

OBSERVING ARCHITECTURAL ENGINEERING GRADUATE STUDENTS' DESIGN OPTIMIZATION BEHAVIORS USING EYE-TRACKING METHODS

Stephanie Bunt^{*1}, Catherine G. P. Berdanier², and Nathan C. Brown³

*Corresponding Author Email: sub81@psu.edu

¹Department of Architectural Engineering, Penn State University.

²Department of Mechanical Engineering, Penn State University

³Department of Architectural Engineering, Penn State University

ABSTRACT

Parametric optimization techniques allow building designers to pursue multiple performance objectives, which can benefit the overall design. However, the strategies used by architecture and engineering graduate students when working with optimization tools are unclear, and ineffective computational design procedures may limit their success as future designers. In response, this research identifies several designerly behaviors of graduate students when responding to a conceptual building design optimization task. It uses eye-tracking, screen recording, and empirical methods to code their behaviors following the situated FBS framework. From these data streams, three different types of design iterations emerge: one by the designer alone, one by the optimizer alone, and one by the designer incorporating feedback from the optimizer. Based on the timing and frequency of these loops, student participants were characterized as completing partial, crude, or complete optimization cycles while developing their designs. This organization of optimization techniques establishes reoccurring strategies employed by developing designers, which can encourage future pedagogical approaches that empower students to incorporate complete optimization cycles while improving their designs. It can also be used in future research studies to establish clear links between types of design optimization behavior and design quality.

25 **PRACTICAL APPLICATIONS**

26 Increasingly, building designers use digital, optimization tools to explore and improve designs.
27 This research identifies and categorizes several distinct design behaviors when using optimization
28 tools that have not been previously recognized. Applying these categories to describe graduate
29 student designer behavior allows educators to find opportunities for improving design education.
30 While there is no set standard for how optimization tools should be used, different strategies range
31 in the potential they create for simulation feedback to improve the design. Although all study par-
32 ticipants were able to implement an optimization feature, they did not all fully integrate the feed-
33 back into their design decisions. From this research we observe that it is not enough to explain
34 algorithms and show a student how to run an optimization tool, but these tools must be taught in
35 the context of robust design approaches. Educators wishing to identify their students' design strat-
36 egies can use the methods and language established in this paper to assess student comprehension
37 of optimization techniques. Future work can apply the behaviors that investigate other dimensions
38 of optimization in design, such as design quality and comparing categories of designers.

39 **INTRODUCTION**

40 As digital tools evolve, emerging computational strategies allow designers in the Architecture-
41 Engineering-Construction (AEC) industry to address an increasing number of building perfor-
42 mance criteria early in the design process. In particular, parametric design strategies, where a
43 model is readily edited and explored by editable variables, enable AEC designers to rapidly con-
44 sider numerous potential options while meeting disciplinary goals. Within parametric models, op-
45 timization techniques can systematically find the best options in terms of quantitative design goals
46 such as energy use or structural efficiency (Felkner et al. 2013; Touloupaki and Theodosiou 2017).
47 However, there is uncertainty about how to best apply optimization during design, especially for
48 emerging interactive optimization approaches that let designers manage qualitative and quantita-
49 tive goals simultaneously. Optimization can speed up certain design subtasks, and it can help find
50 high-performance solutions within a design space that might be difficult to find otherwise (Mueller
51 2014). Yet it also requires a designer to formulate, analyze, and in some cases iterate a defined set
52 of variables, objectives, and constraints, which may change the timeline or nature of activities in
53 a typical design procedure.

54 While there is considerable established literature describing designer behavior in general, little
55 is known about how diverse optimization tools influence design, particularly in the domain of
56 architectural engineering education, as students gradually learn how to incorporate optimization.
57 One source of potential confusion stems from the range of design tools that are described as em-
58 ploying optimization, especially in practice. On the one hand, some define “design optimization”
59 very broadly as the process of systematically and quantitatively improving on a current solution,
60 as in the case of building simulation (Heiselberg, et al. 2009; Nguyen et al. 2014; Liping et al.
61 2007). On the other end of the spectrum, some only use the term “optimization” to refer to numer-
62 ical simulation and/or formal mathematical optimization (Attia 2012; Nocedal and Wright 2006),
63 even in the context of building design. In the middle are heuristic techniques such as evolutionary
64 algorithms that designers might implement alongside their own qualitative preferences, either *a*
65 *priori*, *a posteriori* (Marler and Arora 2004), or interactively (Mueller and Ochsendorf 2015;
66 Turrin et al. 2011; Touloupaki and Theodosiou 2017b). In all cases, the designer is left to establish
67 their own sequence and timing for establishing the parametric variables and their relationships in
68 the first place. If instructed to formulate their own design spaces and optimize a design, students
69 might employ any of these approaches, with various degrees of completeness or effectiveness. Yet
70 the characteristics of these ranging strategies have not been established.

71 In response, this research asks: what patterns of design behaviors do architecture and engineer-
72 ing graduate students employ while constructing and exploring a parametric model using optimi-
73 zation-based tools? Potential patterns include iterative decision loops involving the designer, an
74 automated algorithm, or both, as well as their timing and frequency within a design session. Inves-
75 tigating how this group of designers, who are neither novices nor experts, utilize different optimi-
76 zation techniques can inform which strategies they employ with optimization tools. To investigate
77 design *in situ*, a research study was conducted which asked participants to create a visually appeal-
78 ing atrium enclosure that addressed measurable concerns of daylighting, energy use, and structural
79 performance. Eye-tracking data, screen recordings, and observational assessment were used to-
80 gether to apply the situated FBS framework (Gero and Kannengiesser 2004).

81 This framework allowed for identifying multidimensional steps in the design process, describ-
82 ing design session events, and discerning varying strategies among the participants. The student
83 participants showed a range of behaviors in their use of optimization techniques —some spent
84 considerable time formulating the problem and used optimization techniques near the end of the

85 design session, while others adjusted the problem more frequently as they ran smaller iterative
86 explorations. These diverse strategies are used to distinguish several distinct design iteration types
87 and corresponding behaviors that are detailed in the results and discussion. In understanding the
88 rich characteristics of designer strategies through qualitative methods, we can first discern these
89 behaviors through deep analysis before future quantitative studies establish their prevalence among
90 designer populations.

91 **BACKGROUND**

92 The AEC professions are continually tasked with providing high performing solutions, but the
93 numerous considerations in building design rarely align. To manage potentially competing objec-
94 tives, designers have incorporated computational exploration and optimization tools, which can
95 account for multidisciplinary performance, to make more informed design decisions. While the
96 feedback and guidance from these emerging design approaches can improve outcomes, designerly
97 strategies for utilizing optimization in the context of design theory have yet to be thoroughly ex-
98 amined. In particular, the optimization patterns of intermediate designers, such as graduate level
99 architecture and engineering students who have experience with design strategies but are still de-
100 veloping their optimization skills, are largely unknown.

101 **Designerly Behaviors in the Design Process**

102 To systematically characterize designer behavior when using optimization tools, and to deter-
103 mine how these tools potentially alter traditional processes, it is first necessary to ground the re-
104 search in a conceptual framework for design behavior. Although design is a complex series of
105 decisions, researchers have identified general characteristics of the design process (Cross 2011;
106 Cross and Roozenburg 1992; Lawson 2006; Rowe 1987), which are used to recognize reoccurring
107 design strategies. Most of these models establish a phase for problem definition, one for design
108 development, and one for solution analysis, with opportunities for iteration throughout. However,
109 these models are very broad in their scope.

110 Several researchers have considered characteristics of design behaviors when working collab-
111 oratively with computation tools (Haymaker et al. 2018), particularly in the medium of parametric
112 modeling (Burry 2003; Oxman 2017; Stals et al. 2021; Tschetwertak et al. 2017). Literature shows
113 that when a computer is used to support or make key decisions, there are different schemes by
114 which to identify a designer's cognitive or computational decisions (Caetano et al. 2020, Oxman

115 2017; Yu et al. 2015a). In some cases, incorporating parametric modeling and rule-based digital
116 software can improve the efficiency of design (Harding et al. 2012; Kalkan et al. 2018). However,
117 other research has differentiated that parametric modeling is still the result of a tool and cannot
118 replace the ingenuity of a human designer (Megahed 2015). In fact, precedent study observations
119 show that in practice, parametric design focuses on more controlled, rule-based designs rather than
120 a vast multitude of solutions (Wortmann and Tuncer 2017). This narrowing of potential designs
121 based on designers' knowledge and intuition may also be evident in optimization strategies.

122 While these prior investigations of parametric design strategies inform aspects of this paper,
123 we based our optimization-related study on the situated FBS framework (Gero and Kannengiesser
124 2004), which is an extension of the fundamental and widely applied FBS ontology (Gero 1990).
125 Gero's original ontology has been used by many design disciplines to model, code, and analyze
126 design behaviors (Howard et al. 2008; Kruchten 2005; Yan 1993). It models the design process by
127 first assigning the characteristics of the desired artifact into three primary categories: function (the
128 role of the artifact), behavior (how the artifact performs), and structure (the qualities of the arti-
129 fact). The development of these characteristics is identified by eight types of fundamental design
130 moves, which create a framework to define the design process. However, although the original
131 FBS provided a clear foundation to describe a range of design tasks, it did not account for the
132 influence of cognitive context on design.

133 In response, Gero and Kannengiesser (2004) present a revised method called the situated FBS
134 framework (Figure 1), which considered an additional, recursive dimension of design: the concep-
135 tual environment. This new framework expanded the original 8 processes into three conceptual
136 environments: an external world, an interpreted world, and an expected world. By dividing the
137 FBS elements into each world and categorizing the processes as an action, interpretation, or focus-
138 ing, the situated FBS framework provides a more extensive strategy by which to map the evolution
139 of the design process. For example, within the synthesis, analysis, and evaluation processes, an
140 expected behavior (Be^i) motivates the designer's idea for a structure (Se^i) (process 11), which the
141 designer then represents that structure externally (Se) as a sketch or 3D model (process 12). Next,
142 the designer considers whether the representation aligns with their idea (process 13). Simultane-
143 ously, that structure produces an associated behavior (process 14), which the designer can compare
144 to the expected behavior (process 15). If considered adequate, the designer can proceed to docu-
mentation, or they may repeat the processes going as far back as reframing Functions (process 16).

146 With this framework, design researchers can incorporate more comprehensive modeling of
147 iterative thinking and the regeneration of ideas. Even with these adjustments, the FBS ontology
148 has been criticized for its ambiguity (Cascini et al. 2013; Dorst and Vermaas 2005) while others
149 emphasize FBS's applicability (Galle 2009). Nevertheless, the FBS ontology has been used to
150 model design in many disciplines (Gu et al. 2012; Uflacker and Zeier 2008), including parametric
151 building design (Yu et al. 2015a). Its expanded version, the situated FBS framework, also presents
152 several advantages for this study of optimization strategies. It provides an order by which to iden-
153 tify design events and organizes the relationships between the designer's ideas, the behavioral
154 bounds of the design, and the realization of the design artifact. It also acknowledges the iterative
155 loop between what the designer envisions and what manifests externally (shifting between the 3
156 worlds), which can occur in parametric, rule-based design exploration.

