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Abstract

Engaging with performance feedback in early building design often involves building a custom
parametric model and generating large datasets, which is not always feasible. Alternatively, large
parametric datasets of general design problems and filtering methods could be used together to explore
specific design decisions. This paper investigates the generalizability of a method that dynamically
assesses variable importance and likely influence on performance objectives as a precomputed design
space is filtered down. The method first trains linear model trees to predict building performance
objectives across a generic design space. Leaf node models are then aggregated to provide feedback on
variable importance in different design space regions. This approach is tested on three design problems
that vary in number of variables, samples, and design space structure to reveal advantages and potential
limitations of the method. Algorithm improvements are proposed, and general recommendations are
developed to apply it on future datasets.

Keywords

Parametric design, conceptual design, sensitivity analysis, design variable importance, surrogate model,
decision tree

1. Introduction

With the integration of simulation engines into visual programming environments, parametric modeling
techniques can be easily paired with simulation data to provide performance feedback during design. This
approach allows designers to quickly evaluate many potential design configurations. In practice, it is not
feasible to consider every design in the parametric design space, but several methods have been
developed to navigate the design space efficiently. While some methods directly point the designer
towards optimal performance, including automated optimization [1]-[3] and interactive optimization [4]—
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[7] workflows, others intend to more gently guide the designer towards better performing designs,
offering increased flexibility and opportunities for designer preference expression. Such methods include
design catalogs [8]-[10], surrogate-model-based workflows that enable live manipulation [11], [12], and
performance maps [13]. The latter methods can be most useful in the earliest stages when many aspects of
the design are flexible [14], there are competing objectives that need to be synthesized [15], or designers
have mixed quantitative and qualitative criteria [16]. In particular, surrogate modeling can be used to
facilitate discussions as changes are made [17] and is accessible with modern statistical tools and
libraries. However, building custom parametric models and running simulations to generate data is time-
consuming, and further adjustments may be required throughout early design, requiring more effort to
update the surrogate model. Design practice moves quickly, and tools get left behind if they do not
provide salient information at crucial points when designers really need them. Even with newly available
tools, there remains a need for responsive and accessible performance feedback from parametric design
spaces.

In this vein, designers might prefer to use a general parametric model to determine which design
aspects or variables tend to influence the performance before modifying the design outside a restrictive
parametric framework. The general parametric model must contain many variables and configurations but
have the ability to be filtered down to provide useful feedback on a specific design problem. As the design
space is filtered to reflect project-specific criteria, designers can quickly discover which variables are
more likely to improve performance metrics and where “good” settings tend to be for their problem. The
process of determining which variables matter is a type of sensitivity analysis. Sensitivity analysis has
been used for a range of building design problems, from model calibration [18] to setting up a design
optimization problem [19]. While there are many existing sensitivity analysis methods appropriate for
building design problems, few are suited for real-time analysis. As the general parametric model is
filtered, existing sensitivity analysis methods require re-running the analysis each time, which is
disruptive to the design process.

One approach to allow for real-time sensitivity analysis is to split the general parametric model
design space into many regional models to be accessed during filtering. Existing regional sensitivity
analysis methods have been used to develop useful qualitative feedback but encountered low accuracy in
certain regions and lacked intuitive visualizations for designers [20]. Depending on the sampling
technique, many regions or subsets may lack data necessary to describe the behavior [21]. For the general
parametric model to be truly flexible, it must have the ability to be filtered on any design criteria and
provide sensitivity analysis of sufficient accuracy for early design. With regional models, the designer can
gain intuition on how variable behavior changes in each region prior to filtering to inform the initial
design. However, a new method is required to provide this information along with real-time subset
sensitivity analysis.

In response, this paper extends and rigorously investigates a new method called dynamic subset
sensitivity analysis [22]. The method divides a general design space into many models using a decision-
tree-like training process and provides real-time variable sensitivity through interpolation techniques. This
paper considers the generalizability of the method by applying it to three building design problems of
different domains and scales. A comparison of the three datasets shows when the method has enough data
to be successful, along which what issues may arise when trying to apply the method to future parametric
datasets. By presenting the analyses side-by-side, it also demonstrates how a designer might engage with
multiple objectives simultaneously or iteratively as they move between decision variables and scales.
Through this work, modifications to algorithm are proposed to communicate variable behavior more
accurately in certain regions of the design space, particularly when the response is nonlinear. The value of
the method is evaluated for each building design problem. Finally, a set of recommendations are
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developed to implement the method on future datasets. The goal is to promote adoption of performance-
driven parametric tools in early design, leading to more sustainable buildings.

2. Literature review
2.1 Rapid feedback in early design

Parametric modeling and design space exploration are increasingly used in early design. Researchers have
been attempting to improve such design approaches through design catalogs [8], interactive and
automated explorations [5], [23], and visualization techniques [24]. One of the main considerations in the
development of these methods is computational time, specifically during active design exploration.
General research into computation tasks shows that an interruption of more than 400ms seconds reduces
productivity [25]. Building upon this finding, [26] established the roll theory, which states that “when an
individual has access to the data necessary to perform the creative task at hand, when concentration is not
broken by distractions, and when the individual has developed a consistent method of organizing the data,
then ideas and solutions will suggest more ideas and solutions to successive steps of the creative process,
in a rapid and orderly flow.” Roll theory is related to the concept of creative flow [27], which has been
considered while creating tools for rapid design assessment [28]. To achieve this flow, researchers have
identified and tested surrogate models that approximate performance during design exploration and
reduce lag [29]. Designers can explore the design space and receive rapid feedback, facilitating team
discussions [30] and guiding sustainable design decisions.

