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ABSTRACT

Parametric optimization techniques allow building designers to pursue multiple performance
objectives, which can benefit the overall design. However, the strategies used by architecture and
engineering graduate students when working with optimization tools are unclear, and ineffective
computational design procedures may limit their success as future designers. In response, this re-
search identifies several designerly behaviors of graduate students when responding to a concep-
tual building design optimization task. It uses eye-tracking, screen recording, and empirical meth-
ods to code their behaviors following the situated FBS framework. From these data streams, three
different types of design iterations emerge: one by the designer alone, one by the optimizer alone,
and one by the designer incorporating feedback from the optimizer. Based on the timing and fre-
quency of these loops, student participants were characterized as completing partial, crude, or
complete optimization cycles while developing their designs. This organization of optimization
techniques establishes reoccurring strategies employed by developing designers, which can en-
courage future pedagogical approaches that empower students to incorporate complete optimiza-
tion cycles while improving their designs. It can also be used in future research studies to establish

clear links between types of design optimization behavior and design quality.
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PRACTICAL APPLICATIONS

Increasingly, building designers use digital, optimization tools to explore and improve designs.
This research identifies and categorizes several distinct design behaviors when using optimization
tools that have not been previously recognized. Applying these categories to describe graduate
student designer behavior allows educators to find opportunities for improving design education.
While there is no set standard for how optimization tools should be used, different strategies range
in the potential they create for simulation feedback to improve the design. Although all study par-
ticipants were able to implement an optimization feature, they did not all fully integrate the feed-
back into their design decisions. From this research we observe that it is not enough to explain
algorithms and show a student how to run an optimization tool, but these tools must be taught in
the context of robust design approaches. Educators wishing to identify their students’ design strat-
egies can use the methods and language established in this paper to assess student comprehension
of optimization techniques. Future work can apply the behaviors that investigate other dimensions

of optimization in design, such as design quality and comparing categories of designers.

INTRODUCTION

As digital tools evolve, emerging computational strategies allow designers in the Architecture-
Engineering-Construction (AEC) industry to address an increasing number of building perfor-
mance criteria early in the design process. In particular, parametric design strategies, where a
model is readily edited and explored by editable variables, enable AEC designers to rapidly con-
sider numerous potential options while meeting disciplinary goals. Within parametric models, op-
timization techniques can systematically find the best options in terms of quantitative design goals
such as energy use or structural efficiency (Felkner et al. 2013; Touloupaki and Theodosiou 2017).
However, there is uncertainty about how to best apply optimization during design, especially for
emerging interactive optimization approaches that let designers manage qualitative and quantita-
tive goals simultaneously. Optimization can speed up certain design subtasks, and it can help find
high-performance solutions within a design space that might be difficult to find otherwise (Mueller
2014). Yet it also requires a designer to formulate, analyze, and in some cases iterate a defined set
of variables, objectives, and constraints, which may change the timeline or nature of activities in

a typical design procedure.
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While there is considerable established literature describing designer behavior in general, little
is known about how diverse optimization tools influence design, particularly in the domain of
architectural engineering education, as students gradually learn how to incorporate optimization.
One source of potential confusion stems from the range of design tools that are described as em-
ploying optimization, especially in practice. On the one hand, some define “design optimization”
very broadly as the process of systematically and quantitatively improving on a current solution,
as in the case of building simulation (Heiselberg, et al. 2009; Nguyen et al. 2014; Liping et al.
2007). On the other end of the spectrum, some only use the term “optimization” to refer to numer-
ical simulation and/or formal mathematical optimization (Attia 2012; Nocedal and Wright 2006),
even in the context of building design. In the middle are heuristic techniques such as evolutionary
algorithms that designers might implement alongside their own qualitative preferences, either a
priori, a posteriori (Marler and Arora 2004), or interactively (Mueller and Ochsendorf 2015;
Turrin et al. 2011; Touloupaki and Theodosiou 2017b). In all cases, the designer is left to establish
their own sequence and timing for establishing the parametric variables and their relationships in
the first place. If instructed to formulate their own design spaces and optimize a design, students
might employ any of these approaches, with various degrees of completeness or effectiveness. Yet
the characteristics of these ranging strategies have not been established.

In response, this research asks: what patterns of design behaviors do architecture and engineer-
ing graduate students employ while constructing and exploring a parametric model using optimi-
zation-based tools? Potential patterns include iterative decision loops involving the designer, an
automated algorithm, or both, as well as their timing and frequency within a design session. Inves-
tigating how this group of designers, who are neither novices nor experts, utilize different optimi-
zation techniques can inform which strategies they employ with optimization tools. To investigate
design in situ, a research study was conducted which asked participants to create a visually appeal-
ing atrium enclosure that addressed measurable concerns of daylighting, energy use, and structural
performance. Eye-tracking data, screen recordings, and observational assessment were used to-
gether to apply the situated FBS framework (Gero and Kannengiesser 2004).

This framework allowed for identifying multidimensional steps in the design process, describ-
ing design session events, and discerning varying strategies among the participants. The student
participants showed a range of behaviors in their use of optimization techniques —some spent

considerable time formulating the problem and used optimization techniques near the end of the
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design session, while others adjusted the problem more frequently as they ran smaller iterative
explorations. These diverse strategies are used to distinguish several distinct design iteration types
and corresponding behaviors that are detailed in the results and discussion. In understanding the
rich characteristics of designer strategies through qualitative methods, we can first discern these
behaviors through deep analysis before future quantitative studies establish their prevalence among

designer populations.

BACKGROUND

The AEC professions are continually tasked with providing high performing solutions, but the
numerous considerations in building design rarely align. To manage potentially competing objec-
tives, designers have incorporated computational exploration and optimization tools, which can
account for multidisciplinary performance, to make more informed design decisions. While the
feedback and guidance from these emerging design approaches can improve outcomes, designerly
strategies for utilizing optimization in the context of design theory have yet to be thoroughly ex-
amined. In particular, the optimization patterns of intermediate designers, such as graduate level
architecture and engineering students who have experience with design strategies but are still de-

veloping their optimization skills, are largely unknown.

