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ABSTRACT

In studies ranging from clinical medicine to policy research, complete data are usually available from a
population P, but the quantity of interest is often sought for a related but different population Q which
only has partial data. We consider the setting when both outcome Y and covariate X are available from
‘P but only X is available from Q, under the label shift assumption; that is, the conditional distribution of
X given Y is the same in the two populations. To estimate the parameter of interest in Q by leveraging
information from P, three ingredients are essential: (a) the common conditional distribution of X given Y,
(b) the regression model of Y given X in P, and (c) the density ratio of the outcome Y between the two
populations. We propose an estimation procedure that only needs some standard nonparametric technique
to approximate the conditional expectations with respect to (a), while by no means needs an estimate
or model for (b) or (c); that is, doubly flexible to the model misspecifications of both (b) and (c). This is
conceptually different from the well-known doubly robust estimation in that, double robustness allows at
most one model to be misspecified whereas our proposal can allow both (b) and (c) to be misspecified. This is
of particular interest in label shift because estimating (c) is difficult, if notimpossible, by virtue of the absence
of the Y-data from Q. While estimating (b) is occasionally off-the-shelf, it may encounter issues related to the
curse of dimensionality or computational challenges. We develop the large sample theory for the proposed
estimator, and examine its finite-sample performance through simulation studies as well as an application to
the MIMIC-IIl database. Supplementary materials for this article are available online including a standardized
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1. Introduction

In studies ranging from clinical medicine to policy research,
there often exist situations where data and information are
collected from a population P, while the study interest lies in
a target population Q which is related to but different from
‘P. For instance, in a clinical trial setting, physicians may need
to use findings from a randomized trial on a set of patients
(P) whose demographics and comorbidities are different from
those of their own patients (Q). As another example, to build a
predictive model on pneumonia outbreak for the flu season (Q),
researchers might find a similar model during the non-flu season
(P) relevant and useful. In these scenarios, there is a discrepancy
between the distributions of P and Q; that is, distribution shift.
Distribution shift also refers to the scenario where the distribu-
tion of the training sample is different from that of the testing
sample. In all these situations, it is of vital interest to develop
methods that can appropriately leverage the information from
P to the statistical tasks for Q. Often, both outcome (output,
response, label) Y and covariate (input, predictor, feature) X are
available from P while only X is available from Q. This setting
is also named unsupervised domain adaptation (Quinonero-
Candela et al. 2008; Moreno-Torres et al. 2012; Kouw and Loog
2021).

Without any assumptions on the shift, it is certainly impos-
sible to leverage information between two heterogeneous pop-
ulations. Two types of distribution shifts have been defined
in the literature. The first is called covariate shift, where the
shift happens between the marginal distributions of X while
the conditional distribution of Y given X does not change; that
is, px(x) # gx(x) and pyx(),xX) = qyx(),x). The differ-
ence between P and Q can be summarized as a density ratio
qx(x)/px(x), which is fortunately estimable since covariate X
is available from both populations. Covariate shift aligns with
the causal learning setting (Scholkopf et al. 2012) where X is
the cause and Y is the effect. Covariate shift has attracted much
attention and has been investigated in many literatures, such as
Shimodaira (2000), Huang et al. (2006), Sugiyama et al. (2008),
Gretton et al. (2009), Sugiyama and Kawanabe (2012), Kpotufe
and Martinet (2021) and the references therein.

