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Abstract 14 

Engaging with performance feedback in early building design often involves building a custom 15 
parametric model and generating large datasets, which is not always feasible. Alternatively, large 16 
parametric datasets of general design problems and filtering methods could be used together to explore 17 
specific design decisions. This paper investigates the generalizability of a method that dynamically 18 
assesses variable importance and likely influence on performance objectives as a precomputed design 19 
space is filtered down. The method first trains linear model trees to predict building performance 20 
objectives across a generic design space. Leaf node models are then aggregated to provide feedback on 21 
variable importance in different design space regions. This approach is tested on three design problems 22 
that vary in number of variables, samples, and design space structure to reveal advantages and potential 23 
limitations of the method. Algorithm improvements are proposed, and general recommendations are 24 
developed to apply it on future datasets. 25 
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 29 

1. Introduction 30 

With the integration of simulation engines into visual programming environments, parametric modeling 31 
techniques can be easily paired with simulation data to provide performance feedback during design. This 32 
approach allows designers to quickly evaluate many potential design configurations. In practice, it is not 33 
feasible to consider every design in the parametric design space, but several methods have been 34 
developed to navigate the design space efficiently. While some methods directly point the designer 35 
towards optimal performance, including automated optimization [1]–[3] and interactive optimization [4]–36 
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[7] workflows, others intend to more gently guide the designer towards better performing designs, 37 
offering increased flexibility and opportunities for designer preference expression. Such methods include 38 
design catalogs [8]–[10], surrogate-model-based workflows that enable live manipulation [11], [12], and 39 
performance maps [13]. The latter methods can be most useful in the earliest stages when many aspects of 40 
the design are flexible [14], there are competing objectives that need to be synthesized [15], or designers 41 
have mixed quantitative and qualitative criteria [16]. In particular, surrogate modeling can be used to 42 
facilitate discussions as changes are made [17] and is accessible with modern statistical tools and 43 
libraries. However, building custom parametric models and running simulations to generate data is time-44 
consuming, and further adjustments may be required throughout early design, requiring more effort to 45 
update the surrogate model. Design practice moves quickly, and tools get left behind if they do not 46 
provide salient information at crucial points when designers really need them. Even with newly available 47 
tools, there remains a need for responsive and accessible performance feedback from parametric design 48 
spaces. 49 

In this vein, designers might prefer to use a general parametric model to determine which design 50 
aspects or variables tend to influence the performance before modifying the design outside a restrictive 51 
parametric framework. The general parametric model must contain many variables and configurations but 52 
have the ability to be filtered down to provide useful feedback on a specific design problem. As the design 53 
space is filtered to reflect project-specific criteria, designers can quickly discover which variables are 54 
more likely to improve performance metrics and where “good” settings tend to be for their problem. The 55 
process of determining which variables matter is a type of sensitivity analysis. Sensitivity analysis has 56 
been used for a range of building design problems, from model calibration [18] to setting up a design 57 
optimization problem [19]. While there are many existing sensitivity analysis methods appropriate for 58 
building design problems, few are suited for real-time analysis. As the general parametric model is 59 
filtered, existing sensitivity analysis methods require re-running the analysis each time, which is 60 
disruptive to the design process. 61 

One approach to allow for real-time sensitivity analysis is to split the general parametric model 62 
design space into many regional models to be accessed during filtering. Existing regional sensitivity 63 
analysis methods have been used to develop useful qualitative feedback but encountered low accuracy in 64 
certain regions and lacked intuitive visualizations for designers [20]. Depending on the sampling 65 
technique, many regions or subsets may lack data necessary to describe the behavior [21]. For the general 66 
parametric model to be truly flexible, it must have the ability to be filtered on any design criteria and 67 
provide sensitivity analysis of sufficient accuracy for early design. With regional models, the designer can 68 
gain intuition on how variable behavior changes in each region prior to filtering to inform the initial 69 
design. However, a new method is required to provide this information along with real-time subset 70 
sensitivity analysis.  71 

In response, this paper extends and rigorously investigates a new method called dynamic subset 72 
sensitivity analysis [22]. The method divides a general design space into many models using a decision-73 
tree-like training process and provides real-time variable sensitivity through interpolation techniques. This 74 
paper considers the generalizability of the method by applying it to three building design problems of 75 
different domains and scales. A comparison of the three datasets shows when the method has enough data 76 
to be successful, along which what issues may arise when trying to apply the method to future parametric 77 
datasets. By presenting the analyses side-by-side, it also demonstrates how a designer might engage with 78 
multiple objectives simultaneously or iteratively as they move between decision variables and scales. 79 
Through this work, modifications to algorithm are proposed to communicate variable behavior more 80 
accurately in certain regions of the design space, particularly when the response is nonlinear. The value of 81 
the method is evaluated for each building design problem. Finally, a set of recommendations are 82 
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developed to implement the method on future datasets. The goal is to promote adoption of performance-83 
driven parametric tools in early design, leading to more sustainable buildings.  84 
 85 
2. Literature review  86 

2.1 Rapid feedback in early design 87 

Parametric modeling and design space exploration are increasingly used in early design. Researchers have 88 
been attempting to improve such design approaches through design catalogs [8], interactive and 89 
automated explorations [5], [23], and visualization techniques [24]. One of the main considerations in the 90 
development of these methods is computational time, specifically during active design exploration. 91 
General research into computation tasks shows that an interruption of more than 400ms seconds reduces 92 
productivity [25]. Building upon this finding, [26] established the roll theory, which states that “when an 93 
individual has access to the data necessary to perform the creative task at hand, when concentration is not 94 
broken by distractions, and when the individual has developed a consistent method of organizing the data, 95 
then ideas and solutions will suggest more ideas and solutions to successive steps of the creative process, 96 
in a rapid and orderly flow.” Roll theory is related to the concept of creative flow [27], which has been 97 
considered while creating tools for rapid design assessment [28]. To achieve this flow, researchers have 98 
identified and tested surrogate models that approximate performance during design exploration and 99 
reduce lag [29]. Designers can explore the design space and receive rapid feedback, facilitating team 100 
discussions [30] and guiding sustainable design decisions.  101 

While non-parametric, black-box surrogate models often achieve the highest accuracy, many 102 
researchers have implemented interpretable surrogate models with sufficient accuracy [31], [32]. 103 
Localized models such as decision-trees and piecewise models can provide granular variable sensitivity in 104 
addition to performance feedback, making them doubly advantageous if they can reach acceptable 105 
accuracy. The linear model tree utilized in this paper is an extension of the decision-tree and has been 106 
implemented in other domains such as computational fluid mechanics [33], data mining [34], and human 107 
computer interaction research [35]. The proposed method leverages the local models yielded from the 108 
linear model tree to provide real-time sensitivity analysis in early building design scenarios. 109 

