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Abstract
To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution 
of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding 
of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their 
distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), 
we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with 
the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative 
to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher 
temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, 
whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic varia-
tion, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome 
assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic 
variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These 
findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for 
predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.
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Introduction

Plants host diverse microorganisms, and these microbial 
symbionts are important for the functioning of plants within 
ecosystems [1, 2]. To better understand the influence of 
microbiomes on plant populations across geographic ranges 
in nature, it is important to examine the biogeographic pat-
terns of plant-associated microbiomes and the mechanisms 
that drive these patterns [3]. While our knowledge of micro-
bial biogeography has advanced greatly through investigat-
ing free-living microbiomes across terrestrial, marine, and 

atmospheric ecosystems [4–8], significant knowledge gaps 
exist as to what drives the distribution of local microbiome 
diversity and compositional variation in host-associated 
microbiomes [3, 9]. As a result, it remains largely unclear 
whether the principles of microbial biogeography derived 
from free-living microbiomes can be generalized to host-
associated microbiomes not only at the broad biome level 
(representing distinct community types consisting of differ-
ent flora) [10–13] but especially at the individual host organ-
ism level across populations [3].

While various biogeography theories have been pro-
posed to explain the distribution of diversity in plants and 
animals [14, 15], microbial diversity often does not follow 
the same patterns as observed in their macroscopic counter-
parts despite notable exceptions [3, 9, 16]. For instance, in 
contrast to the latitudinal diversity gradient that decreases 
from lower to higher latitudes in plants and animals [14, 15], 
global bacterial diversity peaks in temperate regions across 
free-living soil, marine, and airborne microbiomes [4–7]. 
In host-associated microbiomes, ectomycorrhizal fungal 
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richness associated with roots, for instance, also peaks in 
midlatitude regions from tropical to subarctic biomes [12]. 
The frequent deviations of microbial biogeography from 
macroorganisms and complex distribution patterns of diver-
sity [9] suggest that ecological factors that may or may not 
follow latitudinal gradients can drive the biogeographic 
distribution of microbial diversity. Factors that covary with 
latitude such as temperature and precipitation have been 
found to influence the distribution of bacterial and fungal 
richness in free-living microbiomes [4–6], whereas factors 
that do not exhibit such a correlation (e.g., soil pH, nutrient 
concentration) may weaken the patterns and lead to a dis-
tinct biogeographic distribution [7, 17]. Compared to free-
living microbiomes, symbiotic microbiomes are subject to 
host-imposed niche filtering [3, 9–12, 18–20], which has 
the potential to modify the role of environmental factors in 
driving microbial biogeography. The extent to which host 
plants, such as their genetic variation, affect the distribution 
of microbial diversity may depend on whether hosts have 
adapted to the same or different environmental factors that 
influence microbial diversity. If hosts exhibit adaptation to 
the same environmental factors as microbes, host genetic 
variation may reinforce the patterns of microbial diversity 
caused by environments, whereas dissimilar adaptations may 
weaken the patterns. This has yet to be examined for plant 
microbial biogeography.

Different from the complexity in microbial diversity 
patterns, decay in microbial community similarity over 
geographic distance is ubiquitously detected in free-living 
[5–7] and host-associated microbiomes [11, 13, 21, 22]. 
Such distance decay can arise due to a combination of pro-
cesses including selection, dispersal, and drift [23–26]. In 
free-living soil, marine, and airborne microbiomes, dispersal 
limitation and drift that promote stochasticity play a major 
role (55–87% and 3–25%, respectively) in driving the bio-
geographic variation of microbial community composition, 
whereas niche-based selection by environments accounts 
for 11–26% [6]. Compared to free-living microbiomes in 
nature, the relative importance of selection, dispersal, and 
drift in host-associated microbiomes has rarely been quanti-
fied. In host-associated microbiomes, apart from selection by 
environments, selection by host genetic variation may also 
contribute to the biogeographic variation of microbial com-
munity composition. The respective and collective roles of 
host genetic and environmental variation will depend on the 
extent to which host genetic variation is shaped by similar or 
different environmental factors.