The second type, which is the focus of this article, is
named label shift, where it assumes that the shift is in the
marginal distributions of Y while the process of generating
X given Y is identical in both populations. Specifically, it
assumes

py(y) # qy(y), and pxjy (%, y) = gxjy (%, ) = g(x, ).
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Label shift is also called prior probability shift (Storkey 2009;
Tasche 2017), target shift (Zhang et al. 2013; Nguyen, Christoffel,
and Sugiyama 2016), or class prior change (Du Plessis and
Sugiyama 2014; Iyer, Nath, and Sarawagi 2014). Label shift aligns
with the anticausal learning setting in which the outcome Y
causes the covariate X; for example, diseases cause symptoms or
objects cause sensory observations. Consider the situation that
one fits a model to predict whether a patient has pneumonia
based on observed symptoms, and this model predicts reliably
when deployed in the clinic during the non-flu season. When the
flu season starts, there is a sudden surge of pneumonia cases and
the probability of developing pneumonia rises, while the mech-
anism of showing symptoms determined by the pneumonia
status is rather stable. Label shift also exists in computer vision
applications, such as predicting object locations and directions,
and human poses; see Martinez et al. (2017), Yang et al. (2018),
and Guo et al. (2020).

In the label shift framework, one fundamental problem (Garg
et al. 2020) is determining whether the shift has occurred and
estimating the label distribution gy (y), or equivalently, assessing
the density ratio qy(y)/py(y) = p(»). In contrast to estimating
the density ratio gx(x)/px(x) under covariate shift, estimating
p(y) is a daunting task due to the absence of Y-observations
in population Q. Works under label shift are mainly limited
to classification problems in the machine learning literature;
see detailed review in Section 2. In this article, we take a
unique approach by devising a methodology that can be applied
to both discrete and continuous Y. We consider estimating a
characteristic of the population Q. Specifically, we estimate
such that E;{U(X,Y,0)} = 0 where U(-) is a user-specified
function and E4(-) stands for the expectation with respect to
qy(y)g(x,y) or equivalently to qy;x (¥, x)gx(x). This is a gen-
eral framework including estimating the mean of Y and the
tth quantile of Y as special cases. According to how the nui-
sance components are estimated, we propose various estimators
for @ and develop large sample theory for these estimators to
quantify the estimation uncertainties and to conduct statistical
inference.

To estimate @, three nuisance components are involved. The
first is the density ratio p (y) which is infeasible to estimate based
on the observed data, due to the lack of Y-observations in Q.
Our intention is to bypass the challenging task of estimating
p(»). This turns out to be achievable through careful manipu-
lation of the influence function. In fact, a unique feature of our
work is that we do not need to estimate p(y). Instead, only a
working model, denoted as p*(y), is needed. The second one is
Pyix(3>x) or Ep(- | x). In contrast to p(y), estimating E,(- |
x) is blessed with the observed data from P. Indeed, we can
use oft-the-shelf machine learning methods or nonparametric
regression methods to obtain the corresponding estimator Ep a
x). Nevertheless, we have the option to abstain from estimating
E,(- | x) despite our capability to do so. This means that we can
misspecify the conditional distribution pyx (y, x) while we also
misspecify the density ratio p(y). We call such an estimator 0
doubly flexible—the working density ratio model p*(y) is flexi-
ble, so is the working conditional distribution model pyx (y, X).
Note that our superscripts here are different: superscript * is
for the working model of the density ratio whereas * is for the

conditional distribution model. This double flexibility is more
favorable than the classic “double robustness” in the literature.
The standard double robustness means that one can misspecify
either one of two models but not both, while here we can
misspecify both models. As an alternative, if one chooses to
estimate E,(- | x), say, Ep(- | x), we name the correspond-
ing estimator 0 singly flexible—only flexible in working model
p*(»). The third nuisance is the conditional density function
g(x, y) whose estimation might be subject to the curse of dimen-
sionality. Fortunately, in our estimation procedure, g(x, y) only
affects quantities of the form E(- | y), which are one dimen-
sional regression problems hence can be easily solved via basic
nonparametric regression tools such as the Nadaraya-Watson
estimator.

Our approach to addressing the label shift problem is based
on the idea of minimizing the influence of nuisance compo-
nents on the target quantity of interest. This is accomplished
by scrutinizing influence functions and employing orthogonal
projections. Even with these projections in place, there will still
be a residual effect inherent to the problem itself that cannot
be completely eliminated. Consequently, we conduct a focused
analysis of this residual effect and develop procedures to effec-
tively manage its impact. To facilitate mathematical derivations,
we typically rely on common assumptions related to smooth-
ness, boundedness, and non-singularity, which are not restric-
tive in practice. We will explicitly articulate these assumptions
as regularity conditions when we present our theoretical results.

