ and g in a given
structure, and an associated AA interaction coefficient,

E(t,q) = 3 WyJ (1) ®)
]

Using this framework, non-uniformities in contact maps, which are
highly variable for given MHC allele variants, can result in high-
contacting peptide AA positions. At these positions, single-amino acid
changes in wild-type peptides, such as cancer neoantigens or single
nucleotide polymorphism peptide variants, result in an enhanced
difference in the binding interaction that may ultimately enhance or
break immunogenicity. Intriguingly, these statistical models predict a
high likelihood of point-mutated self-peptide recognition, which
suggests that thymic selection is more akin to a T cell memorization
task directed at a list of important self-antigens to avoid rather than an
intricately curated list of self-peptides whose tolerance confers wider
immune protection. In order to improve forecasting capabilities and
reduce the experimental efforts required to search for meaningful TCR-
pMHC pairs, advanced machine learning algorithms have been
incorporated into biophysical and probabilistic models to create data-
driven and trainable predictive models. Figure 2 provides a non-
exhaustive summary of recent open-source computational methods.

3 TCR-pMHC specificity
prediction methods

The TCR-pMHC specificity prediction methods leverage
advanced computational techniques to predict the highly specific

interactions between TCRs and pMHC that are crucial to the
initiation and effectiveness of adaptive immune responses. The
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FIGURE 2

List of commonly used inference-based models of TCR-pMHC specificity partitioned by approach: sequence-based, structure-based, and hybrid.

methods discussed in this review can be classified into sequence-
based, structure-based, and hybrid models. Each category uses
different strategies to evaluate TCR-pMHC specificity, with
sequence-based models relying on sequence similarities, structure-
based models using three-dimensional structural information, and
hybrid models combining these strategies. Various models have
been developed to accomplish this, and their performance was
assessed based on model generalization and robustness. However,
the study found that these models struggle with generalization to
peptides not seen in the training data and that their performance
fluctuates depending on data size and balance, indicating that
predicting TCR-pMHC binding specificity remains a significant
challenge. Thus, additional high-quality data and innovative
algorithmic approaches are necessary for further advancements.

3.1 Sequence-based approaches

Arguably the greatest challenge in predicting TCR specificity
arises from the diversity of possible TCR and peptide combinations
relative to those that can be studied or even realized in a single
individual (38, 39). To experimentally identify relevant TCR-pMHC
pairs, pMHC tetramers are often used to experimentally identify
TCRs that interact with sufficient binding affinity. The affinity-based
screening of TCRs can be done in a high-throughput manner (40). In
addition to theoretical modeling, inferential statistical learning
provides a complementary approach for studying this problem by
imputing known (non-) examples of favored TCR-peptide
interactions interactions. These computational models (Figure 1A)
can be distinguished based on whether or not previously identified
TCR-pMHC interactions are used in training, which are given by
supervised and unsupervised learning approaches, respectively.

3.1.1 Supervised learning

Sequence-based prediction models refer to machine learning
algorithms designed to learn a predictive function that identifies

Frontiers in Immunology

informative features and from them accurately predicts the cognate
epitope of an input T cell receptor (TCR) with unknown specificity.
Features are learned based on a set of known examples and non-
examples of TCR-peptide pairs provided in a training dataset.
Capietto et al. (41) demonstrated that peptide mutation positions
matter in neoantigen prediction pipelines, and the use of this feature
led to improved neoantigen ranking. Other studies found that
immunogenic peptides have more hydrophobic AAs at TCR
interaction sites and that AAs molecular weight, size, and charge
are useful for TCR-pMHC complexes (42-44).Numerous
computational tools now exist that use known TCR and peptide
sequences to predict TCR-epitope interactions by binary
classification, including such as NetTCR (45), TCRex (46), TCRGP
(47),and ATM-TCR (48). Furthermore, there has been a progression
towards developing TCR-epitope binding prediction models that are
not limited to specific peptides, such as SwarmTCR (49), ERGO (50),
pMTnet (51), ImRex (52), TITAN (53), and TCRconv (54) which
instead utilize known binding TCRs to train the models. While these
models work well with peptides having an abundance of known TCR
interactions, they often struggle in predicting behavior for peptides
having few known interactions or those not included in the training
data, attributed to the large diversity of the interaction space. Many
approaches consider TCRs and peptides as linear sequences of AAs,
while others include a description of their three-dimensional
orientations during the TCR-pMHC interaction.

Each of the above cases utilizes different machine learning
procedures to achieve a variety of descriptions of TCR-pMHC
specificity. NetTCR implements convolutional neural networks
(CNN) (55, 56) in conjunction with multiple dense layers (Section
4) to learn the interactions between TCRs and epitopes associated with
the most common human MHC allele variant, HLA-A*02:01. This
method faces limitations due to the vastness of the TCR-pMHC space
and insufficient experimental training data, which challenge current
computational algorithms. ImRex, and TITAN are state-of-the-art
TCR-epitope binding prediction models utilizing CNNs. ImRex,
inspired by image processing CNNs, transforms CDR3 and epitope
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sequences into interaction maps. It considers the pairwise differences
of selected physicochemical properties of the AAs in the sequences,
making the maps interpretable as multi-channel images, and predicts
TCRepitope binding through a multi-layer CNN. ImRex’s strength
rests in its ability to recognize TCR-specific epitopes from unseen
sequences that resemble the training data, improving its generalization
performance for TCRepitope recognition. On the other hand, TITAN
employs a one-dimensional CNN with a contextual attention
mechanism (Section 4). It separately feeds encoded CDR3 and
epitope sequences into convolutional layers, uses context attention
layers for each, and concatenates attention weights. Significantly,
TITAN extends beyond simple encoding by employing SMILES
sequences for epitopes at the atomic level. In combination with
transfer learning, this sophisticated method expands the input data
space and enhances model performance. TITAN’s attention heatmaps
provide insights into biological patterns and suggest that data scarcity
in epitopes can implicitly treat them as distinct classes, which could
impact unseen epitope performance in complex models. Both models
apply feature attribution extraction methods to explore underlying
biological patterns.

TCRex utilizes a series of decision trees (57), which combines
with classifiers and ensemble regression trees, to build an epitope-
specific prediction model. While this method has been successfully
applied for data classification and regression, several challenges
involve a lack of generalizability to non-HLA A*02:01 cases and
susceptibility to overfitting. EpiTCR (58), which uses the Random
Forest algorithm, also integrates several crucial elements for
increased precision, can significantly mitigate these issues. These
include sequence encoding based on BLOSUMS62, zero-padding to
maintain sequence uniformity, and utilization of peptide-presenting
MHC data in the predictions, providing a comprehensive approach
to TCR-peptide specificity prediction. This is done by utilizing a
large dataset from various public databases (over 3 million), which
are encoded by a flattened BLOSUM62 matrix, and is known for
their high sensitivity and specificity in detecting such interactions.