To enhance our understanding of the biogeography of 
microbiome diversity and compositional variation in plant 
microbiomes and the underlying mechanisms, we lever-
aged the broad distribution and extensive genetic variation 
of the duckweed, Lemna species complex [27]. Lemna are 
floating aquatic plants commonly found in slow-moving 

freshwater ecosystems worldwide [28], and play an impor-
tant role in ecosystem functions and services, such as car-
bon sequestration, phytoremediation, biofuel production, 
and animal feedstock [29, 30]. While Lemna are mor-
phologically similar, hybridization has led to extensive 
genetic variation [27]. In this study, we examined Lemna 
microbiomes across 34 different populations in the United 
States, covering both the cool temperate and hot humid 
subtropical regions. Our purposes were twofold. First, 
we sought to test the hypothesis that bacterial richness is 
higher in temperate regions relative to lower latitudes and 
uncover the environmental and host genetic factors driving 
the observed diversity pattern. Second, we aimed to quan-
tify the respective impact of different processes (selection, 
dispersal, and drift) and identify the environmental and 
host genetic factors driving the biogeographic variation 
of bacterial community composition.

Materials and Methods

Field Collection

We collected Lemna (referred to as duckweeds for simplic-
ity) and associated microbiomes from 34 populations in 
the northern and southern range of its distribution in the 
USA (Fig. 1a and Table S1): Ohio (OH, Cleveland, N = 8; 
Columbus, N = 5), New Hampshire (NH, N = 2), Massachu-
setts (MA, N = 2), Rhode Island (RI, N = 2), Louisiana (LA, 
N = 7), Georgia (GA, N = 4), and South Carolina (SC, N = 4). 
The field sampling was conducted during the fast-growing 
season of duckweeds during June–August 2022. In addi-
tion, we collected samples from the same two Massachusetts 
populations during the late growing season in October 2022 
to confirm the negligible influence of temporal dynamics 
on duckweed microbiomes, relative to the other factors we 
investigated in this study. It is worth noting that temporal 
dynamics is expected to be stronger in northern populations 
due to stronger seasonality compared to southern popula-
tions. At each population, we collected duckweeds using 
ethanol-sterilized forks into sterile plastic bags and stored 
them at 4°C until microbiome isolation within five days. We 
also measured the pH, conductivity (EC), and total dissolved 
solids (TDS) of the aquatic environment at each population 
using an Ohaus ST20M-B meter (Ohaus Corporation, Par-
sippany, New Jersey). Additionally, we collected 100 mL 
surface water in sterile centrifuge tubes and sent to the Wet-
land Biochemistry Analytical Services at Louisiana State 
University for additional water chemistry analysis (total 
organic carbon, TOC; total nitrogen, TN; total phosphorus, 
TP; major and trace elements including Na, Ca, Mg, Fe, Si, 
Cu, Zn, Mn, Pb, Cd; Table S1).
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Microbiome Isolation and Sequencing

Duckweed microbiome isolation was conducted asepti-
cally under a laminar flow hood. For each population, we 
used sterilized forceps to remove debris from duckweed tis-
sues, and rinsed c. 500 individuals in 20 mL sterile water to 
remove environmental microbes from their aquatic habitats. 
These individual plants were then transferred to 20-mL ster-
ile 0.25 × phosphate-buffered saline. We collected epiphytic 
microbiomes by vortexing for 20 min, sonicating at 40 kHz 
for 5 min, and centrifuging at 13,200 rpm for 10 min. Micro-
bial cells (from 5 mL out of the 20 mL epiphytic microbiome 
wash) were used for DNA extraction using cetyltrimethylam-
monium bromide (CTAB) and purified using polyethylene 
glycol (PEG) 8000. Briefly, microbial pellets were lysed 
with 500 µL sterile CTAB buffer (2% w/v CTAB, 100 mM 
Tris–HCl, 20 mM EDTA, 1.4 M NaCl, 5 mM ascorbic acid, 
and 10 mM dithiothreitol) and two autoclaved 4 mm stain-
less steel beads on a Vortex Genie 2 (Scientific Industries, 
Bohemia, New York) for 40 min. An equal volume (500 µL) 

of chloroform:isoamyl alcohol (24:1) was then added for 
phase separation at 13,200 rpm for 5 min. DNA was then 
recovered by adding the upper phase to 1 mL of cold pure 
ethanol overnight at -20°C and centrifuging at 13,200 rpm 
for 5 min. Pelleted DNA was washed with 500 µL of cold 
70% ethanol and eluted in sterile TE buffer. We further 
purified the eluted DNA by conducting an additional round 
of chloroform: isoamyl alcohol phase separation, and then 
DNA was recovered by adding the upper phase to an equal 
volume of autoclaved PEG 8000 (20% w/v PEG 8000, 2.5 M 
NaCl), incubating at 37°C for 30 min, and centrifuging at 
13,200 rpm for 5 min. Purified DNA pellet was washed with 
cold 70% ethanol and eluted in 60 µL sterile TE buffer and 
sent to the Argonne National Laboratory for bacterial library 
preparation (16S rRNA V5–V6 region, 799f–1115r primer 
pair: AACMGGA​TTA​GAT​ACC​CKG, AGG​GTT​GCG​CTC​
GTTG) and sequencing using Illumina MiSeq (paired-end 
250 bp).

