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ABSTRACT 9 

Parametric optimization techniques allow building designers to pursue multiple performance 10 

objectives, which can benefit the overall design. However, the strategies used by architecture and 11 

engineering graduate students when working with optimization tools are unclear, and ineffective 12 

computational design procedures may limit their success as future designers. In response, this re-13 

search identifies several designerly behaviors of graduate students when responding to a concep-14 

tual building design optimization task. It uses eye-tracking, screen recording, and empirical meth-15 

ods to code their behaviors following the situated FBS framework. From these data streams, three 16 

different types of design iterations emerge: one by the designer alone, one by the optimizer alone, 17 

and one by the designer incorporating feedback from the optimizer. Based on the timing and fre-18 

quency of these loops, student participants were characterized as completing partial, crude, or 19 

complete optimization cycles while developing their designs. This organization of optimization 20 

techniques establishes reoccurring strategies employed by developing designers, which can en-21 

courage future pedagogical approaches that empower students to incorporate complete optimiza-22 

tion cycles while improving their designs. It can also be used in future research studies to establish 23 

clear links between types of design optimization behavior and design quality. 24 



PRACTICAL APPLICATIONS 25 

Increasingly, building designers use digital, optimization tools to explore and improve designs. 26 

This research identifies and categorizes several distinct design behaviors when using optimization 27 

tools that have not been previously recognized. Applying these categories to describe graduate 28 

student designer behavior allows educators to find opportunities for improving design education. 29 

While there is no set standard for how optimization tools should be used, different strategies range 30 

in the potential they create for simulation feedback to improve the design. Although all study par-31 

ticipants were able to implement an optimization feature, they did not all fully integrate the feed-32 

back into their design decisions. From this research we observe that it is not enough to explain 33 

algorithms and show a student how to run an optimization tool, but these tools must be taught in 34 

the context of robust design approaches. Educators wishing to identify their students’ design strat-35 

egies can use the methods and language established in this paper to assess student comprehension 36 

of optimization techniques. Future work can apply the behaviors that investigate other dimensions 37 

of optimization in design, such as design quality and comparing categories of designers. 38 

INTRODUCTION 39 

As digital tools evolve, emerging computational strategies allow designers in the Architecture-40 

Engineering-Construction (AEC) industry to address an increasing number of building perfor-41 

mance criteria early in the design process. In particular, parametric design strategies, where a 42 

model is readily edited and explored by editable variables, enable AEC designers to rapidly con-43 

sider numerous potential options while meeting disciplinary goals. Within parametric models, op-44 

timization techniques can systematically find the best options in terms of quantitative design goals 45 

such as energy use or structural efficiency (Felkner et al. 2013; Touloupaki and Theodosiou 2017). 46 

However, there is uncertainty about how to best apply optimization during design, especially for 47 

emerging interactive optimization approaches that let designers manage qualitative and quantita-48 

tive goals simultaneously. Optimization can speed up certain design subtasks, and it can help find 49 

high-performance solutions within a design space that might be difficult to find otherwise (Mueller 50 

2014). Yet it also requires a designer to formulate, analyze, and in some cases iterate a defined set 51 

of variables, objectives, and constraints, which may change the timeline or nature of activities in 52 

a typical design procedure. 53 



While there is considerable established literature describing designer behavior in general, little 54 

is known about how diverse optimization tools influence design, particularly in the domain of 55 

architectural engineering education, as students gradually learn how to incorporate optimization. 56 

One source of potential confusion stems from the range of design tools that are described as em-57 

ploying optimization, especially in practice. On the one hand, some define “design optimization” 58 

very broadly as the process of systematically and quantitatively improving on a current solution, 59 

as in the case of building simulation (Heiselberg, et al. 2009; Nguyen et al. 2014; Liping et al. 60 

2007). On the other end of the spectrum, some only use the term “optimization” to refer to numer-61 

ical simulation and/or formal mathematical optimization (Attia 2012; Nocedal and Wright 2006), 62 

even in the context of building design. In the middle are heuristic techniques such as evolutionary 63 

algorithms that designers might implement alongside their own qualitative preferences, either a 64 

priori, a posteriori (Marler and Arora 2004), or interactively (Mueller and Ochsendorf 2015; 65 

Turrin et al. 2011; Touloupaki and Theodosiou 2017b). In all cases, the designer is left to establish 66 

their own sequence and timing for establishing the parametric variables and their relationships in 67 

the first place. If instructed to formulate their own design spaces and optimize a design, students 68 

might employ any of these approaches, with various degrees of completeness or effectiveness. Yet 69 

the characteristics of these ranging strategies have not been established.  70 

In response, this research asks: what patterns of design behaviors do architecture and engineer-71 

ing graduate students employ while constructing and exploring a parametric model using optimi-72 

zation-based tools? Potential patterns include iterative decision loops involving the designer, an 73 

automated algorithm, or both, as well as their timing and frequency within a design session. Inves-74 

tigating how this group of designers, who are neither novices nor experts, utilize different optimi-75 

zation techniques can inform which strategies they employ with optimization tools. To investigate 76 

design in situ, a research study was conducted which asked participants to create a visually appeal-77 

ing atrium enclosure that addressed measurable concerns of daylighting, energy use, and structural 78 

performance. Eye-tracking data, screen recordings, and observational assessment were used to-79 

gether to apply the situated FBS framework (Gero and Kannengiesser 2004).  80 

This framework allowed for identifying multidimensional steps in the design process, describ-81 

ing design session events, and discerning varying strategies among the participants. The student 82 

participants showed a range of behaviors in their use of optimization techniques —some spent 83 

considerable time formulating the problem and used optimization techniques near the end of the 84 



design session, while others adjusted the problem more frequently as they ran smaller iterative 85 

explorations. These diverse strategies are used to distinguish several distinct design iteration types 86 

and corresponding behaviors that are detailed in the results and discussion. In understanding the 87 

rich characteristics of designer strategies through qualitative methods, we can first discern these 88 

behaviors through deep analysis before future quantitative studies establish their prevalence among 89 

designer populations. 90 

BACKGROUND 91 

The AEC professions are continually tasked with providing high performing solutions, but the 92 

numerous considerations in building design rarely align. To manage potentially competing objec-93 

tives, designers have incorporated computational exploration and optimization tools, which can 94 

account for multidisciplinary performance, to make more informed design decisions. While the 95 

feedback and guidance from these emerging design approaches can improve outcomes, designerly 96 

strategies for utilizing optimization in the context of design theory have yet to be thoroughly ex-97 

amined. In particular, the optimization patterns of intermediate designers, such as graduate level 98 

architecture and engineering students who have experience with design strategies but are still de-99 

veloping their optimization skills, are largely unknown. 100 

Designerly Behaviors in the Design Process 101 

To systematically characterize designer behavior when using optimization tools, and to deter-102 

mine how these tools potentially alter traditional processes, it is first necessary to ground the re-103 

search in a conceptual framework for design behavior. Although design is a complex series of 104 

decisions, researchers have identified general characteristics of the design process (Cross 2011; 105 