Transitioning from this approach, another promising
methodology is presented by the Predicting T cell Epitope-specific
Activation against Mutant versions (P-TEAM) model (59). P-
TEAM, a Random Forest-based model, proficiently predicts the
effect of epitope point mutations on T cell functionality. It provides
quantitative predictions for altered peptide ligands and unseen
TCRs, showcasing high performance and potential applicability in
immunotherapy development. Several bioinformatic approaches,
including SwarmTCR, predict antigen specificity from sequences.
These tools optimize CDRs to enhance TCR specificity predictions
using labeled sequence data. With robust performance on both
single-cell and bulk sequencing data, it offers biologically
interpretable weights, providing crucial insights into immune
responses related to various conditions. TCRconv, a state-of-the-
art deep learning model, is designed for predicting TCRs and
epitope interactions. Using a protein language model and
convolutional networks, it identifies contextualized motifs,
improving the accuracy of TCR-epitope predictions. TCRconv,
applied to COVID-19 patients’ TCR repertoires, provides
enhanced understanding of T cell dynamics and disease
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phenotypes, highlighting potential applications in infectious
diseases, autoimmunity, and tumor immunology. TCRGP relies
on analyzing both & and J chains of the T cell receptor (TCR) in a
Gaussian process method in order to determine which CDRs are
crucial for epitope recognition. ERGO incorporates Long Short-
Term Memory (LSTM) (60) and autoencoder (AE) (61) models
(Section 4) on a variety of inputs, including the TCRo sequences
and the VJ genes for each TCR (50). Similarly, ATM-TCR predicts
the affinity between TCR and epitope based on a computational
model. According to this model, AA residues within TCR and
epitope sequences are considered in the context of how they interact
with each other using a multi-head self-attention network (Section
4) (62). The TCR-pMHC binding prediction network (pMTnet)
approach is a computational model that applies transfer learning
(63) (Section 4), a form of deep learning that leverages knowledge
gained from prior tasks, to predict TCR binding specificities for
neoantigens and other antigens presented by class I MHCs. This
model is directed at addressing the challenge of predicting TCR-
antigen pairing and has demonstrated significant advancements
over previous methods. As validated through the characterization of
TCR-pMHC interactions in human tumors, pMTnet provides
superior predictive accuracy. It effectively distinguishes between
neoantigens and self-antigens, evaluates TCR binding affinities, and
calculates a neoantigen immunogenicity effectiveness score (NIES).
This ability allows for a comprehensive analysis of tumor
neoantigens’ role in tumor progression and immunotherapy
treatment response, emphasizing the method’s important
contribution to understanding immunogenic tumor antigens and
their relationship to T cell proliferation. On the other hand, pMTnet
exhibits inferior performance in the few-shot settings and fails to
recognize TCR binding to novel peptides in zero-shot settings,
despite their robust performance in settings with an ample volume
of known TCR binding data. Conversely, the effective
implementation of the TITAN model, trained specifically with
COVID-19 data using peptides with sparse known binding TCRs,
is limited by the breadth of available empirical data, thus posing a
significant hurdle to the prediction of TCR interactions with new or
rare peptides.

Another perspective by Meysman et al. (64) compares TCR-
PMHC binding approaches and concludes by stressing the need for
an independent benchmark. The authors find improvements in
predictions accuracy when including CDR1/2 information, but leave
open a complete investigation of the impact of data imbalance with
respect to the biological context of included training examples, size, and
overtraining on model performance. The lack of standardization for
these factors complicates TCR-pMHC binding prediction and
comparative benchmarks. Subsequent evaluations by Meysman’s
group underscored the unpredictability of unseen epitope
predictions, reinforcing the call for advanced models and rigorous,
standardized evaluation protocols (65).

In this application, T cell receptor (TCR) sequences are
transformed into numerical representations through a process
called encoding. Encoding methodologies commonly utilize
physicochemical properties or one-hot encoding, which is a
technique where each unique AA in a sequence is represented by
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its own unique binary code, making each one distinct for
computational models. The immuneML (66) platform extends the
capabilities of earlier methods like DeepRC (67), GLIPH2 (68), and
TCRdist (3) to train and evaluate machine learning classifiers at
the receptor level, and it accomplishes this by incorporating a
variety of encoding methods for sequence data, including k-mer
frequency decomposition, one-hot encoding, disease-associated
sequence encodings, and repertoire distance encodings,
facilitating comprehensive sequence analyses. This platform offers
a variety of models, encompassing K-Nearest Neighbours (KNN),
logistic regression, random forests, and the TCRdist classifier,
among others, providing a versatile toolkit for receptor analysis.
The inclusion of the TCRdist classifier allows for meaningful
distance measurements between receptors, taking into account the
unique characteristics of TCRs, like their exceptional variability and
adaptability in recognizing different antigens. These models,
therefore, provide a versatile toolkit for receptor analysis. The
enhanced reproducibility, transparency, and interoperability
offered by ImmuneML effectively overcomes traditional challenges
in Adaptive Immune Receptor Repertoires (AIRR) machine
learning. The review (69) provides a comprehensive overview of
other advanced methods and computational tools emerging in this
area of research, which facilitate a more complete and nuanced
understanding of T cell receptor sequences and their functional
implications. These include V(D)] recombination (70), single cell
sequencing (71), multimodal experiments (72), flow cytometry (73),
mass cytometry (CyTOF) (74), RNA sequencing, feature barcoding,
and cell hashing.

A persistent challenge for these approaches is that such models
often make incorrect predictions because of limited validated pMHC-
TCR interaction data (38, 39, 75). According to Deng et al.’s study,
the effectiveness of these models is significantly affected by the data
balance and size (75). Furthermore, the models exhibited limitations
in generalizing to untrained peptides, emphasizing the need for
improved data collection and algorithmic improvements. Similarly,
epitope binding affinity models such as TCRGP and TCRex cannot be
used to investigate novel or understudied systems since they require
that a new model be constructed for each epitope once there are a
sufficient number of identified cognate TCRs. NetTCR, ERGO, and
ATM-TCR models are all capable of predicting novel or rare epitopes,
but they perform poorly overall as evaluated by the area under the
receiver-operating characteristic curve (ROC-AUC) metric. A
promising approach that addresses this issue is the Pan-Peptide
Meta Learning (PanPep) (76), a meta-learning method combined
with a Neural Turing Machine (NTM) (77). Meta-learning allows for
the model to learn from a set of tasks and then apply insights gained
to predict binding specificity for new and unknown tasks, such as
predicting binding specificity for neoantigens or exogenous peptides.
Using a NTM adds external memory to the system, ensuring
retention of learned tasks and thereby improving prediction
accuracy for TCR binding specificity to unknown peptides. Despite
meta-learning’s effectiveness when there are few examples available,
its reliance on labeled data can limit its application. A powerful
alternative to manual labeling, unsupervised learning is capable of
extracting meaningful patterns from unlabeled data.
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3.1.2 Unsupervised learning