The paired-end (PE) reads were used for detecting bacte-
rial amplicon sequence variants (ASVs) using the package 
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Fig. 1   Lemna populations and microbiomes. (a) We collected the 
Lemna species complex from the northern and southern range of its 
distribution in the USA (34 total populations: OH, 13; NH, 2; MA, 
2; RI, 2; LA, 7; GA, 4; SC, 4). (b) Lemna genetic variation was 
examined among 25 out of the 34 populations based on ISSR mark-
ers using a principal component analysis (PCA). Populations with 
missing genetic information were due to the unsuccess in generating 

axenic genetic lines. (c) For Lemna bacterial microbiomes, the top 10 
most abundant phyla (class level for Proteobacteria) are shown. The 
two MA populations (referred to as MA.1 and MA.2) were sampled 
at two separate times during the peak (June–August) and the end of 
the growing reason (October, denoted with “#”) in 2022. The order of 
the four MA samples in the plot follows MA.1 (peak and end season) 
and then MA.2 (peak and end season)
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DADA2 v1.20.0 [31] in R v4.1.0 [32]. Following previ-
ous pipelines [19, 33], the PE reads were trimmed and 
quality filtered [truncLen = c(240, 230), trimLeft = c(10, 
0), maxN = 0, truncQ = 2, maxEE = c(2,2)] and then used 
for unique sequence identification that took into account 
sequence errors. The PE reads were then end joined (minO-
verlap = 20, maxMismatch = 4) for ASV detection and chi-
mera removal. The ASVs were assigned with taxonomic 
identification based on the SILVA reference database (132 
release NR 99) implemented in DADA2. The ASVs were 
further filtered before conversion into a bacterial community 
matrix using the package phyloseq [34]. First, we removed 
non-focal ASVs (Archaea, chloroplasts, and mitochondria). 
Second, we conducted rarefaction analysis using the pack-
age iNEXT [35] to confirm that the sequencing effort was 
sufficient to capture duckweed bacterial richness (Fig. S1). 
We further normalized per-sample reads (median = 20,192 
reads) by rarefying to 10,000 reads. Three populations that 
had fewer reads (one from OH: 9787 reads; two from GA: 
5775 and 9484 reads, respectively) but plateaued in the rar-
efaction analysis (Fig. S1) were normalized to 10,000 reads 
following the previous pipeline [33]. Lastly, we removed 
low-frequency ASVs (< 0.001% of total observations). The 
final bacterial community matrix consisted of 4880 ASVs 
across the 36 samples from 34 different populations and was 
used for all downstream analyses.

Duckweed Genotyping

After microbiome isolation, duckweeds were bleached to 
create axenic plants. Briefly, c. 30 clusters (100 plants) per 
population were bleached in 15 mL 1% sodium hypochlo-
rite until clusters turned white, and then washed in 15 mL 
sterile water three times. Individual clusters were then 
grown in 0.5 × Hoagland salt (PhytoTech Labs, Lenexa, 
Kansas) with 0.5% sucrose under 24°C and 16-h light for 
contamination check. A single axenic cluster was selected 
from a population (referred to as one genetic line) for fur-
ther propagation in the same media for DNA extraction. 
Fresh duckweeds (c. 60 clonal plants) of each genetic 
line were used for DNA extraction using E.Z.N.A. SP 
Plant DNA Kit (Omega Bio-Tek Inc., Norcross, Geor-
gia) and eluted in 100 µL sterile TE buffer. To examine 
duckweed genetic variation, we genotyped the genetic 
lines (N = 25, due to the unsuccess in generating some of 
the axenic genetic lines), using three polymorphic ISSR 
markers (UBC827, UBC855, UBC856) that generated a 
total of 46 polymorphic bands across the genetic lines 
(Table S2). PCRs were carried out in 10 µL reactions 
that contained 1.5 µL of extracted DNA, 0.5 µM primer, 
4 mM MgCl2, 0.5 mg/mL BSA, 5 μL GoTaq Colorless 
Master Mix (Promega Corporation, Madison, Wiscon-
sin) including 200 μM of each dNTP and 1 unit Taq DNA 

polymerase, and H2O. PCRs followed a standard protocol: 
94°C for 5 min; 40 cycles of 94°C for 1 min, 52°C for 
1 min, and 72°C for 1 min; and a final extension at 72°C 
for 5 min. PCR amplicons were quantified with GeneRuler 
100 bp plus DNA Ladder (Thermo Fisher Scientific Inc., 
Waltham, Massachusetts) on 1.5% agarose gels in 1 × TBE 
buffer under 95 V for 1:40 h.