The remainder of the article is structured as follows. We
first provide a thorough literature review on label shift and
relevant semiparametric techniques in Section 2. In Section 3,
we outline our strategy of incorporating samples from two het-
erogeneous populations. The proposed doubly flexible estimator
is presented in Section 4, and the alternative singly flexible
estimator in Section 5. For easier understanding and improved
readability, we present both methodologies and theories for a
special parameter = E,4(Y) in the main text, while defer the
results for a general 6 such that E,{U(X, Y, #)} = 0 to the sup-
plementary materials. Section 6 contains empirical results from
extensive simulation studies. We present an application to the
MIMIC-III database in Section 7. The article is concluded with
discussions in Section 8. All the technical details are included in
the supplementary materials.

2. Related Work

Within the label shift framework, the majority of research
has been concentrated on classification in machine learning.
Saerens, Latinne, and Decaestecker (2002) proposed a sim-
ple Expectation-Maximization (EM) (Dempster, Laird, and
Rubin 1977) procedure, named maximum likelihood label shift
(MLLS), to estimate gy (y) assuming access to a classifier that
outputs the true conditional probabilities of the population
P, pyix(y,x). Later on, Chan and Ng (2005) proposed an
EM algorithm that requires the estimation of g(x,y), which
is unfortunately difficult for high-dimensional X and more-
over, it does not apply to regression problems. Alternatively,
Lipton, Wang, and Smola (2018) and Azizzadenesheli et al.
(2019) proposed moment-matching based estimators, named



black box shift learning (BBSL) and regularized learning under
label shift (RLLS), that make use of the invertible confusion
matrix of a classifier learned from population 7. The connection
and comparison of these two lines of research, either empirical
or theoretical, remain unclear. To our best knowledge, neither
BBSL nor RLLS has been benchmarked against EM. Alexandari,
Kundaje, and Shrikumar (2020) showed that, in combination
with a calibration named bias-corrected temperature scaling,
MLLS outperforms BBSL and RLLS empirically; whereas MLLS
underperforms BBSL when applied naively. Under label shift,
Maity, Sun, and Banerjee (2020) also studied the minimax rate
of convergence for nonparametric classification.

For continuous Y in regression, estimating qy(y) becomes
the problem of estimating a function instead of a finite number
of parameters. Not surprisingly, its literature is quite scarce.
Zhang et al. (2013) proposed a nonparametric method to esti-
mate the density ratio by kernel mean matching of distributions;
however, it does not scale to large data as the computational
cost is quadratic in the sample size. Nguyen, Christoffel, and
Sugiyama (2016) considered continuous label shift adaptation
and studied an importance weight estimator, but their approach
relies on a parametric model for pyx(y,x) hence can only be
applied in supervised learning.

Our primary focus in this article is on doubly flexible esti-
mation, taking into consideration the possibility of misspecifi-
cation in nuisance functions, particularly the density ratio p(y).
We stress that the superiority of our method compared to the
previous literature, such as Lipton, Wang, and Smola (2018) and
Azizzadenesheli et al. (2019), can still be demonstrated even
in the classification setting where the misspecification of p(y)
might not be an issue. Existing methods primarily concentrate
on developing various estimators for p(y) and subsequently
constructing consistent estimators for the target quantity, often
without a thorough analysis of the associated estimation effi-
ciency. In contrast, our estimator would achieve the semipara-
metric efficiency bound when the model misspecification issue
is absent. Interested readers can find a simulation study in
Section 6.2 and further discussion in Section S.11 of the sup-
plementary materials.