157 Parametric design tools have been shown to help designers produce unconventional solutions
158 (Wortmann and Tuncer 2017; Yu and Gero 2015b), some of which may not have been originally
159 conceived by the designer. The uniqueness of the designs and potential for innovation have been
160 assessed by traditional methods for measuring creativity and shown that parametric thinking is a
161 viable form of design (Lee et al. 2014). In addition, this method of idea generation prompts con-
162 sideration of a designer's source for decision making. In Yu et al.'s study (2015), the researchers
163 defined a subset of characteristics in the FBS ontology and classified the designer's decisions as
164 either "design knowledge" or "rule algorithm" to differentiate the source of cognitive effort
165 throughout the phases of the design session. We also identify subsets of decisions within the situ-
166 ated FBS framework in this paper to codify the participants' design process and identify design
167 events unique to optimization. Differentiating between decisions focused on developing the arti-
168 fact or developing the optimization approach is valuable in evaluating computational design be-
169 haviors, especially as the use of digital tools to solve complex building challenges becomes more
170 pervasive.

171 **Building Optimization as a Design Technique**

172 As the performance needs of our built environment grow more stringent, it is increasingly
173 difficult to address multiple design considerations across a range of professional specialties. Alt-
174 though achieving an effective, holistic design is advantageous, building performance criteria vary
175 in units, scale, and importance, making them difficult to empirically compare and optimize (Brown
176 and Mueller 2016a; Felkner et al. 2013). For example, the benefits of increasing natural daylight

177 with more windows can compete with the goal of reducing energy consumption. Building optimi-
178 zation quickly becomes convoluted as there are many numerical and experiential criteria, such as
179 spatial, structural, and mechanical objectives (Touloupaki and Theodosiou 2017). Furthermore,
180 when AEC disciplines collaborate on optimization projects, it has been shown that an iterative
181 process emerges between the designers and their optimization tools (Geyer and Beucke 2010).

182 Traditionally, designers relied on knowledge to find effective solutions, but computational tools
183 allow designers to rapidly explore a range of solutions with quick performance feedback, enabling
184 more efficient production of high-performance designs for architects and engineers (Brown et al.
185 2020b; Gerber and Lin 2014; Mueller and Ochsendorf 2015). However, some designers criticize
186 digital design space exploration for its limitations in design thinking and potential design fixation
187 compared to traditional sketching processes (Stones and Cassidy 2010). Nevertheless, optimiza-
188 tion has been utilized by a variety of engineering disciplines with advantageous results (Tou-
189 loupaki and Theodosiou 2017; Kollat and Reed 2007; Simpson and Martins 2011) and research
190 has shown that the use of computational tools is a viable method for design in AEC (Mueller and
191 Ochsendorf 2015; Turrin et al. 2011; Yang et al. 2015). In particular, the applicability of optimi-
192 zation in computer aided architectural design has been suggested early in the development of build-
193 ing computation simulation (Radford and Gero 1980). However, due to the emerging nature of
194 optimization tools, the best practices for their use are still being defined. At this point, strategic
195 optimization education can impact the effective implementation of such tools by graduate design-
196 ers and is not unique to just optimization.

197 **Student Designers Working in Digital Tools**

198 It has been suggested that parametric design is advantageous to the development of a designer
199 because it prompts the setting of constraints on a design task to find different solutions rather than
200 focusing on one solution (Schnabel 2013). Yet students may be limited in their ability to fully
201 execute a design since they are still developing as designers themselves and are still mastering
202 design tools (Chase 2005). In addition, curriculum standards in building design education vary by
203 discipline, and the influence of pedagogical systems on problem-solving strategies are somewhat
204 unpredictable (Cross et al. 1994). Specific to optimization pedagogy, recently developed courses
205 in architecture and engineering programs have introduced optimization to students with promising
206 initial results (Brown and Bunt 2022; Oliveira et al. 2018; Pasternak and Kwiecinski 2015), but
207 the learning outcomes of these courses are not standardized, and the tools and processes used vary

208 by institution. Nevertheless, much of the emerging research that considers early-stage optimization
209 tools focuses on student participants (Brown 2020a; Brown and Mueller 2016b; Gerber and Lin
210 2014; Mark 2012), so there is value in identifying specific sources of student limitations in design
211 environments, particularly for optimization.

212 Considering this population, it has been shown that novice designers tend to use less sophisticated
213 processes compared to experts (Atman et al. 2007; Deininger et al. 2017), which may hinder
214 effective use of optimization methods. Intermediate designers, though, such as graduate-level ar-
215 chitect and engineer students, represent a stage in education development in which designers pos-
216 sess a foundation for disciplinary design decisions and have experience working with design tools,
217 but are still developing as effective problem solvers. Identifying graduate student designer strate-
218 gies while they make decisions with optimization tools may help categorize effective behaviors,
219 improving tools for design development, and enhance learning processes for graduate students as
220 future experts. Accounting for the context of proliferating digital tools in AEC, this research fo-
221 cuses on optimization behavior in conceptual building design.

222 METHODS

223 This IRB approved study asked graduate-level architect and engineering design students to pro-
224 pose an optimized solution in response to a conceptual building design task. The multi-method
225 research design employed eye-tracking, screen recordings, and interviews to capture different
226 streams of data from the design sessions. Observational data analysis and artifact analysis tech-
227 niques were used to qualitatively code the design segments within the situated FBS framework.
228 Our analysis protocol was also employed to identify designerly events unique to optimization,
229 relating reoccurring behaviors between designers to potentially effective optimization strategies.

230 Participants

231 The streams of observational and interview data were collected from a sample size of 10 archi-
232 tecture (5) and architectural engineering (5) graduate students at a research-intensive public uni-
233 versity in the northeastern United States. This population is of special interest to understand the
234 design practices of designers at an intermediate educational stage rather than those of novice un-
235 dergraduates (who typically have not developed either design or engineering skillsets) or practi-
236 tioners (who are fully expert in their designerly ways). While this sample size may seem small,
237 each participant generates 3 hours of video screen capture data, eye-tracking data, and interview

238 data, supporting a multi-stream qualitative study. This amount of data is quite large and rich con-
239 sidering the purpose of this study is to identify and characterize the types of optimization behaviors
240 rather than conduct predictive or generalizable statistics. Participants included 6 women and 4
241 men. They were recruited by email announcement of the study to the architecture and architectural
242 engineering department and were compensated with a \$20 gift card. The participants completed a
243 survey before beginning the design task and reported at least 1 year of experience (average 3.5
244 years) and a moderate level of confidence with the study's modelling tools, along with at least 1
245 year of experience in optimization. Amount of time spent in design practice among participants,
246 which can occur before or during the pursuit of graduate degrees, ranged from 0-10 years. By
247 studying graduate-level designers, we elicit a deep understanding of how the design learning pro-
248 cess occurs as architects and engineers move past their novice design tendencies.

249 **Design Session**

250 All design sessions were conducted in a controlled research space equipped with a computer,
251 eye-tracking hardware, and software. The research procedure is shown in Figure 2. After the par-
252 ticipants were situated at the computer, they were briefed on the design task through a standard
253 video introduction and their eye-tracking setup was calibrated for their sitting position. After
254 watching the design task video, but before working in the digital space, the designers were pro-
255 vided with paper and pencils to take notes or sketch on paper for 5-10 minutes, which enabled
256 them to create initial ideas separate from the model space. They then proceeded to work in the
257 digital modeling tools to develop their design and produce optimized solutions. The designers were
258 prompted to work for as long as they felt comfortable, resulting in sessions that lasted approxi-
259 mately 3 hours.

260 While Grasshopper in Rhinoceros was used as a consistent parametric modeling platform, the
261 designers were able to choose their own optimization plugins, since the application of these tools
262 is a part of authentic design behavior. In this study, the participants preferred using either Galapa-
263 gos (Rutten 2013), presumably adding their own prioritization mechanism to manage multiple
264 objectives or Design Space Exploration's Multi-Objective Optimization tool (Brown et al. 2020b)
265 to find optimized solutions. Notably, both tools preview intermittent design iterations while run-
266 ning, such that designers can make visual assessments before the tool has completed its optimiza-
267 tion loop. It is also worth noting that these chosen tools do not fully enable interactive human-in-
268 the-loop optimization at the scale of design generations or internal dynamic data visualization,

269 which are possible using newer or less common parametric tools, such as Stormcloud (Danhiae
270 and Mueller 2015), Wallacei X, (Wallacei X 2018) and Stepper (Brown and Mueller 2018). Full
271 documentation of design strategies with these tools would require future analysis.

272 The participants could repeatedly use their optimization tool in the session if they wished, but
273 they were not explicitly prompted to do so. After settling on a final design, the designers were
274 asked to submit 2-4 screenshots of their proposal and a written design statement to give to a fic-
275 tional client. Immediately following submission of their deliverables, the researcher interviewed
276 the participants using a semi-structured interview protocol, asking about their goals for their de-
277 sign, how they approached completing the design, and what they would do differently if they had
278 more time. The interviews were used as cognitive proxies to contextually ensure that behaviors
279 were correctly interpreted.

280 **Design Task**

281 The design task asked participants to develop a glass atrium infill for a fictional university client
282 in Phoenix, Arizona. This site was chosen because of the region's hot and sunny summer climate,
283 which is easily recognized or readily learned in an online search. A university setting was used for
284 site context to prompt the need for visually exciting designs, and for its accessibility to the partic-
285 ipants. The design task required the designers to address at least two of three provided objectives.
286 The first objective is to maximize daylighting during the summer solstice (June 21) at noon. While
287 building designs often consider daylight at multiple times throughout the year, full daylighting
288 simulations can take hours or even days to run. Focusing on a significant instance in time is a
289 common design strategy that eliminates wait times and reduces required computation power. The
290 second goal is to minimize solar radiation. Within the task, reducing the surface area of the atrium
291 will reduce solar radiation, as will substituting thicker glass or opaque panels with better u-values.
292 The third objective is to minimize the elastic energy of the structure, as calculated by Karamba3D
293 (Preisinger and Heimrath 2014). It is desirable to have a structure with less deflection because it
294 will allow for smaller members to build. Reducing structural weight can also reduce costs. Opti-
295 mizing a whole structural system is a complex task but asking the designers to focus on two of
296 these three goals provides a conceivable and numeric goal for them to manage in the constraints
297 of this conceptual design task.

298 The designers were given the design task through two introduction videos. In the first video,
299 the fictional client showed four example atriums that the university admires. Although providing

300 examples to the participants may bias their design solutions and prompt them to imitate what they
301 are shown (Zalewski et al. 2017), clients often share their visions for a project during an authentic
302 design process in practice. Providing participants with examples of atriums also frames the design
303 task in terms of parametric thinking, which was the intended design environment of this study.
304 However, before introducing the designers to the study's computational tool, participants were
305 allowed to sketch or write out initial ideas, permitting them to first consider ideas not constrained
306 to the computational environment.