Alleles were scored as presence or absence (1 or 0) using 
GelJ v2.0 [36]. Population genetic structure was analyzed using 
STRU​CTU​RE v2.3.4 [37] and the package pophelper [38]. 
Genetic variation among populations was examined using a 
principal component analysis (PCA) in R.

Statistical Analyses

Microbiome Richness and Environmental and Genetic 
Correlates

To test whether northern duckweed populations harbor 
more bacterial richness than southern populations, we con-
ducted a general linear mixed model (LMM) with region 
(northern vs. southern) as the predictor and a nested ran-
dom effect (states nested within regions) using the package 
lme4 [39]. We conducted the LMM for both observed ASV 
richness (i.e., the number of ASVs) and asymptotic ASV 
richness (Chao estimator) using iNEXT. To identify which 
environmental factors might influence the biogeographic 
distribution of bacterial richness, we focused on 19 cli-
matic and 13 water chemistry variables. We extracted 
the 19 climatic variables from WorldClim v2.1 [40] at 30 
arc second resolution for all the populations. For water 
chemistry variables, we focused on pH, EC, TDS, nutri-
ents (TOC, TN, TP, and C/N carbon to nitrogen ratio), and 
major and trace elements (Na, Ca, Mg, Si, Fe, and Mn). 
We did not consider some trace elements (Cd, Cu, Pb, 
and Zn) that showed little variation among populations 
or below the detection level (0.001 mg/L; Table S1). The 
water chemistry variables (except pH) were natural log 
transformed (log (x + 0.01)) for analyses. For the climatic 
or water chemistry variables, we first conducted univari-
ate regressions (general linear models, LMs) to select for 
potential candidate predictors to be included in multiple 
regressions. We then used stepwise model selection (i.e., 
both forward and backward selections) of the multiple 
regressions based on the Akaike Information Criterion 
(AIC) to select for the most parsimonious model and 
identify significant predictors. The lack of collinearity 
was confirmed using the variance inflation factor (VIF). 
Duckweed genetic variation, represented by the first two 
axes of the genetic PCA (genetic PC1 and genetic PC2; 
Fig. 1b), was identified as non-significant predictors of 
bacterial richness by univariate regressions.
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Microbiome Compositional Variation and Environmental 
and Genetic Correlates

To examine how diverse processes, such as niche-based 
selection (by environments and host genetics), dispersal, 
and drift, shaped the biogeographic variation of bacterial 
community composition, we conducted four analyses. First, 
to assess the degree of distance decay in bacterial commu-
nity similarity, we conducted a Mantel test between bac-
terial community distance (the Bray–Curtis distance) and 
geographic distance using the package vegan [41]. We fur-
ther examined whether such distance decay was explained 
by geographic distance alone or environments. To do so, 
we conducted partial Mantel tests between bacterial com-
munity distance and climatic distance (all 19 climatic vari-
ables) and between bacterial community distance and water 
chemistry distance (all 13 water chemistry variables), while 
controlling for geographic distance. The climatic and water 
chemistry variables were standardized (zero mean and unit 
variance for individual variables) prior to the estimation of 
their Euclidean distance among populations to avoid vari-
able biases caused by scale differences. The geographic dis-
tance was estimated based on the latitudes and longitudes 
of the populations (Table S1) using the package geodist 
[42]. Second, to quantify the relative importance of selec-
tion, dispersal, and drift in driving microbiome assembly 
among populations, we used a phylogenetic binning based 
null model analysis (iCAMP) [26]. As iCAMP considers 
the possibility that different processes may affect individual 
microbial lineages differently [26] rather than uniformly 
[25], the relative importance of selection, dispersal, and drift 
was abundance-weighted average across microbial lineages 
(i.e., phylogenetic bins) in a group of communities of inter-
est in iCAMP. Third, to further identify which environmental 
variables contributed to selection, we conducted univariate 
constrained principal coordinates analysis (cPCoA) to select 
for potential predictors that may influence bacterial com-
munity composition. For the climatic variables, univariate 
cPCoAs revealed the significant impact of all 19 climatic 
variables, and thus we used the first two axes of the PCA of 
these climatic variables (climatic PC1 and PC2, account-
ing for 72.4% and 17.6% of total variation, respectively; 
Fig. S2). For water chemistry, univariate cPCoAs identified 
the impact of seven variables (TN, TP, C/N, Ca, Mg, Fe, 
and pH), and we further used multivariate cPCoAs and step-
wise model selection to reduce the number of potential water 
chemistry predictors to be included together with climatic 
PC1 and climatic PC2 for final model selection. The lack of 
collinearity was confirmed using VIFs. Fourth, to examine 
the influence of duckweed genetic variation, which can be 
potentially shaped by environmental selection (see analysis 
below), on bacterial community composition, we conducted 
variation partitioning of bacterial communities using the 