2.2 Reusable design spaces  110 

Despite their potential benefits, many recent interactive design methods have not been widely 111 
implemented in practice due to practical considerations [36]. Building a model from scratch and running 112 
simulations is time-consuming depending on the response variable. Many researchers have shifted focus 113 
to understanding when and how building data and prediction models can be transferred from decision to 114 
decision and project to project. The idea of reusable surrogate models for engineering design is introduced 115 
in [37]. It proposes graph-based surrogate models for trusses and demonstrates its effectiveness in new 116 
design spaces via transfer learning. Several transfer learning approaches have also been proposed for 117 
building energy prediction and control [38], [39]. However, these approaches are in the early stages of 118 
development and are not yet widely used in industry. Rather than transferring data or models, another 119 
approach that is appropriate for early building design is to create a general design space that can be 120 
customized or adapted for many design problems [11], [40]. While it takes domain expertise to define a 121 
design space that balances specificity with generalizability to many projects, many design firms work 122 
repeatedly in certain geographic areas or building sectors, making this possibility feasible [41]. There are 123 
also domain-specific ways to reuse machine learning (ML) data for predicting the performance of new 124 
designs. For example, by hybridizing data modeling with physics-based modeling and/or using ML to 125 
predict the behavior of a single unit that can be aggregated to rapidly predict the performance of a full 126 
structure [42]. However, this paper focuses on the use of parametric datasets in early design.  127 
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2.3 Sensitivity analysis for building design problems 128 

Sensitivity analysis has been widely implemented in building design problems to inform the decision-129 
making process. It has been incorporated into model calibration procedures [18], formulating an 130 
optimization problem [19], and decision-making in design or operation [43], [44]. However, it has not yet 131 
been applied to generalizable parametric design datasets. Sensitivity analysis allocates the uncertainty in 132 
the response among the predictor variables and can be used to gauge variable importance, as well as 133 
understand variable interactions [45]. It is particularly useful in the early design stages when the designer 134 
is trying to discover which variables tend to influence the response and by how much, whether the 135 
question is related to daylight, structures, energy, acoustics, or another response variable. This process can 136 
help identify critical decisions, as well as more flexible decisions, from the onset.  137 

There are many established methods available to perform sensitivity analysis, both with and 138 
without an accompanying regression model. Most of the widely used standalone methods are one-at-a-139 
time (OAT), which have local and global variations that quantify the effect of each variable individually. 140 
OAT sensitivity analysis has been used to address a wide range of building design problems, ranging from 141 
improving building life cycle assessment [46] to thermal comfort [47]. Many researchers have also 142 
leveraged regression models (or surrogate models) to produce variable importance. Specifically, 143 
standardized linear regression model coefficients [48] and variable selection procedures such as stepwise 144 
regression [49] have been implemented. The main drawback of linear regression is the linearity condition, 145 
which may not be satisfied depending on the data. However, some machine learning models have their 146 
own importance metrics, such as decision trees. For example, [50] utilized the decision tree importance 147 
metric to identify which variables are most important in predicting building energy consumption patterns. 148 
Yet, the output of many machine learning models is not directly interpretable or useful to designers [51]. 149 
Finally, variance-based approaches have also been used to quantify variable importance for building 150 
systems [52]. These methods tend to achieve higher accuracy but require a large number of samples.  151 

The methods described above compute variable importance over the entire variable domain. As 152 
the design space is refined or filtered during early design, the initial sensitivity analysis may no longer be 153 
accurate, so the calculations must be re-run from scratch. One researcher approached this issue by 154 
retraining the underlying regression model on the restricted variable domain [53]. However, depending on 155 
how the domain was restricted, predictions were not consistently accurate. Another study leveraged 156 
Monte Carlo filtering and Regional Sensitivity Analysis (RSA) [20], but also encountered low accuracy in 157 
certain regions, and did not use detailed building performance simulation software to generate data, 158 
leading to further potential inaccuracies. Nevertheless, filtering is a valuable design space exploration 159 
technique as reusable parametric models emerge as a new research area.  160 

2.4 Data visualization for design space exploration 161 

Making sensitivity analysis valuable for early design also requires careful consideration of how a user 162 
might engage with the data. Building design problems are often high dimensional and thus difficult to 163 
visualize. One of the most common methods in building design is parallel and radial coordinate plots 164 
[54]. Some researchers have proposed performance maps [13] or self-organizing maps [55], [56] to 165 
preserve multivariate information and convey it to designers. Others have argued that reducing the 166 
number of variables through principal component analysis or latent space [57] can guide designers 167 
towards high-performing designs more quickly. Regardless, the manner in which the results are 168 
communicated is equally important as the underlying model [58].  169 

2.5 Research gaps and contributions 170 
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In summary, to make use of general models in early design, a new method is required that quickly and 171 
accurately updates variable importance as the design space is refined and yields results that are easily 172 
interpretable. Although dynamic subset sensitivity analysis was initially proposed in [22] on a single 173 
dataset, the method has not yet been rigorously tested. There are many data model issues that may arise 174 
when feeding in certain datasets, such as discontinuous spaces, collinearity, a lack of significance for 175 
certain regions, or even just not having enough data to make a quality assessment of importance. In this 176 
paper, we investigate the generalizability of dynamic subset sensitivity analysis by testing it on three 177 
datasets from different domains and scales. The three datasets are based on spatial daylight autonomy of a 178 
sidelit room, energy use intensity of a residential retrofit, and embodied carbon of a tall timber structure. 179 
These design problems were selected because their datasets differ in domain and scale, but also data type, 180 
linearity, number of variables, and number of samples. They are also similar in structure to common 181 
datasets being implemented in ML-based design tools by leading firms in AEC [41], to the extent that 182 
these structures are commonly known. Based on the implementation for these three datasets, we are able 183 
to derive a set of recommendations for the method to be implemented on future datasets and propose 184 
improvements to the algorithm.  185 

3. Methodology 186 

The overall procedure is described in Figure 1. First, three general design problems were identified, and 187 
corresponding datasets were generated or obtained, and then processed in preparation for training. The 188 
linear model trees were then trained, in addition to a simple linear regression model and traditional 189 
decision tree model for comparison. Next, the average variable sensitivity was calculated in small bins to 190 
understand where in the variable domain certain variables tended to have a large influence on the 191 
response while accounting for other variables in the model. Finally, the dynamic subset sensitivity 192 
analysis was demonstrated through a few design scenarios. The quality of the leaf node models was 193 
evaluated through coefficient p-values, and modifications to the dynamic subset sensitivity analysis 194 
algorithm were implemented. Lastly, a set of recommendations was proposed for applying this method to 195 
future datasets.  196 

 197 

Figure 1: Overall methodology with three datasets 198 

3.1 Problem selection 199 



6 
 

One of the goals of the proposed method was to customize a large, general dataset throughout the early 200 
design stage and across many building projects. To this purpose, three datasets were generated or selected 201 
to represent general design problems from the domains of daylighting, energy, and structure (Fig. 2).  202 