Cross and Roozenburg 1992; Lawson 2006; Rowe 1987), which are used to recognize reoccurring 106 

design strategies. Most of these models establish a phase for problem definition, one for design 107 

development, and one for solution analysis, with opportunities for iteration throughout. However, 108 

these models are very broad in their scope. 109 

Several researchers have considered characteristics of design behaviors when working collab-110 

oratively with computation tools (Haymaker et al. 2018), particularly in the medium of parametric 111 

modeling (Burry 2003; Oxman 2017; Stals et al. 2021; Tschetwertak et al. 2017). Literature shows 112 

that when a computer is used to support or make key decisions, there are different schemes by 113 

which to identify a designer’s cognitive or computational decisions (Caetano et al. 2020, Oxman 114 



2017; Yu et al. 2015a). In some cases, incorporating parametric modeling and rule-based digital 115 

software can improve the efficiency of design (Harding et al. 2012; Kalkan et al. 2018). However, 116 

other research has differentiated that parametric modeling is still the result of a tool and cannot 117 

replace the ingenuity of a human designer (Megahed 2015). In fact, precedent study observations 118 

show that in practice, parametric design focuses on more controlled, rule-based designs rather than 119 

a vast multitude of solutions (Wortmann and Tuncer 2017). This narrowing of potential designs 120 

based on designers’ knowledge and intuition may also be evident in optimization strategies. 121 

While these prior investigations of parametric design strategies inform aspects of this paper, 122 

we based our optimization-related study on the situated FBS framework (Gero and Kannengiesser 123 

2004), which is an extension of the fundamental and widely applied FBS ontology (Gero 1990). 124 

Gero’s original ontology has been used by many design disciplines to model, code, and analyze 125 

design behaviors (Howard et al. 2008; Kruchten 2005; Yan 1993). It models the design process by 126 

first assigning the characteristics of the desired artifact into three primary categories: function (the 127 

role of the artifact), behavior (how the artifact performs), and structure (the qualities of the arti-128 

fact). The development of these characteristics is identified by eight types of fundamental design 129 

moves, which create a framework to define the design process. However, although the original 130 

FBS provided a clear foundation to describe a range of design tasks, it did not account for the 131 

influence of cognitive context on design. 132 

In response, Gero and Kannengiesser (2004) present a revised method called the situated FBS 133 

framework (Figure 1), which considered an additional, recursive dimension of design: the concep-134 

tual environment. This new framework expanded the original 8 processes into three conceptual 135 

environments: an external world, an interpreted world, and an expected world. By dividing the 136 

FBS elements into each world and categorizing the processes as an action, interpretation, or focus-137 

ing, the situated FBS framework provides a more extensive strategy by which to map the evolution 138 

of the design process. For example, within the synthesis, analysis, and evaluation processes, an 139 

expected behavior (Bei) motivates the designer’s idea for a structure (Sei) (process 11), which the 140 

designer then represents that structure externally (Se) as a sketch or 3D model (process 12). Next, 141 

the designer considers whether the representation aligns with their idea (process 13). Simultane-142 

ously, that structure produces an associated behavior (process 14), which the designer can compare 143 

to the expected behavior (process 15). If considered adequate, the designer can proceed to docu-144 

mentation, or they may repeat the processes going as far back as reframing Functions (process 16). 145 



With this framework, design researchers can incorporate more comprehensive modeling of 146 

iterative thinking and the regeneration of ideas. Even with these adjustments, the FBS ontology 147 

has been criticized for its ambiguity (Cascini et al. 2013; Dorst and Vermaas 2005) while others 148 

emphasize FBS’s applicability (Galle 2009). Nevertheless, the FBS ontology has been used to 149 

model design in many disciplines (Gu et al. 2012; Uflacker and Zeier 2008), including parametric 150 

building design (Yu et al. 2015a). Its expanded version, the situated FBS framework, also presents 151 

several advantages for this study of optimization strategies. It provides an order by which to iden-152 

tify design events and organizes the relationships between the designer’s ideas, the behavioral 153 

bounds of the design, and the realization of the design artifact. It also acknowledges the iterative 154 

loop between what the designer envisions and what manifests externally (shifting between the 3 155 

worlds), which can occur in parametric, rule-based design exploration. 156 

Parametric design tools have been shown to help designers produce unconventional solutions 157 

(Wortmann and Tuncer 2017; Yu and Gero 2015b), some of which may not have been originally 158 

conceived by the designer. The uniqueness of the designs and potential for innovation have been 159 

assessed by traditional methods for measuring creativity and shown that parametric thinking is a 160 

viable form of design (Lee at al. 2014). In addition, this method of idea generation prompts con-161 

sideration of a designer’s source for decision making. In Yu et al.’s study (2015), the researchers 162 

defined a subset of characteristics in the FBS ontology and classified the designer’s decisions as 163 

either “design knowledge” or “rule algorithm” to differentiate the source of cognitive effort 164 

throughout the phases of the design session. We also identify subsets of decisions within the situ-165 

ated FBS framework in this paper to codify the participants’ design process and identify design 166 

events unique to optimization. Differentiating between decisions focused on developing the arti-167 

fact or developing the optimization approach is valuable in evaluating computational design be-168 

haviors, especially as the use of digital tools to solve complex building challenges becomes more 169 

pervasive. 170 

Building Optimization as a Design Technique 171 

As the performance needs of our built environment grow more stringent, it is increasingly 172 

difficult to address multiple design considerations across a range of professional specialties. Alt-173 

hough achieving an effective, holistic design is advantageous, building performance criteria vary 174 

in units, scale, and importance, making them difficult to empirically compare and optimize (Brown 175 

and Mueller 2016a; Felkner et al. 2013). For example, the benefits of increasing natural daylight 176 



with more windows can compete with the goal of reducing energy consumption. Building optimi-177 

zation quickly becomes convoluted as there are many numerical and experiential criteria, such as 178 

spatial, structural, and mechanical objectives (Touloupaki and Theodosiou 2017). Furthermore, 179 

when AEC disciplines collaborate on optimization projects, it has been shown that an iterative 180 

process emerges between the designers and their optimization tools (Geyer and Beucke 2010). 181 