While non-parametric, black-box surrogate models often achieve the highest accuracy, many
researchers have implemented interpretable surrogate models with sufficient accuracy [31], [32].
Localized models such as decision-trees and piecewise models can provide granular variable sensitivity in
addition to performance feedback, making them doubly advantageous if they can reach acceptable
accuracy. The linear model tree utilized in this paper is an extension of the decision-tree and has been
implemented in other domains such as computational fluid mechanics [33], data mining [34], and human
computer interaction research [35]. The proposed method leverages the local models yielded from the
linear model tree to provide real-time sensitivity analysis in early building design scenarios.

2.2 Reusable design spaces

Despite their potential benefits, many recent interactive design methods have not been widely
implemented in practice due to practical considerations [36]. Building a model from scratch and running
simulations is time-consuming depending on the response variable. Many researchers have shifted focus
to understanding when and how building data and prediction models can be transferred from decision to
decision and project to project. The idea of reusable surrogate models for engineering design is introduced
in [37]. It proposes graph-based surrogate models for trusses and demonstrates its effectiveness in new
design spaces via transfer learning. Several transfer learning approaches have also been proposed for
building energy prediction and control [38], [39]. However, these approaches are in the early stages of
development and are not yet widely used in industry. Rather than transferring data or models, another
approach that is appropriate for early building design is to create a general design space that can be
customized or adapted for many design problems [11], [40]. While it takes domain expertise to define a
design space that balances specificity with generalizability to many projects, many design firms work
repeatedly in certain geographic areas or building sectors, making this possibility feasible [41]. There are
also domain-specific ways to reuse machine learning (ML) data for predicting the performance of new
designs. For example, by hybridizing data modeling with physics-based modeling and/or using ML to
predict the behavior of a single unit that can be aggregated to rapidly predict the performance of a full
structure [42]. However, this paper focuses on the use of parametric datasets in early design.

3
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2.3 Sensitivity analysis for building design problems

Sensitivity analysis has been widely implemented in building design problems to inform the decision-
making process. It has been incorporated into model calibration procedures [18], formulating an
optimization problem [19], and decision-making in design or operation [43], [44]. However, it has not yet
been applied to generalizable parametric design datasets. Sensitivity analysis allocates the uncertainty in
the response among the predictor variables and can be used to gauge variable importance, as well as
understand variable interactions [45]. It is particularly useful in the early design stages when the designer
is trying to discover which variables tend to influence the response and by how much, whether the
question is related to daylight, structures, energy, acoustics, or another response variable. This process can
help identify critical decisions, as well as more flexible decisions, from the onset.

There are many established methods available to perform sensitivity analysis, both with and
without an accompanying regression model. Most of the widely used standalone methods are one-at-a-
time (OAT), which have local and global variations that quantify the effect of each variable individually.
OAT sensitivity analysis has been used to address a wide range of building design problems, ranging from
improving building life cycle assessment [46] to thermal comfort [47]. Many researchers have also
leveraged regression models (or surrogate models) to produce variable importance. Specifically,
standardized linear regression model coefficients [48] and variable selection procedures such as stepwise
regression [49] have been implemented. The main drawback of linear regression is the linearity condition,
which may not be satisfied depending on the data. However, some machine learning models have their
own importance metrics, such as decision trees. For example, [50] utilized the decision tree importance
metric to identify which variables are most important in predicting building energy consumption patterns.
Yet, the output of many machine learning models is not directly interpretable or useful to designers [51].
Finally, variance-based approaches have also been used to quantify variable importance for building
systems [52]. These methods tend to achieve higher accuracy but require a large number of samples.

The methods described above compute variable importance over the entire variable domain. As
the design space is refined or filtered during early design, the initial sensitivity analysis may no longer be
accurate, so the calculations must be re-run from scratch. One researcher approached this issue by
retraining the underlying regression model on the restricted variable domain [53]. However, depending on
how the domain was restricted, predictions were not consistently accurate. Another study leveraged
Monte Carlo filtering and Regional Sensitivity Analysis (RSA) [20], but also encountered low accuracy in
certain regions, and did not use detailed building performance simulation software to generate data,
leading to further potential inaccuracies. Nevertheless, filtering is a valuable design space exploration
technique as reusable parametric models emerge as a new research area.

2.4 Data visualization for design space exploration

Making sensitivity analysis valuable for early design also requires careful consideration of how a user
might engage with the data. Building design problems are often high dimensional and thus difficult to
visualize. One of the most common methods in building design is parallel and radial coordinate plots
[54]. Some researchers have proposed performance maps [13] or self-organizing maps [55], [56] to
preserve multivariate information and convey it to designers. Others have argued that reducing the
number of variables through principal component analysis or latent space [57] can guide designers
towards high-performing designs more quickly. Regardless, the manner in which the results are
communicated is equally important as the underlying model [58].

2.5 Research gaps and contributions
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In summary, to make use of general models in early design, a new method is required that quickly and
accurately updates variable importance as the design space is refined and yields results that are easily
interpretable. Although dynamic subset sensitivity analysis was initially proposed in [22] on a single
dataset, the method has not yet been rigorously tested. There are many data model issues that may arise
when feeding in certain datasets, such as discontinuous spaces, collinearity, a lack of significance for
certain regions, or even just not having enough data to make a quality assessment of importance. In this
paper, we investigate the generalizability of dynamic subset sensitivity analysis by testing it on three
datasets from different domains and scales. The three datasets are based on spatial daylight autonomy of a
sidelit room, energy use intensity of a residential retrofit, and embodied carbon of a tall timber structure.
These design problems were selected because their datasets differ in domain and scale, but also data type,
linearity, number of variables, and number of samples. They are also similar in structure to common
datasets being implemented in ML-based design tools by leading firms in AEC [41], to the extent that
these structures are commonly known. Based on the implementation for these three datasets, we are able
to derive a set of recommendations for the method to be implemented on future datasets and propose
improvements to the algorithm.