package vegan among duckweed genetic variation (genetic 
PC1 and genetic PC2), climate, and water chemistry (with 
predictors identified by model selections described above).

Duckweed Genetic Variation and Environmental Correlates

To examine how duckweed genetic variation was influ-
enced by environments, we used univariate and multiple 
regressions with stepwise model selection to identify the 
significant environmental predictors of genetic PC1 and 
genetic PC2. As univariate regressions revealed the sig-
nificant impact of many climatic variables on genetic PC1 
and genetic PC2, we used climatic PC1 and climatic PC2 as 
potential predictors, along with the water chemistry predic-
tors identified by univariate regressions, in multiple regres-
sions for model selection.

Results

Duckweed Microbiomes and Populations

Similar to terrestrial plants [18, 43], duckweed microbiomes 
were dominated by Proteobacteria (79% of the ASVs), espe-
cially Alphaproteobacteria (42%) and Gammaproteobacteria 
(36%), followed by Bacteroidetes (7%), Actinobacteria (5%), 
Firmicutes (3%), and others (Fig. 1c). The microbiomes 
of duckweeds collected from the same populations (MA, 
Fig. 1c) were similar regardless of the sampling time (either 
during the peak or at the end of the growing season).

The analysis of duckweed genetic data revealed evidence 
of admixture (Fig. S3). We observed genetic differentiation 
between northern and southern populations along both the 
genetic PC1 and PC2 (Fig. 1b). We further found that genetic 
variation among duckweed populations was influenced by 
climate and water chemistry (Table S3). Specifically, duck-
weed genetic PC1 was influenced by precipitations (cli-
matic PC2; multiple regression, LM: t = 3.57, P = 0.002) 
and water TN (t = 2.26, P = 0.035), and marginally by pH 
(t = -1.96, P = 0.063; Table S3). Duckweed genetic PC2 was 
primarily influenced by temperatures (climatic PC1, t = 5.80, 
P < 0.001; Table S3).

Biogeographic Variation of Duckweed Microbiome 
Richness

To test whether bacterial richness is higher in northern 
duckweed populations compared to southern populations, 
we used a LMM and found that the northern populations 
hosted 10% more bacterial ASVs than the southern popu-
lations (LS mean; observed richness: northern = 350 ± 30, 
southern = 321 ± 28, Fig. 2a; asymptotic richness: north-
ern = 428 ± 44; southern = 388 ± 39; Fig. S4), while the mean 
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difference between northern and southern populations was 
not statistically significant (P > 0.05; Fig. 2a and Fig. S4).

Among the 19 climatic variables, only the mean tempera-
ture of the driest quarter (BIO9) showed a significant impact 
on bacterial richness, with a negative association observed 
between BIO9 and bacterial richness (multiple regression, 
LM: t = -2.12, P = 0.042; Fig. 2c and Fig. S4; Table S4). For 
water chemistry, while both concentrations of Na and TP 
were identified as potential factors influencing duckweed 
bacterial richness by univariate regressions, the multiple 
regression revealed that only Na concentration had a sig-
nificant impact on bacterial richness, with lower richness 
associated with higher Na concentrations (LM: t = -2.63, 
P = 0.013; Fig. 2c and Fig. S4; Table S4). Unlike climate and 
water chemistry, the genetic variation of duckweed popu-
lations (genetic PC1 and PC2) did not influence bacterial 
richness (P > 0.05; Table S4).