The judicious application of semiparametric techniques plays
a pivotal role in our approach. Semiparametric theory was estab-
lished initially in Bickel et al. (1993), and popularized by van der
Laan and Robins (2003) and Tsiatis (2006) in causal inference,
missing data analysis and related fields. Some recent research on
missing data problems that takes advantage of semiparametric
theory includes Zhao and Ma (2022) and Li, Miao, and Tchetgen
(2021), yet none of those is directly relevant to the problem we
address in this article.

3. Model Structure

We consider independent and identically distributed (iid) obser-
vations {Y;,X;},i = 1,...,n; from population P, and iid
observations Xj,j = n; + 1,...,n1 + no from population Q.
To use the information in population P under label shift, we
stack the two random samples together and assemble a new
dataset of size n = n; + ng, which represents a random sample
for an imaginary population consisting of 100 % population
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P members and 100(1 — 7)% population Q members. Here
we define 7 = n;/n. Throughout our derivation, other than
Ep(-) and E4(-), we also compute E(-) that is with respect to
this imaginary population; however, this imaginary population
is only used as an intermediate tool to leverage information
from two heterogeneous populations under label shift. Our final
conclusion will only be made for the target population Q.

For convenience, we introduce a binary indicator R in this
stacked random sample, where R = 1 means the subject is from
population P and R = 0 population Q. Thus, the likelihood of
one observation from the stacked random sample is

1-r
gxnpy ;Y {/g(x,y)qy(y)dy} 7" (1 - )T

1—r
= {gxpy(M} { / g(x>y)p(y)py(y)dy}

(1 —m) . 2
Although g(x, ) and py(y) can be identified from (1), unfortu-
nately gy (y) may not. Below is a simple example illustrating the
possible nonidentifiability of gy (y).

Example 1. Consider a discrete Y with three supporting values
0,1,2 and a discrete X with two supporting values 0, 1. In both
populations P and Q, g(x,y) is givenaspr(X =0 | Y =0) =
1/5pr(X=0|Y=1)=1/8,andpr(X =0 | Y =2) =2/3.
In population P, the marginal distribution of Y, py(y), is given
aspr(Y =0) =5/16,pr(Y = 1) = 1/2,and pr(Y = 2) = 3/16.
In population Q, the marginal distribution of Y, gy (»), is given
aspr(Y = 0) = w, pr(Y =1) = %, and pr(Y =
2) = %, where t € (1/32,25/336). Clearly this satisfies
the label shift assumption, and the marginal distribution of X in
population Q is identifiable since pr(X = 0) = 7/12 is free of t;
however, the marginal distribution of Y in population Q, gy (),
is not identifiable.

The following result demonstrates that the completeness con-
dition on pyx(y,x) would ensure the identifiability. Its proof is
contained in Section S.1 of the supplementary materials.

Lemma 1. If the conditional pdf/pmf pyx(y,x) of popula-
tion P satisfies the completeness condition in the sense that,
for any function h(Y) with finite mean, E,{h(Y) | X} =
f h»pyix(»x)dy = 0 implies h(Y) = 0 almost surely, then
all the unknown components in (2), that is, g(x,y), py(y) and
p (), are identifiable. Subsequently, gy (y) is also identifiable.

The completeness condition in Lemma 1 is mild and has been
widely assumed in instrumental variables, measurement error
models, and econometrics; see, for example, Newey and Powell
(2003), d’'Haultfoeuille (2011), and Hu and Shiu (2018). Because
the condition is imposed on population P and we have random
observations (X;, Y;)’s from population P, it can be examined
and verified in empirical studies. One can easily check that
many commonly used distributions such as exponential families
satisfy the completeness condition. In particular, if the outcome
Y is discrete with finitely many supporting values, Newey and
Powell (2003) pointed out that the completeness condition only
means that the covariate X has a support whose cardinality is no
smaller than that of Y.
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In this article, we focus on estimating a characteristic of
population Q. For better clarity, we will present the results for
6 = Eg(Y) = [yg(x,y)qy(y)dxdy in the main text, then
generalize the results to  that satisfies E,{U(Y,X,0)} = 0 in
the supplementary materials. The main challenge in estimating
0 is caused by the lack of knowledge and data on qy(y), or
equivalently, p(y). Nevertheless, we will construct an estimator
that bypasses the difficulty of assessing p(y). We will show
that we only need a working model of p(y), denoted as p*(y),
that can be flexible. Furthermore, we find that our procedure
can also simultaneously avoid estimating py|x(y, X), in that we
can insert a possibly misspecified working model p} x (y,x).
Thus, our procedure is flexible with respect to both p(y) and
Pyix(»»x)—doubly flexible. This is a property different from
the classic “double robustness” which means that one can only
misspecify one of two models but not both. In contrast, here, we
can misspecify both.