3. Methodology

The overall procedure is described in Figure 1. First, three general design problems were identified, and
corresponding datasets were generated or obtained, and then processed in preparation for training. The
linear model trees were then trained, in addition to a simple linear regression model and traditional
decision tree model for comparison. Next, the average variable sensitivity was calculated in small bins to
understand where in the variable domain certain variables tended to have a large influence on the
response while accounting for other variables in the model. Finally, the dynamic subset sensitivity
analysis was demonstrated through a few design scenarios. The quality of the leaf node models was
evaluated through coefficient p-values, and modifications to the dynamic subset sensitivity analysis
algorithm were implemented. Lastly, a set of recommendations was proposed for applying this method to
future datasets.

Identify design problem Generate or obtain Train Compute Interpolate
+ parameterize performance data ~——> linear model tree + ———> average variable —> leaves as design space
e comparable models

sensitivity in small bins is filtered

1
1
1
1
|
1
1 A
1

1

1

N

Figure 1: Overall methodology with three datasets

3.1 Problem selection



200  One of the goals of the proposed method was to customize a large, general dataset throughout the early
201  design stage and across many building projects. To this purpose, three datasets were generated or selected
202  to represent general design problems from the domains of daylighting, energy, and structure (Fig. 2).
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203
204  Figure 2: A visualization of the geometry for the daylight, energy, and structure design spaces

205 3.2 Data generation and processing

206  Three datasets were generated or obtained from the three design spaces described in Section 3.1. The
207  following subsections provide details on data generation and processing for each dataset, and a summary
208  of the variables and responses are provided in Table 1.

209  Table 1: Datasets summary

Dataset Variables Response

Daylight Room depth, sill height, head Spatial daylight autonomy
height, orientation, context
distance, context height, number
of panels, panel width, wall

thickness
Operational energy Cooling COP, R-value, U-value | Energy use intensity
Structures Building width, building length, | Embodied carbon

story height, setback, notch X
position, notch X size, notch Y
size

210
211  3.2.1 Daylighting Model and Dataset

212 Asidelit room model was developed to represent the domain of daylighting. In building practice in the
213 United States, daylight simulations are often required to obtain LEED v4 Daylight credits [59]. Therefore,
214 this model could be useful across many spaces and projects. It is assumed that a designer would consult
215  the model repeatedly for a single project as they establish the layout of rooms and the fagade. First, the
216  daylit room was modeled parametrically in Grasshopper to include nine variables: room depth, sill height,
217  head height, orientation, context distance, context height, number of panels, panel width, and wall

218  thickness (Figure 2). All room surfaces accord with LM-83 guidelines [60]. The windows were typical
219  double-pane low-e with 61% visible transmittance and incorporated an automated shade. The shade fabric
220  had 7.2% visible transmittance and 6.6% permeability in accordance with LM-83. Room width and room
221  height were 9m and 3m, respectively, although they could be incorporated as variables in the future. The



222
223
224
225
226
227
228
229
230
231
232
233
234
235

236

237
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

variable bounds are provided in Table 2. They were set to provide enough flexibility for repeated use, but
still abide by modern construction standards.

Spatial daylight autonomy (sDA) at 300 lux was the response variable, or “objective” in design
space terms, generated using ClimateStudio in Grasshopper. To ensure enough samples for the regression
tree, 12,500 points were sampled using Latin Hypercube sampling. The simulations were conducted in
Pittsburgh, PA, USA, which is often overcast and at a 40.44° N latitude. For future datasets, sky condition
and latitude could be included to make the design space more flexible, but these parameters were set to
demonstrate the method. While designers might in different cases design to the typical, worst-case, or
average annual behavior, these assumptions would be applicable when making a reusable dataset for
buildings across a given city. The sensors were spaced at Im and the workplane was positioned 0.762m
above floor finish. Within the path-tracing settings, the number of rays emitted for each sensor at each
pass was 500. The Radiance parameters considered up to 6 ambient bounces before discarding a ray. The
dataset was split 80/20 for training and testing, and all predictor variables were scaled from 0-1 to ensure
importance was not influenced by the variables’ scale.

Table 2: Variables in spatial daylight autonomy dataset

Variable Minimum Maximum
Room depth (m) 6.00 15.00

Sill height (m) 0.10 1.10

Head height (m) 0.10 1.10
Orientation (deg from south) 0.00 360.00
Context distance (m) 3.00 15.00
Context height (m) 0.00 15.00
Number of panels 1 20

Panel width (relative) 0.10 0.90

Wall thickness (m) 0.20 1.00

3.2.2 Energy Model and Dataset

The second dataset was based on a residential energy retrofit scenario. This dataset represents a reusable
model for within a city when testing upgrades on similar residential stock. However, the model would
have to be customized based on the feasible ranges of variables to consider in each individual case. An
EnergyPlus model was constructed to represent a residential home considering upgrades on the cooling
COP, exterior wall insulation, and window construction. Specifically, cooling COP, R-value, and U-value
were included as variables (Figure 2). The generic home was 331.23 m? and assumed to contain a DX
cooling coil and an electric heating coil. The settings for each variable are provided in Table 3. U-value
was not controlled directly, as it typically varies with other window properties. Instead, 19 window
constructions were selected and used to generate data. The U-value and solar heat gain coefficient
(SHGC) were extracted during data processing to represent the window constructions in the dataset.
However, because U-value and solar heat gain were highly correlated, only U-value was incorporated into
the linear model tree to prevent collinearity issues (Figure 7). Previous studies have also shown a
correlation between U-value and SHGC among existing window constructions [61], [62]. The R-values
were converted to conductivity in the exterior wall material in EnergyPlus, and the cooling COP was
accessed directly in EnergyPlus. All 6,859 permutations were simulated in Altoona, Pennsylvania, USA.
The total site energy per conditioned building area was the response. Although grid sampling is not
recommended for the proposed method (see limitations section), simulating 19 settings for each variable
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yielded high-resolution data sufficient for sensitivity analysis. The dataset was split 80/20 for training and
testing, and all predictor variables were scaled from 0-1.