In contrast to supervised learning, unsupervised learning does
not rely on the availability of known TCR-peptide pairs, instead
learning to group TCR, antigen, or HLA inputs based on statistical
variation inherent in their sequences. Consequently, a number of
approaches have attempted to train unsupervised models. The
GLIPH (Grouping Lymphocyte Interactions by Paratope
Hotspots) method utilizes high throughput data analysis to
identify distinct TCR sequences that recognize the same antigen
based on motifs shared in their CDR3 sequences (78), has a
significant place in TCR-antigen interaction studies, and enhances
TCR specificity prediction when combined with other resources,
such as the V(D)] database. This clustering assists in pinpointing
known TCR specificities. It’s crucial, though, to understand the
inherent constraints of GLIPH, including challenges in managing
large datasets and the model’s reliance on other resources for direct
antigen interaction predictions. Understanding the specificity of the
T cell repertoire in this context requires the identification of related
systems from a small training subset in a high-dimensional space.

Given the absence of a priori identified specificity groups, to
clustering methods may outperform traditional supervised
classification schemes. In comparison to randomly grouped
clones, TCRs within the cluster exhibited highly correlated gene
expression and shared a common specificity. TCRs are clustered by
GLIPH based on two similarity indexes: 1) global similarity, which
refers to the difference between CDR3 sequences up to one AA, and
2) local similarity, which refers to the fact that two TCRs share a
common CDR3 motif of 2, 3, or 4 AAs (enriched relative to that of a
random subsampling of unselected repertoires). Moreover, the
GLIPH algorithm, by adeptly recognizing shared motifs within
the CDR3 of TCR sequences, has a significant place in TCR-
antigen interaction studies and enhances TCR specificity
prediction when combined with other resources, such as the V(D)
J database. This combination assists in pinpointing known TCR
specificities. It’s crucial, though, to understand the inherent
constraints of GLIPH, including challenges in managing large
datasets and its reliance on other resources for direct antigen
interaction predictions

TCR sequences with a shared epitope specificity carry motifs
that are statistically enriched in the peptides they mutually
recognize. A method that builds on GLIPH to include motif-
based clustering (GLIPH2) (68) is fast but lacks specificity, while
clusTCR (79) is faster because it encodes CDR3 sequences using
physiochemical features by representing them as integers with an
assigned Hamming distance. This comes with the tradeoff of lacking
TCR variable gene information, and thus clusTCR has lower
clustering purity defined as the proportion of items in a cluster
that belong to the most common category or group. To address this
challenge, the Geometric Isometry-based TCR Alignment
Algorithm (GIANA) (80) transforms CDR3 sequences using the
Nearest Neighbor (NN) search in high-dimensional Euclidean
space to solve the problem of sequence alignment and clustering.
In these methods, similar features are found among TCRs
recognizing the same target. Similar TCRs can be grouped/
clustered by predicting which targets they will recognize in this
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way. Various additional factors, including alignment of T cell
receptors and identification of TCR-antigen interactions using
high-throughput pMHC binding data, are also considered in
other methods (13, 81).

The identification of Tumor-Associated Antigen (TAA)-TCR
specificity as a subset of the overall predictive task has historically
been challenging in large part owing to the fact that a majority of
TAAs are point-mutated self-peptide. Given the tremendous
clinical value of reliably predicting TCR-TAA specificity, several
algorithms have been developed for this specifically. In one case,
called TCR Repertoire Utilities for Solid Tumors (TRUST),
assembles hypervariable CDR3 regions of TCRs, and then applies
a clustering method called immuno-Similarity Measurement using
Alignments of Receptors of T cells (iSMART) to group TCRs based
on their antigen specificity (81). Despite these advances, no
systematic evaluation of these methods has been conducted on
large and noisy datasets, and experiments to reduce nonspecific
multimer binding, validate correct folding, and improve signal-to-
noise ratios are still required. Integrated COntext-specific
Normalization (ICON) (13) is a notable development in this field
that identifies TCRantigen interactions in high-throughput pMHC
binding experiments. The experimental approach consists of initial
filtering of T cells based on single-cell RNA-seq, followed by
background noise estimation via single-cell dCODE-Dextramer-
seq, and then lastly TCR identification via paired o/ single cell TCR
sequencing. The TCRAI neural network predicts and characterizes
these interactions and in doing so reveals conserved motifs and
binding mechanisms. The combination of ICON and TCRAI leads
to the discovery of novel subgroups of TCRs that interact with a
given pMHC via diverse mechanisms.

Although many clustering-based approaches have been
developed, conventional clustering methods usually perform
poorly on high-dimensional data often as a result of inefficiencies
in the defined similarity measures (82-84). On large-scale datasets
required for studying TCR-pMHC specificity, these methods are
generally computationally formidable. Consequently, raw data is
often mapped into a more suitable feature space where existing
classifiers can separate the generated data more easily, followed by
dimensionality reduction and feature transformation. A number of
existing transformation methods have been applied to this problem,
including linear methods like Principal Component Analysis (PCA)
(13) as well as non-linear strategies such as kernel methods and
spectral methods (85). Clustering methods often encounter
difficulties when dealing with complex structures owing to the
fact that their clustering criteria are based on simplified criteria,
in contrast to Feed-Forward neural networks and Deep Neural
Networks (DNNs), that provide highly non-linear transformations
of data that can be used to cluster the data. Further advancements in
artificial intelligence have led to deep learning surpassing other
statistical methods in many domains (86-91). Unlike traditional
machine learning algorithms, which often struggle to assimilate
complex features from data, the success of deep learning relies on
understanding and interpreting data, which occurs by first learning
simple patterns at initial levels of the algorithm and complex
patterns at higher ones (92).
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Several developed approaches utilize deep learning in an
unsupervised manner, and although we discuss the specifics of the
deep learning algorithms in Section 4, we will touch briefly on several
here. One area where unsupervised deep learning applied to identify
meaningful sequences includes the application of Natural Language
Processing (NLP) algorithms based on word embedding, such as
Word2Vec (93) and ProtVec (94). These algorithms offer a novel
approach to understanding the relationship between TCR sequences
and antigen binding. By leveraging the concept of word embedding
from NLP, they are capable of capturing semantic or functional
similarities among TCR sequences, much like similar words in a
language (95). Therefore, if two TCR sequences share common motifs,
it suggests they may bind to similar antigens. Consequently, these
algorithms are valuable tools in immunoformatics, converting raw
TCR sequence data into a format conducive to modeling and
predicting TCR-antigen interactions. Word2Vec interprets non-
overlapping 3-mer sequences of AAs, while ProtVec represents
proteins as the sum of overlapping sequence fragments of length k.
These approaches had several limitations, including limited
interpretability due to the lack of biophysical meaning of three-
residue segments of protein sequences, and overlapping models
often do not out-perform non-overlapping models (94). Recurrent
Neural Networks(RNN) (96) were proposed to improve these initial
schemes. The RNN model is a sequence-based representation method
averaging over the representations of each residue to produce a fixed-
length real representation of arbitrary-length protein sequences. This
scheme is further improved by implementing a transformer, which
differs from RNNs by its incorporation of parallel task assignment.
Models based on the transformer were found to be superior to
traditional LSTM-based approaches (a variety of RNNs introduced
in Section 3.1 and discussed further in Section 4) (60) when applied to
tasks such as TCR-pMHC interactions, protein docking, and protein
structure prediction, since in these cases the RNN model struggles to
capture long-range relationships and does not include parallelizability
(97, 98).