Traditionally, designers relied on knowledge to find effective solutions, but computational tools 182 

allow designers to rapidly explore a range of solutions with quick performance feedback, enabling 183 

more efficient production of high-performance designs for architects and engineers (Brown et al. 184 

2020b; Gerber and Lin 2014; Mueller and Ochsendorf 2015). However, some designers criticize 185 

digital design space exploration for its limitations in design thinking and potential design fixation 186 

compared to traditional sketching processes (Stones and Cassidy 2010). Nevertheless, optimiza-187 

tion has been utilized by a variety of engineering disciplines with advantageous results (Tou-188 

loupaki and Theodosiou 2017; Kollat and Reed 2007; Simpson and Martins 2011) and research 189 

has shown that the use of computational tools is a viable method for design in AEC (Mueller and 190 

Ochsendorf 2015; Turrin et al. 2011; Yang et al. 2015). In particular, the applicability of optimi-191 

zation in computer aided architectural design has been suggested early in the development of build-192 

ing computation simulation (Radford and Gero 1980). However, due to the emerging nature of 193 

optimization tools, the best practices for their use are still being defined. At this point, strategic 194 

optimization education can impact the effective implementation of such tools by graduate design-195 

ers and is not unique to just optimization. 196 

Student Designers Working in Digital Tools 197 

It has been suggested that parametric design is advantageous to the development of a designer 198 

because it prompts the setting of constraints on a design task to find different solutions rather than 199 

focusing on one solution (Schnabel 2013). Yet students may be limited in their ability to fully 200 

execute a design since they are still developing as designers themselves and are still mastering 201 

design tools (Chase 2005). In addition, curriculum standards in building design education vary by 202 

discipline, and the influence of pedagogical systems on problem-solving strategies are somewhat 203 

unpredictable (Cross et al. 1994). Specific to optimization pedagogy, recently developed courses 204 

in architecture and engineering programs have introduced optimization to students with promising 205 

initial results (Brown and Bunt 2022; Oliveira et al. 2018; Pasternak and Kwiecinski 2015), but 206 

the learning outcomes of these courses are not standardized, and the tools and processes used vary 207 



by institution. Nevertheless, much of the emerging research that considers early-stage optimization 208 

tools focuses on student participants (Brown 2020a; Brown and Mueller 2016b; Gerber and Lin 209 

2014; Mark 2012), so there is value in identifying specific sources of student limitations in design 210 

environments, particularly for optimization. 211 

Considering this population, it has been shown that novice designers tend to use less sophisti-212 

cated processes compared to experts (Atman et al. 2007; Deininger et al. 2017), which may hinder 213 

effective use of optimization methods. Intermediate designers, though, such as graduate-level ar-214 

chitect and engineer students, represent a stage in education development in which designers pos-215 

sess a foundation for disciplinary design decisions and have experience working with design tools, 216 

but are still developing as effective problem solvers. Identifying graduate student designer strate-217 

gies while they make decisions with optimization tools may help categorize effective behaviors, 218 

improving tools for design development, and enhance learning processes for graduate students as 219 

future experts. Accounting for the context of proliferating digital tools in AEC, this research fo-220 

cuses on optimization behavior in conceptual building design. 221 

METHODS 222 

This IRB approved study asked graduate-level architect and engineering design students to pro-223 

pose an optimized solution in response to a conceptual building design task. The multi-method 224 

research design employed eye-tracking, screen recordings, and interviews to capture different 225 

streams of data from the design sessions. Observational data analysis and artifact analysis tech-226 

niques were used to qualitatively code the design segments within the situated FBS framework. 227 

Our analysis protocol was also employed to identify designerly events unique to optimization, 228 

relating reoccurring behaviors between designers to potentially effective optimization strategies.  229 

Participants 230 

The streams of observational and interview data were collected from a sample size of 10 archi-231 

tecture (5) and architectural engineering (5) graduate students at a research-intensive public uni-232 

versity in the northeastern United States. This population is of special interest to understand the 233 

design practices of designers at an intermediate educational stage rather than those of novice un-234 

dergraduates (who typically have not developed either design or engineering skillsets) or practi-235 

tioners (who are fully expert in their designerly ways). While this sample size may seem small, 236 

each participant generates 3 hours of video screen capture data, eye-tracking data, and interview 237 



data, supporting a multi-stream qualitative study. This amount of data is quite large and rich con-238 

sidering the purpose of this study is to identify and characterize the types of optimization behaviors 239 

rather than conduct predictive or generalizable statistics. Participants included 6 women and 4 240 

men. They were recruited by email announcement of the study to the architecture and architectural 241 

engineering department and were compensated with a $20 gift card. The participants completed a 242 

survey before beginning the design task and reported at least 1 year of experience (average 3.5 243 

years) and a moderate level of confidence with the study’s modelling tools, along with at least 1 244 

year of experience in optimization. Amount of time spent in design practice among participants, 245 

which can occur before or during the pursuit of graduate degrees, ranged from 0-10 years. By 246 

studying graduate-level designers, we elicit a deep understanding of how the design learning pro-247 

cess occurs as architects and engineers move past their novice design tendencies.  248 

Design Session 249 

All design sessions were conducted in a controlled research space equipped with a computer, 250 

eye-tracking hardware, and software. The research procedure is shown in Figure 2. After the par-251 

ticipants were situated at the computer, they were briefed on the design task through a standard 252 

video introduction and their eye-tracking setup was calibrated for their sitting position. After 253 

watching the design task video, but before working in the digital space, the designers were pro-254 

vided with paper and pencils to take notes or sketch on paper for 5-10 minutes, which enabled 255 

them to create initial ideas separate from the model space. They then proceeded to work in the 256 

digital modeling tools to develop their design and produce optimized solutions. The designers were 257 

prompted to work for as long as they felt comfortable, resulting in sessions that lasted approxi-258 

mately 3 hours. 259 

While Grasshopper in Rhinoceros was used as a consistent parametric modeling platform, the 260 

designers were able to choose their own optimization plugins, since the application of these tools 261 

is a part of authentic design behavior. In this study, the participants preferred using either Galapa-262 

gos (Rutten 2013), presumably adding their own prioritization mechanism to manage multiple 263 

objectives or Design Space Exploration’s Multi-Objective Optimization tool (Brown et al. 2020b) 264 

to find optimized solutions. Notably, both tools preview intermittent design iterations while run-265 

ning, such that designers can make visual assessments before the tool has completed its optimiza-266 

tion loop. It is also worth noting that these chosen tools do not fully enable interactive human-in-267 

the-loop optimization at the scale of design generations or internal dynamic data visualization, 268 



which are possible using newer or less common parametric tools, such as Stormcloud (Danhaive 269 

and Mueller 2015), Wallacei X, (Wallacei X 2018) and Stepper (Brown and Mueller 2018). Full 270 

documentation of design strategies with these tools would require future analysis. 271 