203 
Figure 2: A visualization of the geometry for the daylight, energy, and structure design spaces  204 

3.2 Data generation and processing 205 

Three datasets were generated or obtained from the three design spaces described in Section 3.1. The 206 
following subsections provide details on data generation and processing for each dataset, and a summary 207 
of the variables and responses are provided in Table 1.  208 

Table 1: Datasets summary 209 

Dataset Variables Response 
Daylight Room depth, sill height, head 

height, orientation, context 
distance, context height, number 
of panels, panel width, wall 
thickness 

Spatial daylight autonomy 

Operational energy Cooling COP, R-value, U-value Energy use intensity 
Structures Building width, building length, 

story height, setback, notch X 
position, notch X size, notch Y 
size 

Embodied carbon 

 210 

3.2.1 Daylighting Model and Dataset 211 

A sidelit room model was developed to represent the domain of daylighting. In building practice in the 212 
United States, daylight simulations are often required to obtain LEED v4 Daylight credits [59]. Therefore, 213 
this model could be useful across many spaces and projects. It is assumed that a designer would consult 214 
the model repeatedly for a single project as they establish the layout of rooms and the façade. First, the 215 
daylit room was modeled parametrically in Grasshopper to include nine variables: room depth, sill height, 216 
head height, orientation, context distance, context height, number of panels, panel width, and wall 217 
thickness (Figure 2). All room surfaces accord with LM-83 guidelines [60]. The windows were typical 218 
double-pane low-e with 61% visible transmittance and incorporated an automated shade. The shade fabric 219 
had 7.2% visible transmittance and 6.6% permeability in accordance with LM-83. Room width and room 220 
height were 9m and 3m, respectively, although they could be incorporated as variables in the future. The 221 

Building length
Notch X position

Room
depth

Orientation

Daylight Operational energy Structures
Objective 1: Spatial Daylight Autonomy Objective 2: Energy Use Intensity Objective 3: Embodied Carbon

Context
heightSill height

Head height
Wall thicknessPanel width

No. panels

Context
distance

Exterior wall R-value

Window U-value
Cooling COP

Story height
Building width

Notch Y size

Setback factor

Notch X size
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variable bounds are provided in Table 2. They were set to provide enough flexibility for repeated use, but 222 
still abide by modern construction standards.  223 

Spatial daylight autonomy (sDA) at 300 lux was the response variable, or “objective” in design 224 
space terms, generated using ClimateStudio in Grasshopper. To ensure enough samples for the regression 225 
tree, 12,500 points were sampled using Latin Hypercube sampling. The simulations were conducted in 226 
Pittsburgh, PA, USA, which is often overcast and at a 40.44° N latitude. For future datasets, sky condition 227 
and latitude could be included to make the design space more flexible, but these parameters were set to 228 
demonstrate the method. While designers might in different cases design to the typical, worst-case, or 229 
average annual behavior, these assumptions would be applicable when making a reusable dataset for 230 
buildings across a given city. The sensors were spaced at 1m and the workplane was positioned 0.762m 231 
above floor finish. Within the path-tracing settings, the number of rays emitted for each sensor at each 232 
pass was 500. The Radiance parameters considered up to 6 ambient bounces before discarding a ray. The 233 
dataset was split 80/20 for training and testing, and all predictor variables were scaled from 0-1 to ensure 234 
importance was not influenced by the variables’ scale. 235 

Table 2: Variables in spatial daylight autonomy dataset 236 

Variable Minimum Maximum 
Room depth (m) 6.00 15.00 
Sill height (m) 0.10 1.10 
Head height (m) 0.10 1.10 
Orientation (deg from south) 0.00 360.00 
Context distance (m) 3.00 15.00 
Context height (m) 0.00 15.00 
Number of panels 1 20 
Panel width (relative) 0.10 0.90 
Wall thickness (m) 0.20 1.00 

 237 

3.2.2 Energy Model and Dataset 238 

The second dataset was based on a residential energy retrofit scenario. This dataset represents a reusable 239 
model for within a city when testing upgrades on similar residential stock. However, the model would 240 
have to be customized based on the feasible ranges of variables to consider in each individual case. An 241 
EnergyPlus model was constructed to represent a residential home considering upgrades on the cooling 242 
COP, exterior wall insulation, and window construction. Specifically, cooling COP, R-value, and U-value 243 
were included as variables (Figure 2). The generic home was 331.23 m2 and assumed to contain a DX 244 
cooling coil and an electric heating coil. The settings for each variable are provided in Table 3. U-value 245 
was not controlled directly, as it typically varies with other window properties. Instead, 19 window 246 
constructions were selected and used to generate data. The U-value and solar heat gain coefficient 247 
(SHGC) were extracted during data processing to represent the window constructions in the dataset. 248 
However, because U-value and solar heat gain were highly correlated, only U-value was incorporated into 249 
the linear model tree to prevent collinearity issues (Figure 7). Previous studies have also shown a 250 
correlation between U-value and SHGC among existing window constructions [61], [62]. The R-values 251 
were converted to conductivity in the exterior wall material in EnergyPlus, and the cooling COP was 252 
accessed directly in EnergyPlus. All 6,859 permutations were simulated in Altoona, Pennsylvania, USA. 253 
The total site energy per conditioned building area was the response. Although grid sampling is not 254 
recommended for the proposed method (see limitations section), simulating 19 settings for each variable 255 
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yielded high-resolution data sufficient for sensitivity analysis. The dataset was split 80/20 for training and 256 
testing, and all predictor variables were scaled from 0-1. 257 

Table 3: Variable options for energy dataset 258 

Variable Options 
Cooling COP 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8 4.0, 4.2, 4.4, 4.6, 4.8 
R-value (ft2-
F-h/BTU) 

12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 

U-value 
(W/m2-K) 

0.785, 0.992, 1.062, 1.265, 1.525, 1.624, 1.704, 1.71, 1.765, 1.772, 2.143, 2.255, 
2.556, 2.72, 2.765, 3.122, 3.835, 4.513, 5.894 