307 Participants were also provided with a base file containing the site context, important points of
308 reference, and pre-built scripts that calculate the objectives. The script required that the participants
309 provide surfaces for the intended solid panels, surfaces for the glass panels, the structure repre-
310 sented as lines, and the structural support points. In this way, the designers could focus their efforts
311 on working towards an optimized solution, and the study was given a consistent frame for simpli-
312 fied performance simulation between the designers. Moreover, this study focuses on optimization
313 tactics, not on the designer's ability to assemble a structural analysis simulation.

314 **Qualitative Coding and Characterization of Design Behaviors**

315 During the design session, the participants' behaviors were captured by screen recording and
316 tracking their eye gaze data using EyeWorks eye-tracking hardware (EyeTracking 2011). Eye
317 tracking, combined with screen capture recordings, is a robust method to understand design be-
318 haviors because it offers the ability for researchers to not just capture outcomes, but also actions
319 and patterns of behaviors paired with information about what the participant is looking at or turning
320 their attention toward. These types of data are highly complex, with each minute of participant
321 behavior resulting in hundreds if not thousands of potential data points for each participant gener-
322 ated over a ~3 hour design task.

323 The researchers also observed the design session to record times when the participant sketched
324 or encountered difficulties with the tool, and to facilitate an immediate follow up interview about
325 the participant's rationales for critical design decisions. The follow up interviews asked the de-
326 signers to elaborate on their design decisions and what difficulties they encountered. They were
327 also asked, if given more time, what would they do differently to further refine their design.

328 *Data Analysis*

329 To analyze the streams of data, various methods were employed. First, the video recordings
330 were reviewed and activities that did not pertain to the design session were removed, such as saving
331 and restarting the program. Second, the eye-tracking data were initially analyzed using digital tools
332 to interpret broad patterns in participant behavior. Using additional software from EyeWorks, the
333 eye gaze data was paired with two Regions of Interest (ROI) on the screen to identify if the partic-
334 ipant looked in the parametric space (Grasshopper), the 3D modeling space (Rhino), or away from
335 the screen altogether. These tools help interpret the digital information representing design behav-
336 ior.

337 When working in these tools, a designer develops their model by programming geometry in the
338 parametric space and viewing their model in the 3D modeling space. While these regions stay the
339 same for each participant, the displays inside the regions are dynamic as participants rotate or
340 zoom in on the design or pan across their script. Thus, a significant dwell time in an ROI shows
341 either consideration of the design artifact or computational manipulations of the design. Figure 3
342 shows where the two ROI's are on the screen (the 3D modeling space and the parametric space),
343 a preview of what may be displayed in the spaces, and a brief description of what occurs in the
344 spaces. Eye tracking was thus required to accurately identify loops between Regions of Interest,
345 which eventually helped define behaviors.

346 The output video files from the eye-tracking data were analyzed using observational qualitative
347 data analysis processes, called "coding," honed for observational and time-resolved research to
348 characterize design behaviors. These methods work abductively from existing frameworks for de-
349 sign cognition to accurately describe the breadth of behaviors observed (Mehta et al. 2020). A
350 codebook describing the names and definitions of the design activities, which could be categorized,
351 was developed through literature and piloted iteratively on the data in consensus with the other
352 members of the research team and strongly grounded in design theory. After this iterative code-
353 book was developed, a single researcher rewatched all the design sessions and notated the presence
354 of every design behavior and their time stamps. The coding comprised of elements from the situ-
355 ated FBS framework in identifying the iterative process between Function, Behavior, and Structure
356 in the context of the optimization environment. The typology of behaviors captured, aggregate
357 percentages of behaviors captured over time, and the ordering in which behaviors occur through
358 the duration of the design challenge are used to answer the research question related to patterns of
359 design behaviors.

360 The interview transcripts were employed as an external validation method to ensure that the
361 research team was interpreting behaviors accurately, particularly for critical decisions, but were
362 not independently thematically analyzed for this study. Together, the multiple streams of qualita-
363 tive data (screen recording, eye tracking, and interview transcripts) are used to inform the inter-
364 pretation of the behaviors as they relate to architectural engineering design education.

365 *Event codes*

366 We determined 13 events of behavior that manifested across all ten participants. Figure 4 shows
367 the coding of events in the situated FBS framework to the conceptual optimization process. The
368 code also highlights several concrete events identified in this study, which define the behavioral
369 structure of the individual sessions. The sessions were divided into two primary phases, “pre-mod-
370 eling” and “modeling,” which are determined by the placing of a first component in Grasshopper.
371 Placing the first component is coded as a process 12 in which the designer manifests their idea for
372 an artifact in the external world. In this study, the pre-modeling phase is mostly rapid formulation
373 (processes 1-10), and although sketching in the Pre-modeling phase is also a process 12 since it
374 allows the designer to externalize their ideas onto paper, the formulation processes are informally
375 executed and not within the scope of this paper.

376 *Synthesis events*

377 We also captured the occurrence of “synthesis events” as a manifestation of the processes. Syn-
378 thesis events include a process 11, which is envisioning solutions (Se^i) from formulated behavior
379 (Be^i), and process 12, which is externalizing the solution. In this study, process 11 was an internal
380 decision, so this step was not explicitly captured. However, synthesis process 12 accounts for many
381 of the designer’s actions and was divided into 4 categories to better describe the designer’s exter-
382 nalized decisions. Most of the actions in the parametric space that create structure (Se) are when
383 the designer places a static component, but there are other events which relate directly to the opti-
384 mization process. Following precedent from Yu et al. (2015a), which divided Function, Behavior,
385 and Structure into knowledge-based and rule-based cognitive decisions, this research identified 3
386 events within process 12 in this study: the introduction of a variable to the model, a return to
387 sketching on paper, and the defining of solid and clear panels. Introducing a variable suggests the
388 potential for that element to be influenced by optimization feedback. Notably, not all the variables
389 created in each session were used in the optimization events, which turns them into parameters in

390 formal optimization language. Overall, individual narratives concerning the use of variables in-
391 form each designers' process. The process 12 event of "returning to sketching" is also not always
392 present in every session, but it is determined when a designer looks away from the screen and
393 picks up their writing utensil. All designers created surfaces in their design and discerned between
394 solid and glass panels. Until this event occurs, their design decisions are geometric and do not
395 consider materiality, which is a Behavior aspect of the design.

396 *Pre-analysis and analysis events*

397 Other definitive events in this study are when participants first plug elements into the objective
398 value generators and when they first activate their optimization tool. Shifting to the generator sig-
399 nifies a transition from relying on design knowledge to preparing for optimization feedback. The
400 designers may return to design knowledge after interacting with the objective generator, but this
401 is an event unique to the optimization process, and the timing of its occurrence in the session
402 informs how integral the designers see optimization in their final solution. To meet the require-
403 ments of the objective generators, they may also have to restructure part of their model, relying on
404 a mixture of design knowledge and parametric knowledge.

405 A further indicator is when the designer starts preparing the optimization tool to optimize the
406 design. This is not always an efficient process, particularly for the student designers, as the plan-
407 ning for optimization sometimes prompts re-evaluation of design variables. Once the optimization
408 tool is run, a series of analysis, evaluation, and synthesis processes (13, 14, 15, and 12) occur
409 between the designer and optimization tool from which the designer can make a design decision.

410 *Evaluation and documentation events*

411 Before proceeding to documentation, a designer will verify if the behavior of the design meets
412 the expected behavior. In early conceptual design development, this process is largely driven by
413 the optimization tool, which minimizes the objective values. However, the designer may consider
414 the results manually and decide to repeat earlier processes or proceed to documentation. In some
415 cases, a designer may follow process 16, which is an opportunity to change the function of the
416 design by changing which of the two objectives they wish to pursue. This process did not occur in
417 this study's design sessions.

418 The final event defined in this study is the shift to documentation. This is defined as when the
419 designer opens the writing document and begins to compose their design statement or take

420 screenshots of their final design. In some cases, the designers refine the representation of their
421 design in preparation for documentation, such as applying color to the different panels.

422 **Evaluation of Designer Behavior**

423 Coding and identifying these processes allowed the design team to compare reoccurring behav-
424 iors, design focus, and significant events. In following the situated FBS framework, a series of
425 repeated actions are identified in the conceptual design optimization sessions. While Gero and
426 Kannengiesser acknowledged types of design “Reformulations,” this research identifies iterations
427 performed by the designer, by the optimizer, and by the designer and the optimizer together, shown
428 in Figure 5. Prior to running the optimization tool, the designers ran through process 11, 12, and
429 13, in a series of iterative loops. These loops were identified by the designers’ dwell time in the
430 Grasshopper canvas and the modeling space, as recorded by the eye-tracking tool.

431 Appropriate dwell times are often determined by the task context (Carter and Luke 2020) and
432 are difficult to standardize (Hessels et al. 2016). While eye tracking has been used in many areas,
433 its application in 3D architectural modeling tools is less common. Dwell times that are measured
434 in milliseconds tend to correspond to small Areas of Interest, like a button on a webpage. However,
435 this research uses Regions of Interest that correspond to how participants consider the design ver-
436 sus manipulating the design script. Both activities likely require dwell times in the small number
437 of seconds, which have also been considered in relation to programming activities (Jbara and Feit-
438 elson 2017). Frequency of looking at the regions is significant, as iterative loops were identified
439 at the resolution that patterns emerged for the design sessions. Based on researcher experience
440 with the design tools and iteratively testing different timeframes, the sessions were divided into 0-
441 4 seconds, 4-12 seconds, and 12+ seconds. Glancing in the model ROI for less than 4 seconds was
442 determined to be a “check” that the Grasshopper command was doing the intended purpose, rather
443 than a responsive assessment of the design associated with a process 13. Looking at either region
444 for longer than 12 seconds indicated that the designer was focusing on component assembly in
445 Grasshopper (ROI2) or reflecting on the representation of their model (ROI 1). An Iteration Loop
446 A (IA) was determined when the designer looked back and forth between Grasshopper and the
447 modeling space at least once, for 4-12 seconds in each region. IA loops can be counted, providing
448 a metric by which to compare the designers’ iterative behaviors.

449 The second Iteration loop is performed by the optimization tool, Iteration Loop B (IB), starting
450 from process 14 to 15, 11, and 12. It runs through these rapidly and iteratively until stopping back

451 at Bi. Notably, the optimization tool does not perform process 13, as it cannot consider if the
452 external structure aligns with the designer's interpreted structure. After running the optimizer, the
453 designer may continue to move through synthesis, analysis, and evaluation processes based on
454 abstract goals, or move directly onto documentation. If they respond to the optimization feedback
455 and make adjustments, then that is considered an Iteration Loop C (IC). This iterative process is
456 similar to the interactive behavior identified by Geyer et al. (2010) as a designer works back and
457 forth between design modeling and optimization.

458 These iteration loops allowed us to identify how early the designers ran their optimization tool
459 in the session, what processes they followed after reviewing the results, and if they repeated the
460 optimization. IA loops were identified automatically based on relationships in the eye-tracking
461 data. Although IB and IC loops contain defined actions, not open to interpretation or variation of
462 researcher perspective, they did require manual recordings of when a certain component was
463 placed, connected, or manipulated in the screen recordings. A member of the research team re-
464 viewed the sessions twice to verify that the processes were accurately identified. The occurrence
465 of the iteration loops, types of Structure moves, and optimization events produce narratives that
466 enable comparison between participants.