The participants could repeatedly use their optimization tool in the session if they wished, but 272 

they were not explicitly prompted to do so. After settling on a final design, the designers were 273 

asked to submit 2-4 screenshots of their proposal and a written design statement to give to a fic-274 

tional client. Immediately following submission of their deliverables, the researcher interviewed 275 

the participants using a semi-structured interview protocol, asking about their goals for their de-276 

sign, how they approached completing the design, and what they would do differently if they had 277 

more time. The interviews were used as cognitive proxies to contextually ensure that behaviors 278 

were correctly interpreted. 279 

Design Task 280 

The design task asked participants to develop a glass atrium infill for a fictional university client 281 

in Phoenix, Arizona. This site was chosen because of the region’s hot and sunny summer climate, 282 

which is easily recognized or readily learned in an online search. A university setting was used for 283 

site context to prompt the need for visually exciting designs, and for its accessibility to the partic-284 

ipants. The design task required the designers to address at least two of three provided objectives. 285 

The first objective is to maximize daylighting during the summer solstice (June 21) at noon. While 286 

building designs often consider daylight at multiple times throughout the year, full daylighting 287 

simulations can take hours or even days to run. Focusing on a significant instance in time is a 288 

common design strategy that eliminates wait times and reduces required computation power. The 289 

second goal is to minimize solar radiation. Within the task, reducing the surface area of the atrium 290 

will reduce solar radiation, as will substituting thicker glass or opaque panels with better u-values. 291 

The third objective is to minimize the elastic energy of the structure, as calculated by Karamba3D 292 

(Preisinger and Heimrath 2014). It is desirable to have a structure with less deflection because it 293 

will allow for smaller members to build. Reducing structural weight can also reduce costs. Opti-294 

mizing a whole structural system is a complex task but asking the designers to focus on two of 295 

these three goals provides a conceivable and numeric goal for them to manage in the constraints 296 

of this conceptual design task. 297 

The designers were given the design task through two introduction videos. In the first video, 298 

the fictional client showed four example atriums that the university admires. Although providing 299 



examples to the participants may bias their design solutions and prompt them to imitate what they 300 

are shown (Zalewski et al. 2017), clients often share their visions for a project during an authentic 301 

design process in practice. Providing participants with examples of atriums also frames the design 302 

task in terms of parametric thinking, which was the intended design environment of this study. 303 

However, before introducing the designers to the study’s computational tool, participants were 304 

allowed to sketch or write out initial ideas, permitting them to first consider ideas not constrained 305 

to the computational environment. 306 

Participants were also provided with a base file containing the site context, important points of 307 

reference, and pre-built scripts that calculate the objectives. The script required that the participants 308 

provide surfaces for the intended solid panels, surfaces for the glass panels, the structure repre-309 

sented as lines, and the structural support points. In this way, the designers could focus their efforts 310 

on working towards an optimized solution, and the study was given a consistent frame for simpli-311 

fied performance simulation between the designers. Moreover, this study focuses on optimization 312 

tactics, not on the designer’s ability to assemble a structural analysis simulation.  313 

Qualitative Coding and Characterization of Design Behaviors 314 

During the design session, the participants’ behaviors were captured by screen recording and 315 

tracking their eye gaze data using EyeWorks eye-tracking hardware (EyeTracking 2011). Eye 316 

tracking, combined with screen capture recordings, is a robust method to understand design be-317 

haviors because it offers the ability for researchers to not just capture outcomes, but also actions 318 

and patterns of behaviors paired with information about what the participant is looking at or turning 319 

their attention toward. These types of data are highly complex, with each minute of participant 320 

behavior resulting in hundreds if not thousands of potential data points for each participant gener-321 

ated over a ~3 hour design task.  322 

The researchers also observed the design session to record times when the participant sketched 323 

or encountered difficulties with the tool, and to facilitate an immediate follow up interview about 324 

the participant’s rationales for critical design decisions. The follow up interviews asked the de-325 

signers to elaborate on their design decisions and what difficulties they encountered. They were 326 

also asked, if given more time, what would they do differently to further refine their design. 327 

Data Analysis 328 



To analyze the streams of data, various methods were employed. First, the video recordings 329 

were reviewed and activities that did not pertain to the design session were removed, such as saving 330 

and restarting the program. Second, the eye-tracking data were initially analyzed using digital tools 331 

to interpret broad patterns in participant behavior. Using additional software from EyeWorks, the 332 

eye gaze data was paired with two Regions of Interest (ROI) on the screen to identify if the partic-333 

ipant looked in the parametric space (Grasshopper), the 3D modeling space (Rhino), or away from 334 

the screen altogether. These tools help interpret the digital information representing design behav-335 

ior. 336 

When working in these tools, a designer develops their model by programming geometry in the 337 

parametric space and viewing their model in the 3D modeling space. While these regions stay the 338 

same for each participant, the displays inside the regions are dynamic as participants rotate or 339 

zoom in on the design or pan across their script. Thus, a significant dwell time in an ROI shows 340 

either consideration of the design artifact or computational manipulations of the design. Figure 3 341 

shows where the two ROI’s are on the screen (the 3D modeling space and the parametric space), 342 

a preview of what may be displayed in the spaces, and a brief description of what occurs in the 343 

spaces. Eye tracking was thus required to accurately identify loops between Regions of Interest, 344 

which eventually helped define behaviors. 345 

The output video files from the eye-tracking data were analyzed using observational qualitative 346 

data analysis processes, called "coding," honed for observational and time-resolved research to 347 

characterize design behaviors. These methods work abductively from existing frameworks for de-348 

sign cognition to accurately describe the breadth of behaviors observed (Mehta et al. 2020). A 349 

codebook describing the names and definitions of the design activities, which could be categorized, 350 

was developed through literature and piloted iteratively on the data in consensus with the other 351 

members of the research team and strongly grounded in design theory. After this iterative code-352 

book was developed, a single researcher rewatched all the design sessions and notated the presence 353 

of every design behavior and their time stamps. The coding comprised of elements from the situ-354 

ated FBS framework in identifying the iterative process between Function, Behavior, and Structure 355 

in the context of the optimization environment. The typology of behaviors captured, aggregate 356 

percentages of behaviors captured over time, and the ordering in which behaviors occur through 357 

the duration of the design challenge are used to answer the research question related to patterns of 358 

design behaviors. 359 



The interview transcripts were employed as an external validation method to ensure that the 360 

research team was interpreting behaviors accurately, particularly for critical decisions, but were 361 

not independently thematically analyzed for this study. Together, the multiple streams of qualita-362 

tive data (screen recording, eye tracking, and interview transcripts) are used to inform the inter-363 

pretation of the behaviors as they relate to architectural engineering design education. 364 