 259 

3.2.3 Structural Model and Dataset 260 

The third dataset used to demonstrate the proposed method was an embodied carbon dataset initially 261 
generated by Hens et al. [63] and used to explore performance prediction for interactive parametric design 262 
in Zargar & Brown [64]. The dataset includes a wide variety of geometric configurations for a mass 263 
timber building with a post-beam-panel gravity system and a lateral system incorporating linear elements. 264 
For each geometry, a custom sizer based on timber design codes sizes each element based on applicable 265 
structural loads and fire protection criteria. Embodied carbon coefficients are then used to convert the 266 
building elements into carbon emissions equivalent values, assuming no carbon storage. The embodied 267 
carbon contributions of the elements are then summed to predict the overall embodied carbon of the entire 268 
structural system. Hens et al. [63] and Hens et al. [65] describe the methodology used to generate the 269 
dataset in more detail. In this paper, we incorporated the independent and several partially dependent 270 
variables, including building width, building length, story height, setback, notch x position, notch x size, 271 
and notch y size into the linear model tree (Figure 2). The response was embodied carbon. Because notch 272 
x position, notch x size, notch y size, and setback depend on the more fundamental variables of width and 273 
length, the linear correlations were calculated to diagnose collinearity issues before training the linear 274 
model tree (Fig. 7). However, all Pearson correlation coefficients were within the acceptable range and 275 
thus incorporated into the model. Outliers were eliminated by the interquartile range (IQR) method, which 276 
resulted in 940 data points. The variable bounds are provided in Table 4. The dataset was split 80/20 for 277 
training and testing, and all predictor variables were scaled from 0-1. 278 

Table 4: Variables in embodied carbon dataset 279 

Variable Minimum  Maximum  
Building width (normalized) 0.0005 0.9995 
Building length (normalized) 0.0005 0.9995 
Story height (m) 3.048 4.876 
Setback (relative) 0.005 9.995 
Notch X position (relative) 0.0005 0.9995 
Notch X size (relative) 0.0005 0.9995 
Notch Y size (relative) 0.00045 0.89955 

 280 

3.3 Training the linear model trees 281 

After preparing the datasets, the first step is to create regression trees that can eventually be used for 282 
sensitivity analysis and filtering. Figure 3 is a representation of a one-dimensional linear model tree, but a 283 
similar procedure follows for high dimensional spaces. The trees are built through recursive binary 284 



9 
 

splitting, where predictor 𝑋𝑋𝑗𝑗 is split at cutpoint 𝑠𝑠 such that splitting the predictor space into the regions 285 
�𝑋𝑋 | 𝑋𝑋𝑗𝑗 < 𝑠𝑠� and �𝑋𝑋 | 𝑋𝑋𝑗𝑗 ≥ 𝑠𝑠� leads to the greatest reduction in the residual sum of squares (RSS). 286 
Splitting stops based on some threshold and each terminal node, or leaf (Figure 3), contains a model that 287 
applies in the 𝑗𝑗-th region only. For traditional regression trees, the estimated response 𝑦𝑦�𝑅𝑅𝑗𝑗 is the mean 288 
response for the training observations in the 𝑗𝑗-th region. However, this is often an over-simplification of 289 
the true relationships. To address this issue, linear model trees use a linear model to estimate the response. 290 
By the end of the training process, each leaf node contains its own linear model. 291 

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑅𝑅𝑗𝑗)2𝑖𝑖∈𝑅𝑅𝑗𝑗 ,𝐽𝐽
𝑗𝑗=1   (Equation 1) 292 

In Equation 1, the outer summation accounts for each variable and the inner summation accounts for all 293 
points in the specified region. While previous studies have achieved high accuracy with nonparametric 294 
models, it is often not possible to make inferences and inform the building design process. It was 295 
hypothesized that linear model trees could achieve sufficient accuracy for early design while allowing for 296 
dynamic interpretations about variable sensitivity because of how they are constructed. The correctness of 297 
this hypothesis is tested by comparing the results across the varying datasets.  298 

 299 

Figure 3: Linear model tree with leaf nodes in orange, after [66] 300 

The termination criteria for a linear model tree are the maximum depth and minimum number of samples 301 
per leaf, which have to be tuned for a given dataset. For all models, the maximum depth was set to 8 and 302 
minimum number of samples per leaf was set to 30. If there are 30 samples, the distribution is considered 303 
normal based on the Central Limit Theorem from statistics. The model achieved sufficient accuracy at this 304 
depth and enforcing at least 30 points per leaf ensured the model was valid. The maximum depth of 8 was 305 
selected to control training time while ensuring enough leaf nodes for interpolation. Once the linear model 306 
tree was built, the leaves were used to compute average sensitivity in small bins.  307 

3.4 Calculating average sensitivity over the variable domain in a multi-dimensional design space 308 

The next step is to determine how coefficients of individual leaves should be combined to indicate local 309 
variable importance. To get a sense of sensitivity over the entire variables’ domain, the average linear 310 
model coefficient was computed in small bins. The domain of each variable 𝑋𝑋𝑗𝑗 is partitioned into 100 bins 311 

of equal length. The 𝑚𝑚-th bin is denoted by 𝑏𝑏𝑚𝑚 ≔  �𝑚𝑚−1
100

, 𝑚𝑚
100

�, for 1 ≤ 𝑚𝑚 ≤ 100. The 𝑘𝑘-th leaf is denoted 312 
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by ℓ𝑘𝑘 and the number of samples in ℓ𝑘𝑘 is 𝑛𝑛𝑘𝑘. Then, the domain of each variable 𝑋𝑋𝑗𝑗 is constrained by 313 
𝑐𝑐𝑗𝑗,𝑘𝑘 ≤ 𝑋𝑋𝑗𝑗,𝑘𝑘 ≤ 𝑑𝑑𝑗𝑗,𝑘𝑘 in leaf ℓ𝑘𝑘. Let 𝜃𝜃𝑗𝑗,𝑘𝑘 be the original coefficient of 𝑋𝑋𝑗𝑗,𝑘𝑘 in ℓ𝑘𝑘. Then the weighted 314 
coefficient restricted to bin 𝑏𝑏𝑗𝑗,𝑚𝑚 is shown by  𝜃𝜃�𝑗𝑗,𝑘𝑘,𝑚𝑚 and is given by the following formula: 315 

 𝜃𝜃�𝑗𝑗,𝑘𝑘,𝑚𝑚 = 𝜃𝜃𝑗𝑗,𝑘𝑘 ∗  𝑛𝑛𝑘𝑘
𝑛𝑛�𝑏𝑏𝑗𝑗,𝑚𝑚�

∗ 𝕀𝕀(𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑗𝑗,𝑘𝑘 ≤ 0.05), (Equation 2) 316 

where 𝑛𝑛�𝑏𝑏𝑗𝑗,𝑚𝑚� is the number of samples in the leaves that overlap 𝑏𝑏𝑗𝑗,𝑚𝑚 for 𝑋𝑋𝑗𝑗 and 𝕀𝕀(𝑞𝑞) =317 

�
1 𝑖𝑖𝑖𝑖 𝑞𝑞 ≡  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
0 𝑖𝑖𝑖𝑖 𝑞𝑞 ≡  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 which is normally denoted as an indicator function. This dictates that if the hypothesis 318 

test that determines if the variable linearly affects the response fails, the coefficient is forced to zero to 319 
prevent inaccuracies in the averaging equations. Additionally, there must be at least one sample per bin. 320 
Figure 4 is a simple example to show the parts of the weighted coefficient equation.  321 