Biogeographic Variation of Duckweed Microbiome 
Composition

Duckweed bacterial communities exhibited distance 
decay in similarity (Mantel test, r = 0.46, P = 0.001; 
Fig. 3a). Such distance decay was not solely driven by 
geographic distance, but also by environmental factors 
(rClimate|Geo = 0.27, P = 0.001; rWater chemistry|Geo = 0.29, 
P = 0.001). This result indicated that both selection and 
dispersal as well as drift influenced duckweed microbiome 
assembly. We further found that selection played an impor-
tant role in driving the biogeographic variation of duck-
weed bacterial community composition (28% in northern 
populations, 25% in southern populations, and 26% in all 

populations; Fig. 3b), in addition to dispersal limitation 
(northern, 25%; southern, 42%; all, 33%), homogenizing 
dispersal (1%, 2%, 2%), and drift (45%, 31%, 39%). A 
similar pattern of the relative importance of selection, dis-
persal, and drift was also found among populations within 
states (Fig. S5).

Among the environmental factors, climatic PC1 (tem-
peratures) and PC2 (precipitations) together with water 
pH, TP, and Ca were the most important variables driving 
the biogeographic variation of duckweed bacterial commu-
nity composition (cPCoA: climatic PC1, 7.2% of variation, 
F = 2.9, P = 0.001; climatic PC2, 4.3%, F = 1.7, P = 0.006; 
pH, 5.7%, F = 2.3, P = 0.001; TP, 3.6%, F = 1.4, P = 0.048; 
Ca, 3.9%, F = 1.6, P = 0.012; Fig. 3c and Table S5). Cli-
matic PC1 (temperatures) and TP were found to influence 
bacterial community cPCoA 1, which was dominated 
by Arcobacter on the positive axis and Rhizobacter and 
Rhodobacter on the negative axis (Table S6). Climatic 
PC2 (precipitations), pH, and Ca were found to influence 
cPCoA 2 (Fig. 3c), which was dominated by Variovorax 
and Ideonella on the positive axis and Rhizobacter and 
Porphyrobacter on the negative axis (Table S6). Based on 
the subset of populations (N = 25) with duckweed genetic 
data, we found that duckweed genetic variation affected 
bacterial community composition (cPCoA: genetic PC1, 
7.7%, F = 2.0, P = 0.001; genetic PC2, 9.9%, F = 2.6, 
P = 0.001; Table  S5). Variation partitioning analysis 
further pointed out the collective roles of climate, water 
chemistry, and host genetic variation on duckweed bac-
terial community composition (Fig. 3d), with the unex-
plained variation reflecting other processes (e.g., drift and 
dispersal limitation) operating in these subset populations.
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Fig. 2   Biogeographic variation of Lemna microbiome richness. (a) 
The least-squares mean (LS mean) ± SE of bacterial ASV richness 
(the number of ASVs) are plotted for the northern populations (‘N’: 
OH, NH, MA, RI) and southern populations (‘S’: LA, GA, SC) using 
a general linear mixed model with region (northern vs. southern) as 
the predictor and states nested within regions as the random effect. 

(b) The mean temeprature of the driest quarter (BIO9) and (c) the 
(natural log transformed) Na concentration of aquatic environments 
were identified as the important factors driving the distribution of 
bacterial richness of Lemna microbiomes after model selection of 
multiple regressions. Slopes with shaded 95% confidence intervals 
are shown. For statistical details, see Table S4
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Discussion

Our study on the microbiomes of wide-ranging duckweeds 
revealed that the distribution of plant microbiome diversity 
supported the standing hypothesis of microbial biogeog-
raphy, with bacterial richness higher in temperate regions 
relative to lower latitudes as observed in free-living micro-
biomes [4–7]. We found that environmental factors that fol-
low latitude (the temperature of the driest quarter, BIO9) 
or not (Na concentration) were negatively associated with 
duckweed bacterial richness, whereas host genetic variation 
showed no strong impact. In contrast to bacterial richness, 
the biogeographic variation of duckweed bacterial commu-
nity composition was influenced by all 19 climatic variables, 
including temperatures (climatic PC1) and precipitations 
(climatic PC2), and water chemistry variables such as pH 

and concentrations of TP and Ca. Our results further under-
scored the collective roles of host genetic variation, climate, 
and water chemistry in driving duckweed bacterial commu-
nity composition. Together, selection played an important 
role (26%) in microbiome assembly across duckweed popu-
lations, alongside dispersal limitation (33%) and drift (39%).