467 RESULTS

468 Based on the coding structure, simplified session time plots are shown in Figure 6. The sessions
469 are divided into Pre-modeling and Modeling phases. The beginning of the Modeling phase is
470 marked with "0 minutes." The horizontal line in each diagram is the session timeline from begin-
471 ning to end. Along the timeline, the IA (Designers) loops are plotted, showing their occurrence
472 and duration. Similarly, below the timeline, iteration types IB (Optimizers) and IC (Designer with
473 optimizer) are shown with blocks, indicating when and for how long each loop lasted. Above the
474 timeline, significant events within the optimization process are also labeled according to their trig-
475 gers in the previous section. Plugging their design into the objective value generator ("obj.") rep-
476 resents an active, cognitive engagement with the design objectives. Later in each session, the open-
477 ing of an optimization tool and preparing to run it ("prep optimizer") is considered the beginning
478 of the optimization process. At the end of each timeline, the time spent documenting the design is
479 shown as a thicker gray band.

480 The sessions are organized by three categories of optimization behavior, as determined by re-
481 occurring characteristics. A “Complete Optimization Cycle” is when the participant completed at
482 least one full IC iteration and there is evidence of informed edits to their design, such as the pres-
483 ence of an IA iteration after optimizing or a substantial amount of time spent considering results.
484 A “Coarse Optimization Cycle” is when the designers completed at least one IC iteration, but the
485 cycles did not influence any notable changes in the design. The third cycle, a “Partial Optimization
486 Cycle,” is when the designer did not complete a full IC iteration, meaning they did not consider
487 the best performing suggestions from the optimization tool. Although the cycle categories do not
488 indicate the quality of design idea or the efficacy of resulting design performance, they do organize
489 a system by which to understand optimization techniques and discuss nuances between behaviors.
490 The next three sections describe in detail representative participants for each type of cycle.

491 **Complete Optimization Cycle**

492 The Complete Optimization Cycle participants closely followed an expected optimization pro-
493 cess in which a designer integrates behavioral (process 14 and 15) considerations in the develop-
494 ment of their design and completes at least one full designer-optimizer (IC) iteration, with observ-
495 able edits to their design, before documenting their project. Figure 7 shows detailed session time
496 plots of Participants 01 and 03, who exhibited characteristics of the Complete Cycle. In these de-
497 tailed session time plots, creation of a new variable is indicated by a circle, and a participant re-
498 turning to sketching by picking up their writing utensil is shown by a triangle. The figure also
499 shows when the designers defined the difference between solid and glass panels in their model (S^P)
500 along with notable instances within the eye gaze fixations.

501 The enlarged portion of the Eye Gaze Fixation plot for Participant 01 shows three examples of
502 IA iteration. The designer looked back and forth between the model space and parametric space
503 for at least 4-12 second clusters, suggesting a loop of design edits, which was confirmed by re-
504 searcher observation. As the sessions progress and the designers focus more on preparing for the
505 optimization process, the occurrences of IA loops become less frequent. However, each designer
506 also completed an IA loop between optimization runs, suggesting that an informed change was
507 made to the design before running the final optimization loop. Several smaller differences are
508 apparent, however. Participant 01 returned to sketching after placing a component and before de-
509 veloping their model, while Participant 03 immediately started to create variables. Also, as indi-
510 cated by the early square notations in the IB zone, Participant 03 used a direct form-finding tool

511 to achieve an optimized structural shape first rather than use “structure” as an objective in a para-
512 metric optimization run. This is a distinct form of optimization based on setting optimality criteria
513 and seeking those criteria directly, but it is only possible in a parametric environment designed
514 specifically for this purpose. It was thus coded for summary statistics as an optimization loop but
515 represented differently from an IB loop.

516 **Coarse Optimization Cycle**

517 Figure 8 shows the detailed time plots two designers who exhibited a “Coarse Optimization
518 Cycle.” It includes Participants 05 and 06, who completed IC loops but did not use optimization
519 strategies thoroughly and thus presented subtle differences in their sessions. The IC loops of these
520 sessions are very brief compared to Participants 01 and 03. Although the brevity of an IB loop will
521 depend on the robustness of the chosen tool and the simplicity of a design, time spent considering
522 the optimized options (process 15) can reflect the sophistication of the optimization run or the
523 intent of the designer. These two participants ran several IB loops in a short time because the
524 design options were not as diverse as they envisioned, but they did not know how to manipulate
525 the variables to produce optimization results that aligned with their vision. Participant 05 did not
526 engage in optimization events until late in their session and realized the structure of their model’s
527 code was not compatible with the requirements of objective generators. The participant rebuilt part
528 of the model and lost some of the qualities from their original design. The detail from Participant
529 05’s time plot in Figure 8 shows their focus on Grasshopper space as they manipulated code.

530 While other sessions show sparse IA iterations as participants adjusted code, Participant 06’s
531 time plot shows a density of IA iterations before preparing the optimization tool. This behavior
532 suggests that, for Participant 06 to correctly activate the objective generators, they had to change
533 their design and repeatedly view the results in the model space. The absence of this behavior in
534 the other sessions suggests that this designer’s solution developed in response to the guided re-
535 quirements of the study, not exclusively by their own vision for the project. This dependency on
536 prompted Grasshopper coding may reflect less experience with parametric and optimization design
537 techniques. Although this participant could wield optimization tools, issues with self-driven design
538 performance may arise if they were to employ optimization techniques in future, professional pro-
539 jects where design efficacy and efficiency are imperative.

540 **Partial Optimization Cycle**

541 Figure 9 shows the plots for Participants 02 and 04, who did not complete an IC loop during the
542 study. This characteristic is considered a “Partial Optimization Cycle.” Although most of the de-
543 signers responded to the optimization tool’s feedback, Participant 04 started writing their final
544 design statement before completing their first optimization run. This suggests that either the vari-
545 ables affecting the participant’s design were not dependent on the optimization feedback, or that
546 the participant did not consider their optimization routine to have possible benefits for informing
547 a final design decision. However, a lack of IC iterations does not always mean that optimization
548 techniques were not used to improve the design. In Participant 02’s first two optimization runs,
549 they watched the tool generate a range of possible designs while it ran. After briefly seeing that
550 the possible solutions were not as varied as they hoped, the designer stopped the optimizer’s auto-
551 mated process and edited their design variables to create more variations of possible solutions.
552 This was an informed action as part of a process 13 (considering the physical structure of the
553 design), but not a process 15, and therefore not an IC iteration. Nevertheless, the optimization tool
554 was integrated into the participant’s design strategy.

555 Optimization Characteristics

556 Figure 10 summarizes the optimization characteristics for six representative sessions that were
557 analyzed in more detail. The figure shows what percentage of the session had transpired before the
558 participant engaged with the objectives’ components and when they started to prepare the optimi-
559 zation tool. The participants began using the objective components at between 43-75% of the time-
560 line, suggesting a transition from developing the structure of the model to considering the behav-
561 iors of their model. After plugging their designs into the objective generators, participants began
562 to optimize at different times as well. While Participant 03 started to optimize as early as halfway
563 through the session, Participant 05 did not start optimizing until near the end of their session.
564 Figure 10 also indicates which of the two objectives the participants focused on in their optimiza-
565 tion sequences. Finally, it states how many IA, IB, and IC iterations that the participants performed
566 and how many variables were used in their final IB run. The parenthetical number (5) for Partici-
567 pant 03’s IB loops shows the number of direct form-finding runs employed.

568 The number of variables used in the final optimization output varies by participant. Participant
569 05 had the most variables, which may explain why they spent so much time generating code before
570 beginning to optimize, but Participant 04 had a similar delay with fewer variables. Although all
571 designers created variables (parametric sliders) early in their design, only Participants 01 and 06

572 used all of these sliders in their optimization process. In some cases, variables were only used by
573 the designer to consider design variations outside of the optimization framework.

574 **DISCUSSION**

575 To summarize, several design patterns emerge from the results. Three iterative loops were iden-
576 tified from applying the situated FBS ontology to differentiate iterations from the designer, the
577 optimization tool, and from the designer and optimization tool together. These loops can show
578 when a designer relies on their own design knowledge to make decisions or when they use opti-
579 mization feedback to inform their design. The occurrence of these loops defined the three cate-
580 gories of design strategies based on their presence, timing, and repetition.

581 This research shows that the graduate student designers use optimization with varying degrees
582 of intent. While some used optimization feedback to understand the extents of their parametric
583 model (like Participant 02) or inform changes to their design (like Participant 01 and 03), others
584 did not fully integrate optimization into their design strategies. This behavior is evident in sessions
585 that did not make edits between optimization IB iterations (like Participant 05) or did not complete
586 an IC iteration (like Participant 04). Participant 04 showed a partial use of optimization tools, and
587 their behaviors suggest that their vision for their design was not responsive to optimization feed-
588 back, since their documentation was started before the optimizer completed its assessment. Not
589 using optimization feedback in this case may reflect design fatigue within the context of the study,
590 as their session lasted longer than the other participants'. From observing their parametric model,
591 though, their optimization variables controlled only subtle changes to the model, suggesting that
592 optimization as an influencer in design was not part of their strategy. Only partial or no use of
593 optimization feedback in student designers may indicate a lack of experience or comfort with op-
594 timization tools, or it may simply show a preference for other design approaches.

595 Although the participants tended to create many variables (or parametric sliders) early in their
596 design session, not all variables were included in the optimizer's process. Many of the variables
597 were used to explore design options manually rather than as part of their performance-driven in-
598 vestigation, but they could also have been used to set a parameter or constraint that did not change
599 during optimization. While previous research has discerned schemes for processing parametric
600 design behavior (Oxman 2017; Yu et al. 2016) and identified an iterative loop between design
601 decisions and optimization (Geyer and Beucke 2010), the findings from this experiment confirm

602 the presence of these loops while developing a parametric script during design. This paper thus
603 adds to existing knowledge by showing how early and frequently students modify their model
604 structure in response to an optimization cycle.

605 **Implications for Design Pedagogy**

606 In categorizing the sessions by optimization behaviors, we establish an initial method to identify
607 the characteristics of graduate student designers, which can inform future curricular development
608 and even student assessment if measured directly. Students with experience using optimization
609 tools do not always fully incorporate them into their decision-making process in a way that lever-
610 ages optimization's strengths. If the goal of having optimization in the curriculum is to empower
611 students to include such automated or interactive optimization runs to improve design outcomes,
612 then additional emphasis must be placed on contextualizing optimization for design. This could
613 include formal teaching of strategies for variable selection and parametric problem definition, vis-
614 ual interpretation of results, and how to use optimization iteratively to arrive at a satisfying result.
615 Particular topics of emphasis may differ across the disciplines in the study, as the goals of optimi-
616 zation in an architecture studio or graduate engineering course are likely different.

617 In addition, when considering how much of the design session the participants spent optimizing,
618 the results suggest that incorporating objective feedback earlier in the design session aligns with
619 more IC designer-optimizer iterations. The designers who started preparing for the objective feed-
620 back sooner in the sessions ran more optimization iterations. While getting to the optimization
621 process sooner provides more opportunities for design improvement, it does not ensure quality of
622 design expression. However, in optimization education, emphasizing the early and integrated use
623 of optimization for student designers can at least prompt more engagement with the approach.