 322 

Figure 4: Weighting process in the averaging scheme 323 

Finally, the weighted coefficient for variable 𝑋𝑋𝑗𝑗 in 𝑏𝑏𝑚𝑚 is given by: 324 

 𝜃𝜃�𝑗𝑗,𝑚𝑚 = ∑  𝜃𝜃�𝑗𝑗,𝑘𝑘,𝑚𝑚𝑘𝑘  (Equation 3) 325 

The result is a local sensitivity analysis over the entire domain that can be used to understand changes in 326 
the response. Next, the model leaves are used to update variable importance for user-defined intervals. 327 

3.5 Real-time variable sensitivity via leaf model interpretation 328 

While many machine learning methods can return importance metrics, they are often established through 329 
training, requiring retraining if the variables and their corresponding bounds are modified. By 330 
precomputing linear models in regions determined by the regression tree, the model coefficients can be 331 
interpolated to quickly return variable information without full model retraining. If the user-defined 332 
intervals correspond exactly to a pre-defined region, variable sensitivity is provided by that model. 333 
Otherwise, the model coefficients must be interpolated based on the “agreement” between the user-334 
defined intervals and the variable domains in the leaves. The agreement of the user restricted intervals 335 
with the constraints of ℓ𝑘𝑘 is given by: 336 

𝑤𝑤�𝑘𝑘 = �∑ 𝑤𝑤𝑘𝑘,𝑗𝑗

1
𝑝𝑝𝐽𝐽

𝑗𝑗=1 �
𝑝𝑝

, (Equation 4) 337 

where 𝑤𝑤𝑘𝑘,𝑗𝑗 is the amount of “agreement” of 𝑋𝑋𝑗𝑗 in ℓ𝑘𝑘 and 𝑝𝑝 > 1 is a hyperparameter. Let �𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗� be the 338 
user-defined interval on 𝑋𝑋𝑗𝑗. Then, the amount of agreement 𝑤𝑤𝑘𝑘,𝑗𝑗 is defined as: 339 

𝑤𝑤𝑘𝑘,𝑗𝑗 =  min{d𝑗𝑗,𝑘𝑘,𝑏𝑏𝑗𝑗}−max{c𝑗𝑗,𝑘𝑘,𝑎𝑎𝑗𝑗}
𝑏𝑏𝑗𝑗−𝑎𝑎𝑗𝑗

 (Equation 5) 340 
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where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are non-negative values. Without loss of generality, assume 𝑤𝑤�1,𝑤𝑤�2, . . . ,𝑤𝑤�𝑡𝑡 are the top 341 
𝑡𝑡 agreements. The total weight 𝑤𝑤𝑘𝑘 is a function of top 𝑡𝑡 agreements normalized by their sum: 342 

𝑤𝑤𝑘𝑘 = 𝑤𝑤�𝑘𝑘
∑ 𝑤𝑤�𝑘𝑘𝑡𝑡
𝑘𝑘=1

 (Equation 6) 343 

Finally, variable importance was computed using the following formula:  344 

𝜽𝜽� = ∑ 𝑤𝑤𝑘𝑘 ⋅ 𝑎𝑎𝑎𝑎𝑎𝑎(𝜽𝜽𝑘𝑘 ⊙  𝕴𝕴(𝜽𝜽𝑘𝑘)),𝑡𝑡
𝑘𝑘=1  (Equation 7) 345 

where 𝜽𝜽𝑘𝑘 is the linear model coefficients at ℓ𝑘𝑘, 𝑎𝑎𝑎𝑎𝑎𝑎(⋅) is element-wise absolute value of a vector, 𝕴𝕴(⋅) is 346 
element-wise 𝕀𝕀(⋅) of a vector, and ⊙ is element-wise multiplication of vectors. The procedure is 347 
presented in Algorithm 1. Note that 𝑝𝑝 and 𝑡𝑡 are hyperparameters that can be tuned based on the dataset. 348 
For all datasets, 𝑝𝑝 and 𝑡𝑡 were set to 3 and 10, respectively. For higher values of 𝑝𝑝, the contrast between 349 
the top 𝑡𝑡 agreements becomes sharper. As 𝑡𝑡 approaches the total number of leaves, the impact of 350 
individual leaves gets lost due to normalization. On the other hand, if 𝑡𝑡 = 1, only one leaf is used, which 351 
might not be an accurate model of the user-defined region. Once the intervals are specified, individual 352 
predictions are made with the linear model tree itself. Single designs only fall into one leaf since the 353 
regions do not overlap. The prediction is made by the linear model in the appropriate leaf. Once this 354 
model has been established, a metric for overall variable importance and visualizations of how 355 
performance changes with variable setting modifications can both be returned to a designer without the 356 
added time of model retraining. The results section first presents the dataset itself before showing these 357 
potential visualizations for the designer. 358 

3.6 Ensuring model significance 359 

The algorithm mentioned above proposed an improvement to eliminate the possibility of poor linear 360 
models in the leaf nodes affecting the interpolation calculations. While this issue did not necessarily arise 361 
for the daylight dataset in [67], it is an important consideration, as some building datasets contain highly 362 
nonlinear variables that cannot be handled during the training process due to a lack of data. The 363 
improvement consists of checking the coefficient p-values in each leaf node linear model, and if the p-364 
value is greater than the desired level of significance (in this paper, 5%), the coefficient is forced to zero 365 
in the interpolation calculations (Step 10 in Algorithm 1). If the p-value is low, we can reject the null 366 
hypothesis, which is that the coefficient is equal to zero, therefore there is evidence that the coefficient is 367 
statistically different than zero. However, if the p-value is high, there is no evidence that the coefficient is 368 
different from zero and we cannot reject the null hypothesis. In this case, the coefficient is forced to zero 369 
instead of ignored because ignoring it would eliminate information from the region and bias the 370 
interpolation towards the other models that may or may not fully cover the region. The pseudocode for the 371 
updated interpolation algorithm is provided below in Algorithm 1. 372 

Algorithm 1: Leaf node interpolation 
0 Input: Linear model tree, user-defined intervals, and hyperparameters 𝑝𝑝 and 𝑡𝑡 
1 For every leaf ℓ𝑘𝑘: 
2  For every variable 𝑗𝑗: 
3   Compute amount of agreement 𝑤𝑤𝑘𝑘,𝑗𝑗 according to Eqn 5 
4  Compute agreement 𝑤𝑤�𝑘𝑘 per Eqn 4 
5 Pick top 𝑡𝑡 leaves with the highest agreement 𝑤𝑤�𝑘𝑘. Let these leaves be ℓ1′ , … , ℓ𝑡𝑡′ . 
6 Compute the normalized total weight 𝑤𝑤𝑘𝑘 according to Eqn 6 
7 Initialize updated coefficients 𝜽𝜽� by a vector of zeros // dimension is the number of variables 
8 Iterate through all top 𝑡𝑡 leaves (Chosen in Step 5) and do the following: 
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9  Let current leaf have index 𝑘𝑘′ ∈  {1′,⋯ , t′} 
10  Update the coefficient in 𝜽𝜽�𝑘𝑘′ by setting all the coefficients that have a p-value > 0.05 to 

zero // this describes 𝜽𝜽𝑘𝑘 ⊙  𝕴𝕴(𝜽𝜽𝑘𝑘) in Eqn 7 
11  Take the absolute value of the updated coefficients and multiply by the total weight 𝑤𝑤𝑘𝑘 
12  Replace 𝜽𝜽� by 𝜽𝜽�  + 𝜽𝜽�𝑘𝑘′  // output of Step 11 
13 Return 𝜽𝜽� 