4. Proposed Doubly Flexible Estimation for § = E4(Y)

If the density ratio function p(y) were known, an intuitive
estimator of & = E4(Y) can be created by noticing the relation
0 = Eq(Y) = Ep{p(Y)Y} = E{Rp(Y)Y}/7; that is,

NI QLS
b=— Zl —PUi (3)
i=
We call this estimator shift-dependent since it requires the cor-
rect specification of p(y). Clearly, if a working model p*(y) is
adopted, the corresponding estimator 6* is likely biased.

4.1. General Approach to Estimating 0

The creation of an estimator that is not solely shift-dependent
is possible. To motivate our proposed estimator, we first make
some simple observations via balancing the samples from pop-
ulations P and Q. Recognizing the relation between E,(-), Eq(-)
and E(-), the balancing of Y is E{%p(Y)Y} = Ep{p(V)Y} =
E4(Y) = E (%9). Further, replacing the variable Y above
by an arbitrary function of X, we obtain another balancing
function E {75; p(Y)b(X)} = E {%b(X)}. Certainly, we also

have E (%c) = E (gc) for any constant c. Combining the

above three, we can obtain a family of mean zero functions

%{p(y)y —bX)p() + ¢}
+i{b(x) — 6 —c}: Vb(x),Ve. (4)
1—m

Note that the model in (2) contains three unknown functions
py (), g(x,y) and p(y). For this model, in Section S.2 of the
supplementary materials, we establish that

F = [%{p(y)y —bx)p(y) + ¢} + ;_;;{b(x) —0—c}:

E{bX) |y} =y, VC]

is the family of all influence functions (Bickel et al. 1993; Tsi-
atis 2006) for estimating 6. According to the definition of the
influence function, F is sufficiently comprehensive since it can
generate any regular asymptotically linear estimator of 6. The
requirement E{b(X) | y} = y in the definition of F is pivotal.
Different from the mean zero function in (4), which critically
relies on the correct specification of p(y), the element in F
preserves its zero mean even if p(y) is misspecified as long as an
appropriate b(x) is chosen so that E{b(X) | y} = y. To further
discover a wise choice of such a b(x), we first derive a special
element in F, the efficient influence function ¢, (x, 1, ry), that
corresponds to the semiparametric efficiency bound and that
provides guidance on constructing flexible estimators for 6.

Proposition 1. The efficient influence function ¢.g (X, 1, ry) for 6
is

Qe (X, 7, 1Y)

o
= ;P()’) [)’

B Epla(Y)p(Y) | x) }
Ep(p2(Y) | 5} + /(1 — m)Ey{p(Y) | x}
Ll [ Ep{a(Y)p(Y) | x) - 9}

1—7 [Eplp2() [x}+ 7/ = mEp (o) [x} [

where a(y) satisfies

[ Epla(¥)p(Y) | X}
Ep{p?(Y) | X} + /(1 — m)Ep{p(Y) | X}

Iy} =y (5

The detailed derivation of Proposition 1 is provided in Sec-
tion S.3 of the supplementary materials. Clearly, the unique b(x)
that leads to the efficient influence function is