Designerly Behaviors in the Design Process

To systematically characterize designer behavior when using optimization tools, and to deter-
mine how these tools potentially alter traditional processes, it is first necessary to ground the re-
search in a conceptual framework for design behavior. Although design is a complex series of
decisions, researchers have identified general characteristics of the design process (Cross 2011;
Cross and Roozenburg 1992; Lawson 2006; Rowe 1987), which are used to recognize reoccurring
design strategies. Most of these models establish a phase for problem definition, one for design
development, and one for solution analysis, with opportunities for iteration throughout. However,
these models are very broad in their scope.

Several researchers have considered characteristics of design behaviors when working collab-
oratively with computation tools (Haymaker et al. 2018), particularly in the medium of parametric
modeling (Burry 2003; Oxman 2017, Stals et al. 2021; Tschetwertak et al. 2017). Literature shows
that when a computer is used to support or make key decisions, there are different schemes by

which to identify a designer’s cognitive or computational decisions (Caetano et al. 2020, Oxman
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2017; Yu et al. 2015a). In some cases, incorporating parametric modeling and rule-based digital
software can improve the efficiency of design (Harding et al. 2012; Kalkan et al. 2018). However,
other research has differentiated that parametric modeling is still the result of a tool and cannot
replace the ingenuity of a human designer (Megahed 2015). In fact, precedent study observations
show that in practice, parametric design focuses on more controlled, rule-based designs rather than
a vast multitude of solutions (Wortmann and Tuncer 2017). This narrowing of potential designs
based on designers’ knowledge and intuition may also be evident in optimization strategies.

While these prior investigations of parametric design strategies inform aspects of this paper,
we based our optimization-related study on the situated FBS framework (Gero and Kannengiesser
2004), which is an extension of the fundamental and widely applied FBS ontology (Gero 1990).
Gero’s original ontology has been used by many design disciplines to model, code, and analyze
design behaviors (Howard et al. 2008; Kruchten 2005; Yan 1993). It models the design process by
first assigning the characteristics of the desired artifact into three primary categories: function (the
role of the artifact), behavior (how the artifact performs), and structure (the qualities of the arti-
fact). The development of these characteristics is identified by eight types of fundamental design
moves, which create a framework to define the design process. However, although the original
FBS provided a clear foundation to describe a range of design tasks, it did not account for the
influence of cognitive context on design.

In response, Gero and Kannengiesser (2004) present a revised method called the situated FBS
framework (Figure 1), which considered an additional, recursive dimension of design: the concep-
tual environment. This new framework expanded the original 8 processes into three conceptual
environments: an external world, an interpreted world, and an expected world. By dividing the
FBS elements into each world and categorizing the processes as an action, interpretation, or focus-
ing, the situated FBS framework provides a more extensive strategy by which to map the evolution
of the design process. For example, within the synthesis, analysis, and evaluation processes, an
expected behavior (Be') motivates the designer’s idea for a structure (Se') (process 11), which the
designer then represents that structure externally (Se) as a sketch or 3D model (process 12). Next,
the designer considers whether the representation aligns with their idea (process 13). Simultane-
ously, that structure produces an associated behavior (process 14), which the designer can compare
to the expected behavior (process 15). If considered adequate, the designer can proceed to docu-

mentation, or they may repeat the processes going as far back as reframing Functions (process 16).
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With this framework, design researchers can incorporate more comprehensive modeling of
iterative thinking and the regeneration of ideas. Even with these adjustments, the FBS ontology
has been criticized for its ambiguity (Cascini et al. 2013; Dorst and Vermaas 2005) while others
emphasize FBS’s applicability (Galle 2009). Nevertheless, the FBS ontology has been used to
model design in many disciplines (Gu et al. 2012; Uflacker and Zeier 2008), including parametric
building design (Yu et al. 2015a). Its expanded version, the situated FBS framework, also presents
several advantages for this study of optimization strategies. It provides an order by which to iden-
tify design events and organizes the relationships between the designer’s ideas, the behavioral
bounds of the design, and the realization of the design artifact. It also acknowledges the iterative
loop between what the designer envisions and what manifests externally (shifting between the 3
worlds), which can occur in parametric, rule-based design exploration.

Parametric design tools have been shown to help designers produce unconventional solutions
(Wortmann and Tuncer 2017; Yu and Gero 2015b), some of which may not have been originally
conceived by the designer. The uniqueness of the designs and potential for innovation have been
assessed by traditional methods for measuring creativity and shown that parametric thinking is a
viable form of design (Lee at al. 2014). In addition, this method of idea generation prompts con-
sideration of a designer’s source for decision making. In Yu et al.’s study (2015), the researchers
defined a subset of characteristics in the FBS ontology and classified the designer’s decisions as
either “design knowledge” or “rule algorithm” to differentiate the source of cognitive effort
throughout the phases of the design session. We also identify subsets of decisions within the situ-
ated FBS framework in this paper to codify the participants’ design process and identify design
events unique to optimization. Differentiating between decisions focused on developing the arti-
fact or developing the optimization approach is valuable in evaluating computational design be-
haviors, especially as the use of digital tools to solve complex building challenges becomes more

pervasive.