 373 

4. Results 374 

This section first presents linear model tree characteristics for each dataset before the results of the linear 375 
model tree interpolation procedures (Table 5). The daylight dataset produced the highest number of leaf 376 
nodes, followed by energy and structures. The training criteria enforced 30 samples in each leaf node and 377 
maximum depth of 8, but the number of samples per leaf dictated the number of leaves for the energy and 378 
structures datasets. For the daylight dataset, the number of panels and wall thickness were split the most, 379 
followed by orientation and panel width. Although orientation was split frequently, the results in the 380 
following sections show that the slopes were small; therefore, orientation was not important in most 381 
regions. Similarly, the cooling COP and R-value were split a comparable number of times, but the cooling 382 
COP has large slopes in some regions, and the R-value does not. Finally, building width was split the 383 
most for the structures dataset, followed by building length and notch Y size, which largely corresponds 384 
with the importance results in the following sections.  385 

Table 5: Linear model tree characteristics 386 

 Daylight Energy Structures 
Number of leaf nodes 144 58 18 
Number of splits Number of panels: 32 

Wall thickness: 29 
Orientation: 26 
Panel width: 18 
Context height: 13 
Room depth: 12 
Context distance: 5 
Head height: 5 
Sill height: 3 

U-value: 30 
Cooling COP: 14 
R-value: 13 

Building width: 7 
Building length: 3 
Notch Y size: 3 
Story height: 1 
Setback: 1 
Notch X position: 1 
Notch X size: 1 

 387 

Figure 5 shows a set of designs across the design space to present the range of possible designs for each 388 
domain. The daylight design options face south and assume no context building. Notably, the objectives 389 
for the daylight and structural design spaces have a visual component, while the energy objective, EUI, 390 
does not.  391 
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 392 

Figure 5: Range of possible design for each dataset 393 

* The energy objective does not have a visual component, as the variables are on the material-level. 394 

4.1 Assessing model fit 395 

The linear model tree fit was then assessed prior to performing calculations with the leaf node model 396 
coefficients to ensure the base model was reliable. For each data point in the testing dataset, the appropriate 397 
linear model makes the prediction as determined by the linear model tree. Two parametric models were 398 
trained to provide a baseline for model performance: a multiple linear regression model and a decision tree 399 
model. Figure 6 shows the actual (simulated) response versus the predicted response for each model for the 400 
test data. For the spatial daylight autonomy dataset, the multiple linear regression model and decision tree 401 
make accurate predictions for low sDA values. However, Figure 6 shows that the linear model tree captures 402 
some nonlinear behavior in the model and makes accurate predictions, even for higher values of sDA. 403 

The linear regression model for EUI predictions mostly falls within +/- 5 kWh/m2 absolute error, 404 
which is sufficient for early building design. However, given the nature of the grid-sampled data, the 405 
decision tree predicts the response with even higher accuracy. The linear model tree improves upon the 406 
decision tree by fitting a linear model in each region instead of simply averaging the data. This results in a 407 
very accurate model with high interpretability. However, the linear regression model does not fit the 408 
embodied carbon data as well due to non-linear behaviors in the model and a smaller amount of data overall 409 
[63]. While the decision tree model is able to make predictions with about equal accuracy throughout the 410 
design space, it is still not accurate enough for early building design. The linear model tree is the most 411 
accurate of the three models. It is important to acknowledge that other non-parametric machine learning 412 
models such as neural networks could achieve higher accuracy, as in [64], [68] but such models would pose 413 
difficulty for interpretation. The information extracted from interpretable models is valuable to the design 414 
process and central to this paper.  415 
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 416 

Figure 6: Model fit comparison for spatial daylight autonomy (top), energy use intensity (middle), and 417 
embodied carbon (bottom) 418 

In addition to assessing the linear model tree fit, the linear correlations among the variables were checked 419 
to ensure collinearity issues are avoided. Figure 7 shows correlation coefficients for each dataset, 420 
including in at least one instance where a variable was eliminated due to collinearity. While the variables 421 
in the spatial daylight autonomy are not highly correlated, the window SHGC and window U-value are 422 
highly correlated. As previously mentioned, the U-value was kept in the model over the SHGC because it 423 
had a stronger linear relationship to the EUI. Finally, although the embodied carbon variables have minor 424 
correlations, the absolute value of the Pearson correlation coefficients all fall below 0.065, which is 425 
reasonable for similar building design problems in the literature [69]. Therefore, the linear regression 426 
assumption that all variables are independent is valid.  427 
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 428 

Figure 7: Pearson correlation coefficients for spatial daylight autonomy (left), energy use intensity 429 
(middle) and embodied carbon (right) 430 

4.2 Sensitivity over the variable domain in a multi-dimensional design space 431 

Once the linear model trees were trained, the average coefficients for each variable were plotted over their 432 
domains (Figure 8). This figure shows where the relationship to the response changes, considering all the 433 
variables in the model and all possible design directions. Although many of the variables in the spatial 434 
daylight autonomy dataset have the same slope throughout, room depth and panel width show noteworthy 435 
changes. On average, panel width does not significantly affect sDA until it reaches ~0.5 relative width of 436 
the panel. Designers can freely choose within 0.10-0.50 without affecting sDA. Similarly, room depth 437 
greatly influences sDA until it reaches about 8.7m; at this point, increasing the room depth does not 438 
change sDA. This is potentially useful information while designing floorplans. In order to achieve a high 439 
sDA, other variables must be adjusted if the room depth is beyond 8.7m.  440 