624 Finally, this study noted that when given the choice, most participants selected either the default
625 evolutionary solver native to the software itself or a multi-objective optimization tool that uses an
626 evolutionary process to generate approximations of the Pareto front for further consideration. If
627 instructors seek to encourage students to use faster gradient-based algorithms, interactive tools, or
628 other methods beyond evolutionary algorithms, more emphasis on these alternative methods is
629 likely needed. These tool preferences may also have occurred for practical reasons, such as ease
630 of access or use, rather than because students thought they would achieve the best results, but this
631 would have to be determined through future study.

632 **Limitations**

633 As with any study, there are some limitations to the findings. Although there were only ten
634 participants, the data generated from this project is insightfully rich in ways that have not been
635 presented in the AEC design literature before by using deep multimethod qualitative and time-
636 resolved observational research methods. Our data set from ten participants represents approxi-
637 mately thirty hours of in situ observational data employing multiple strands of time-resolved data,
638 offering a unique depth of insight useful to design theorists and educators. Further, the goal of the
639 study was to identify designerly behavior during optimization in intermediate-level designers to
640 promote theory-informed transferability of the research findings, not to understand how predic-
641 tively generalizable these patterns occur across larger populations. We leave this to future work.
642 The advantages and affordances of using deep qualitative methods will always be balanced with a
643 pragmatic tradeoff of sample size, as has been well-established in the qualitative research methods
644 literature. We meet the requirements of qualitative research methodologies by grounding our work
645 in theory, establishing theoretical and pragmatic validity (Welther et al. 2017) through our use of
646 and interpretation of results through FBS design theory, and are satisfied with our codebook in that
647 we reached saturation such that no new themes emerged during analysis (Creswell and Creswell
648 2017; Saldana 2015).

649 Other limitations to this study include that the design task focuses on a conceptual design chal-
650 lenge, which does not capture all possible strategies that may be used when developing a full pro-
651 ject. However, optimization strategies are often used to explore solutions at early phases of de-
652 sign to investigate concepts of interest. Studying a design challenge with a narrow activity scope
653 rather than a comprehensive design process creates many advantages for data collection, but may
654 also diminish its authenticity. In addition, since students were able to select their own tools, this
655 study does not cover behaviors across the full range of optimization possibilities, including more
656 emerging interactive optimization strategies. Finally, this study does not assess design quality di-
657 rectly, so it assumes that full incorporation of optimization into design simply gives the best future
658 opportunity for high-quality designs. Several of these limitations are left for future work.

659 **CONCLUSIONS**

660 This paper presented the findings from a study which considered the designerly behaviors of
661 graduate student designers in architecture and architectural engineering when responding to a

662 building design optimization task. The study used eye-tracking and screen recording methods to
663 record data and coded the designerly behaviors following the situated FBS framework. Three types
664 of design iteration loops were used to characterize partial, coarse, and complete optimization cy-
665 cles by participants. These findings from this study, while of interest to education and design cog-
666 nition researchers in advancing foundational theory, also offer significant opportunities to modify
667 and augment graduate-level design curricula in architectural engineering and related fields. As the
668 categories of cycles suggest, while the students understood how to run the optimization tools, not
669 all were prepared to use the performance feedback in their own designs. While graduate-level
670 education may show students how to use the optimization tools, students need to know how to
671 integrate the tools in design projects as well. In much of architectural engineering education cur-
672 ricula, digital design tools are often taught secondary to design concepts, which is appropriate for
673 certain applications, but incorporating digital tools in graduate-level education can better prepare
674 student designers to use the tools effectively rather than as an afterthought.

675 In addition, the use of observational methods in an authentic design challenge offers insight on
676 common issues, obstacles, or ineffective design strategies often employed that may be missed in
677 typical “expert vs novice” studies. The impact of this work lies in the preparation of a future work-
678 force that is computationally agile in their future careers, helping them use simulation feedback to
679 design buildings that are more energy-efficient, low carbon, safe, and durable.

680 In future work, it is necessary to consider how the categories of optimization behavior proposed
681 here relate to other variables in the optimization design process, as well as to the quality of design
682 outcomes. For example, future behavioral studies that evaluate the quality of designs produced can
683 indicate which optimization-based processes are more effective and should thus be taught to stu-
684 dent designers. The methods for observing optimization behavior presented in this paper provide
685 a scheme by which to continue to examine designers’ optimization strategies. They can be adjusted
686 to accommodate the discovery of new techniques and tools using quantitative methods. Neverthe-
687 less, this study observed several clear patterns in design optimization behavior, showing that ear-
688 lier and iterative incorporation of optimization runs by graduate student designers can lead to more
689 critical engagement with the feedback they provide.

690 **DATA AVAILABILITY STATEMENT**

691 Some or all data, models, or code generated or used during the study are proprietary or confi-
692 dential in nature and may only be provided with restrictions (eye-tracking files, screen record-
693 ings, researcher notes).

694 **ACKNOWLEDGEMENTS**

695 This material is based upon research supported by the National Science Foundation under
696 CMMI Grant No. 2033332.

697 **REFERENCES**

698 Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., and Saleem, J. (2007). “Engineering
699 design processes: A comparison of students and expert practitioners.” *J. Eng. Educ.*,
700 96(4), 359–379 <https://doi.org/10.1002/j.2168-9830.2007.tb00945.x>.

701 Attia, S. (2012). “Computational optimization zero energy building design: interviews with 28
702 international experts.” International energy agency (IEA) task 40: towards net zero energy
703 buildings subtask B. Louvain la Neuve. Université Catholique de Louvain.

704 Brown, N. C. (2020). “Design performance and designer preference in an interactive, data-
705 driven conceptual building design scenario.” *Des. Stud.*, 96(4), 359–379
706 <https://doi.org/10.1016/j.destud.2020.01.001>.

707 Brown, N. C. and Bunt, S. (2022). “Optimization tools as a platform for latent qualitative design
708 education of technical designers.” Natl. Conf. on Beginning Design Students, 62–69.

709 Brown, N. C., Jusiega, V., and Mueller, C. T. (2020). “Implementing data-driven parametric build-
710 ing design with a flexible toolbox.” *Autom. Constr.*, 118, 103252.
711 <https://doi.org/10.1016/j.autcon.2020.103252>.

712 Brown, N. C. and Mueller, C. T. (2016a). “Design for structural and energy performance of long
713 span buildings using geometric multi-objective optimization.” *Energy Build.*, 127, 748–761
714 <https://doi.org/10.1016/j.enbuild.2016.05.090>.

715 Brown, N. C. and Mueller, C. T. (2016b). “The effect of performance feedback and optimization
716 on the conceptual design process.” Int. Assoc. of Spatial Structures Annual Symp.
717 <https://www.researchgate.net/publication/316107726>.

718 Brown, N. C. and Mueller, C. T. (2018). Gradient-based guidance for controlling performance in
719 early design exploration. Proc. of the IASS Annual Symp. 2018. Boston, Massachusetts.

720 Burry, M. (2003). “Between intuition and process: parametric design and rapid prototyping.” Ar-
721 chitecture in the digital age, B. Kolarevic, ed., Taylor Francis, 1st edition, 147–162.

722 Caetano, I., Santos, L., and Leitão, A. (2020). “Computational design in architecture: Defining
723 parametric, generative, and algorithmic design.” *Front. Archit. Res.*, 9(2), 287–300
724 <https://doi.org/10.1016/j.foar.2019.12.008>.

725 Carter, B. T. and Luke, S. G. (2020). Best practices in eye tracking research. *Inter. J. Psychophys-
726 iology*, 155, 49-62 <https://doi.org/10.1016/j.ijpsycho.2020.05.010>

727 Cascini, G., Fantoni, G., and Montagna, F. (2007). "Design performance and designer preference
728 in an interactive, data-driven conceptual building design scenario." *Des. Stud.*, 35(5), 636–662
729 <https://doi.org/10.1016/j.destud.2012.12.001>.

730 Chase, S. C. (2005). "Generative design tools for novice designers: Issues for selection." *Autom.
731 Constr.*, 14(6), 689—698 <https://doi.org/10.1016/j.autcon.2004.12.004>.

732 Creswell, J. W. and Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed
733 methods approaches. Sage publications

734 Cross, N. (2011). Design Thinking: Understanding how Designers Think and Work. Berg., Ox-
735 ford.

736 Cross, N., Christiaans, H., and Dorst, K. (1994). "Design expertise amongst student designers." *J.
737 Art Des. Educ.*, 13(1), 39—56 <https://doi.org/10.1111/j.1476-8070.1994.tb00356.x>.

738 Cross, N. and Roozenburg, N. (1992). "Modelling the design process in engineering and in archi-
739 tecture." *J. Eng. Des.*, 3(4), 325—337 <https://doi.org/10.1080/09544829208914765>.

740 Danhaive, R. A. and Mueller, C. T. (2015). Combining parametric modeling and interactive opti-
741 mization for high-performance and creative structural design. Proc. of the IASS Annual Symp.
742 2015. Amsterdam.

743 Deininger, M., Daly, S.R., Sienko, K.H., and Lee, J.C. (2017). "Novice designers' use of prototypes
744 in engineering design." *Des. Stud.*, 51, 25–65 <https://doi.org/10.1016/j.destud.2017.04.002>.

745 Dorst, K. and Vermaas, P. E. (2005). "John Gero's function-behaviour-structure model of design-
746 ing: a critical analysis." *Res. Eng. Des.*, 16(1), 17–26 [https://doi.org/10.1007/s00163-005-0058-z](https://doi.org/10.1007/s00163-005-
747 0058-z).

748 EyeTracking (2011). "Eyeworks software, <<https://www.eyetracking.com/eyeworks-software/>>.

749 Felkner, J., Chatzi, E., and Kotnik, T. (2013). "Interactive particle swarm optimization for the
750 architectural design of truss structures." Proc., 2013 IEEE Symp. on Comput. Intelligence for
751 Eng. Sol., 15–22. <https://doi.org/10.1109/CIES.2013.6611723>.

752 Galle, P. (2009). "The ontology of Gero's fbs model of designing." *Des. Stud.*, 30(4), 321–339
753 <https://doi.org/10.1016/j.destud.2009.02.002>.

754 Gerber, D. J. and Lin, S. E. (2009). "Designing in complexity: Simulation, integration, and
755 multidisciplinary design optimization for architecture." *Simulation*, 90(8), 936–959
756 <https://doi.org/10.1177/0037549713482027>.

757 Gero, J. S. (1990). "Design prototypes: a knowledge representation schema for design." *AI Magazine*, 11(4), 26–36 <https://doi.org/10.1609/aimag.v11i4.854>.

758

759 Gero, J. S. and Kannengiesser, U. (2004). "The situated function–behaviour–structure frame-
760 work." *Des. Stud.*, 25(4), 373–391 <https://doi.org/10.1609/aimag.v11i4.854>.

761 Geyer, P. and Beucke, K. (2010). "An integrative approach for using multidisciplinary design 611
762 optimization in aec." Proc., the Intl. Conf. on Comp. in Civil Building Eng., W. Tizani, ed.