Event codes 365 

We determined 13 events of behavior that manifested across all ten participants. Figure 4 shows 366 

the coding of events in the situated FBS framework to the conceptual optimization process. The 367 

code also highlights several concrete events identified in this study, which define the behavioral 368 

structure of the individual sessions. The sessions were divided into two primary phases, “pre-mod-369 

eling” and “modeling,” which are determined by the placing of a first component in Grasshopper. 370 

Placing the first component is coded as a process 12 in which the designer manifests their idea for 371 

an artifact in the external world. In this study, the pre-modeling phase is mostly rapid formulation 372 

(processes 1-10), and although sketching in the Pre-modeling phase is also a process 12 since it 373 

allows the designer to externalize their ideas onto paper, the formulation processes are informally 374 

executed and not within the scope of this paper. 375 

Synthesis events 376 

We also captured the occurrence of “synthesis events” as a manifestation of the processes. Syn-377 

thesis events include a process 11, which is envisioning solutions (Sei) from formulated behavior 378 

(Bei), and process 12, which is externalizing the solution. In this study, process 11 was an internal 379 

decision, so this step was not explicitly captured. However, synthesis process 12 accounts for many 380 

of the designer’s actions and was divided into 4 categories to better describe the designer’s exter-381 

nalized decisions. Most of the actions in the parametric space that create structure (Se) are when 382 

the designer places a static component, but there are other events which relate directly to the opti-383 

mization process. Following precedent from Yu et al. (2015a), which divided Function, Behavior, 384 

and Structure into knowledge-based and rule-based cognitive decisions, this research identified 3 385 

events within process 12 in this study: the introduction of a variable to the model, a return to 386 

sketching on paper, and the defining of solid and clear panels. Introducing a variable suggests the 387 

potential for that element to be influenced by optimization feedback. Notably, not all the variables 388 

created in each session were used in the optimization events, which turns them into parameters in 389 



formal optimization language. Overall, individual narratives concerning the use of variables in-390 

form each designers’ process. The process 12 event of “returning to sketching” is also not always 391 

present in every session, but it is determined when a designer looks away from the screen and 392 

picks up their writing utensil. All designers created surfaces in their design and discerned between 393 

solid and glass panels. Until this event occurs, their design decisions are geometric and do not 394 

considered materiality, which is a Behavior aspect of the design. 395 

Pre-analysis and analysis events 396 

Other definitive events in this study are when participants first plug elements into the objective 397 

value generators and when they first activate their optimization tool. Shifting to the generator sig-398 

nifies a transition from relying on design knowledge to preparing for optimization feedback. The 399 

designers may return to design knowledge after interacting with the objective generator, but this 400 

is an event unique to the optimization process, and the timing of its occurrence in the session 401 

informs how integral the designers see optimization in their final solution. To meet the require-402 

ments of the objective generators, they may also have to restructure part of their model, relying on 403 

a mixture of design knowledge and parametric knowledge. 404 

A further indicator is when the designer starts preparing the optimization tool to optimize the 405 

design. This is not always an efficient process, particularly for the student designers, as the plan-406 

ning for optimization sometimes prompts re-evaluation of design variables. Once the optimization 407 

tool is run, a series of analysis, evaluation, and synthesis processes (13, 14, 15, and 12) occur 408 

between the designer and optimization tool from which the designer can make a design decision. 409 

Evaluation and documentation events 410 

Before proceeding to documentation, a designer will verify if the behavior of the design meets 411 

the expected behavior. In early conceptual design development, this process is largely driven by 412 

the optimization tool, which minimizes the objective values. However, the designer may consider 413 

the results manually and decide to repeat earlier processes or proceed to documentation. In some 414 

cases, a designer may follow process 16, which is an opportunity to change the function of the 415 

design by changing which of the two objectives they wish to pursue. This process did not occur in 416 

this study’s design sessions. 417 

The final event defined in this study is the shift to documentation. This is defined as when the 418 

designer opens the writing document and begins to compose their design statement or take 419 



screenshots of their final design. In some cases, the designers refine the representation of their 420 

design in preparation for documentation, such as applying color to the different panels. 421 

Evaluation of Designer Behavior 422 

Coding and identifying these processes allowed the design team to compare reoccurring behav-423 

iors, design focus, and significant events. In following the situated FBS framework, a series of 424 

repeated actions are identified in the conceptual design optimization sessions. While Gero and 425 

Kannengiesser acknowledged types of design “Reformulations,” this research identifies iterations 426 

performed by the designer, by the optimizer, and by the designer and the optimizer together, shown 427 

in Figure 5. Prior to running the optimization tool, the designers ran through process 11, 12, and 428 

13, in a series of iterative loops. These loops were identified by the designers’ dwell time in the 429 

Grasshopper canvas and the modeling space, as recorded by the eye-tracking tool. 430 

Appropriate dwell times are often determined by the task context (Carter and Luke 2020) and 431 

are difficult to standardize (Hessels et al. 2016). While eye tracking has been used in many areas, 432 

its application in 3D architectural modeling tools is less common. Dwell times that are measured 433 

in milliseconds tend to correspond to small Areas of Interest, like a button on a webpage. However, 434 

this research uses Regions of Interest that correspond to how participants consider the design ver-435 

sus manipulating the design script. Both activities likely require dwell times in the small number 436 

of seconds, which have also been considered in relation to programming activities (Jbara and Feit-437 

elson 2017). Frequency of looking at the regions is significant, as iterative loops were identified 438 

at the resolution that patterns emerged for the design sessions. Based on researcher experience 439 

with the design tools and iteratively testing different timeframes, the sessions were divided into 0-440 