Building Optimization as a Design Technique

As the performance needs of our built environment grow more stringent, it is increasingly
difficult to address multiple design considerations across a range of professional specialties. Alt-
hough achieving an effective, holistic design is advantageous, building performance criteria vary
in units, scale, and importance, making them difficult to empirically compare and optimize (Brown

and Mueller 2016a; Felkner et al. 2013). For example, the benefits of increasing natural daylight
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with more windows can compete with the goal of reducing energy consumption. Building optimi-
zation quickly becomes convoluted as there are many numerical and experiential criteria, such as
spatial, structural, and mechanical objectives (Touloupaki and Theodosiou 2017). Furthermore,
when AEC disciplines collaborate on optimization projects, it has been shown that an iterative
process emerges between the designers and their optimization tools (Geyer and Beucke 2010).
Traditionally, designers relied on knowledge to find effective solutions, but computational tools
allow designers to rapidly explore a range of solutions with quick performance feedback, enabling
more efficient production of high-performance designs for architects and engineers (Brown et al.
2020b; Gerber and Lin 2014; Mueller and Ochsendorf 2015). However, some designers criticize
digital design space exploration for its limitations in design thinking and potential design fixation
compared to traditional sketching processes (Stones and Cassidy 2010). Nevertheless, optimiza-
tion has been utilized by a variety of engineering disciplines with advantageous results (Tou-
loupaki and Theodosiou 2017; Kollat and Reed 2007; Simpson and Martins 2011) and research
has shown that the use of computational tools is a viable method for design in AEC (Mueller and
Ochsendorf 2015; Turrin et al. 2011; Yang et al. 2015). In particular, the applicability of optimi-
zation in computer aided architectural design has been suggested early in the development of build-
ing computation simulation (Radford and Gero 1980). However, due to the emerging nature of
optimization tools, the best practices for their use are still being defined. At this point, strategic
optimization education can impact the effective implementation of such tools by graduate design-

ers and is not unique to just optimization.

Student Designers Working in Digital Tools

It has been suggested that parametric design is advantageous to the development of a designer
because it prompts the setting of constraints on a design task to find different solutions rather than
focusing on one solution (Schnabel 2013). Yet students may be limited in their ability to fully
execute a design since they are still developing as designers themselves and are still mastering
design tools (Chase 2005). In addition, curriculum standards in building design education vary by
discipline, and the influence of pedagogical systems on problem-solving strategies are somewhat
unpredictable (Cross et al. 1994). Specific to optimization pedagogy, recently developed courses
in architecture and engineering programs have introduced optimization to students with promising
initial results (Brown and Bunt 2022; Oliveira et al. 2018; Pasternak and Kwiecinski 2015), but

the learning outcomes of these courses are not standardized, and the tools and processes used vary
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by institution. Nevertheless, much of the emerging research that considers early-stage optimization
tools focuses on student participants (Brown 2020a; Brown and Mueller 2016b; Gerber and Lin
2014; Mark 2012), so there is value in identifying specific sources of student limitations in design
environments, particularly for optimization.

Considering this population, it has been shown that novice designers tend to use less sophisti-
cated processes compared to experts (Atman et al. 2007; Deininger et al. 2017), which may hinder
effective use of optimization methods. Intermediate designers, though, such as graduate-level ar-
chitect and engineer students, represent a stage in education development in which designers pos-
sess a foundation for disciplinary design decisions and have experience working with design tools,
but are still developing as effective problem solvers. Identifying graduate student designer strate-
gies while they make decisions with optimization tools may help categorize effective behaviors,
improving tools for design development, and enhance learning processes for graduate students as
future experts. Accounting for the context of proliferating digital tools in AEC, this research fo-

cuses on optimization behavior in conceptual building design.

METHODS

This IRB approved study asked graduate-level architect and engineering design students to pro-
pose an optimized solution in response to a conceptual building design task. The multi-method
research design employed eye-tracking, screen recordings, and interviews to capture different
streams of data from the design sessions. Observational data analysis and artifact analysis tech-
niques were used to qualitatively code the design segments within the situated FBS framework.
Our analysis protocol was also employed to identify designerly events unique to optimization,

relating reoccurring behaviors between designers to potentially effective optimization strategies.

Participants

The streams of observational and interview data were collected from a sample size of 10 archi-
tecture (5) and architectural engineering (5) graduate students at a research-intensive public uni-
versity in the northeastern United States. This population is of special interest to understand the
design practices of designers at an intermediate educational stage rather than those of novice un-
dergraduates (who typically have not developed either design or engineering skillsets) or practi-
tioners (who are fully expert in their designerly ways). While this sample size may seem small,

each participant generates 3 hours of video screen capture data, eye-tracking data, and interview
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data, supporting a multi-stream qualitative study. This amount of data is quite large and rich con-
sidering the purpose of this study is to identify and characterize the types of optimization behaviors
rather than conduct predictive or generalizable statistics. Participants included 6 women and 4
men. They were recruited by email announcement of the study to the architecture and architectural
engineering department and were compensated with a $20 gift card. The participants completed a
survey before beginning the design task and reported at least 1 year of experience (average 3.5
years) and a moderate level of confidence with the study’s modelling tools, along with at least 1
year of experience in optimization. Amount of time spent in design practice among participants,
which can occur before or during the pursuit of graduate degrees, ranged from 0-10 years. By
studying graduate-level designers, we elicit a deep understanding of how the design learning pro-

cess occurs as architects and engineers move past their novice design tendencies.

Design Session

All design sessions were conducted in a controlled research space equipped with a computer,
eye-tracking hardware, and software. The research procedure is shown in Figure 2. After the par-
ticipants were situated at the computer, they were briefed on the design task through a standard
video introduction and their eye-tracking setup was calibrated for their sitting position. After
watching the design task video, but before working in the digital space, the designers were pro-
vided with paper and pencils to take notes or sketch on paper for 5-10 minutes, which enabled
them to create initial ideas separate from the model space. They then proceeded to work in the
digital modeling tools to develop their design and produce optimized solutions. The designers were
prompted to work for as long as they felt comfortable, resulting in sessions that lasted approxi-
mately 3 hours.