763 Gu, C., Hu, J., Peng, Y.-H., and Li, S. (2012). "Fcbs model for functional knowledge representa-
764 tion in conceptual design." *J. Eng. Des.*, 23(8), 577–596
765 <https://doi.org/10.1080/09544828.2011.629318>.

766 Harding, J., Joyce, S., Shepherd, P., and Williams, C. (2012). "Thinking topologically at early
767 stage parametric design." *Adv. in Archit. Geom.*, 67–76.
768 <https://doi.org/10.1080/09544828.2011.629318>.

769 Haymaker, J., Bernal, M., Marshall, M., Okhoya, V., Szilasi, A., Reznee, R., Chen, C., Salveson,
770 A., Brechtel, J., Deckinga, L., Hasan, H., Ewing, P., and Welle, B. (2018). "Design space con-
771 struction: A framework to support collaborative, parametric decision making." *J. Inf. Technol.*,
772 23, 157–178.

773 Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., and Thomas, S. (2009).
774 "Application of sensitivity analysis in design of sustainable buildings." *Renew. Energy*, 34(9),
775 2030–2036 <https://doi.org/10.1016/j.renene.2009.02.016>

776 Hessels, R. S., Kemner, C., Boomen, C. v. d., and Hooge, I. T. C. (2016) "The area-of-interest
777 problem in eyetracking research: A noise-robust solution for face and sparse stimuli." *Behav
778 Res.*, 48, 1694–1712 <https://doi.org/10.3758/s13428-015-0676-y>.

779 Howard, T. J., Culley, S. J., and Dekoninck, E. (2008). "Describing the creative design process by
780 the integration of engineering design and cognitive psychology literature." *Des. Stud.*, 29(2),
781 160–180 <https://doi.org/10.1016/j.destud.2008.01.001>

782 Jbara, A. and Feitelson, D. G. (2017) "How programmers read regular code: a controlled experi-
783 ment using eye tracking." *Empir. Softw. Eng.*, 22, 1440–1477 [https://doi.org/10.1007/s10664-016-9477-x](https://doi.org/10.1007/s10664-
784 016-9477-x).

785 Kalkan, E., Okur, F. Y., and Altunışık, A. C. (2018). "Applications and usability of parametric
786 modeling." *J. Constr. Eng. Manag.*, 1(3), 139–146
787 <https://doi.org/10.31462/jcemi.2018.03139146>.

788 Kollat, J. and Reed, P. (2007). "A framework for visually interactive decision-making and design
789 using evolutionary multi-objective optimization (video)." *Env. Mod. Soft.*, 22(12), 1691–1704
790 <https://doi.org/10.1016/j.envsoft.2007.02.001>.

791 Kruchten, P. (2005). "Casting software design in the function-behavior-structure framework."
792 *IEEE 631 Software*, 22(2), 52–58 <https://doi.org/10.1109/MS.2005.33>.

793 Lawson, B. (2006). *How Designers Think*. Routledge, 4th edition
794 <https://doi.org/10.4324/9780080454979>. Lee, J., Gu, N., and Williams, A. P. (2014). "Parametric
795 design strategies for the generation of creative designs." *Int. J. Archit. Comput.*, 12(3),
796 263–282 <https://doi.org/10.1260/14786360771.12.3.263>.

797 Liping, W., Hien, W. N., and Shuo, L. (2007). "Façade design optimization for naturally ventilated
798 residential buildings in Singapore." *Energy Build.* 39(8), 954-961
799 <https://doi.org/10.1016/j.enbuild.2006.10.011>

800 Mark, E. (2012). "Optimizing solar insolation in transformable fabric architecture: A parametric
801 search design process." *Autom. Constr.*, 22, 2–11
802 <https://doi.org/10.1016/j.autcon.2011.11.001>.

803 Marler, R.T. and Arora, J.S., (2004). "Survey of multi-objective optimization methods for engi-
804 neering." *Struct. Multidisc. Optim.*, 26, 369-395 <https://doi.org/10.1007/s00158-003-0368-6>.

805 Megahed, N. A. (2015). "Digital realm: Parametric-enabled paradigm in architectural design 640
806 process." *Int. J. Archit. Eng. Constr.*, 4(3), 174–183 <https://doi.org/10.7492/IJAEC.2015.0181>.

807 Mehta, P., Malviya, M., McComb, C., Manogharan, G., and Berdanier, C. P. (2020). "Mining
808 design heuristics for additive manufacturing via eye-tracking methods and hidden markov
809 modelling." *J. Mech. Des.*, 142(12), 124502 <https://doi.org/10.1115/1.4048410>.

810 Mueller, C. T. (2014). "Computational exploration of the structural design space." Ph.D. thesis,
811 645 Massachusetts Institute of Technology, Cambridge, MA, <Dissertation>.

812 Mueller, C. T. and Ochsendorf, J. A. (2015). "Combining structural performance and designer
813 preferences in evolutionary design space exploration." *Autom. Constr.*, 52, 70–82 648
814 <https://doi.org/10.1016/j.autcon.2015.02.011>.

815 Nocedal, J. and Wright, S. J. (2006). Chapter 1 Introduction. Numerical Optimization Second Edi-
816 tion. Springer New York, NY.

817 Nguyen, A., Reiter, S., and Rigo, P. (2014). “A review on simulation-based optimization methods
818 applied to building performance analysis.” *Applied Energy* 113, 1043-1058
819 <https://doi.org/10.1016/j.apenergy.2013.08.061>

820 Oliveira, C. J., Steffen, L. O., Vasconcellos, C. A. M., and Sanchez, P. F. (2018). “Structural to-
821 pology optimization as a teaching tool in architecture.” *Revista de Ensino de Engenharia*, 37(3)
822 <https://doi.org/10.5935/2236-0158.20180039>.

823 Oxman, R. (2017). “Thinking difference: Theories and models of parametric design thinking.”
824 *Des. Stud.*, 52, 4–39 <https://doi.org/10.1016/j.destud.2017.06.001>.

825 Pasternak, A. and Kwiecinski, K. (2015). “High-rise building optimization - a design studio cur-
826 riculum.” Proc., 33rd eCAADe Conf, Vol. 1, 305–314.

827 Preisinger, C. and Heimrath, M. (2014). “Karamba—a toolkit for parametric structural design.”
828 *Struct. Eng. Int.*, 24(2), 217–221 <https://doi.org/10.2749/101686614X13830790993483>.

829 Radford, A. D. and Gero, J. S. (1980). “On optimization in computer aided architectural design.”
830 *Build. Environ.*, 15(2), 73–80 [https://doi.org/10.1016/0360-1323\(80\)90011-6](https://doi.org/10.1016/0360-1323(80)90011-6).

831 Rowe, P. (1987). Design thinking. MIT Press.

832 Rutten, D. (2013). “Galapagos: On the logic and limitations of generic solvers.” *Archit. Des.*,
833 83(2), 132–135 <https://doi.org/10.1002/ad.1568>. Saldana, J. (2015) The Coding Manual for
834 Qualitative Researchers (3rd edition). Sage Publications, Ltd.

835 Saldana, J. (2015) The Coding Manual for Qualitative Researchers (3rd edition). Sage Publica-
836 tions, Ltd.

837 Schnabel, M. A. (2013). “Learning parametric designing.” *Ind. Eng.*, 197–210.
838 <https://doi.org/10.4018/978-1-4666-1945-6.ch013>.

839 Simpson, T. and Martins, J. (2011). “Multidisciplinary design optimization for complex engi-
840 neered systems: Report from a national science foundation workshop.” *J. Mech. Des.*, 133,
841 101002 <https://doi.org/10.1115/1.4004465>.

842 Stals, A., Jancart, S., and Elsen, C. (2021). “Parametric modeling tools in small architectural of-
843 fices: Towards an adapted design process model.” *Des. Stud.*, 72, 100978
844 <https://doi.org/10.1016/j.destud.2020.100978>.

845 Stones, C. and Cassidy, T. (2010). “Seeing and discovering: how do student designers reinterpret
846 sketches and digital marks during graphic design ideation?” *Des. Stud.*, 31(5), 439–460
847 <https://doi.org/10.1016/j.destud.2010.05.003>.

848 Touloupaki, E. and Theodosiou, T. (2017a). “Optimization of building form to minimize energy
849 consumption through parametric modelling.” *Procedia Environ. Sci.*, 38, 509–514
850 <https://doi.org/10.1016/j.proenv.2017.03.114>.

851 Touloupaki, E. and Theodosiou, T. (2017b). “Performance Simulation Integrated in Parametric 3D
852 Modeling as a Method for Early Stage Design Optimization—A Review.” *Energies.*, 10(5),
853 637 <https://doi.org/10.3390/en10050637>

854 Tschetwertak, J., Schneider, S., Hollberg, A., Donath, D., and Ruth, J. (2017). “A matter of se-
855 quence.” Proc., CAAD Futures 2017, Vol. 1, 100–120. <https://doi.org/10.1007/978-981-105197-56>.

856 Turrin, M., von Buelow, P., and Stouffs, R. (2011). “Design explorations of performance driven
857 geometry in architectural design using parametric modeling and genetic algorithms.” *Adv. Eng.
858 Inform.*, 25(4), 656–675 <https://doi.org/10.1016/j.aei.2011.07.009>.

859 Uflacker, M. and Zeier, A. (2008). “Extending the situated function-behaviour-structure frame-
860 work for user-centered software design.” Proc., Des. Comput. and Cognition '08, Springer,
861 241–259. <https://doi.org/10.1007/978-1-4020-8728-813>.

862 Wallacei X, (2018). Makki, M. Available at www.wallacei.com

863 Walther, J., Sochacka, N. W., Benson, L. C., Bumbaco, A. E., Kellam, N., Pawley, A. L., and
864 Phillips, C. M. L. (2017). Qualitative research quality: A collaborative inquiry across multiple
865 methodological perspectives. *J. Eng. Educ.*, 106(3), 398–430.

866 Wortmann, T. and Tunçer, B. (2017). “Differentiating parametric design: Digital workflows in
867 contemporary architecture and construction.” *Des. Stud.*, 52, 173–197
868 <https://doi.org/10.1016/j.destud.2017.05.004>.

869 Yan, M. (1993). “Representing design knowledge as a network of function, behaviour and struc-
870 ture.” *Des. Stud.*, 14(3), 314–329 [https://doi.org/10.1016/0142-694X\(93\)80027-A](https://doi.org/10.1016/0142-694X(93)80027-A).