4 seconds, 4-12 seconds, and 12+ seconds. Glancing in the model ROI for less than 4 seconds was 441 

determined to be a “check” that the Grasshopper command was doing the intended purpose, rather 442 

than a responsive assessment of the design associated with a process 13. Looking at either region 443 

for longer than 12 seconds indicated that the designer was focusing on component assembly in 444 

Grasshopper (ROI2) or reflecting on the representation of their model (ROI 1). An Iteration Loop 445 

A (IA) was determined when the designer looked back and forth between Grasshopper and the 446 

modeling space at least once, for 4-12 seconds in each region. IA loops can be counted, providing 447 

a metric by which to compare the designers’ iterative behaviors. 448 

The second Iteration loop is performed by the optimization tool, Iteration Loop B (IB), starting 449 

from process 14 to 15, 11, and 12. It runs through these rapidly and iteratively until stopping back 450 



at Bi. Notably, the optimization tool does not perform process 13, as it cannot consider if the 451 

external structure aligns with the designer’s interpreted structure. After running the optimizer, the 452 

designer may continue to move through synthesis, analysis, and evaluation processes based on 453 

abstract goals, or move directly onto documentation. If they respond to the optimization feedback 454 

and make adjustments, then that is considered an Iteration Loop C (IC). This iterative process is 455 

similar to the interactive behavior identified by Geyer et al. (2010) as a designer works back and 456 

forth between design modeling and optimization. 457 

These iteration loops allowed us to identify how early the designers ran their optimization tool 458 

in the session, what processes they followed after reviewing the results, and if they repeated the 459 

optimization. IA loops were identified automatically based on relationships in the eye-tracking 460 

data. Although IB and IC loops contain defined actions, not open to interpretation or variation of 461 

researcher perspective, they did require manual recordings of when a certain component was 462 

placed, connected, or manipulated in the screen recordings. A member of the research team re-463 

viewed the sessions twice to verify that the processes were accurately identified. The occurrence 464 

of the iteration loops, types of Structure moves, and optimization events produce narratives that 465 

enable comparison between participants. 466 

RESULTS 467 

Based on the coding structure, simplified session time plots are shown in Figure 6. The sessions 468 

are divided into Pre-modeling and Modeling phases. The beginning of the Modeling phase is 469 

marked with “0 minutes.” The horizontal line in each diagram is the session timeline from begin-470 

ning to end. Along the timeline, the IA (Designers) loops are plotted, showing their occurrence 471 

and duration. Similarly, below the timeline, iteration types IB (Optimizers) and IC (Designer with 472 

optimizer) are shown with blocks, indicating when and for how long each loop lasted. Above the 473 

timeline, significant events within the optimization process are also labeled according to their trig-474 

gers in the previous section. Plugging their design into the objective value generator (“obj.”) rep-475 

resents an active, cognitive engagement with the design objectives. Later in each session, the open-476 

ing of an optimization tool and preparing to run it (“prep optimizer”) is considered the beginning 477 

of the optimization process. At the end of each timeline, the time spent documenting the design is 478 

shown as a thicker gray band. 479 



The sessions are organized by three categories of optimization behavior, as determined by re-480 

occurring characteristics. A “Complete Optimization Cycle” is when the participant completed at 481 

least one full IC iteration and there is evidence of informed edits to their design, such as the pres-482 

ence of an IA iteration after optimizing or a substantial amount of time spent considering results. 483 

A “Coarse Optimization Cycle” is when the designers completed at least one IC iteration, but the 484 

cycles did not influence any notable changes in the design. The third cycle, a “Partial Optimization 485 

Cycle,” is when the designer did not complete a full IC iteration, meaning they did not consider 486 

the best performing suggestions from the optimization tool. Although the cycle categories do not 487 

indicate the quality of design idea or the efficacy of resulting design performance, they do organize 488 

a system by which to understand optimization techniques and discuss nuances between behaviors. 489 

The next three sections describe in detail representative participants for each type of cycle. 490 

Complete Optimization Cycle 491 

The Complete Optimization Cycle participants closely followed an expected optimization pro-492 

cess in which a designer integrates behavioral (process 14 and 15) considerations in the develop-493 

ment of their design and completes at least one full designer-optimizer (IC) iteration, with observ-494 

able edits to their design, before documenting their project. Figure 7 shows detailed session time 495 

plots of Participants 01 and 03, who exhibited characteristics of the Complete Cycle. In these de-496 

tailed session time plots, creation of a new variable is indicated by a circle, and a participant re-497 

turning to sketching by picking up their writing utensil is shown by a triangle. The figure also 498 

shows when the designers defined the difference between solid and glass panels in their model (Sp) 499 

along with notable instances within the eye gaze fixations.  500 

The enlarged portion of the Eye Gaze Fixation plot for Participant 01 shows three examples of 501 

IA iteration. The designer looked back and forth between the model space and parametric space 502 

for at least 4-12 second clusters, suggesting a loop of design edits, which was confirmed by re-503 

searcher observation. As the sessions progress and the designers focus more on preparing for the 504 

optimization process, the occurrences of IA loops become less frequent. However, each designer 505 

also completed an IA loop between optimization runs, suggesting that an informed change was 506 

made to the design before running the final optimization loop. Several smaller differences are 507 

apparent, however. Participant 01 returned to sketching after placing a component and before de-508 

veloping their model, while Participant 03 immediately started to create variables. Also, as indi-509 

cated by the early square notations in the IB zone, Participant 03 used a direct form-finding tool 510 



to achieve an optimized structural shape first rather than use “structure” as an objective in a para-511 

metric optimization run. This is a distinct form of optimization based on setting optimality criteria 512 

and seeking those criteria directly, but it is only possible in a parametric environment designed 513 

specifically for this purpose. It was thus coded for summary statistics as an optimization loop but 514 

represented differently from an IB loop.  515 

Coarse Optimization Cycle 516 

Figure 8 shows the detailed time plots two designers who exhibited a “Coarse Optimization 517 

Cycle.” It includes Participants 05 and 06, who completed IC loops but did not use optimization 518 

strategies thoroughly and thus presented subtle differences in their sessions. The IC loops of these 519 

sessions are very brief compared to Participants 01 and 03. Although the brevity of an IB loop will 520 

depend on the robustness of the chosen tool and the simplicity of a design, time spent considering 521 

the optimized options (process 15) can reflect the sophistication of the optimization run or the 522 

intent of the designer. These two participants ran several IB loops in a short time because the 523 

design options were not as diverse as they envisioned, but they did not know how to manipulate 524 

the variables to produce optimization results that aligned with their vision. Participant 05 did not 525 

engage in optimization events until late in their session and realized the structure of their model’s 526 

code was not compatible with the requirements of objective generators. The participant rebuilt part 527 

of the model and lost some of the qualities from their original design. The detail from Participant 528 