Table 3: Variable options for energy dataset

Variable Options

Cooling COP | 1.2,1.4,1.6,1.8,2.0,2.2,24,2.6,2.8,3.0,3.2,3.4,3.6,3.84.0,4.2,4.4,4.6,4.8
R-value (ft>- | 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48

F-h/BTU)
U-value 0.785, 0.992, 1.062, 1.265, 1.525, 1.624, 1.704, 1.71, 1.765, 1.772, 2.143,2.255,
(W/m*-K) 2.556,2.72,2.765, 3.122, 3.835,4.513, 5.894

3.2.3 Structural Model and Dataset

The third dataset used to demonstrate the proposed method was an embodied carbon dataset initially
generated by Hens et al. [63] and used to explore performance prediction for interactive parametric design
in Zargar & Brown [64]. The dataset includes a wide variety of geometric configurations for a mass
timber building with a post-beam-panel gravity system and a lateral system incorporating linear elements.
For each geometry, a custom sizer based on timber design codes sizes each element based on applicable
structural loads and fire protection criteria. Embodied carbon coefficients are then used to convert the
building elements into carbon emissions equivalent values, assuming no carbon storage. The embodied
carbon contributions of the elements are then summed to predict the overall embodied carbon of the entire
structural system. Hens et al. [63] and Hens et al. [65] describe the methodology used to generate the
dataset in more detail. In this paper, we incorporated the independent and several partially dependent
variables, including building width, building length, story height, setback, notch x position, notch x size,
and notch y size into the linear model tree (Figure 2). The response was embodied carbon. Because notch
X position, notch x size, notch y size, and setback depend on the more fundamental variables of width and
length, the linear correlations were calculated to diagnose collinearity issues before training the linear
model tree (Fig. 7). However, all Pearson correlation coefficients were within the acceptable range and
thus incorporated into the model. Outliers were eliminated by the interquartile range (IQR) method, which
resulted in 940 data points. The variable bounds are provided in Table 4. The dataset was split 80/20 for
training and testing, and all predictor variables were scaled from 0-1.

Table 4: Variables in embodied carbon dataset

Variable Minimum Maximum
Building width (normalized) 0.0005 0.9995
Building length (normalized) 0.0005 0.9995
Story height (m) 3.048 4.876
Setback (relative) 0.005 9.995
Notch X position (relative) 0.0005 0.9995
Notch X size (relative) 0.0005 0.9995
Notch Y size (relative) 0.00045 0.89955

3.3 Training the linear model trees

After preparing the datasets, the first step is to create regression trees that can eventually be used for
sensitivity analysis and filtering. Figure 3 is a representation of a one-dimensional linear model tree, but a
similar procedure follows for high dimensional spaces. The trees are built through recursive binary
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splitting, where predictor X; is split at cutpoint s such that splitting the predictor space into the regions
{X | X; < s} and {X | X; = s} leads to the greatest reduction in the residual sum of squares (RSS).

Splitting stops based on some threshold and each terminal node, or leaf (Figure 3), contains a model that
applies in the j-th region only. For traditional regression trees, the estimated response ﬁRj is the mean

response for the training observations in the j-th region. However, this is often an over-simplification of
the true relationships. To address this issue, linear model trees use a linear model to estimate the response.
By the end of the training process, each leaf node contains its own linear model.

RSS = ¥1_, Yier,(vi — 9&,)*, (Equation 1)

In Equation 1, the outer summation accounts for each variable and the inner summation accounts for all
points in the specified region. While previous studies have achieved high accuracy with nonparametric
models, it is often not possible to make inferences and inform the building design process. It was
hypothesized that linear model trees could achieve sufficient accuracy for early design while allowing for
dynamic interpretations about variable sensitivity because of how they are constructed. The correctness of
this hypothesis is tested by comparing the results across the varying datasets.

'-\'\x,

X
L /s
. T~ A
. 4V ks
/\

Figure 3: Linear model tree with leaf nodes in orange, after [66]

The termination criteria for a linear model tree are the maximum depth and minimum number of samples
per leaf, which have to be tuned for a given dataset. For all models, the maximum depth was set to 8 and
minimum number of samples per leaf was set to 30. If there are 30 samples, the distribution is considered
normal based on the Central Limit Theorem from statistics. The model achieved sufficient accuracy at this
depth and enforcing at least 30 points per leaf ensured the model was valid. The maximum depth of 8 was
selected to control training time while ensuring enough leaf nodes for interpolation. Once the linear model
tree was built, the leaves were used to compute average sensitivity in small bins.

3.4 Calculating average sensitivity over the variable domain in a multi-dimensional design space

The next step is to determine how coefficients of individual leaves should be combined to indicate local

variable importance. To get a sense of sensitivity over the entire variables’ domain, the average linear

model coefficient was computed in small bins. The domain of each variable X; is partitioned into 100 bins
m—-1 m

of equal length. The m-th bin is denoted by b,,, := To0’ ﬁ), for 1 < m < 100. The k-th leaf is denoted
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by £ and the number of samples in £, is 1. Then, the domain of each variable X; is constrained by
Cik < Xjx < dj inleaf £;. Let 0;  be the original coefficient of X; ; in £}. Then the weighted
coefficient restricted to bin b ,,, is shown by HAj,k,m and is given by the following formula:

9j,k,m =0 * n(;l—]’_‘m) * I(p — value j; < 0.05), (Equation 2)
where n(bj_m) is the number of samples in the leaves that overlap b; ,, for X; and (q) =

lif q = True
{O if q = False
test that determines if the variable linearly affects the response fails, the coefficient is forced to zero to
prevent inaccuracies in the averaging equations. Additionally, there must be at least one sample per bin.
Figure 4 is a simple example to show the parts of the weighted coefficient equation.

which is normally denoted as an indicator function. This dictates that if the hypothesis

n(bj,n') = 10 10 19 9 14 5

Figure 4: Weighting process in the averaging scheme

Finally, the weighted coefficient for variable X; in by, is given by:
é\j,m =Yk éj,k,m (Equation 3)

The result is a local sensitivity analysis over the entire domain that can be used to understand changes in
the response. Next, the model leaves are used to update variable importance for user-defined intervals.