More recently, AlphaFold, an artificial intelligence system
developed by DeepMind that predicts protein structure using
primary sequence information, has been applied to the TCR-
pMHC specificity problem (99). This method is a transformer
model that utilizes an attention mechanism in order to operate
within each row of a Multiple Sequence Alignment (MSA), which
generally the alignment of multiple protein sequences of similar
length to maximize the positional correspondence of homologous
residues across these sequences. This attention mechanism (100)
allows the model to focus on specific parts of the sequence, providing
a more comprehensive understanding of the relationship between
residues and protein folding. The ultimate output is in the form of an
accurate 3-dimensional structure that can be assessed for binding
specificity. We note that because of this, AlphaFold is a pure
sequenced-based prediction model since no structural data is used
as input (101).

Lastly, AEs and Variational Autoencoders (VAEs) (102), which
stochastically map the input space to the latent space, have
surpassed former techniques in the field of sequence-based
representation. In contrast, the VAE model is designed to capture
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the dynamics of the peptide-MHC binding process and to identify
per-residue binding contributions by providing a stochastic map
between the input and latent space. VAEs in peptide-MHC binding
optimization have great potential for advancing the design of
vaccines and immunotherapies (103). One recent study, TCR-
Epitope Interaction Modelling at Residue Level (TEIM-Res)
(104), uses the sequences of TCRs and epitopes as inputs to
predict pairwise residue distances and contact sites. An epitope
feature vector generated by an AE is fed into an interaction
extractor for global epitope information. Using this approach, the
method was able to predict TCR-epitope interactions at the residue
level, outperforming existing models and demonstrating versatility
in mutation and binding pattern analyses.

In addition to supervised and unsupervised learning
methodologies, negative data plays a crucial role in enhancing
model accuracy and preventing overfitting. By providing
contrasting data, negative data aids in identifying patterns and
trends in positive data, leading to a more enriched learning process
(105). However, while useful for TCR-epitope binding prediction,
this study also uncovers the potential pitfalls of its application. The
bias it introduces can lead to a dip in model performance in
practical scenarios. For instance, the PanPep model was observed
to underperform with shuffled negative data. As a result, it is
imperative to seek more effective strategies to preserve model
practicality while also enhancing applicability, including the
uniform employment of a negative sampling strategy during both
the training and testing phases (106).

3.2 Structure-based approaches

Whereas sequence-based approaches contain no explicit spatial
information on the interacting system, several alternative strategies
have leveraged structural knowledge of the TCR-pMHC interaction
to aid in understanding specificity. When available, structural
templates couple primary sequence data with significant spatial
information of the interacting pairs, thereby enabling sophisticated
computational methods for representing and analyzing structures
(Figure 1B). Additionally, two models have been developed to
explain the T cell’s ability to discriminate between self and
non-self pMHCs that utilize the identification of a specific
conformational change in the TCR complex and kinetic
thresholding (23-25). Direct measurements of signaling molecules
and pMHC-TCR ligand interactions are used to develop a model
that accounts for the characteristics of T cell signaling in response
to antigens.

Despite a large abundance of protein crystal structures
(currently over one million in the Protein Data Bank), the
number of identified TCR-pMHC crystal structures is quite
limited (on the order of hundreds of TCR-pMHC complexes),
likely due to the difficulty in producing these complexes in large
quantities and in conditions suitable for crystallization.
Computational methods for structure representation and analysis
include Molecular Dynamics (MD) simulations, homology
modeling (107), machine learning, alchemical free energy
perturbation (108), and hybrid approaches.
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MD simulations have also been used to establish a detailed, all-
atom description to better understand TCR-pMHC specificity (109,
110). MD analysis provides an in-depth, mechanistic understanding
of TCR and pMHC interactions. However, due to the high
computational cost of these approaches, an MD-derived
understanding of TCR-pMHC specificity is at present restricted
to a small collection of TCRs and peptides in a given analysis.
Nonetheless, these insights are critical to predicting TCR-pMHC
specificity, as they allow for an understanding of the molecular
behaviors and relationships that underpin this complex biological
interaction. In this way, MD simulations effectively bridge the gap
between fundamental biophysical interactions and the
computational prediction of TCR-pMHC binding. This approach
begins by generating an initial structure, which can be achieved
through side-chain substitution, homology modeling (107), and
ligand-protein docking (111), and proceeds using time-dependent
simulations of atomic motions in the system, MD simulations
account for both the main-chain conformational flexibility and
the solvation and entropy effects. The simulation protocols
themselves can be accelerated through the use of coarsegraining,
increased masses (112), virtual sites (113), n-bead models (114), or
the movement of rigid protein regions (115). A variety of pertinent
features, including RMSD, RMSF, Solvent-Accessible (SASA), PCA,
and hydrogen bonds can be analyzed based on MD simulations, and
geometric approaches (116) have also been developed to analyze the
binding orientation between the heavy and light chains of
antibodies and the TCR o and f chains. Collectively, this
approach can provide highly detailed information on the
dynamics of TCR-pMHC systems. However, the high
computational cost of performing full MD simulations limits
feasible analyses to several TCR-pMHC pairs (117).

Molecular Mechanics (MM) provides a complementary
approach to study the bound TCR-pMHC complex using
molecular docking techniques. The molecular docking process has
two key applications: binding mode prediction and virtual
screening. The former involves optimizing the 3D conformation
of a peptide when it binds to its target receptor, while the latter
entails evaluating a vast number of potential peptides to identify
those that can bind to the target receptor (118). In studying the
TCR-pMHC interaction, both MD and MM approaches are both
challenged by cases having significant peptide flexibility, since a
peptide with more flexible bonds can adopt more conformations. In
addition to the position and orientation of the peptide inside the
receptor’s binding cleft, docking methods must consider these
alternative conformations in order to determine the most suitable
binding mode.