For the energy retrofit model, only low values of cooling COP have a strong effect on the EUI. 441 
The simulations were conducted in ASHRAE climate Zone 5, which is heating dominated, so increasing 442 
the cooling COP beyond ~2.2 does not result in a significantly different EUI given other variables in the 443 
model. Adding insulation to the exterior walls (R-value variable) has a consistent though relatively 444 
smaller effect on the EUI throughout its domain. Similar to cooling COP, low U-values strongly affect 445 
EUI until about 3 W/m2-K. The EUI includes HVAC, lighting, plug, and miscellaneous loads, and at some 446 
point, the HVAC portion is minimized. This explains the diminishing returns of the incremental insulation 447 
and COP. The diminishing returns of the incremental insulation and COP. The results in Figure 8 only 448 
consider the coefficient magnitude, but they follow domain knowledge—installing new windows with a 449 
low U-value would improve the EUI in a heating-dominated climate. Furthermore, the results in this 450 
section specify at what point increasing the variable has a negligible effect. In future sections, the 451 
coefficient sign is considered in order to better describe the relationships. Nevertheless, Figure 8 provides 452 
a high-level overview of changes in importance to EUI over the variable domain, assuming the other 453 
variables are present in the model.  454 

In the embodied carbon dataset, building width is the strongest predictor, especially for very 455 
narrow building widths. For very small widths, the lateral system requires extremely large sections to 456 
carry the lateral forces from the broad building side, so building width significantly affects overall 457 
performance response in this region. Building length is the second-most important predictor; however, the 458 
slope is relatively consistent throughout. Among the independent and partially dependent variables 459 
considered in [63], building width and building length had the strongest linear relationships (Fig. 13 in 460 
[63]), which supports the results in this paper. The embodied carbon design space contains more non-461 
linearities than spatial daylight autonomy and EUI, and although the linear model tree can capture non-462 
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linear behavior through its piece-wise nature, it is restricted based on the training requirements for the 463 
number of data points per leaf node. Nevertheless, this result provides designers with a set of ranges to 464 
design within without significantly affecting the embodied carbon. 465 
 466 

 467 

Figure 8: Average sensitivity in small bins for spatial daylight autonomy (left), EUI (middle), and 468 
embodied carbon (right)  469 

To understand the relationships on a more granular level, Figure 9 shows the raw output of the procedure 470 
described in Section 3.1.1. The gray line represents the linear model coefficient from the overall linear 471 
regression model (shown in Fig. 6) for comparison. While Figure 8 shows the absolute value or 472 
“importance,” Figure 9 shows the sign of the coefficient, which indicates the variables’ tendency to 473 
increase or decrease the response in each bin or region of the domain. Comparing the two models shows 474 
similar but more detailed trends for important variables such as panel width and room depth for daylight 475 
and building width for structure. These results can also be interpreted in light of the overall model 476 
characteristics. For example, the R-value variable in the energy dataset was split the fewest number of 477 
times, so the coefficient was relatively consistent throughout the design space and very similar to the 478 
overall linear regression model. The U-value variable shows discontinuous behavior near 2 W/m2-K 479 
because many of window constructions in the dataset had a U-value around this value but differing SHGC 480 
and other properties. While the behavior in this region is unstable, it indicates to the designer that there 481 
are many potential solutions in this region. This is a result of the real-world, discretely sampled energy 482 
variables, as well as the elimination of SHGC due to high correlation.  483 
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 484 

Figure 9: Average coefficient in small bins for spatial daylight autonomy (top), EUI (middle), and 485 
embodied carbon (bottom)  486 

These results so far explain how the models were trained, how accurate they are for prediction, and how 487 
the linear model coefficients can guide designers on an expected performance response in a certain region 488 
of the design space. The following results demonstrate how these models can be aggregated to provide 489 
variable importance as designers change the possible ranges of decisions without full model retraining, 490 
since relative importance can change significantly in different regions of the design space.   491 

4.3 Dynamic subset sensitivity analysis 492 
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4.3.1 Real-time variable importance 493 

Data-driven parametric design often involves setting variable domains, generating data, and fitting a 494 
prediction model. As the design is refined, variable domains are narrowed until one value is ultimately 495 
selected. Previously, the prediction model needed to be re-trained on the subset of data to provide accurate 496 
variable importance and support decisions. We instead achieve subset sensitivity analysis by precomputing 497 
linear regression models in regions determined by the tree and then interpolating between regions to 498 
estimate the variable importance in the subset. Two examples per design problem are shown in Figure 10, 499 
which includes a slider for each variable, the user-defined intervals, and variable importance, presenting a 500 
potential visualization for a design tool. It is important to note that a series of visualizations presented to 501 
the designer should show both (1) which variables deserve attention (by virtue of producing a large effect 502 
on performance, regardless of direction) and (2) how such variables tend to affect performance along their 503 
domains (where the variable makes the performance trend up or down). There is some loss of precision due 504 
to the averaging in the simpler graphics, but they are intended for rapid feedback for designers that can be 505 
explored in more detail if desired. To give an indication of speed, updating the variable importance from 506 
design scenario 1 to design scenario 2 for the daylight design space takes 0.003 seconds on a desktop 507 
computer with 32 GB RAM and an Intel Core i7 2.6 GHz processor. The speed also depends on the size of 508 
the tree, but this example uses the largest tree among the three datasets. If the method were fully 509 
incorporated into an interactive tool, possibly as a plug-in to parametric design software, the rendering 510 
speed would depend on the software and would likely be more substantial than the importance calculation. 511 

 512 

Figure 10: Dynamic subset sensitivity analysis for 2 design scenarios per dataset 513 

Figure 10 shows two sets of design criteria imposed on each design space. Design scenario 1 for spatial 514 
daylight autonomy restricts room depth, and thus it is very sensitive in this region. With different 515 
restrictions on panel width and number of panels in design scenario 2, room depth is the most important 516 
variable. In the second design scenario, with different ranges for room depth, panel width becomes the most 517 
important variable. Similar changes are seen in the different design scenarios for energy, as Cooling COP 518 
or U-value can become the most important in different regions. In the structure dataset, building width is 519 
almost always the most important variable, but in certain scenarios other variables can approach its 520 
magnitude of importance to influencing embodied carbon. 521 
 522 
4.3.2 Significance in leaf nodes 523 
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Although all variables are assigned a coefficient during the linear model fitting step of the linear model 524 
tree training procedure, it is possible that some of the variables do not significantly affect the response in 525 
certain regions of the design space. To determine if a variable affects the response, a hypothesis test is 526 
conducted where the null hypothesis is that the coefficient is equal to zero, which implies that there is no 527 
effect. If the p-value is less than 0.05 (5% level of significance), the null hypothesis is rejected and the 528 
relationship between the variable and the response is deemed statistically significant. Once the linear 529 
model tree was fitted, the coefficients with p-values higher than 0.05 were reset to zero from the 530 
calculations described in Sections 3.5 and 3.6. This avoids biasing the results towards coefficients that are 531 
not statistically significant. 532 