3.5 Real-time variable sensitivity via leaf model interpretation

While many machine learning methods can return importance metrics, they are often established through
training, requiring retraining if the variables and their corresponding bounds are modified. By
precomputing linear models in regions determined by the regression tree, the model coefficients can be
interpolated to quickly return variable information without full model retraining. If the user-defined
intervals correspond exactly to a pre-defined region, variable sensitivity is provided by that model.
Otherwise, the model coefficients must be interpolated based on the “agreement” between the user-
defined intervals and the variable domains in the leaves. The agreement of the user restricted intervals
with the constraints of £}, is given by:

1

P
Wy = (252 Wi, j5> , (Equation 4)

where wy ; is the amount of “agreement” of X; in €} and p > 1 is a hyperparameter. Let [aj, bj] be the
user-defined interval on X;. Then, the amount of agreement wy ; is defined as:

_ min{dj,k,b]-}—max{c]-_k,a]-}
Whj =

(Equation 5)

b]-—a]-

10
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where a, b, ¢, and d are non-negative values. Without loss of generality, assume W, W, ..., W; are the top

t agreements. The total weight wy, is a function of top t agreements normalized by their sum:

—__ W
Zi=1 Wk

Wy (Equation 6)

Finally, variable importance was computed using the following formula:
0=Yt_,wy- abs(8;, © I(8y)), (Equation 7)

where 0, is the linear model coefficients at £;, abs(-) is element-wise absolute value of a vector, J(+) is
element-wise [(+) of a vector, and © is element-wise multiplication of vectors. The procedure is
presented in Algorithm 1. Note that p and t are hyperparameters that can be tuned based on the dataset.
For all datasets, p and t were set to 3 and 10, respectively. For higher values of p, the contrast between
the top t agreements becomes sharper. As t approaches the total number of leaves, the impact of
individual leaves gets lost due to normalization. On the other hand, if t = 1, only one leaf is used, which
might not be an accurate model of the user-defined region. Once the intervals are specified, individual
predictions are made with the linear model tree itself. Single designs only fall into one leaf since the
regions do not overlap. The prediction is made by the linear model in the appropriate leaf. Once this
model has been established, a metric for overall variable importance and visualizations of how
performance changes with variable setting modifications can both be returned to a designer without the
added time of model retraining. The results section first presents the dataset itself before showing these
potential visualizations for the designer.

3.6 Ensuring model significance

The algorithm mentioned above proposed an improvement to eliminate the possibility of poor linear
models in the leaf nodes affecting the interpolation calculations. While this issue did not necessarily arise
for the daylight dataset in [67], it is an important consideration, as some building datasets contain highly
nonlinear variables that cannot be handled during the training process due to a lack of data. The
improvement consists of checking the coefficient p-values in each leaf node linear model, and if the p-
value is greater than the desired level of significance (in this paper, 5%), the coefficient is forced to zero
in the interpolation calculations (Step 10 in Algorithm 1). If the p-value is low, we can reject the null
hypothesis, which is that the coefficient is equal to zero, therefore there is evidence that the coefficient is
statistically different than zero. However, if the p-value is high, there is no evidence that the coefficient is
different from zero and we cannot reject the null hypothesis. In this case, the coefficient is forced to zero
instead of ignored because ignoring it would eliminate information from the region and bias the
interpolation towards the other models that may or may not fully cover the region. The pseudocode for the
updated interpolation algorithm is provided below in Algorithm 1.

Algorithm 1: Leaf node interpolation

0 Input: Linear model tree, user-defined intervals, and hyperparameters p and t
1 For every leaf ¢},:

2 For every variable j:

3 | Compute amount of agreement wy ; according to Eqn 5

4 Compute agreement W, per Eqn 4
5

6

7

8

Pick top t leaves with the highest agreement Wy,. Let these leaves be £, ..., €.

Compute the normalized total weight wy, according to Eqn 6

Initialize updated coefficients 8 by a vector of zeros // dimension is the number of variables
Iterate through all top t leaves (Chosen in Step 5) and do the following:
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Let current leaf have index k' € {1',---,t'}

10 Update the coefficient in ék, by setting all the coefficients that have a p-value > 0.05 to
zero // this describes 8, O J(0) in Eqn 7
11 Take the absolute value of the updated coefficients and multiply by the total weight wy,
12 Replace 8 by 8 + 8, // output of Step 11
13 Return §
4. Results

This section first presents linear model tree characteristics for each dataset before the results of the linear
model tree interpolation procedures (Table 5). The daylight dataset produced the highest number of leaf
nodes, followed by energy and structures. The training criteria enforced 30 samples in each leaf node and
maximum depth of 8, but the number of samples per leaf dictated the number of leaves for the energy and
structures datasets. For the daylight dataset, the number of panels and wall thickness were split the most,
followed by orientation and panel width. Although orientation was split frequently, the results in the
following sections show that the slopes were small; therefore, orientation was not important in most
regions. Similarly, the cooling COP and R-value were split a comparable number of times, but the cooling
COP has large slopes in some regions, and the R-value does not. Finally, building width was split the
most for the structures dataset, followed by building length and notch Y size, which largely corresponds
with the importance results in the following sections.