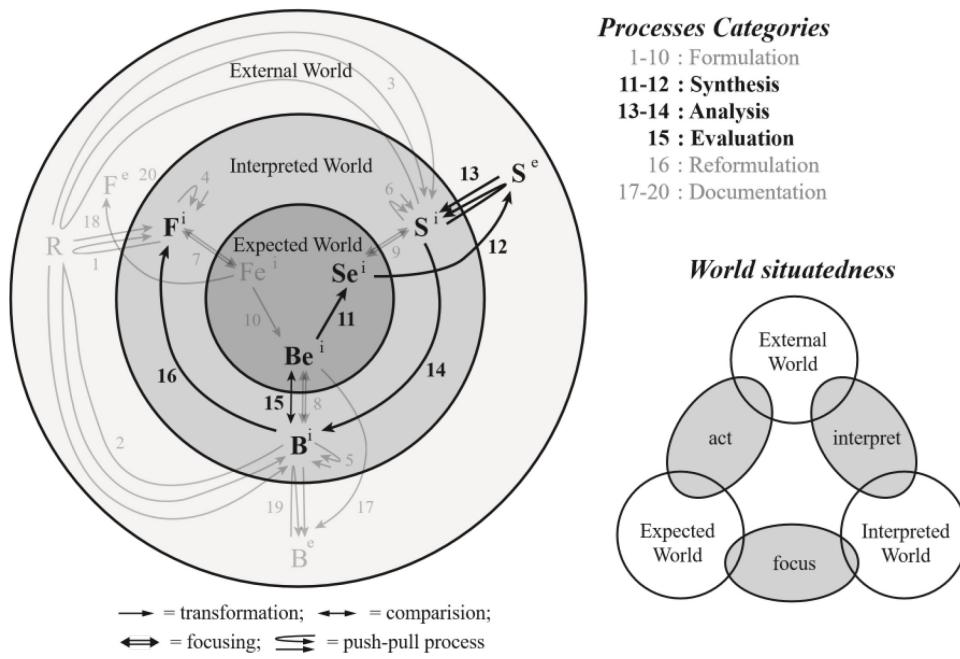
871 Yang, D., Sun, Y., Turrin, M., Buelow, P. v., and Paul, J. (2015). “Multi-objective and multidis-
872 ciplinary design optimization of a large sports building envelopes: a case study.” Proc., Int.
873 Assoc. for Shell and Spatial Structures 2015 Symp., 1–14.

874 Yu, B., Honda, T., Sharqawy, M., and Yang, M. (2016). “Human behavior and do main knowledge
875 in parameter design of complex systems.” *Des. Stud.*, 45(1), 242–267
876 <https://doi.org/10.1016/j.destud.2016.04.005>.

878 Yu, R. and Gero, J. (2015). "An empirical foundation for design patterns in parametric design."
879 551–560. <https://doi.org/10.52842/conf.caadria.2015.551>.

880 Yu, R., Gero, J., and Gu, N. (2015). "Architects' cognitive behaviour in parametric design." *Int.*
881 *J. Archit. Comp.*, 13(1), 83–101 [https://doi.org/10.1016/0142-694X\(93\)80027-A](https://doi.org/10.1016/0142-694X(93)80027-A).

882 Zalewski, A., Borowa, K., and Ratkowski, A. (2017). "On cognitive biases in architecture decision
883 making." *Software Architecture*, 123–137. <https://doi.org/10.1007/978-3-319-65831-59>.



886 **Fig. 1.** The situated FBS framework with emphasis on the processes focused on in this paper,
887 and the situatedness and interaction of three worlds, after Gero and Kannengisser (2004).

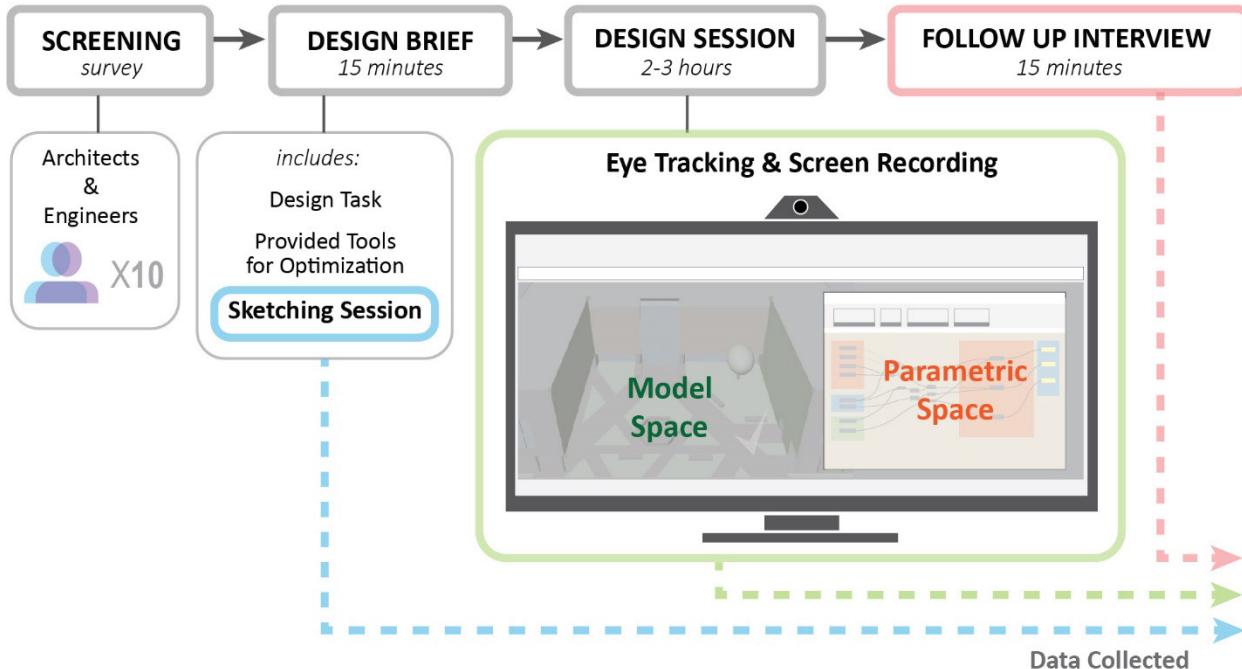


Fig. 2. Summary of the events in a design session, showing the data that was collected, and a preview of the digital design interface.

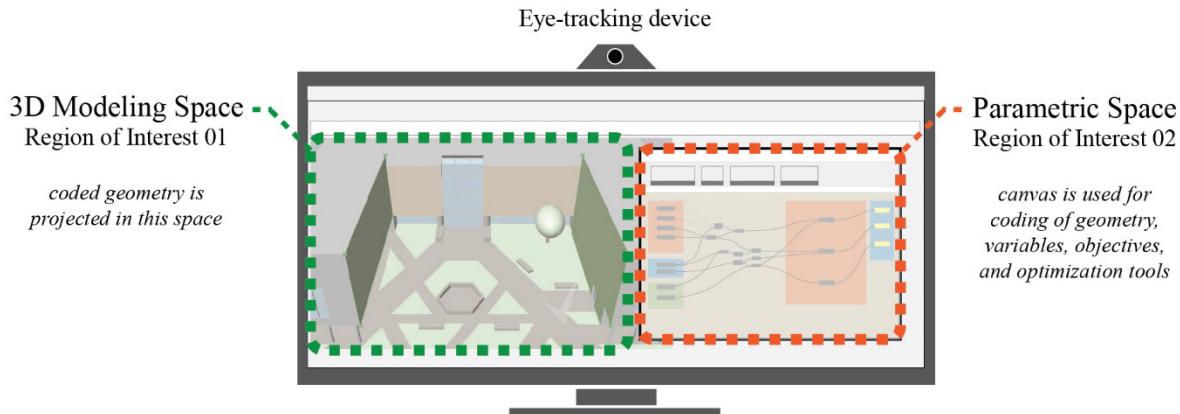


Fig 3. The two Regions of Interest (ROI) on the screen and descriptions of the regions

Process Group	Process	Description	Events
Formulation	1-10	Internalizing design task; developing Be^i and Se^i	Pre-modeling process
Split Pre-modeling phase and Modeling phase			Placing first component
Synthesis	11	Envisioning solution from Be^i to Se^i	Event happens internally
		Externalizing envisioned Se to external S^e	Developing design in grasshopper*
	12	S^e	Introducing a variable Sketching again Defining solid and glass panels
			Plug in elements to objectives
Analysis	13	Considering if external S^e aligns with Se	Reviewing design in model space**
	14	The resulting B^i from S^i sdf	running optimization tool
Evaluation	15	Interpreting if B^i meets Be^i	Reviewing optimization results
	16	Changing F^i based on B^i	Changing which objectives they pursue
Documentation	12		Editing representation of design
	17-20	Shifting from expected and interpreted into external	Writing about design

*Defined by looking in the Grasshopper canvas

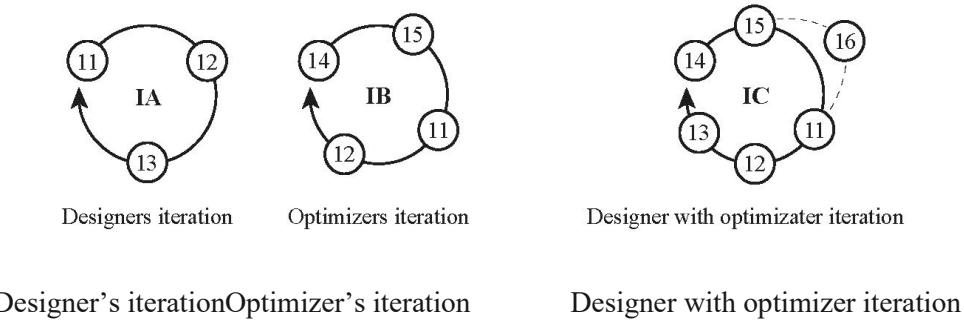
**Defined by looking in model space for more than 0.5 seconds

895

896

Fig. 4. The coded behaviors in this study from the situated FBS framework.

897



898

899

Designer with optimizer iteration

900

Fig. 5. Identified iteration loops.