The field of MM utilizes simulation-based prediction methods,
which involve tracking the time evolution of a molecular system
through the use of an energy potential. The quality of the potential,
or score function, plays a crucial role in protein structural modeling,
as it describes the potential energy landscape of a protein. Score
functions may also contain knowledge-based terms to distinguish
native from non-native conformations. MD or Monte Carlo (MC)
simulations with advanced force fields or score functions can
accurately reproduce the statistical behavior of biomolecules. The
MM-based task of learning a force field with predictive utility has
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recently been augmented by incorporating deep learning-based
approaches. These approaches represent each atom’s chemical
environment through graph convolutions (119) and by doing so
aim to enhance the accuracy and reliability of MM predictions,
through the capture of complex atomistic relationships in local and
global chemical environments and generation of transferable,
interpretable features that facilitate end-to-end learning. These
approaches can broadly be categorized into two categories: graph-
based and fingerprint-based.

Graph-based approaches construct a mathematical graph of
molecules, containing atoms as nodes and chemical bonds as edges.
They maintain structural and chemical information and preserve
topological complexity to facilitate more detailed and complex
molecular structural analyses, which can be used to predict
chemical reactions and molecular docking. In contrast,
fingerprint-based approaches represent molecules as binary digits.
While these methods provide a computationally efficient, fixed-
length representation, they simplify the molecular structure and
may lose fine-grain detail about the exact structure and topology.
Dual methods that combine both strategies also exist and have been
applied to studying the TCR-pMHC interaction. Collectively, these
approaches have been shown to enhance the accuracy of molecular
modeling in describing simple molecular pairs and possess potential
for describing more complex biological processes, including protein
complex interactions. The current methodology for computational
Protein-Protein Interaction (PPI) prediction is largely based on
deep learning methods.

One example of a dual methodology is a multiscale graph
construction of HOLOPROT (120), which connects surface to
structure and sequence, demonstrates the utility of hierarchical
representations for binding and function prediction. Using
geometric deep learning and mesh CNN (55, 56) embed protein
surface patches into fingerprints for fast scanning and binding site
identification, eliminating the need for hand-crafted or expensive
pre-computed features. Importantly, these methods do not perform
structural blind docking, which involves determining the binding
site, orientation, and location of the two molecules, and internal
conformational deformations during binding. Consequently, they
capture and predict molecular interactions based on effective
molecular representations and efficient learning algorithms,
without explicitly simulating binding dynamics.

Another example includes Graph Deep Learning (GDL) methods.
While they are reliant on known structural data, GDL approaches offer
unique advantages in capturing the complex, non-linear relationships
between features, making them potentially valuable for predicting
protein structures (121), interactions (122), and functions (123).
AlphaFold has revolutionized PPIs modeling with its sophisticated
end-to-end approach, which outperforms traditional docking methods.
In order to accurately model complex interactions, such as T cell
receptor-antigen complexes, further enhancements are needed. This
challenge might be addressed by building upon AlphaFold or
integrating it with geometric deep learning (124).

Notably, AlphaFold’s prowess lies in its ability to deduce a
protein’s 3D configuration from its primary amino acid sequence.
From this, AlphaFold’s EvoFormer module learns complex patterns
of AA interactions and predicts the distances and orientations of
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those interactions in 3D space, with the goal of essentially providing
an estimated structural representation. Moreover, it uses a
structure-based method for refining the coordinates of all heavy
atoms within a protein (101). Because AlphaFold can generate
detailed structural predictions from primary sequence information
alone, its use in identifying relevant TCR-pMHC interactions is
particularly intriguing. A recent approach utilizes a modified
version of AlphaFold to resolve correct and incorrect peptide
epitopes in TCR-pMHC interactions (125). This study suggested
that supervision is required for appropriately applying the
AlphaFold approach to TCR-pMHC systems: In comparison to
the default AlphaFold (126), AlphaFold-Multimer (99), designed
specifically to interrogate protein-protein structural complexes,
more capably predicts TCR-pMHC binding specificity at a lower
computational cost and higher accuracy.

4 Deep learning approaches

Deep learning, a machine learning subclass, is dramatically
transforming the exploration and comprehension of TCR
specificity. Machine learning excels in pattern recognition and
prediction, making it versatile in applications like predicting cell
types or antibody affinity based on gene expression profiles.
However, the laborious feature extraction process, particularly
with vast, feature-rich data, is a limitation. Deep learning
alleviates this with an automated approach for feature extraction.
Its layered structure facilitates capturing complex, high-
dimensional data patterns, despite its interpretability challenges.
CNN and RNN, two key Deep learning models, find varied
biological applications, from image processing to protein
engineering. Deep learning is poised to revolutionize TCR
specificity understanding, and possesses the potential for ushering
in the design of optimized immune treatment strategies.

4.1 Deep learning architecture

In contrast with the computational approaches discussed in
detail thus far, which use physical equations and modeling to
predict data, machine learning algorithms infer a relationship
between inputs and outputs by learning from a set of hypotheses.
This can be described by a collection of K training samples that may
contain features x in an input space X’ (e.g. AA sequences), and
corresponding labels y in output spaces ) (e.g. pairwise residue
distances), where {xj,yj}jl\il are sampled independently and
identically (ii.d) from some joint distribution. Additionally, an
identified function f: X — ) maps inputs to labels, and a
corresponding loss function [: ) x ) — R measures how far f(x)
deviates from its corresponding label y. In supervised learning, the
goal is to find a function f that minimizes the expected loss, Ex)-p
[I(f(x),y)], for (x,y) jointly sampled from. Parameterization of the
hypothesis class depends on the allowable choice of the network f in
some allowable space F.

Data analysis and deep learning predictions often overcome the
traditional challenges of feature extraction in ML by recognizing
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relevant features, constructing hierarchical representations,
handling large datasets effectively, providing end-to-end learning,
and facilitating transfer learning, overcoming the limitations of
classical approaches. High-dimensional data tasks can be efficiently
handled with deep learning algorithms using hierarchical artificial
neural networks. However, the interpretability of neural networks
and deep learning can be a problem, due to their complexity, non-
linearity, and the lack of physical interpretation and transparency
due to their black-box nature. We will describe in detail the use of
several common architectures (Figure 3), such as CNNs, RNNs,
VAEs, and Generative Adversarial Networks (GANs), which have
been developed for different applications, including biological
problems such as cancer immunology (127).