While Grasshopper in Rhinoceros was used as a consistent parametric modeling platform, the
designers were able to choose their own optimization plugins, since the application of these tools
is a part of authentic design behavior. In this study, the participants preferred using either Galapa-
gos (Rutten 2013), presumably adding their own prioritization mechanism to manage multiple
objectives or Design Space Exploration’s Multi-Objective Optimization tool (Brown et al. 2020b)
to find optimized solutions. Notably, both tools preview intermittent design iterations while run-
ning, such that designers can make visual assessments before the tool has completed its optimiza-
tion loop. It is also worth noting that these chosen tools do not fully enable interactive human-in-

the-loop optimization at the scale of design generations or internal dynamic data visualization,
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which are possible using newer or less common parametric tools, such as Stormcloud (Danhaive
and Mueller 2015), Wallacei X, (Wallacei X 2018) and Stepper (Brown and Mueller 2018). Full
documentation of design strategies with these tools would require future analysis.

The participants could repeatedly use their optimization tool in the session if they wished, but
they were not explicitly prompted to do so. After settling on a final design, the designers were
asked to submit 2-4 screenshots of their proposal and a written design statement to give to a fic-
tional client. Immediately following submission of their deliverables, the researcher interviewed
the participants using a semi-structured interview protocol, asking about their goals for their de-
sign, how they approached completing the design, and what they would do differently if they had
more time. The interviews were used as cognitive proxies to contextually ensure that behaviors

were correctly interpreted.

Design Task

The design task asked participants to develop a glass atrium infill for a fictional university client
in Phoenix, Arizona. This site was chosen because of the region’s hot and sunny summer climate,
which is easily recognized or readily learned in an online search. A university setting was used for
site context to prompt the need for visually exciting designs, and for its accessibility to the partic-
ipants. The design task required the designers to address at least two of three provided objectives.
The first objective is to maximize daylighting during the summer solstice (June 21) at noon. While
building designs often consider daylight at multiple times throughout the year, full daylighting
simulations can take hours or even days to run. Focusing on a significant instance in time is a
common design strategy that eliminates wait times and reduces required computation power. The
second goal is to minimize solar radiation. Within the task, reducing the surface area of the atrium
will reduce solar radiation, as will substituting thicker glass or opaque panels with better u-values.
The third objective is to minimize the elastic energy of the structure, as calculated by Karamba3D
(Preisinger and Heimrath 2014). It is desirable to have a structure with less deflection because it
will allow for smaller members to build. Reducing structural weight can also reduce costs. Opti-
mizing a whole structural system is a complex task but asking the designers to focus on two of
these three goals provides a conceivable and numeric goal for them to manage in the constraints
of this conceptual design task.

The designers were given the design task through two introduction videos. In the first video,

the fictional client showed four example atriums that the university admires. Although providing
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examples to the participants may bias their design solutions and prompt them to imitate what they
are shown (Zalewski et al. 2017), clients often share their visions for a project during an authentic
design process in practice. Providing participants with examples of atriums also frames the design
task in terms of parametric thinking, which was the intended design environment of this study.
However, before introducing the designers to the study’s computational tool, participants were
allowed to sketch or write out initial ideas, permitting them to first consider ideas not constrained
to the computational environment.

Participants were also provided with a base file containing the site context, important points of
reference, and pre-built scripts that calculate the objectives. The script required that the participants
provide surfaces for the intended solid panels, surfaces for the glass panels, the structure repre-
sented as lines, and the structural support points. In this way, the designers could focus their efforts
on working towards an optimized solution, and the study was given a consistent frame for simpli-
fied performance simulation between the designers. Moreover, this study focuses on optimization

tactics, not on the designer’s ability to assemble a structural analysis simulation.

Qualitative Coding and Characterization of Design Behaviors

During the design session, the participants’ behaviors were captured by screen recording and
tracking their eye gaze data using EyeWorks eye-tracking hardware (EyeTracking 2011). Eye
tracking, combined with screen capture recordings, is a robust method to understand design be-
haviors because it offers the ability for researchers to not just capture outcomes, but also actions
and patterns of behaviors paired with information about what the participant is looking at or turning
their attention toward. These types of data are highly complex, with each minute of participant
behavior resulting in hundreds if not thousands of potential data points for each participant gener-
ated over a ~3 hour design task.

The researchers also observed the design session to record times when the participant sketched
or encountered difficulties with the tool, and to facilitate an immediate follow up interview about
the participant’s rationales for critical design decisions. The follow up interviews asked the de-
signers to elaborate on their design decisions and what difficulties they encountered. They were

also asked, if given more time, what would they do differently to further refine their design.

Data Analysis
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To analyze the streams of data, various methods were employed. First, the video recordings
were reviewed and activities that did not pertain to the design session were removed, such as saving
and restarting the program. Second, the eye-tracking data were initially analyzed using digital tools
to interpret broad patterns in participant behavior. Using additional software from EyeWorks, the
eye gaze data was paired with two Regions of Interest (ROI) on the screen to identify if the partic-
ipant looked in the parametric space (Grasshopper), the 3D modeling space (Rhino), or away from
the screen altogether. These tools help interpret the digital information representing design behav-
ior.

When working in these tools, a designer develops their model by programming geometry in the
parametric space and viewing their model in the 3D modeling space. While these regions stay the
same for each participant, the displays inside the regions are dynamic as participants rotate or
zoom in on the design or pan across their script. Thus, a significant dwell time in an ROI shows
either consideration of the design artifact or computational manipulations of the design. Figure 3
shows where the two ROI’s are on the screen (the 3D modeling space and the parametric space),
a preview of what may be displayed in the spaces, and a brief description of what occurs in the
spaces. Eye tracking was thus required to accurately identify loops between Regions of Interest,
which eventually helped define behaviors.