Table 5: Linear model tree characteristics

Daylight Energy Structures
Number of leaf nodes 144 58 18
Number of splits Number of panels: 32 U-value: 30 Building width: 7
Wall thickness: 29 Cooling COP: 14 Building length: 3
Orientation: 26 R-value: 13 Notch Y size: 3
Panel width: 18 Story height: 1
Context height: 13 Setback: 1
Room depth: 12 Notch X p_osition: 1
Context distance: 5 Notch X size: 1
Head height: 5
Sill height: 3

Figure 5 shows a set of designs across the design space to present the range of possible designs for each
domain. The daylight design options face south and assume no context building. Notably, the objectives
for the daylight and structural design spaces have a visual component, while the energy objective, EUI,
does not.
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Figure 5: Range of possible design for each dataset
* The energy objective does not have a visual component, as the variables are on the material-level.
4.1 Assessing model fit

The linear model tree fit was then assessed prior to performing calculations with the leaf node model
coefficients to ensure the base model was reliable. For each data point in the testing dataset, the appropriate
linear model makes the prediction as determined by the linear model tree. Two parametric models were
trained to provide a baseline for model performance: a multiple linear regression model and a decision tree
model. Figure 6 shows the actual (simulated) response versus the predicted response for each model for the
test data. For the spatial daylight autonomy dataset, the multiple linear regression model and decision tree
make accurate predictions for low sDA values. However, Figure 6 shows that the linear model tree captures
some nonlinear behavior in the model and makes accurate predictions, even for higher values of sDA.

The linear regression model for EUI predictions mostly falls within +/- 5 kWh/m? absolute error,
which is sufficient for early building design. However, given the nature of the grid-sampled data, the
decision tree predicts the response with even higher accuracy. The linear model tree improves upon the
decision tree by fitting a linear model in each region instead of simply averaging the data. This results in a
very accurate model with high interpretability. However, the linear regression model does not fit the
embodied carbon data as well due to non-linear behaviors in the model and a smaller amount of data overall
[63]. While the decision tree model is able to make predictions with about equal accuracy throughout the
design space, it is still not accurate enough for early building design. The linear model tree is the most
accurate of the three models. It is important to acknowledge that other non-parametric machine learning
models such as neural networks could achieve higher accuracy, as in [64], [68] but such models would pose
difficulty for interpretation. The information extracted from interpretable models is valuable to the design
process and central to this paper.
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Figure 6: Model fit comparison for spatial daylight autonomy (top), energy use intensity (middle), and

embodied carbon (bottom)

In addition to assessing the linear model tree fit, the linear correlations among the variables were checked
to ensure collinearity issues are avoided. Figure 7 shows correlation coefficients for each dataset,
including in at least one instance where a variable was eliminated due to collinearity. While the variables
in the spatial daylight autonomy are not highly correlated, the window SHGC and window U-value are
highly correlated. As previously mentioned, the U-value was kept in the model over the SHGC because it
had a stronger linear relationship to the EUI. Finally, although the embodied carbon variables have minor
correlations, the absolute value of the Pearson correlation coefficients all fall below 0.065, which is
reasonable for similar building design problems in the literature [69]. Therefore, the linear regression
assumption that all variables are independent is valid.
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Figure 7: Pearson correlation coefficients for spatial daylight autonomy (left), energy use intensity
(middle) and embodied carbon (right)

4.2 Sensitivity over the variable domain in a multi-dimensional design space

Once the linear model trees were trained, the average coefficients for each variable were plotted over their
domains (Figure 8). This figure shows where the relationship to the response changes, considering all the
variables in the model and all possible design directions. Although many of the variables in the spatial
daylight autonomy dataset have the same slope throughout, room depth and panel width show noteworthy
changes. On average, panel width does not significantly affect sDA until it reaches ~0.5 relative width of
the panel. Designers can freely choose within 0.10-0.50 without affecting sDA. Similarly, room depth
greatly influences sDA until it reaches about 8.7m; at this point, increasing the room depth does not
change sDA. This is potentially useful information while designing floorplans. In order to achieve a high
sDA, other variables must be adjusted if the room depth is beyond 8.7m.

For the energy retrofit model, only low values of cooling COP have a strong effect on the EUIL
The simulations were conducted in ASHRAE climate Zone 5, which is heating dominated, so increasing
the cooling COP beyond ~2.2 does not result in a significantly different EUI given other variables in the
model. Adding insulation to the exterior walls (R-value variable) has a consistent though relatively
smaller effect on the EUI throughout its domain. Similar to cooling COP, low U-values strongly affect
EUI until about 3 W/m2-K. The EUI includes HVAC, lighting, plug, and miscellaneous loads, and at some
point, the HVAC portion is minimized. This explains the diminishing returns of the incremental insulation
and COP. The diminishing returns of the incremental insulation and COP. The results in Figure 8 only
consider the coefficient magnitude, but they follow domain knowledge—installing new windows with a
low U-value would improve the EUI in a heating-dominated climate. Furthermore, the results in this
section specify at what point increasing the variable has a negligible effect. In future sections, the
coefficient sign is considered in order to better describe the relationships. Nevertheless, Figure 8 provides
a high-level overview of changes in importance to EUI over the variable domain, assuming the other
variables are present in the model.