Figure 11 illustrates how consideration of significance affects each model in this paper, as the 533 
blurred heatmap cells contain coefficients that were not statistically significant. The blurred heatmap cells 534 
have a translucent mask to represent that the coefficient p-value was higher than 0.05. The y-axis is leaf 535 
node model index and the x-axis is variables; the color represents the linear model coefficient. It was 536 
important to take coefficient p-values into account to eliminate the possibility of a high magnitude 537 
coefficient that is not statistically significant greatly influencing the calculations in Sections 3.5 and 3.6. 538 
For example, in the structure dataset leaf node model 30 has a high magnitude coefficient for the width 539 
variable, but it is not statistically significant, so it must be excluded to avoid inaccurately representing the 540 
behavior in this region of the domain. The coefficients of notch X position, notch X size, and notch Y size 541 
were not statistically significant for many leaf node models and were thus ignored. This is consistent with 542 
the initial variable assessment in [63], which does not show a clear relationship to embodied carbon 543 
throughout the domain. In contrast, the energy dataset variables have a statistically significant relationship 544 
to the response in all regions of the design space. Piece-wise linear relationships were observed in the 545 
initial data exploration, and all three variables are well-known retrofit strategies, leading to this expected 546 
result. Finally, the daylight dataset shows a mix of significant and non-significant leaf nodes, which seems 547 
to be most present for orientation, context distance, and context height. 548 

 549 

Figure 11: Linear model coefficients for each variable in each leaf node model, with a translucent mask 550 
on coefficients that do not have a statistically significant p-value 551 

 552 
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5. Discussion: recommendations for future datasets  553 

Comparing the application of dynamic subset sensitivity analysis to several general datasets in the 554 
architectural engineering domain reveals several benefits and potential pitfalls. Resulting discussion 555 
points are included as recommendations for what could be changed or customized for use on future 556 
datasets:  557 

• Sampling technique: Choose as continuous of a sampling technique as possible to ensure sufficient 558 
coverage of the design space for interpolation. If a grid-sampling technique was used to generate the 559 
data, it is possible that the variables are split at each option during the training process. At this point, 560 
the variables would no longer be treated as variables in the leaf node models. Therefore, if grid-561 
sampling is used to generate the data, it is important to make sure the grid is fine enough. It is 562 
recommended to use Latin Hypercube sampling or similar to avoid this problem.  563 

• P-values in leaf nodes: It is important to check the variable p-values in the leaf nodes, and if the p-564 
values fall below the desired level of significance, the corresponding coefficient should be forced to 565 
zero in order to accurately represent variable importance. 566 

• Hyperparameters: The hyperparameters determine the sensitivity of the interpolation calculations. 567 
Increasing the power 𝑝𝑝 hyperparameter puts more emphasis on the leaf nodes with a higher 568 
agreement. For a design setting, it is recommended to keep the power low to proportionally account 569 
for the behavior in the leaf nodes, even those with a lower agreement. When choosing the appropriate 570 
number of leaf nodes in the calculations, hyperparameter 𝑡𝑡, it is important to consider the size of the 571 
dataset. The maximum 𝑡𝑡 value is the total number of leaf nodes in the linear model tree, which 572 
depends on the size of the dataset and the training requirements. 573 

• Leaf node model fit: It is recommended to calculate the R2 values for the leaf node models and to 574 
assign the leaf node models with a low R2 value a lower weight in the interpolation calculations. 575 
These models could also be useful information to the designer, as these regions are highly nonlinear 576 
and could not be handled by the linear model tree. The trends or tradeoffs in these regions may differ 577 
from the surrounding regions.  578 

• Traditional decision tree importance metric: The typical decision tree has an importance metric 579 
based on how much the error metric was reduced by each split. However, this only indicates which 580 
variables are highly nonlinear, not which variables have the steepest slopes or highest importance. 581 
The metrics in this paper were developed to capture this.  582 

• Normalization among leaf node models: The coefficients from all the leaf node models could be 583 
normalized, but then the method would not provide “how much” the variables matter, just a relative 584 
ranking of variable importance.  585 

• Number of samples: In order to produce reliable linear models in each node, the algorithm enforces a 586 
specified number of data points per leaf node. In this paper, it was assumed the number of data points 587 
required per leaf node was 30 data points. The structural dataset contained 7 variables and 940 data 588 
points, which resulted in only eighteen leaf node models. During the interpolation process described 589 
in Section 3.1.2, there were only 18 models to consider, versus the spatial daylight autonomy dataset 590 
which had 144 leaf node models to consider.  591 

As demonstrated in Section 4.1, it is also necessary to reduce collinearity among variables. Collinearity 592 
can be assessed by calculating the Pearson correlation coefficients. For example, the energy dataset in this 593 
paper had two variables, SHGC and U-Value, that were highly correlated, and it was necessary to 594 
eliminate one to prevent model instability issues. Because U-value showed a stronger linear relationship 595 
to the response EUI, SHGC was eliminated. Variable selection can be conducted in many other ways 596 
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including stepwise selection, forward selection, and backward elimination. It is ultimately up to the 597 
designer to determine which variables to include in the model. 598 

6. Conclusion 599 

6.1 Summary of contributions 600 

This work presents a method for dynamic subset sensitivity analysis that includes a new procedure for 601 
ensuring coefficient significance. It then demonstrates the method’s generalizability on three building 602 
design problems. This method updates variable importance in real-time as design criteria emerge, aiding 603 
discussion for new design directions. It also determines where in the variables’ domain it tends to 604 
influence the response, which provides ranges to design within and supports design freedom.  605 

6.2 Limitations and future work 606 

Some aspects of this specific approach depend on having linear model coefficients. The model tree could 607 
include quadratic or cubic terms in the linear regression models to produce local polynomial models. 608 
Additionally, it is possible to implement the model tree with other node model types such as neural 609 
networks or SVM. However, linear models were selected in this method to utilize the coefficients to 610 
develop importance metrics, as well as to reduce training time. To implement the model tree with other 611 
model types, additional importance metrics must be developed, especially for nonparametric models. It is 612 
likely the training time would also increase. Another limitation for the daylight and energy datasets is 613 
using a single location. In future iterations, latitude and cloud condition could be included as variables to 614 
make it more flexible. Finally, it could be argued that the size of the embodied carbon dataset was not 615 
large enough for a model tree given the nonlinear nature of many of the variables, compared to energy 616 
[70]. However, this example was chosen to demonstrate the method on an existing dataset that was not 617 
developed directly for this method. Future general datasets in the domain of structures should be based on 618 
a larger dataset.  619 

6.3 Concluding remarks 620 

In this work, we investigate a new method called dynamic subset sensitivity analysis across three 621 
domains. Many factors on the dataset affect the effectiveness of the method, specifically the sampling 622 
technique and the number of samples. Considering the quality of the leaf node models through the 623 
coefficient p-value and R2 improve the reliability of the interpolated variable importance. In the future, 624 
this work could be combined with recent work on training design agents to learn generalizable design 625 
behavior [71]. If implemented more widely, methods such as dynamic subset sensitivity analysis could 626 
track with design practice to make the greatest impact without requiring computation specialists to 627 
generate a custom parametric model and simulation data for each project.  628 
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