The output video files from the eye-tracking data were analyzed using observational qualitative
data analysis processes, called "coding," honed for observational and time-resolved research to
characterize design behaviors. These methods work abductively from existing frameworks for de-
sign cognition to accurately describe the breadth of behaviors observed (Mehta et al. 2020). A
codebook describing the names and definitions of the design activities, which could be categorized,
was developed through literature and piloted iteratively on the data in consensus with the other
members of the research team and strongly grounded in design theory. After this iterative code-
book was developed, a single researcher rewatched all the design sessions and notated the presence
of every design behavior and their time stamps. The coding comprised of elements from the situ-
ated FBS framework in identifying the iterative process between Function, Behavior, and Structure
in the context of the optimization environment. The typology of behaviors captured, aggregate
percentages of behaviors captured over time, and the ordering in which behaviors occur through
the duration of the design challenge are used to answer the research question related to patterns of

design behaviors.
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The interview transcripts were employed as an external validation method to ensure that the
research team was interpreting behaviors accurately, particularly for critical decisions, but were
not independently thematically analyzed for this study. Together, the multiple streams of qualita-
tive data (screen recording, eye tracking, and interview transcripts) are used to inform the inter-

pretation of the behaviors as they relate to architectural engineering design education.

Event codes

We determined 13 events of behavior that manifested across all ten participants. Figure 4 shows
the coding of events in the situated FBS framework to the conceptual optimization process. The
code also highlights several concrete events identified in this study, which define the behavioral
structure of the individual sessions. The sessions were divided into two primary phases, “pre-mod-
eling” and “modeling,” which are determined by the placing of a first component in Grasshopper.
Placing the first component is coded as a process 12 in which the designer manifests their idea for
an artifact in the external world. In this study, the pre-modeling phase is mostly rapid formulation
(processes 1-10), and although sketching in the Pre-modeling phase is also a process 12 since it
allows the designer to externalize their ideas onto paper, the formulation processes are informally

executed and not within the scope of this paper.

Synthesis events

We also captured the occurrence of “synthesis events” as a manifestation of the processes. Syn-
thesis events include a process 11, which is envisioning solutions (Se') from formulated behavior
(Be'), and process 12, which is externalizing the solution. In this study, process 11 was an internal
decision, so this step was not explicitly captured. However, synthesis process 12 accounts for many
of the designer’s actions and was divided into 4 categories to better describe the designer’s exter-
nalized decisions. Most of the actions in the parametric space that create structure (Se) are when
the designer places a static component, but there are other events which relate directly to the opti-
mization process. Following precedent from Yu et al. (2015a), which divided Function, Behavior,
and Structure into knowledge-based and rule-based cognitive decisions, this research identified 3
events within process 12 in this study: the introduction of a variable to the model, a return to
sketching on paper, and the defining of solid and clear panels. Introducing a variable suggests the
potential for that element to be influenced by optimization feedback. Notably, not all the variables

created in each session were used in the optimization events, which turns them into parameters in
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formal optimization language. Overall, individual narratives concerning the use of variables in-
form each designers’ process. The process 12 event of “returning to sketching” is also not always
present in every session, but it is determined when a designer looks away from the screen and
picks up their writing utensil. All designers created surfaces in their design and discerned between
solid and glass panels. Until this event occurs, their design decisions are geometric and do not

considered materiality, which is a Behavior aspect of the design.

Pre-analysis and analysis events

Other definitive events in this study are when participants first plug elements into the objective
value generators and when they first activate their optimization tool. Shifting to the generator sig-
nifies a transition from relying on design knowledge to preparing for optimization feedback. The
designers may return to design knowledge after interacting with the objective generator, but this
is an event unique to the optimization process, and the timing of its occurrence in the session
informs how integral the designers see optimization in their final solution. To meet the require-
ments of the objective generators, they may also have to restructure part of their model, relying on
a mixture of design knowledge and parametric knowledge.

A further indicator is when the designer starts preparing the optimization tool to optimize the
design. This is not always an efficient process, particularly for the student designers, as the plan-
ning for optimization sometimes prompts re-evaluation of design variables. Once the optimization
tool is run, a series of analysis, evaluation, and synthesis processes (13, 14, 15, and 12) occur

between the designer and optimization tool from which the designer can make a design decision.

Evaluation and documentation events

Before proceeding to documentation, a designer will verify if the behavior of the design meets
the expected behavior. In early conceptual design development, this process is largely driven by
the optimization tool, which minimizes the objective values. However, the designer may consider
the results manually and decide to repeat earlier processes or proceed to documentation. In some
cases, a designer may follow process 16, which is an opportunity to change the function of the
design by changing which of the two objectives they wish to pursue. This process did not occur in
this study’s design sessions.

The final event defined in this study is the shift to documentation. This is defined as when the

designer opens the writing document and begins to compose their design statement or take
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screenshots of their final design. In some cases, the designers refine the representation of their

design in preparation for documentation, such as applying color to the different panels.

Evaluation of Designer Behavior

Coding and identifying these processes allowed the design team to compare reoccurring behav-
iors, design focus, and significant events. In following the situated FBS framework, a series of
repeated actions are identified in the conceptual design optimization sessions. While Gero and
Kannengiesser acknowledged types of design “Reformulations,” this research identifies iterations
performed by the designer, by the optimizer, and by the designer and the optimizer together, shown
in Figure 5. Prior to running the optimization tool, the designers ran through process 11, 12, and
13, in a series of iterative loops. These loops were identified by the designers’ dwell time in the
Grasshopper canvas and the modeling space, as recorded by the eye-tracking tool.