4.1.1 Convolutional neural networks

CNNis are a subtype of deep learning network architecture that
have historically performed well on two-dimensional data with grid-
like topologies, including images, and this approach is also applicable
to other problems requiring shift-invariance or covariance (128). In
order to capture this translational invariance, CNNs use convolutional
kernels (feature extraction) for layer-wise affine transformations.
There are three factors involved in the learning process of a CNN:
sparse interaction, parameter sharing, and equivariant representation
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(129). CNNs utilize convolutional layers for sparse interaction,
enabling efficient processing of high-dimensional data while
reducing computational demands. Parameter sharing across input
data locations decreases required parameters, enhancing training and
inference efficiency. Lastly, equivariant representation ensures the
network’s output remains invariant to input transformations,
promoting generalization across diverse input variations. CNN has
been applied to predict protein residue distance maps based on AA
sequences (130) (Figure 3A). Convolutional operation = with respect
to the Kernel W and 2D data X (in this case, represented by residue-
residue distance maps from AA sequences) can be expressed as
X«W)(i, ) = D> X(m, m)W(i — m,j - n), (3)
m n

Where (X * W)(i,j) denotes the convolution output at position
(i,f), and X(m,n) and W(i — m,j — n) represent the value of the input
X at position (m,n) and the parameter of the kernel at position (i-m,
j—n), respectively. One important variation on this general scheme
that is relevant to the TCR-pMHC problem, called Residual
Network (ResNet) (131), includes skip-connections between
layers to recover spatial information lost during down-sampling.
AlphaFold is one example of such an approach that uses ResNets to
predict inter-residue distance maps of primary AA sequences (132).
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A schematic illustration of various deep learning architectures employed for TCR-pMHC interaction prediction: (A) 2D CNN-based prediction of
TCR-pMHC interactions: The pairwise features of protein sequences are encapsulated in a 2D matrix representation, which serves as input for the
2D CNN. The CNN systematically samples the entire protein pairwise feature space, processing the data to facilitate the learning of TCR-pMHC
interactions, (B) RNNs utilize auto-regressive learning to generate sequences, which can be applied in the context of TCR-pMHC interaction
prediction, (C) In the GAN framework, a mapping from a prior distribution to the design space can be obtained through adversarial training, enabling
the generation of novel TCR-pMHC interaction predictions, (D) VAEs can be jointly trained on protein sequences and their properties to construct a
latent space that correlates with the properties of interest, for example, the TCR binding capacity of unevaluated target peptides.
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CNN s can also be used to treat 3D protein structure prediction
as a computer vision problem by voxelizing a given structure. One
example is DeepSite (133), which uses voxelized representations of
different atom types and deep CNNs to predict binding sites.
Despite DeepSite’s potential to capture more interactions using
voxelized representations and larger datasets, its performance
appears lower than an alternative, template-free machine learning
method (P2Rank) that applies clustering to score regions of a
protein’s solvent accessible surface to identify candidate binding
pockets (134). This discrepancy is possibly due to the CNN
approach requiring even larger training dataset or differences in
training set distributions. Yet another method employs a CNN-
based segmentation model inspired by U-Net to predict binding
sites in a single step (135). In general, U-Net is a CNN architecture
originally designed to segment biomedical images. It utilizes
symmetric encoder-decoder structures with skip connections
between mirrored layers in both encoding and decoding paths,
which allows accurate localization and the preservation of detailed
information. In this method, a three-dimensional grid is generated
around the protein, and each voxel within the grid is assigned a
probability of being part of a binding pocket. The U-Net-inspired
approach offers a more streamlined prediction process compared to
traditional methods and has shown improved performance in
detecting binding when compared to DeepSite, another
prominent tool in the field. Overall, both P2Rank and U-Net-
inspired methods offer unique advantages for the identification and
prediction of protein-ligand binding sites.

4.1.2 Recurrent neural networks

RNNss are neural networks that operate on sequential data (96),
such as time series data, written text (i.e., NLP), and AA sequences
(Figure 3B). The RNN algorithm can be represented by in the
following mathematical setup, where a hidden state B s
recursively solved using an initial value h” and sequential data

(1)’x(2)

[x o™, via

B = 0 (x(n)’x(n—l), m,x(l))x(l)) _ g(h(fl—l),x(ﬂ); 0).

Here, 0 represents the RNN parameters, which include the weights
and biases associated with the network’s connections, learned during
the training process. The function g represents the update function
describing the transformation from one position to another and utilizes

the previous hidden state A", current input x

, and 6 parameters to
produce the updated hidden state 1. 2 represents the cumulative
transformation for position #n. The hidden state vector contains all
previously observed information at position i. Using this approach,
sequential data of variable length can be fed to an RNN. This approach
can be susceptible to a vanishing gradient, complicating optimization,
and the ‘explosion problem’ (the error signal decreases or increases
exponentially during training), potentially affecting the predictive
accuracy and robustness of TCR-pMHC model. Specifically, the
recurrence relation h™ = g(h(”_l),x(");e) in this context becomes
especially vulnerable. When back-propagating through time over
multiple steps, the gradient with respect to the loss function L, which
measures the discrepancy between predicted and actual outcomes, can
either shrink or grow exponentially. This behavior is due to the
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repeated multiplication by the weight matrix, as described by oL/
oh"" ™9 If the network’s weights, in the context of TCR-pMHC
modeling, are not properly initialized or regularized, it can lead to
gradients significantly diverging from the ideal range. Consequently,
LSTM networks (60), which are commonly used to mitigate this (136).
An example of an LSTM approach in the context of specific TCR-
Peptide binding prediction is using embedding vectors of AAs to
construct a single vector, which can then be used as an LSTM (137) to
learn long-range interactions within AA sequences; however, their
efficacy depends on the formulation of the problem, the dataset
characteristics, and the network architecture. In some situations,
alternative deep learning approaches, such as CNNs and transformers,
may be more applicable.

As an alternative to the recurrent network architecture, the
attention mechanism is a method that can be used to improve the
information processing ability of the neural networks (100). This
mechanism is inspired by human biological systems that process
large amounts of information by focusing on distinct parts and works
by preventing the system from processing available information
simultaneously (62). Attention-based models have several
advantages over RNN models, including their parallelizability and
ability to capture long-range relationships. The transformer model
(62), a groundbreaking deep learning architecture is characterized by
its self-attention mechanism, which enables the processing of input
sequences in parallel rather than sequentially, distinguishing it from
traditional attention mechanisms that typically rely on recurrent or
convolutional layers. AlphaFold-Multimer (99) is one example of a
transformer model that employs the attention-based model to
generate models of TCR-pMHC interaction, which can then be
used to distinguish correct peptide epitopes from incorrect ones
with substantial accuracy. In directing these approaches to TCR-
pMHC data in the future, these methods could be particularly helpful
for predicting a target residue or the desired residue-specific
properties of a target residue from the AA sequence of a protein.
For example, transformer-based models have already been used to
generate protein sequences conditioned on target structure and learn
protein sequence data to predict protein-protein binding
interfaces (138).