Bacterial Richness of Plant Microbiomes Is Higher 
in Temperate Populations

Our findings of higher bacterial richness in temperate rela-
tive to subtropical duckweed populations were consistent 
with the diversity patterns of microbial biogeography in 
free-living microbiomes across ecosystems, including soil, 
marine, and airborne microbiomes [4–7]. In host-associ-
ated microbiomes, several studies have examined microbial 
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Fig. 3   Biogeographic variation of Lemna microbiome composition. 
(a) The Mantel test indicates a significant correlation between the 
Bray–Curtis distance of Lemna bacterial communities and geographic 
distance. (b) The relative importance of different processes driv-
ing Lemna bacterial community assembly was quantified using the 
package iCAMP among the northern (OH, NH, MA, RI) and south-
ern populations (LA, GA, SC) as well as all populations together. (c) 
The first two axes of the principal component analysis (PCA) of the 
19 climatic variables (climatic PC1 and climatic PC2), pH, and con-

centrations of total phosphorus (TP) and calcium (Ca) were identified 
as the most important factors driving the biogeographic variation of 
Lemna bacterial community composition after model selection of 
constrained principal coordinates analyses (cPCoAs). (d) Variation 
partitioning indicates the collective roles of duckweed genetic vari-
ation, climate, and water chemistry in explaining the biogeographic 
variation of Lemna bacterial community composition. For statistical 
details, see Table S5
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symbionts, primarily fungi, associated with representative 
plant lineages from different biomes [10–13], and revealed 
inconsistent diversity patterns. For instance, some studies 
have reported a decrease in richness with latitude in leaf 
fungal communities [10, 13], while others have found rich-
ness to peak in midlatitude regions in root ectomycorrhizal 
fungal communities [12]. As plant lineages differ in asso-
ciated microbiomes [10], the assessment of biogeographic 
patterns of plant microbiome richness at the broad biome 
level is susceptible to potential confounding factors, such 
as variation in plant lineages across different biomes [3]. 
Research on plant microbiomes at the population level has 
been limited in terms of evaluating the richness hypotheses 
of microbial biogeography [21, 44–47]. Yet, there have been 
some exceptions [48, 49]. For instance, research on root bac-
terial microbiomes associated with soybean has detected an 
increase in richness from tropical to temperate regions [49], 
whereas research on root fungal microbiomes associated 
with five grass species in the plains of the USA has revealed 
complex diversity patterns (e.g., decrease, unimodal, or no 
significant change) from subtropical to temperate regions 
[48]. In our study, we observed 10% higher bacterial rich-
ness in temperate duckweed populations compared to sub-
tropical populations, while the mean difference between the 
two regions was not statistically significant. These studies 
and ours suggest that ecological factors that do not follow 
latitude, might influence the biogeographic distribution of 
plant microbiome richness, such as soil pH in grasslands 
[48] and Na concentration in freshwaters here (Fig. 2c).

In this study, we found that Na concentration negatively 
impacted bacterial richness in these natural duckweed popu-
lations. While it is unclear whether the observed negative 
association between Na concentration and duckweed bacte-
rial richness was driven by the independent or joint effects of 
plants or environmental microbiomes in this study, Na con-
centration has been found to negatively impact the bacterial 
richness of free-living aquatic microbiomes [50, 51] and the 
growth of bacteria associated with duckweeds [52] as well as 
duckweeds themselves [52, 53]. Interestingly, we observed 
high Na concentration in populations from both temperate 
and subtropical regions (Table S1), potentially reflecting 
road salt use in the north and proximity to seawater in the 
south. This suggests that factors such as increased salinity in 
freshwater ecosystems due to, for instance, road salt flux [54, 
55] and sea level rise [56, 57], as well as increased tempera-
ture [58], under global change may have negative impacts 
on plant microbiome richness and their distribution patterns.

Environmental Factors Influence the Biogeographic 
Variation of Plant Microbiome Composition

The biogeographic variation of duckweed bacterial commu-
nity composition exhibited distance decay consistent with 