05’s time plot in Figure 8 shows their focus on Grasshopper space as they manipulated code.  529 

While other sessions show sparse IA iterations as participants adjusted code, Participant 06’s 530 

time plot shows a density of IA iterations before preparing the optimization tool. This behavior 531 

suggests that, for Participant 06 to correctly activate the objective generators, they had to change 532 

their design and repeatedly view the results in the model space. The absence of this behavior in 533 

the other sessions suggests that this designer’s solution developed in response to the guided re-534 

quirements of the study, not exclusively by their own vision for the project. This dependency on 535 

prompted Grasshopper coding may reflect less experience with parametric and optimization design 536 

techniques. Although this participant could wield optimization tools, issues with self-driven design 537 

performance may arise if they were to employ optimization techniques in future, professional pro-538 

jects where design efficacy and efficiency are imperative.  539 

Partial Optimization Cycle 540 



Figure 9 shows the plots for Participants 02 and 04, who did not complete an IC loop during the 541 

study. This characteristic is considered a “Partial Optimization Cycle.” Although most of the de-542 

signers responded to the optimization tool’s feedback, Participant 04 started writing their final 543 

design statement before completing their first optimization run. This suggests that either the vari-544 

ables affecting the participant’s design were not dependent on the optimization feedback, or that 545 

the participant did not consider their optimization routine to have possible benefits for informing 546 

a final design decision. However, a lack of IC iterations does not always mean that optimization 547 

techniques were not used to improve the design. In Participant 02’s first two optimization runs, 548 

they watched the tool generate a range of possible designs while it ran. After briefly seeing that 549 

the possible solutions were not as varied as they hoped, the designer stopped the optimizer’s auto-550 

mated process and edited their design variables to create more variations of possible solutions. 551 

This was an informed action as part of a process 13 (considering the physical structure of the 552 

design), but not a process 15, and therefore not an IC iteration. Nevertheless, the optimization tool 553 

was integrated into the participant’s design strategy. 554 

Optimization Characteristics 555 

Figure 10 summarizes the optimization characteristics for six representative sessions that were 556 

analyzed in more detail. The figure shows what percentage of the session had transpired before the 557 

participant engaged with the objectives’ components and when they started to prepare the optimi-558 

zation tool. The participants began using the objective components at between 43-75% of the time-559 

line, suggesting a transition from developing the structure of the model to considering the behav-560 

iors of their model. After plugging their designs into the objective generators, participants began 561 

to optimize at different times as well. While Participant 03 started to optimize as early as halfway 562 

through the session, Participant 05 did not start optimizing until near the end of their session. 563 

Figure 10 also indicates which of the two objectives the participants focused on in their optimiza-564 

tion sequences. Finally, it states how many IA, IB, and IC iterations that the participants performed 565 

and how many variables were used in their final IB run. The parenthetical number (5) for Partici-566 

pant 03’s IB loops shows the number of direct form-finding runs employed.  567 

The number of variables used in the final optimization output varies by participant. Participant 568 

05 had the most variables, which may explain why they spent so much time generating code before 569 

beginning to optimize, but Participant 04 had a similar delay with fewer variables. Although all 570 

designers created variables (parametric sliders) early in their design, only Participants 01 and 06 571 



used all of these sliders in their optimization process. In some cases, variables were only used by 572 

the designer to consider design variations outside of the optimization framework. 573 

DISCUSSION 574 

To summarize, several design patterns emerge from the results. Three iterative loops were iden-575 

tified from applying the situated FBS ontology to differentiate iterations from the designer, the 576 

optimization tool, and from the designer and optimization tool together. These loops can show 577 

when a designer relies on their own design knowledge to make decisions or when they use opti-578 

mization feedback to inform their design. The occurrence of these loops defined the three catego-579 

ries of design strategies based on their presence, timing, and repetition. 580 

This research shows that the graduate student designers use optimization with varying degrees 581 

of intent. While some used optimization feedback to understand the extents of their parametric 582 

model (like Participant 02) or inform changes to their design (like Participant 01 and 03), others 583 

did not fully integrate optimization into their design strategies. This behavior is evident in sessions 584 

that did not make edits between optimization IB iterations (like Participant 05) or did not complete 585 

an IC iteration (like Participant 04). Participant 04 showed a partial use of optimization tools, and 586 

their behaviors suggest that their vision for their design was not responsive to optimization feed-587 

back, since their documentation was started before the optimizer completed its assessment. Not 588 

using optimization feedback in this case may reflect design fatigue within the context of the study, 589 

as their session lasted longer than the other participants’. From observing their parametric model, 590 

though, their optimization variables controlled only subtle changes to the model, suggesting that 591 

optimization as an influencer in design was not part of their strategy. Only partial or no use of 592 

optimization feedback in student designers may indicate a lack of experience or comfort with op-593 

timization tools, or it may simply show a preference for other design approaches. 594 

Although the participants tended to create many variables (or parametric sliders) early in their 595 

design session, not all variables were included in the optimizer’s process. Many of the variables 596 

were used to explore design options manually rather than as part of their performance-driven in-597 

vestigation, but they could also have been used to set a parameter or constraint that did not change 598 

during optimization. While previous research has discerned schemes for processing parametric 599 

design behavior (Oxman 2017; Yu et al. 2016) and identified an iterative loop between design 600 

decisions and optimization (Geyer and Beucke 2010), the findings from this experiment confirm 601 



the presence of these loops while developing a parametric script during design. This paper thus 602 

adds to existing knowledge by showing how early and frequently students modify their model 603 

structure in response to an optimization cycle.  604 

Implications for Design Pedagogy 605 

In categorizing the sessions by optimization behaviors, we establish an initial method to identify 606 

the characteristics of graduate student designers, which can inform future curricular development 607 

and even student assessment if measured directly. Students with experience using optimization 608 

tools do not always fully incorporate them into their decision-making process in a way that lever-609 

ages optimization’s strengths. If the goal of having optimization in the curriculum is to empower 610 

students to include such automated or interactive optimization runs to improve design outcomes, 611 

then additional emphasis must be placed on contextualizing optimization for design. This could 612 

include formal teaching of strategies for variable selection and parametric problem definition, vis-613 

ual interpretation of results, and how to use optimization iteratively to arrive at a satisfying result. 614 