Appropriate dwell times are often determined by the task context (Carter and Luke 2020) and
are difficult to standardize (Hessels et al. 2016). While eye tracking has been used in many areas,
its application in 3D architectural modeling tools is less common. Dwell times that are measured
in milliseconds tend to correspond to small Areas of Interest, like a button on a webpage. However,
this research uses Regions of Interest that correspond to how participants consider the design ver-
sus manipulating the design script. Both activities likely require dwell times in the small number
of seconds, which have also been considered in relation to programming activities (Jbara and Feit-
elson 2017). Frequency of looking at the regions is significant, as iterative loops were identified
at the resolution that patterns emerged for the design sessions. Based on researcher experience
with the design tools and iteratively testing different timeframes, the sessions were divided into 0-
4 seconds, 4-12 seconds, and 12+ seconds. Glancing in the model ROI for less than 4 seconds was
determined to be a “check” that the Grasshopper command was doing the intended purpose, rather
than a responsive assessment of the design associated with a process 13. Looking at either region
for longer than 12 seconds indicated that the designer was focusing on component assembly in
Grasshopper (ROI2) or reflecting on the representation of their model (ROI 1). An Iteration Loop
A (TA) was determined when the designer looked back and forth between Grasshopper and the
modeling space at least once, for 4-12 seconds in each region. IA loops can be counted, providing
a metric by which to compare the designers’ iterative behaviors.

The second Iteration loop is performed by the optimization tool, Iteration Loop B (IB), starting

from process 14 to 15, 11, and 12. It runs through these rapidly and iteratively until stopping back
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at Bi. Notably, the optimization tool does not perform process 13, as it cannot consider if the
external structure aligns with the designer’s interpreted structure. After running the optimizer, the
designer may continue to move through synthesis, analysis, and evaluation processes based on
abstract goals, or move directly onto documentation. If they respond to the optimization feedback
and make adjustments, then that is considered an Iteration Loop C (IC). This iterative process is
similar to the interactive behavior identified by Geyer et al. (2010) as a designer works back and
forth between design modeling and optimization.

These iteration loops allowed us to identify how early the designers ran their optimization tool
in the session, what processes they followed after reviewing the results, and if they repeated the
optimization. IA loops were identified automatically based on relationships in the eye-tracking
data. Although IB and IC loops contain defined actions, not open to interpretation or variation of
researcher perspective, they did require manual recordings of when a certain component was
placed, connected, or manipulated in the screen recordings. A member of the research team re-
viewed the sessions twice to verify that the processes were accurately identified. The occurrence
of the iteration loops, types of Structure moves, and optimization events produce narratives that

enable comparison between participants.

RESULTS

Based on the coding structure, simplified session time plots are shown in Figure 6. The sessions
are divided into Pre-modeling and Modeling phases. The beginning of the Modeling phase is
marked with “0 minutes.” The horizontal line in each diagram is the session timeline from begin-
ning to end. Along the timeline, the IA (Designers) loops are plotted, showing their occurrence
and duration. Similarly, below the timeline, iteration types IB (Optimizers) and IC (Designer with
optimizer) are shown with blocks, indicating when and for how long each loop lasted. Above the
timeline, significant events within the optimization process are also labeled according to their trig-
gers in the previous section. Plugging their design into the objective value generator (“obj.”) rep-
resents an active, cognitive engagement with the design objectives. Later in each session, the open-
ing of an optimization tool and preparing to run it (“prep optimizer”) is considered the beginning
of the optimization process. At the end of each timeline, the time spent documenting the design is

shown as a thicker gray band.
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The sessions are organized by three categories of optimization behavior, as determined by re-
occurring characteristics. A “Complete Optimization Cycle” is when the participant completed at
least one full IC iteration and there is evidence of informed edits to their design, such as the pres-
ence of an IA iteration after optimizing or a substantial amount of time spent considering results.
A “Coarse Optimization Cycle” is when the designers completed at least one IC iteration, but the
cycles did not influence any notable changes in the design. The third cycle, a “Partial Optimization
Cycle,” is when the designer did not complete a full IC iteration, meaning they did not consider
the best performing suggestions from the optimization tool. Although the cycle categories do not
indicate the quality of design idea or the efficacy of resulting design performance, they do organize
a system by which to understand optimization techniques and discuss nuances between behaviors.

The next three sections describe in detail representative participants for each type of cycle.

Complete Optimization Cycle

The Complete Optimization Cycle participants closely followed an expected optimization pro-
cess in which a designer integrates behavioral (process 14 and 15) considerations in the develop-
ment of their design and completes at least one full designer-optimizer (IC) iteration, with observ-
able edits to their design, before documenting their project. Figure 7 shows detailed session time
plots of Participants 01 and 03, who exhibited characteristics of the Complete Cycle. In these de-
tailed session time plots, creation of a new variable is indicated by a circle, and a participant re-
turning to sketching by picking up their writing utensil is shown by a triangle. The figure also
shows when the designers defined the difference between solid and glass panels in their model (SP)
along with notable instances within the eye gaze fixations.

The enlarged portion of the Eye Gaze Fixation plot for Participant 01 shows three examples of
IA iteration. The designer looked back and forth between the model space and parametric space
for at least 4-12 second clusters, suggesting a loop of design edits, which was confirmed by re-
searcher observation. As the sessions progress and the designers focus more on preparing for the
optimization process, the occurrences of 1A loops become less frequent. However, each designer
also completed an IA loop between optimization runs, suggesting that an informed change was
made to the design before running the final optimization loop. Several smaller differences are
apparent, however. Participant 01 returned to sketching after placing a component and before de-
veloping their model, while Participant 03 immediately started to create variables. Also, as indi-

cated by the early square notations in the IB zone, Participant 03 used a direct form-finding tool
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to achieve an optimized structural shape first rather than use “structure” as an objective in a para-
metric optimization run. This is a distinct form of optimization based on setting optimality criteria
and seeking those criteria directly, but it is only possible in a parametric environment designed
specifically for this purpose. It was thus coded for summary statistics as an optimization loop but

represented differently from an IB loop.