Ep{a(Y)p(Y) | x}
Ep{p?(Y) | x} +7/(1 — m)Ep{p(Y) | x}
Egla(Y) | X}
Egfo(V) | X} + /(1 —7)

b(x) =

In principle, if both p(y) and b(x) were known, we can estimate
6 by solving the estimating equation Y ., ¢ef (Xi, 75> 7i¥i) = 0,
which leads to

o 1 <& 1 -
0= - Z [;p()’i){)/i —b(x)} +

i=1

| ©
1—-m

However, the estimator 6 is impractical because of the following
three obstacles. First, as we pointed out, p () is almost infeasible
to estimate based on the observed data. Second, Ep(- | x) is
unknown and needs to be estimated. Though various off-the-
shelf machine learning or nonparametric regression methods
are available, when the dimension of x is high, their perfor-
mances are not always satisfactory and their computation can
be expensive. The third obstacle lies in solving a(y) from the
integral equation (5), which requires g(x, y) to evaluate its left
hand side. Estimating conditional density g(x, y) could be even
more difficult than estimating E,(- | x), due to the curse of
dimensionality.

Our proposed estimator will bypass the challenging task of
estimating p(y). Throughout the estimation procedure, only a
working model p*(y) is needed, which can be arbitrarily mis-
specified hence is flexible. This turns out achievable through



careful manipulation of other components of the efficient influ-
ence function. Our proposed estimator can also avoid estimating
E,(- | x) even though we can do it if we decide to. This means
that we can misspecify the conditional density model pyx (y,x),
encoded as py x (, X), while we also misspecify the density ratio
p(y). We call such an estimation procedure doubly flexible.
To overcome the third obstacle, we recognize that g(x, y) only
affects quantities of the form E(- | y), which are one dimensional
regression problems hence can be easily solved via the most
basic nonparametric regression procedure such as the Nadaraya-
Watson estimator.

In a nutshell, a unique feature of our work is the tolerance
of both p*(y) and p’}‘,lx(y, x), which can be simultaneously mis-
specified. We thus name the procedure doubly flexible.

4.2. Proposed Estimator 0: Doubly Flexible in p*(y) and
Pyix Vs %)

Interestingly and critically, we discover that, even when both
p*(y) and p§/|x(3’> x) are misspecified, the corresponding estima-

tor following the implementation of 0 in (6) is still consistent
for 6. We summarize this result in Proposition 2 and give its
proof in Section S.4 of the supplementary materials. Below,
we use superscripts * and * to indicate that the corresponding
quantities are calculated based on the working models p* (y) and

P?\ x (> %), respectively.

Proposition 2. Define 6, =
—l—i%;"b** (xi)], where

LS [Zp* iy — b** (x))

Ef{a™ () p*(Y) | x}
, and
Ep{p*(Y) | x} + /(1 — m)E;{p*(Y) | x}
a™*(y) is a solution to
Ef{a™* (M) p*(Y) | X}
Ep{p*2(Y) | X} + /(1 — m)E;{p*(Y) | X}

b (x) =

Iy} =y (7)

Then é\t is a consistent estimator of 6.

In Proposition 2, the subscript ; in é\t indicates the conditional
density g(x, y) in (7) is the truth. In reality, note that g(x, y) only
involves in the evaluation of the conditional expectation E(- | y)
on the left hand side of (7). This is a one dimensional regres-
sion problem and can be easily estimated by many basic non-
parametric regression procedures such as the Nadaraya-Watson
estimator. Specifically, we approximate the integral equation (7)

by
)]

s Epla™ (V)p* (V) | X)
- [E;{p*2<Y> X} + 7/ =B (0" () [ X)
L Epla™ ()p* (V) | x)
= L B0 [x + /0 - OB [
1iKn(y — yi)
i1 1iKn(y = )

- [awpr0y

i=1
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P’{qx(t) X;)
X
Ep(p™2(Y) | ) + /(1 — ME3(p*(Y) | x)
riKn(y — yi)

Y1 1Ky = )
where K;(-) = K(-/h)/h, K(-) is a kernel function and h is
a bandwidth, with conditions imposed later in our theoretical
investigation. Equation (8) is a Fredholm integral equation of the
first type, which is ill-posed. Numerical methods to provide sta-
ble and reliable solutions have been well studied in the literature
(Hansen 1992). In our numerical implementations in Sections 6
and 7, we use Landweber’s iterative method (Landweber 1951)
that is well-known to produce a convergent solution. We pro-
vide those technical details in Section S.5 of the supplementary

materials. We summarize the complete estimation procedure in
Algorithm 1.