In the embodied carbon dataset, building width is the strongest predictor, especially for very
narrow building widths. For very small widths, the lateral system requires extremely large sections to
carry the lateral forces from the broad building side, so building width significantly affects overall
performance response in this region. Building length is the second-most important predictor; however, the
slope is relatively consistent throughout. Among the independent and partially dependent variables
considered in [63], building width and building length had the strongest linear relationships (Fig. 13 in
[63]), which supports the results in this paper. The embodied carbon design space contains more non-
linearities than spatial daylight autonomy and EUI, and although the linear model tree can capture non-
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linear behavior through its piece-wise nature, it is restricted based on the training requirements for the
number of data points per leaf node. Nevertheless, this result provides designers with a set of ranges to
design within without significantly affecting the embodied carbon.
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Figure 8: Average sensitivity in small bins for spatial daylight autonomy (left), EUI (middle), and
embodied carbon (right)

To understand the relationships on a more granular level, Figure 9 shows the raw output of the procedure
described in Section 3.1.1. The gray line represents the linear model coefficient from the overall linear
regression model (shown in Fig. 6) for comparison. While Figure 8 shows the absolute value or
“importance,” Figure 9 shows the sign of the coefficient, which indicates the variables’ tendency to
increase or decrease the response in each bin or region of the domain. Comparing the two models shows
similar but more detailed trends for important variables such as panel width and room depth for daylight
and building width for structure. These results can also be interpreted in light of the overall model
characteristics. For example, the R-value variable in the energy dataset was split the fewest number of
times, so the coefficient was relatively consistent throughout the design space and very similar to the
overall linear regression model. The U-value variable shows discontinuous behavior near 2 W/m?2-K
because many of window constructions in the dataset had a U-value around this value but differing SHGC
and other properties. While the behavior in this region is unstable, it indicates to the designer that there
are many potential solutions in this region. This is a result of the real-world, discretely sampled energy
variables, as well as the elimination of SHGC due to high correlation.
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485  Figure 9: Average coefficient in small bins for spatial daylight autonomy (top), EUI (middle), and

486  embodied carbon (bottom)

487  These results so far explain how the models were trained, how accurate they are for prediction, and how
488  the linear model coefficients can guide designers on an expected performance response in a certain region
489  of the design space. The following results demonstrate how these models can be aggregated to provide
490  variable importance as designers change the possible ranges of decisions without full model retraining,
491  since relative importance can change significantly in different regions of the design space.

492 4.3 Dynamic subset sensitivity analysis
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4.3.1 Real-time variable importance

Data-driven parametric design often involves setting variable domains, generating data, and fitting a
prediction model. As the design is refined, variable domains are narrowed until one value is ultimately
selected. Previously, the prediction model needed to be re-trained on the subset of data to provide accurate
variable importance and support decisions. We instead achieve subset sensitivity analysis by precomputing
linear regression models in regions determined by the tree and then interpolating between regions to
estimate the variable importance in the subset. Two examples per design problem are shown in Figure 10,
which includes a slider for each variable, the user-defined intervals, and variable importance, presenting a
potential visualization for a design tool. It is important to note that a series of visualizations presented to
the designer should show both (1) which variables deserve attention (by virtue of producing a large effect
on performance, regardless of direction) and (2) #ow such variables tend to affect performance along their
domains (where the variable makes the performance trend up or down). There is some loss of precision due
to the averaging in the simpler graphics, but they are intended for rapid feedback for designers that can be
explored in more detail if desired. To give an indication of speed, updating the variable importance from
design scenario 1 to design scenario 2 for the daylight design space takes 0.003 seconds on a desktop
computer with 32 GB RAM and an Intel Core 17 2.6 GHz processor. The speed also depends on the size of
the tree, but this example uses the largest tree among the three datasets. If the method were fully
incorporated into an interactive tool, possibly as a plug-in to parametric design software, the rendering
speed would depend on the software and would likely be more substantial than the importance calculation.

Design scenario 1 Design scenario 2
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Figure 10: Dynamic subset sensitivity analysis for 2 design scenarios per dataset

Figure 10 shows two sets of design criteria imposed on each design space. Design scenario 1 for spatial
daylight autonomy restricts room depth, and thus it is very sensitive in this region. With different
restrictions on panel width and number of panels in design scenario 2, room depth is the most important
variable. In the second design scenario, with different ranges for room depth, panel width becomes the most
important variable. Similar changes are seen in the different design scenarios for energy, as Cooling COP
or U-value can become the most important in different regions. In the structure dataset, building width is
almost always the most important variable, but in certain scenarios other variables can approach its
magnitude of importance to influencing embodied carbon.

4.3.2 Significance in leaf nodes
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Although all variables are assigned a coefficient during the linear model fitting step of the linear model
tree training procedure, it is possible that some of the variables do not significantly affect the response in
certain regions of the design space. To determine if a variable affects the response, a hypothesis test is
conducted where the null hypothesis is that the coefficient is equal to zero, which implies that there is no
effect. If the p-value is less than 0.05 (5% level of significance), the null hypothesis is rejected and the
relationship between the variable and the response is deemed statistically significant. Once the linear
model tree was fitted, the coefficients with p-values higher than 0.05 were reset to zero from the
calculations described in Sections 3.5 and 3.6. This avoids biasing the results towards coefficients that are
not statistically significant.

Figure 11 illustrates how consideration of significance affects each model in this paper, as the
blurred heatmap cells contain coefficients that were not statistically significant. The blurred heatmap cells
have a translucent mask to represent that the coefficient p-value was higher than 0.05. The y-axis is leaf
node model index and the x-axis is variables; the color represents the linear model coefficient. It was
important to take coefficient p-values into account to eliminate the possibility of a high magnitude
coefficient that is not statistically significant greatly influencing the calculations in Sections 3.5 and 3.6.
For example, in the structure dataset leaf node model 30 has a high magnitude coefficient for the width
variable, but it is not statistically significant, so it must be excluded to avoid inaccurately representing the
behavior in this region of the domain. The coefficients of notch X position, notch X size, and notch Y size
were not statistically significant for many leaf node models and were thus ignored. This is consistent with
the initial variable assessment in [63], which does not show a clear relationship to embodied carbon
throughout the domain. In contrast, the energy dataset variables have a statistically significant relationship
to the response in all regions of the design space. Piece-wise linear relationships were observed in the
initial data exploration, and all three variables are well-known retrofit strategies, leading to this expected
result. Finally, the daylight dataset shows a mix of significant and non-significant leaf nodes, which seems
to be most present for orientation, context distance, and context height.