Coarse Optimization Cycle

Figure 8 shows the detailed time plots two designers who exhibited a “Coarse Optimization
Cycle.” It includes Participants 05 and 06, who completed IC loops but did not use optimization
strategies thoroughly and thus presented subtle differences in their sessions. The IC loops of these
sessions are very brief compared to Participants 01 and 03. Although the brevity of an IB loop will
depend on the robustness of the chosen tool and the simplicity of a design, time spent considering
the optimized options (process 15) can reflect the sophistication of the optimization run or the
intent of the designer. These two participants ran several IB loops in a short time because the
design options were not as diverse as they envisioned, but they did not know how to manipulate
the variables to produce optimization results that aligned with their vision. Participant 05 did not
engage in optimization events until late in their session and realized the structure of their model’s
code was not compatible with the requirements of objective generators. The participant rebuilt part
of the model and lost some of the qualities from their original design. The detail from Participant
05’s time plot in Figure 8 shows their focus on Grasshopper space as they manipulated code.

While other sessions show sparse IA iterations as participants adjusted code, Participant 06’s
time plot shows a density of IA iterations before preparing the optimization tool. This behavior
suggests that, for Participant 06 to correctly activate the objective generators, they had to change
their design and repeatedly view the results in the model space. The absence of this behavior in
the other sessions suggests that this designer’s solution developed in response to the guided re-
quirements of the study, not exclusively by their own vision for the project. This dependency on
prompted Grasshopper coding may reflect less experience with parametric and optimization design
techniques. Although this participant could wield optimization tools, issues with self-driven design
performance may arise if they were to employ optimization techniques in future, professional pro-

jects where design efficacy and efficiency are imperative.

Partial Optimization Cycle
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Figure 9 shows the plots for Participants 02 and 04, who did not complete an IC loop during the
study. This characteristic is considered a “Partial Optimization Cycle.” Although most of the de-
signers responded to the optimization tool’s feedback, Participant 04 started writing their final
design statement before completing their first optimization run. This suggests that either the vari-
ables affecting the participant’s design were not dependent on the optimization feedback, or that
the participant did not consider their optimization routine to have possible benefits for informing
a final design decision. However, a lack of IC iterations does not always mean that optimization
techniques were not used to improve the design. In Participant 02’s first two optimization runs,
they watched the tool generate a range of possible designs while it ran. After briefly seeing that
the possible solutions were not as varied as they hoped, the designer stopped the optimizer’s auto-
mated process and edited their design variables to create more variations of possible solutions.
This was an informed action as part of a process 13 (considering the physical structure of the
design), but not a process 15, and therefore not an IC iteration. Nevertheless, the optimization tool

was integrated into the participant’s design strategy.

Optimization Characteristics

Figure 10 summarizes the optimization characteristics for six representative sessions that were
analyzed in more detail. The figure shows what percentage of the session had transpired before the
participant engaged with the objectives’ components and when they started to prepare the optimi-
zation tool. The participants began using the objective components at between 43-75% of the time-
line, suggesting a transition from developing the structure of the model to considering the behav-
iors of their model. After plugging their designs into the objective generators, participants began
to optimize at different times as well. While Participant 03 started to optimize as early as halfway
through the session, Participant 05 did not start optimizing until near the end of their session.
Figure 10 also indicates which of the two objectives the participants focused on in their optimiza-
tion sequences. Finally, it states how many IA, IB, and IC iterations that the participants performed
and how many variables were used in their final IB run. The parenthetical number (5) for Partici-
pant 03’s IB loops shows the number of direct form-finding runs employed.

The number of variables used in the final optimization output varies by participant. Participant
05 had the most variables, which may explain why they spent so much time generating code before
beginning to optimize, but Participant 04 had a similar delay with fewer variables. Although all

designers created variables (parametric sliders) early in their design, only Participants 01 and 06
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used all of these sliders in their optimization process. In some cases, variables were only used by

the designer to consider design variations outside of the optimization framework.

DISCUSSION

To summarize, several design patterns emerge from the results. Three iterative loops were iden-
tified from applying the situated FBS ontology to differentiate iterations from the designer, the
optimization tool, and from the designer and optimization tool together. These loops can show
when a designer relies on their own design knowledge to make decisions or when they use opti-
mization feedback to inform their design. The occurrence of these loops defined the three catego-
ries of design strategies based on their presence, timing, and repetition.

This research shows that the graduate student designers use optimization with varying degrees
of intent. While some used optimization feedback to understand the extents of their parametric
model (like Participant 02) or inform changes to their design (like Participant 01 and 03), others
did not fully integrate optimization into their design strategies. This behavior is evident in sessions
that did not make edits between optimization IB iterations (like Participant 05) or did not complete
an IC iteration (like Participant 04). Participant 04 showed a partial use of optimization tools, and
their behaviors suggest that their vision for their design was not responsive to optimization feed-
back, since their documentation was started before the optimizer completed its assessment. Not
using optimization feedback in this case may reflect design fatigue within the context of the study,
as their session lasted longer than the other participants’. From observing their parametric model,
though, their optimization variables controlled only subtle changes to the model, suggesting that
optimization as an influencer in design was not part of their strategy. Only partial or no use of
optimization feedback in student designers may indicate a lack of experience or comfort with op-
timization tools, or it may simply show a preference for other design approaches.

Although the participants tended to create many variables (or parametric sliders) early in their
design session, not all variables were included in the optimizer’s process. Many of the variables
were used to explore design options manually rather than as part of their performance-driven in-
vestigation, but they could also have been used to set a parameter or constraint that did not change
during optimization. While previous research has discerned schemes for processing parametric
design behavior (Oxman 2017; Yu et al. 2016) and identified an iterative loop between design

decisions and optimization (Geyer and Beucke 2010), the findings from this experiment confirm
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the presence of these loops while developing a parametric script during design. This paper thus
adds to existing knowledge by showing how early and frequently students modify their model

structure in response to an optimization cycle.