the prediction of microbial biogeography [3, 9], and was 
driven by diverse processes. Among these processes, disper-
sal limitation and drift played a major role (together 72%), 
similar to the observations (70–80%) in the global distribu-
tions of free-living soil and marine microbiomes [6]. Con-
sistent with global soil microbiomes [6], selection accounted 
for 26% of the processes driving the biogeographic variation 
of duckweed bacterial community composition. Specifically, 
environmental pH, which has been identified as a dominant 
driver of the compositional variation in global soil bacterial 
communities [7, 17], as well as root fungal communities in 
grasses [48] and root bacterial communities in Arabidop-
sis [47] and soybean [49], was also found to influence the 
compositional variation of bacterial communities associated 
with duckweeds in aquatic environments. Similar to marine 
microbiomes [5], temperatures strongly impacted duckweed 
bacterial community composition. Such effects of tempera-
ture and pH on bacterial community composition have been 
demonstrated experimentally in duckweeds [59]. One should 
note, however, the detected strong effect of temperatures on 
the biogeographic variation of duckweed bacterial com-
munity composition reflected historical processes that have 
shaped the adaptation and genetic variation of host popula-
tions and their associated microbiomes. As such, the extent 
to which the pattern changes under future climates merits 
further investigation. Moreover, we found that phosphorus, 
one of the most important limiting factors in freshwater 
ecosystems [60], influenced duckweed bacterial community 
composition, similar to the observations in bacterial com-
munities associated with marine algae [61]. Additionally, 
calcium concentration, reflecting the hardness of aquatic 
environments, was also found to drive the compositional 
variation of duckweed bacterial communities, independent 
from the strong impact of pH (after model selection). Our 
study, together with previous research, point to some general 
principles of microbial biogeography regarding the influence 
of selection by environments and the underlying drivers, and 
also call for the need of additional research to experimentally 
verify the causality of these drivers. Together, the findings 
will provide predictive insights into the potential impacts 
on the biogeographic variation of microbiome composition 
of climate change and anthropogenic activities, particularly 
nutrient deposition and discharge into ecosystems [62, 63] 
and the overall quality of aquatic environments.

Host Genetic Variation Plays a Role in Plant 
Microbial Biogeography

Accumulating evidence has suggested that plant genetic fac-
tors can exert a crucial role in mediating microbial commu-
nity assembly by influencing plant morphology, physiology, 
metabolic pathways, and immune systems [20]. Different 
from free-living microbiomes, our findings pointed out the 
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joint role of plant genetic variation and environmental vari-
ation, which has been largely overlooked in plant microbial 
biogeography [21, 44–49]. Our study showed that plant 
genetic variation influenced duckweed bacterial community 
composition, not bacterial richness, via its joint effect with 
climate and water chemistry, rather than their independent 
effects (Fig. 3d). This was primarily because the genetic var-
iation of duckweeds was strongly influenced by the same fac-
tors that influenced their microbiome composition, such as 
temperatures, precipitations, nitrogen concentration (which 
was correlated with phosphorus concentration), and pH. The 
strong coupling of host genetic variation and microbiomes 
with environmental factors made it challenging to separate 
the effects of host genetic and environmental variation on 
microbiome composition in natural populations without 
manipulative experiments (e.g., reciprocal common garden 
experiments, [47]). This observation should not be unique to 
duckweeds but is expected to be common in plant microbi-
omes as seen, for instance, in seaweed microbiomes [22], as 
local adaptation to environments is a widespread phenom-
enon in plants [64]. Even though duckweeds undergo clonal 
reproduction, we should acknowledge that by genotyping a 
single genetic line from each duckweed population we may 
have underestimated host genetic variation within popula-
tions. While the genetic variation within populations is yet 
to be determined in nature, it is expected to be smaller than 
the genetic variation among populations due to the local 
adaptation of duckweeds. Nevertheless, the observation of 
strong coupling of host genetic variation and microbiomes 
with environmental factors across populations underscores 
the potential for even stronger impacts on the distribution, 
structure, and function of plant microbiomes in the cases of 
misaligned responses between plants and microbes to cli-
mate change and anthropogenic activities.

Conclusions

Our study elucidates the biogeographic distribution of plant 
microbiome structure and the underlying mechanisms, high-
lighting both the commonalities and differences in microbial 
biogeography relative to free-living microbiomes. While our 
findings are based on a geographically broad sampling of the 
Lemna species complex [27], it is important to acknowledge 
that further research that incorporates representative popula-
tions across continents is needed to provide a comprehensive 
global perspective on plant microbial biogeography in duck-
weeds as well as in other plant species. Such studies together 
will further advance our understanding of the principles of 
microbial biogeography across diverse plant lineages and 
ecosystems. The key drivers identified in our study, includ-
ing temperatures, precipitations, pH, and concentrations of 
sodium, phosphorus, and calcium, along with host genetic 

variation, provide important insights into predicting the 
vulnerability and resilience of plant microbiomes and their 
impacts on ecosystem functioning under changing climates 
and intensifying anthropogenic activities.
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