4.1.3 Variational autoencoder

The AE neural network is an unsupervised learning algorithm
based on backpropagation that sets its target values equal to the
input values (61). This is typically accomplished by mapping input
to latent space in the encoder and reverse mapping in the decoder
(Figure 3D). The latent space’s dimension is less than the dimension
of the original input and is constrained in some way (for example,
by sparsity). In this framework, one assumes a set of unlabeled
training vectors, {xD x® 13 1 where xX? € R". AE attempts to
approximate the identity function in order to produce output y that
is similar to x with respect to a loss function L: n

1o o
6 = argmin— S L(x?, y1")

yoepr Mizl

(4)

In one AE application directed at TCR-pMHC interaction
prediction (139), researchers predicted PPIs from AA sequences
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in order to identify key antigenic features to gain a more detailed
understanding of the underlying immune recognition process.

VAEs (102) build on AEs by providing a stochastic mapping
between the input space and a lower dimensional latent space,
which is particularly useful when the input space follows a complex
distribution. The latent space distribution typically takes a much
simpler functional form, such as a multivariate Gaussian.
Variational Inference (VI) (140) is a machine learning technique
used in VAEs that approximates complex probability densities
through optimization, allowing for efficient learning and data
compression in the transformed latent space. Comparatively, it is
faster than classical methods, such as Markov chains and MC
sampling. In the VI method, the stochastic encoder is trained so
that it approximates the true posterior distribution pg(z|x) of the
representation z given the data x with parameters 6, by means of the
inference model g4(z|x) with parameters ¢, and weights
parameterized by the data. In contrast, a decoder gives an
estimate of the data given the representation, py(x|z). However,
direct optimization is not computable; thus, training is done by
maximizing the evidence lower bound (ELBO), Ag 4(x), which gives
a lower bound on the log-likelihood of the data:

App(x) = By 10108 po(x|2) — Dy (94 (2] %)l Ipe(2lx)  (5)

where in general B,y (-|) [og pg(z|x) represents the expected value
of a function log pg(z|x) with respect to the conditional distribution
qy(z]x), which measures the average value of the function log py(z|x)
when considering all possible values of z, weighted by the probabilities
assigned to them via g,(z|x). Diz(qsl[pe) is the Kullback-Leibler
divergence quantifying the distance between two distributions g, and
Pe»> which represents the similarity of the latent space distribution with
the target distribution p(z). An example of VAE prediction in the TCR-
PMHC interaction prediction field includes the CASTELO approach,
which was used in combination with MD simulations to identify
mutated versions of a known WT peptide that lead to enhancements in
TCR-pMHC binding (103). Future applications of VAE-based
prediction schemes will likely make an impact on describing TCR-
pMHC interactions in combination with other preexisting strategies.

4.1.4 Generative adversarial networks

GANSs (141) are an emerging technique for both semi-
supervised and unsupervised learning (142) that provide a
method to obtain deep representations without the necessity to
employ extensive training data annotations. In contrast to VAEs,
GANS are trained through adversarial games between two models
or networks (Figure 3): a generator network, G, which maps from
latent space R of dimension |z], to the space of data, G:G(z) —
RM, where z € Rl is a sample from latent space or simple
distribution p,(z) (e.g. Gaussian), x RM is a data-point, D is a
discriminator function that maps an example to the probability that
the example belongs to the real data distribution rather than the
generator distribution (fake data), D:D(x) — (0,1). This game-
based setup trains the generator model G & G by maximizing the
error rate of the discriminator, D, so that the discriminator is fooled.
On the other hand, the discriminator D & D is trained to recognize
fooling attempts. It is expressed as the following objective (143):
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rggb anEaé(V(D, G) = Exeppu® [log D(x)] + E, .2 [log (1 - D(G(2)))] -
(6)

In training, this loss function is optimized stochastically. Both
the generator and discriminator are trainable via Standard Gradient
Descent (SGD) algorithms. The discriminator can be updated M
times for every generator update. After training, synthetic data is
created using only the generator network.

GANSs have been making rapid progress in continuous domains,
but mode collapse and instabilities can occur when training this
GAN objective and has made analyzing discrete sequences a
significant challenge. One variation, referred to as the Wasserstein
GAN (WGAN) (144, 145), introduces a penalty to constrain the
gradients of the discriminator’s output, resulting in a more stable
and trainable model. While GANGs utilize a sigmoid function in the
last layer for binary classification, the WGAN approach removes
this function to approximate the Wasserstein distance (146), using
Lipschitz discriminators: namely, that for discriminator function D
there exists a constant L such that |D(x) — D(y)| < L||x — y|| for any
two points x and y in the input space. This ensures that the gradient
of the discriminator’s output with respect to its input is bounded by
some constant K : || V(D(x)) || < K.

GANSs can be used in protein modeling to produce new protein-
like folds by learning the distribution of protein backbone distances. In
one application, one network, G, generates folds, while a second
network, D, distinguishes generated folds from fake ones (147).
While WGAN models have not yet been widely applied to study
TCR-pMHC specificity, they have been used to generate genomic
sequence data (148). While their optimization behavior is generally well
behaved, WGANSs can exhibit undesired behavior in some applications.
For example, in generating sequences containing particular motifs in
the above application, in some cases, a strong motif match appeared
twice in the same generated sequence because the final predictor score
was insensitive to the presence of two motifs (the best match is used).
Biologically, such sequences can be undesirable. Other technical issues
that impact GAN approaches include unstable objective functions,
mode collapse, variable length structure generation, conditioning
difficulty, and the need to sample from a distribution instead of
predicting a single output (149), and various approaches (144, 145,
150-153) have attempted to address these issues. GANs have
influenced the field of sequence design, both when conditioning
structural information (154) and when not (155, 156).

Diffusion models, an alternative to GANs, address many of
these issues. Diffusion models are a class of latent variable models
modeling the data generation process as iterative denoising of a
random prior. They use a specific parameterization of the
approximate posterior distribution that can be interpreted as an
unobserved fixed prior diffusing to the observed posterior
distribution (157). The diffusion model addresses some
limitations of GANs by enabling explicit density estimation,
reducing the mode collapse problem often seen in GANs, and
providing more stable training procedures.

Due to several key differences, data-driven generative modeling
methods have not had the same impact in the protein modeling
setting as in the image generation setting. The first difference between
proteins and images is that proteins cannot be represented on a
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discretized grid that is amenable to the straightforward application of
generative models. Inconsistencies in the predictions of the pairwise
distance matrix of a protein’s atoms lead to nontrivial errors when
optimization routines are used to recover the final 3D structure when
using existing models (158). Furthermore, proteins are not naturally
oriented in a canonical manner like images. Therefore, rotationally
invariant methods must account directly for this factor of variation in
model weights. This reduces the amount of effective model capacity
that can be dedicated to structural variation.