Implications for Design Pedagogy

In categorizing the sessions by optimization behaviors, we establish an initial method to identify
the characteristics of graduate student designers, which can inform future curricular development
and even student assessment if measured directly. Students with experience using optimization
tools do not always fully incorporate them into their decision-making process in a way that lever-
ages optimization’s strengths. If the goal of having optimization in the curriculum is to empower
students to include such automated or interactive optimization runs to improve design outcomes,
then additional emphasis must be placed on contextualizing optimization for design. This could
include formal teaching of strategies for variable selection and parametric problem definition, vis-
ual interpretation of results, and how to use optimization iteratively to arrive at a satisfying result.
Particular topics of emphasis may differ across the disciplines in the study, as the goals of optimi-
zation in an architecture studio or graduate engineering course are likely different.

In addition, when considering how much of the design session the participants spent optimizing,
the results suggest that incorporating objective feedback earlier in the design session aligns with
more IC designer-optimizer iterations. The designers who started preparing for the objective feed-
back sooner in the sessions ran more optimization iterations. While getting to the optimization
process sooner provides more opportunities for design improvement, it does not ensure quality of
design expression. However, in optimization education, emphasizing the early and integrated use
of optimization for student designers can at least prompt more engagement with the approach.

Finally, this study noted that when given the choice, most participants selected either the default
evolutionary solver native to the software itself or a multi-objective optimization tool that uses an
evolutionary process to generate approximations of the Pareto front for further consideration. If
instructors seek to encourage students to use faster gradient-based algorithms, interactive tools, or
other methods beyond evolutionary algorithms, more emphasis on these alternative methods is
likely needed. These tool preferences may also have occurred for practical reasons, such as ease
of access or use, rather than because students thought they would achieve the best results, but this

would have to be determined through future study.
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Limitations

As with any study, there are some limitations to the findings. Although there were only ten
participants, the data generated from this project is insightfully rich in ways that have not been
presented in the AEC design literature before by using deep multimethod qualitative and time-
resolved observational research methods. Our data set from ten participants represents approxi-
mately thirty hours of in situ observational data employing multiple strands of time-resolved data,
offering a unique depth of insight useful to design theorists and educators. Further, the goal of the
study was to identify designerly behavior during optimization in intermediate-level designers to
promote theory-informed transferability of the research findings, not to understand how predic-
tively generalizable these patterns occur across larger populations. We leave this to future work.
The advantages and affordances of using deep qualitative methods will always be balanced with a
pragmatic tradeoff of sample size, as has been well-established in the qualitative research methods
literature. We meet the requirements of qualitative research methodologies by grounding our work
in theory, establishing theoretical and pragmatic validity (Welther et al. 2017) through our use of
and interpretation of results through FBS design theory, and are satisfied with our codebook in that
we reached saturation such that no new themes emerged during analysis (Creswell and Creswell
2017; Saldana 2015).

Other limitations to this study include that the design task focuses on a conceptual design chal-
lenge, which does not capture all possible strategies that may be used when developing a full pro-
ject. However, optimization strategies are often used to explore solutions at early phases of de-
sign to investigate concepts of interest. Studying a design challenge with a narrow activity scope
rather than a comprehensive design process creates many advantages for data collection, but may
also diminish its authenticity. In addition, since students were able to select their own tools, this
study does not cover behaviors across the full range of optimization possibilities, including more
emerging interactive optimization strategies. Finally, this study does not assess design quality di-
rectly, so it assumes that full incorporation of optimization into design simply gives the best future

opportunity for high-quality designs. Several of these limitations are left for future work.

CONCLUSIONS
This paper presented the findings from a study which considered the designerly behaviors of

graduate student designers in architecture and architectural engineering when responding to a
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building design optimization task. The study used eye-tracking and screen recording methods to
record data and coded the designerly behaviors following the situated FBS framework. Three types
of design iteration loops were used to characterize partial, coarse, and complete optimization cy-
cles by participants. These findings from this study, while of interest to education and design cog-
nition researchers in advancing foundational theory, also offer significant opportunities to modify
and augment graduate-level design curricula in architectural engineering and related fields. As the
categories of cycles suggest, while the students understood how to run the optimization tools, not
all were prepared to use the performance feedback in their own designs. While graduate-level
education may show students how to use the optimization tools, students need to know how to
integrate the tools in design projects as well. In much of architectural engineering education cur-
ricula, digital design tools are often taught secondary to design concepts, which is appropriate for
certain applications, but incorporating digital tools in graduate-level education can better prepare
student designers to use the tools effectively rather than as an afterthought.

In addition, the use of observational methods in an authentic design challenge offers insight on
common issues, obstacles, or ineffective design strategies often employed that may be missed in
typical “expert vs novice” studies. The impact of this work lies in the preparation of a future work-
force that is computationally agile in their future careers, helping them use simulation feedback to
design buildings that are more energy-efficient, low carbon, safe, and durable.

In future work, it is necessary to consider how the categories of optimization behavior proposed
here relate to other variables in the optimization design process, as well as to the quality of design
outcomes. For example, future behavioral studies that evaluate the quality of designs produced can
indicate which optimization-based processes are more effective and should thus be taught to stu-
dent designers. The methods for observing optimization behavior presented in this paper provide
a scheme by which to continue to examine designers’ optimization strategies. They can be adjusted
to accommodate the discovery of new techniques and tools using quantitative methods. Neverthe-
less, this study observed several clear patterns in design optimization behavior, showing that ear-
lier and iterative incorporation of optimization runs by graduate student designers can lead to more

critical engagement with the feedback they provide.
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Fig. 1. The situated FBS framework with emphasis on the processes focused on in this paper,
and the situatedness and interaction of three worlds, after Gero and Kannenglesser (2004).
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