Particular topics of emphasis may differ across the disciplines in the study, as the goals of optimi-615 

zation in an architecture studio or graduate engineering course are likely different. 616 

In addition, when considering how much of the design session the participants spent optimizing, 617 

the results suggest that incorporating objective feedback earlier in the design session aligns with 618 

more IC designer-optimizer iterations. The designers who started preparing for the objective feed-619 

back sooner in the sessions ran more optimization iterations. While getting to the optimization 620 

process sooner provides more opportunities for design improvement, it does not ensure quality of 621 

design expression. However, in optimization education, emphasizing the early and integrated use 622 

of optimization for student designers can at least prompt more engagement with the approach. 623 

Finally, this study noted that when given the choice, most participants selected either the default 624 

evolutionary solver native to the software itself or a multi-objective optimization tool that uses an 625 

evolutionary process to generate approximations of the Pareto front for further consideration. If 626 

instructors seek to encourage students to use faster gradient-based algorithms, interactive tools, or 627 

other methods beyond evolutionary algorithms, more emphasis on these alternative methods is 628 

likely needed. These tool preferences may also have occurred for practical reasons, such as ease 629 

of access or use, rather than because students thought they would achieve the best results, but this 630 

would have to be determined through future study. 631 



Limitations 632 

As with any study, there are some limitations to the findings. Although there were only ten 633 

participants, the data generated from this project is insightfully rich in ways that have not been 634 

presented in the AEC design literature before by using deep multimethod qualitative and time-635 

resolved observational research methods. Our data set from ten participants represents approxi-636 

mately thirty hours of in situ observational data employing multiple strands of time-resolved data, 637 

offering a unique depth of insight useful to design theorists and educators. Further, the goal of the 638 

study was to identify designerly behavior during optimization in intermediate-level designers to 639 

promote theory-informed transferability of the research findings, not to understand how predic-640 

tively generalizable these patterns occur across larger populations. We leave this to future work. 641 

The advantages and affordances of using deep qualitative methods will always be balanced with a 642 

pragmatic tradeoff of sample size, as has been well-established in the qualitative research methods 643 

literature. We meet the requirements of qualitative research methodologies by grounding our work 644 

in theory, establishing theoretical and pragmatic validity (Welther et al. 2017) through our use of 645 

and interpretation of results through FBS design theory, and are satisfied with our codebook in that 646 

we reached saturation such that no new themes emerged during analysis (Creswell and Creswell 647 

2017; Saldana 2015). 648 

Other limitations to this study include that the design task focuses on a conceptual design chal-649 

lenge, which does not capture all possible strategies that may be used when developing a full pro-650 

ject. However, optimization strategies are often used to explore solutions at early phases of de-651 

sign to investigate concepts of interest. Studying a design challenge with a narrow activity scope 652 

rather than a comprehensive design process creates many advantages for data collection, but may 653 

also diminish its authenticity. In addition, since students were able to select their own tools, this 654 

study does not cover behaviors across the full range of optimization possibilities, including more 655 

emerging interactive optimization strategies. Finally, this study does not assess design quality di-656 

rectly, so it assumes that full incorporation of optimization into design simply gives the best future 657 

opportunity for high-quality designs. Several of these limitations are left for future work. 658 

CONCLUSIONS 659 

This paper presented the findings from a study which considered the designerly behaviors of 660 

graduate student designers in architecture and architectural engineering when responding to a 661 



building design optimization task. The study used eye-tracking and screen recording methods to 662 

record data and coded the designerly behaviors following the situated FBS framework. Three types 663 

of design iteration loops were used to characterize partial, coarse, and complete optimization cy-664 

cles by participants. These findings from this study, while of interest to education and design cog-665 

nition researchers in advancing foundational theory, also offer significant opportunities to modify 666 

and augment graduate-level design curricula in architectural engineering and related fields. As the 667 

categories of cycles suggest, while the students understood how to run the optimization tools, not 668 

all were prepared to use the performance feedback in their own designs. While graduate-level 669 

education may show students how to use the optimization tools, students need to know how to 670 

integrate the tools in design projects as well. In much of architectural engineering education cur-671 

ricula, digital design tools are often taught secondary to design concepts, which is appropriate for 672 

certain applications, but incorporating digital tools in graduate-level education can better prepare 673 

student designers to use the tools effectively rather than as an afterthought. 674 

In addition, the use of observational methods in an authentic design challenge offers insight on 675 

common issues, obstacles, or ineffective design strategies often employed that may be missed in 676 

typical “expert vs novice” studies. The impact of this work lies in the preparation of a future work-677 

force that is computationally agile in their future careers, helping them use simulation feedback to 678 

design buildings that are more energy-efficient, low carbon, safe, and durable.  679 

In future work, it is necessary to consider how the categories of optimization behavior proposed 680 

here relate to other variables in the optimization design process, as well as to the quality of design 681 

outcomes. For example, future behavioral studies that evaluate the quality of designs produced can 682 

indicate which optimization-based processes are more effective and should thus be taught to stu-683 

dent designers. The methods for observing optimization behavior presented in this paper provide 684 

a scheme by which to continue to examine designers’ optimization strategies. They can be adjusted 685 

to accommodate the discovery of new techniques and tools using quantitative methods. Neverthe-686 

less, this study observed several clear patterns in design optimization behavior, showing that ear-687 

lier and iterative incorporation of optimization runs by graduate student designers can lead to more 688 

critical engagement with the feedback they provide. 689 
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Fig. 1. The situated FBS framework with emphasis on the processes focused on in this paper, 886 

and the situatedness and interaction of three worlds, after Gero and Kannenglesser (2004). 887 
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 889 

Fig. 2. Summary of the events in a design session, showing the data that was collected, and a 890 

preview of the digital design interface. 891 
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Fig 3. The two Regions of Interest (ROI) on the screen and descriptions of the regions 893 
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 895 

Fig. 4. The coded behaviors in this study from the situated FBS framework. 896 
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Fig. 5. Identified iteration loops. 900 
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Fig. 6. Design session behavior time plots for all participants. 903 
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Fig. 7. Complete Optimization Cycle sessions with detailed time plots from Participants 01 and 905 

03. 906 
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Fig. 8. Coarse Optimization Cycle sessions with detailed time plots from Participants 05 and 06. 909 
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 911 

Fig. 9. Partial Optimization Cycle sessions with detailed time plots from Participants 02 and 04. 912 
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 914 

Fig. 10. A summary of characteristics from the optimization portion of the detailed  sessions an-915 

alyzed in Figures 7-9. 916 
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