901

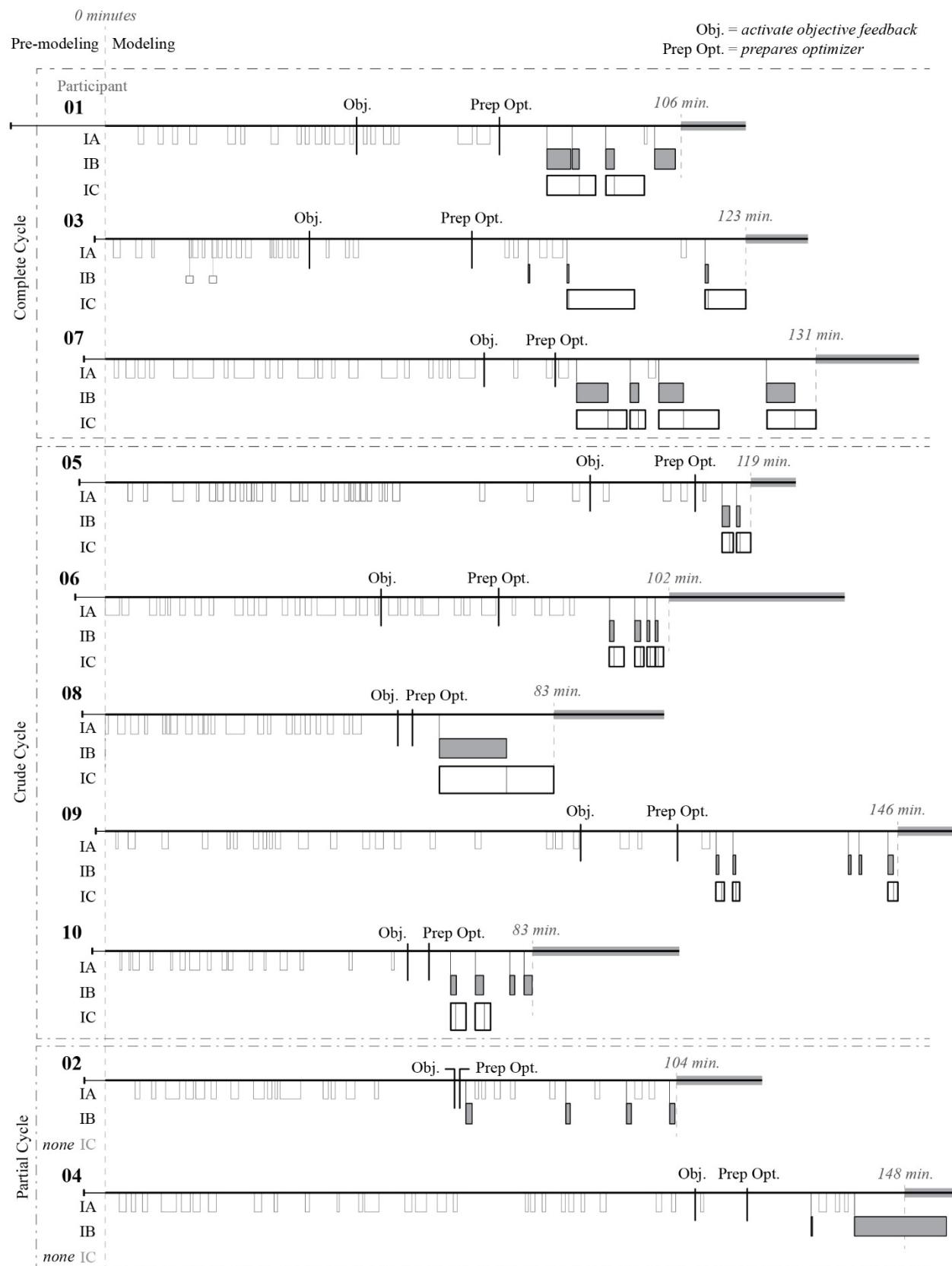
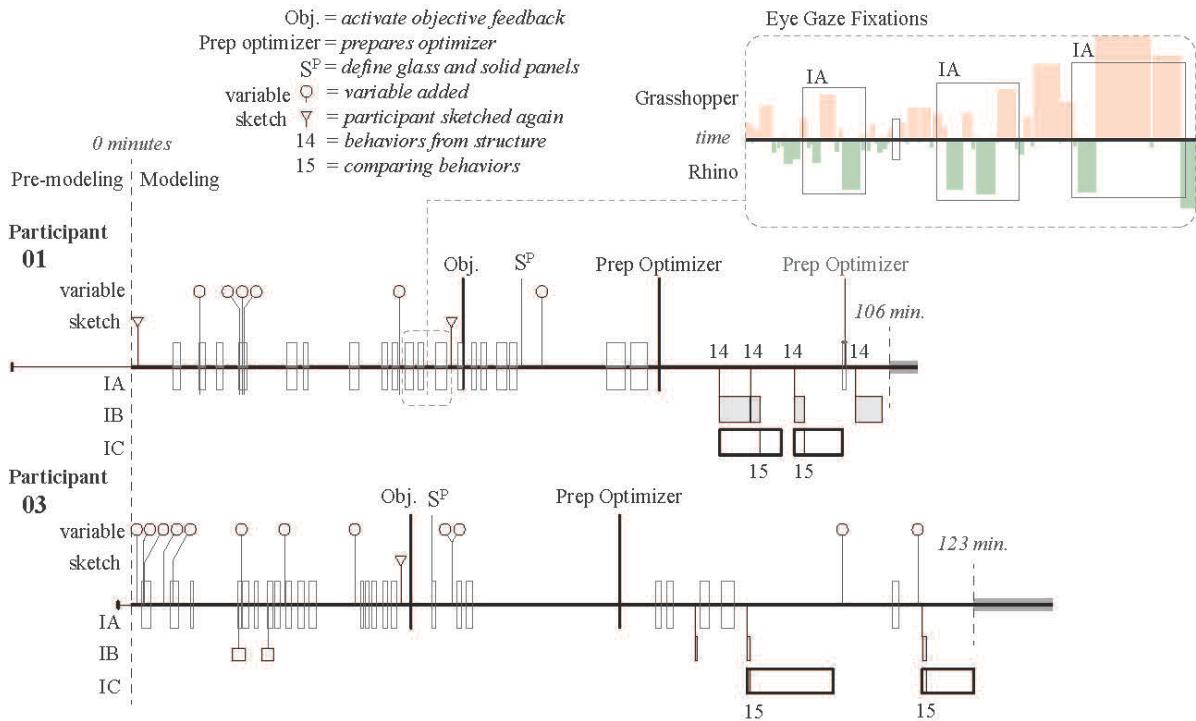
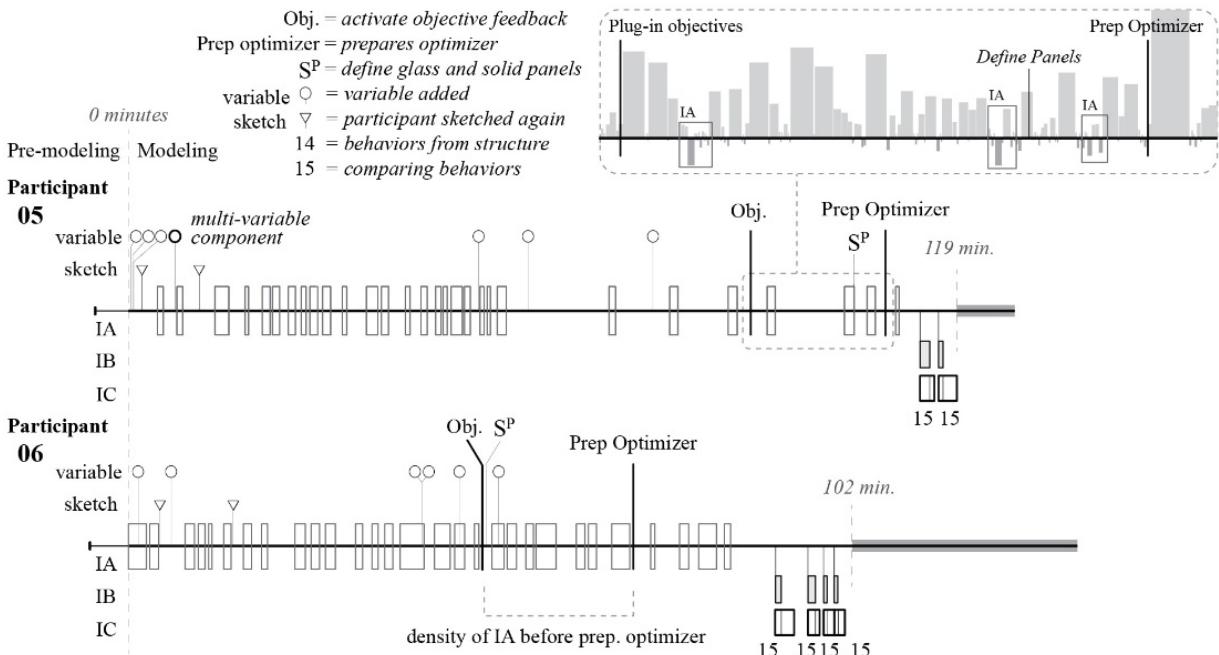


Fig. 6. Design session behavior time plots for all participants.



905 **Fig. 7.** Complete Optimization Cycle sessions with detailed time plots from Participants 01 and
 906 03.



909 **Fig. 8.** Coarse Optimization Cycle sessions with detailed time plots from Participants 05 and 06.

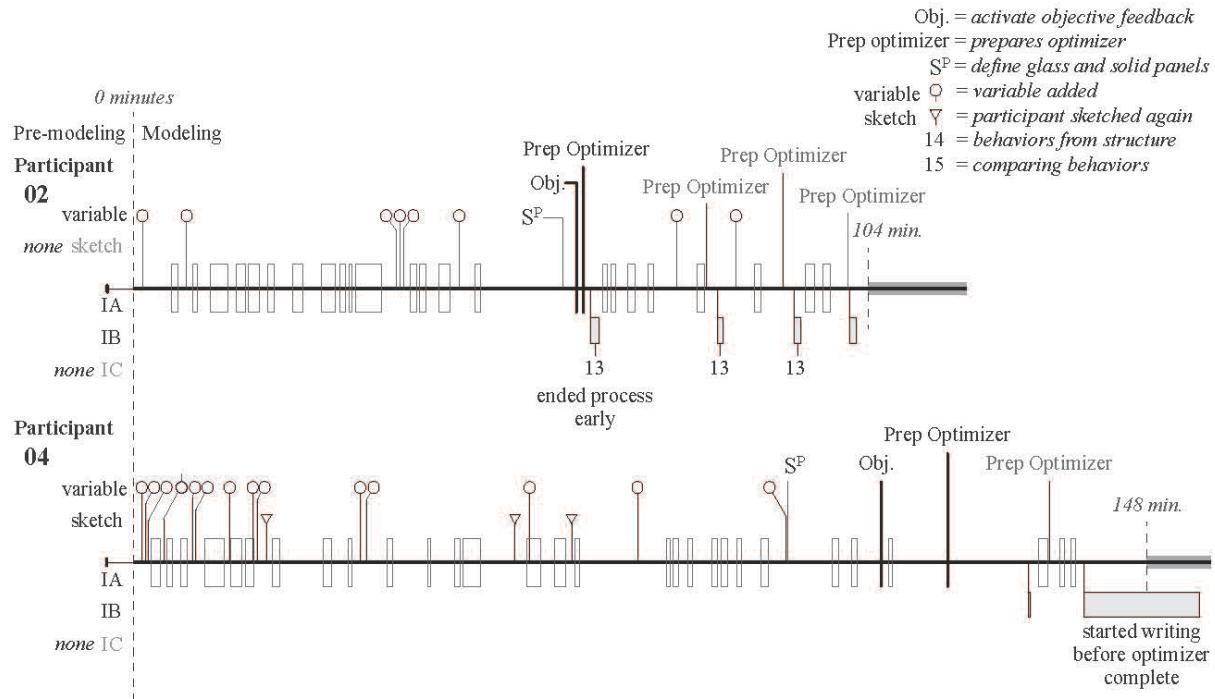


Fig. 9. Partial Optimization Cycle sessions with detailed time plots from Participants 02 and 04.

Participant	01	02	03	04	05	06
Session Timeline						
obj.=activate objectives	obj. 43%	opt. 70%	obj. 60%	opt. 61%	obj. 33%	opt. 58%
opt.=prep optimizer						
Objectives	daylight energy structure					
IA	20	23	24	29	29	30
IB	4	4	3 (5)	2	2	4
IC	2	0	2	0	2	4
Final variables	6	3	6	5	16	7

Fig. 10. A summary of characteristics from the optimization portion of the detailed sessions analyzed in Figures 7-9.