5 Hybrid approaches

In modeling natural systems, the exponential family of pairwise
models is an important class of distributions to consider, which
enjoys mathematically interpretable forms and is sufficiently general
to include many of the common distributions, such as Gaussian,
Poisson, and Bernoulli distributions (159). Additionally, pairwise
models are commonly used in the statistical physics community for
the analysis of categorical sequence data. There have been many
successful applications of pairwise models such as the Ising model
(160) or the generalized Potts model (91). One of the open
questions in this area is how to train such models when
additional higher-order interactions are present in the data that
cannot be included in a pairwise model. Hybrid models addressed
these issues, which combine a pairwise model with a neural network
and can significantly improve pairwise interaction reconstruction.
These hybrid approaches can often demonstrate performance
improvements over alternative methods. We will focus on one
particular example of a hybrid model recently developed to
characterize systems-level TCR-pMHC specificity.

The Rapid Coarse-Grained Epitope TCR (RACER) (161, 162)
model utilizes high-throughput TCR and peptide data, crystal
structures, and a pairwise energy model to accurately predict TCR-
peptide binding affinities. In this approach, supervised machine
learning is applied to pre-identified TCR-peptide structures (45,
137) and experimental data to derive a coarse-grained, chemically
accurate energy model of the TCR-pMHC interaction. While deep
learning algorithms can implicitly capture higher-order interactions,
they may still be limited by the availability of sequences. To mitigate
this, RACER uses pairwise potentials to reduce the requirement for
extensive sequence data. The optimization framework employed by
RACER utilizes the AWSEM force field (163) to represent direct PPIs:

>

i € TCR
j € peptide

Viireat = v(a;, a])gfy (7)

Where ¥%;(a;, a;) denotes the pairwise interaction between one of
20 AA residues a; and q; at positions i and j in the index TCR and
peptide, respectively. @fj describes a sigmoidally decreasing
‘switching function’ that inversely weights each pairwise
interaction based on inter-residue distance. In this model, TCR-
peptide accurately assessed in a computationally efficient manner
across entire immune repertoires using supervised machine
learning to differentiate strong and weak binding pairs, assisting
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in identifying T cells specific to tumor antigens and enhancing
cancer immunotherapy. Of course, the compromise for requiring
fewer training sequences is the added requirement of a reasonable
structure for the system of interest.

As we mentioned in Section 4, AlphaFold-Multimer (99),
developed by DeepMind, can also be categorized as a hybrid
model since this approach uses both sequence and structural
information in training and predicting steps. AlphaFold-Multimer
algorithm consists of two key processing elements, the input derived
from MSAs and the evaluation of interatomic distances between
AAs within a protein complex structure. A distance matrix provides
spatial information for each AA pair, while the MSA aspect
preserves and analyzes AA conservation and covariant properties.
AlphaFold-Multimer uses the attention-based model to generate
models of TCR-pMHC interaction that can be used to distinguish
correct peptide epitopes from incorrect ones with substantial
accuracy (164). In the future, AlphaFold’s ability to predict a
collection of key structures could significantly enhance the
predictive power of other hybrid approaches that rely on
structural templates like RACER.

6 Discussion

This review has presented an overview of recent efforts to predict
TCR-pMHC using theoretical, computational, and deep learning
approaches, emphasizing both their strengths and limitations. We
have explored sequence-based, structure-based, and hybrid
methodologies for predicting TCR-pMHC interactions across
species, emphasizing the growing importance of these computational
techniques within the field. Predicting TCR-pMHC interactions based
on AA sequences offers a number of advantages, including leveraging
an abundance of publicly available data and using deep learning to
extract meaningful features. This representation, however, is also
inherently sparse and sample-inefficient, posing challenges. A
traditional method of representing AA sequences often fails to
encapsulate all essential information, despite the possibility of
adding physical descriptors and biological characteristics.

Structure-based models incorporate 3D information crucial for
binding and signaling. Nonetheless, challenges arise from the
complexity of raw 3D data and the high interdependence of
variables within the structure. While graph-based and surface-
based representations via Graph Neural Networks and geometric
deep learning frameworks have shown promise, they require
meticulous model design and implementation, and the invertibility
of 2D projections to the original 3D structure is not guaranteed.
Hybrid models, combining pairwise models with neural networks,
effectively address the issue of higher-order interactions unaccounted
for in traditional pairwise models, leading to improved performance
in reconstructing pairwise interactions. Hybrid models, despite their
ability to handle higher-order interactions, are limited by the
requirement for well-defined system structures and extensive
sequence data, and their complexity may hinder interpretability
and computational efficiency.

With respect to understanding TCR-pMHC specificity, Recent
modeling approaches commonly integrate deep neural network
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techniques with more traditional methods like cluster analysis. To-
date, successful models of TCR-pMHC interactions attempt to
deliver on a subset of important objectives, including 1)
Computationally efficient characterization for large-scale
implementation, 2) Sensitivity in recognizing novel favorable TCR-
PMHC pairs, 3) Specificity in predictions through demonstrating the
identification of non-recognition pairs, 4) Accurate predictions on
data that are far away from the training data, including completely
new test TCRs or peptide and 5) Accurate predictions on exhaustive
test data that is very close to training examples, including the
classification of all point-mutations of a previously identified
peptide. At present, no current model adequately addresses all of
these objectives. Because of the sheer allowable diversity of TCR and
peptide feature space, sparsity in available training data will be a
persistent challenge in future applications.

Because of the significant clinical implications of successful
models of TCR-pMHC specificity, the number of newly developed
approaches is rapidly expanding. As a result, we advocate for
standardization in the testing protocols. Because new models are
often trained on data that is distinct from that of other previous
models, comparative performance is often highly sensitive to the
choice of test data. This can artificially enhance the perceived
predictive utility of a new model or unreasonably diminish the
ability of existing models. Comparative predictive assessments, when
performed, should utilize data with neutral similarity to either model.
Despite considerable progress in this domain, numerous challenges
and future research directions remain. To gain valuable biological
insights from TCR-pMHC binding prediction models, current
limitations must be addressed and their generalizability,
interpretability, and precision must be improved. Enhancing
precision involves integrating diverse data modalities and high-
quality sources, with special attention given to those reflecting
epitope mutations. Improving generalizability entails training
models on comprehensive datasets that span both known and novel
epitopes, ensuring robustness across varied biological conditions.
Crucially, models must be interpreted in a way that translates
complex computational outputs into biologically meaningful
insights, advancing our understanding of immune responses beyond
mere computational contexts. Such targeted improvements will
catalyze the development of potent and precise immunotherapies.
TCR-pMHC interactions are expected to benefit substantially from
new advances in data availability and computational techniques as the
availability of high-quality data increases. As a result, innovative
therapeutic approaches and tailored medical treatments will be
developed based on a deeper understanding of their functions in
human health and disease.
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