3
1e6

Figure 11: Linear model coefficients for each variable in each leaf node model, with a translucent mask
on coefficients that do not have a statistically significant p-value
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5. Discussion: recommendations for future datasets

Comparing the application of dynamic subset sensitivity analysis to several general datasets in the
architectural engineering domain reveals several benefits and potential pitfalls. Resulting discussion
points are included as recommendations for what could be changed or customized for use on future
datasets:

Sampling technique: Choose as continuous of a sampling technique as possible to ensure sufficient
coverage of the design space for interpolation. If a grid-sampling technique was used to generate the
data, it is possible that the variables are split at each option during the training process. At this point,
the variables would no longer be treated as variables in the leaf node models. Therefore, if grid-
sampling is used to generate the data, it is important to make sure the grid is fine enough. It is
recommended to use Latin Hypercube sampling or similar to avoid this problem.

P-values in leaf nodes: It is important to check the variable p-values in the leaf nodes, and if the p-
values fall below the desired level of significance, the corresponding coefficient should be forced to
zero in order to accurately represent variable importance.

Hyperparameters: The hyperparameters determine the sensitivity of the interpolation calculations.
Increasing the power p hyperparameter puts more emphasis on the leaf nodes with a higher
agreement. For a design setting, it is recommended to keep the power low to proportionally account
for the behavior in the leaf nodes, even those with a lower agreement. When choosing the appropriate
number of leaf nodes in the calculations, hyperparameter t, it is important to consider the size of the
dataset. The maximum t value is the total number of leaf nodes in the linear model tree, which
depends on the size of the dataset and the training requirements.

Leaf node model fit: It is recommended to calculate the R? values for the leaf node models and to
assign the leaf node models with a low R? value a lower weight in the interpolation calculations.
These models could also be useful information to the designer, as these regions are highly nonlinear
and could not be handled by the linear model tree. The trends or tradeoffs in these regions may differ
from the surrounding regions.

Traditional decision tree importance metric: The typical decision tree has an importance metric
based on how much the error metric was reduced by each split. However, this only indicates which
variables are highly nonlinear, not which variables have the steepest slopes or highest importance.
The metrics in this paper were developed to capture this.

Normalization among leaf node models: The coefficients from all the leaf node models could be
normalized, but then the method would not provide “how much” the variables matter, just a relative
ranking of variable importance.

Number of samples: In order to produce reliable linear models in each node, the algorithm enforces a
specified number of data points per leaf node. In this paper, it was assumed the number of data points
required per leaf node was 30 data points. The structural dataset contained 7 variables and 940 data
points, which resulted in only eighteen leaf node models. During the interpolation process described
in Section 3.1.2, there were only 18 models to consider, versus the spatial daylight autonomy dataset
which had 144 leaf node models to consider.

As demonstrated in Section 4.1, it is also necessary to reduce collinearity among variables. Collinearity
can be assessed by calculating the Pearson correlation coefficients. For example, the energy dataset in this
paper had two variables, SHGC and U-Value, that were highly correlated, and it was necessary to
eliminate one to prevent model instability issues. Because U-value showed a stronger linear relationship
to the response EUI, SHGC was eliminated. Variable selection can be conducted in many other ways
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including stepwise selection, forward selection, and backward elimination. It is ultimately up to the
designer to determine which variables to include in the model.

6. Conclusion
6.1 Summary of contributions

This work presents a method for dynamic subset sensitivity analysis that includes a new procedure for
ensuring coefficient significance. It then demonstrates the method’s generalizability on three building
design problems. This method updates variable importance in real-time as design criteria emerge, aiding
discussion for new design directions. It also determines where in the variables’ domain it tends to
influence the response, which provides ranges to design within and supports design freedom.

6.2 Limitations and future work

Some aspects of this specific approach depend on having linear model coefficients. The model tree could
include quadratic or cubic terms in the linear regression models to produce local polynomial models.
Additionally, it is possible to implement the model tree with other node model types such as neural
networks or SVM. However, linear models were selected in this method to utilize the coefficients to
develop importance metrics, as well as to reduce training time. To implement the model tree with other
model types, additional importance metrics must be developed, especially for nonparametric models. It is
likely the training time would also increase. Another limitation for the daylight and energy datasets is
using a single location. In future iterations, latitude and cloud condition could be included as variables to
make it more flexible. Finally, it could be argued that the size of the embodied carbon dataset was not
large enough for a model tree given the nonlinear nature of many of the variables, compared to energy
[70]. However, this example was chosen to demonstrate the method on an existing dataset that was not
developed directly for this method. Future general datasets in the domain of structures should be based on
a larger dataset.

6.3 Concluding remarks

In this work, we investigate a new method called dynamic subset sensitivity analysis across three
domains. Many factors on the dataset affect the effectiveness of the method, specifically the sampling
technique and the number of samples. Considering the quality of the leaf node models through the
coefficient p-value and R? improve the reliability of the interpolated variable importance. In the future,
this work could be combined with recent work on training design agents to learn generalizable design
behavior [71]. If implemented more widely, methods such as dynamic subset sensitivity analysis could
track with design practice to make the greatest impact without requiring computation specialists to
generate a custom parametric model and simulation data for each project.
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