(8)

Algorithm 1 Proposed Estimator 0: Doubly Flexible in p*(y)
and pyx (¥, X)
Input: data from population P: (y;,x;,r;i = 1),i = 1,. ..
data from population Q: (xj,7; = 0),j = n; + 1,...
value 7 = n;/n.
do
(a) adopt a working model for p(y), denoted as p*(y);
(b) adopt a workingAmodel for pyx(y,x), denoted as
P§|x()’7 X) or P?\x()” x8);
() compute w; = [E5(p™(V) | xi} + 7/(1 = m)E}{p*(Y) |
x| lfori=1,...,n
(d) obtain @**(-) by solving the integral equation (8);
(e) compute b** (x;) = wiE; [@*(Y)p*(Y) | x;} fori =
1,...,m
(f) obtain 0 as

> 11,
, 1, and

a 1o Ti & Tk 1 - TiTsen o
0=- Z [;P Oy — 0™ (x)} + :b (Xl)i| . 9)

i=1

S

Output: 0.

Remark 1. Instep (a) of Algorithm 1, one may adopt an arbitrary
p*(y) as long as it is a ratio of two pdfs/pmfs and satisfies
E{Rp*(Y)} = m. The most convenient choice is p*(y) = 1
on the support of py(y). If one desires to explore more com-
plex alternatives to numerically investigate the impact of the
choice on the resulting estimator, we suggest to first adopt some
positive function 5 (y), for example, p(y) = exp(a+ by) on
the support of py(y), then normalize it by multiplying ¢* =
a/{in 130 rip(y)), thatis, p*(y) = ¢*p(y). This is a valid
choice and was used in our simulation experiments.

Remark 2. In step (b) of Algorithm 1, one may adopt a
completely specified pyx(y,X) or a partially specified model
PYx(>% &) with an unknown parameter . If the latter case,
a natural strategy is to estimate ¢ first based on the observed
samples from P via, say MLE, to obtain Z, then use Pyx (s )
to replace the completely fixed Pyx(»x). In fact, we will show
that the action of estimating ¢ has no consequence in terms of
estimating 6. This is an important discovery, because this means
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one can always include a reasonably flexible model py, x (X, £)
so that it has a good chance of approximating the true py;x (¥, x).
If pyix(3,x) = p’{,‘x(y, x, §) for certain ¢, then even though
the additional parameter ¢ causes extra work, the reward is
that 6 can be estimated as efficiently as if we knew pyx(y,x)
completely. In all the subsequent steps, we replace py x (X) by
PYxOn% ) for its generality, bearing in mind that PYxOn% 7)
degenerates to py,x (¥, x) when the parameter ¢ vanishes.

We now study the theoretical properties of 6 defined in (9).
The main technical challenge is quantifying the gap between the
solutions for the integral equations (7) and (8), encoded as a**(y)
and @**(y), respectively. To facilitate the derivation, we define
the linear operator

L™ @)
o E3{a(Y)p*(Y) | X)
= PO o () 1 X) + /(= 7)E

po*(Y) | X} | :|
= /u(t)u**(t,y)dt, where

™ (t,y) = py(y)
/ p*Opyx(H:X%8)
Ep{0*2(Y) | x} +7/(1 — m)Ep{p*(Y) | x}

Apparently, a**(y) satisfies £L**(a™)(y) = v(y), where v(y) =
Py (»)y. Similarly, @**(y) satisfies E**(x“)(y) =7(y), where

g(x,y)dx.

L@ ) =n;! Z riKn(y — i)

i=1
E{a(Y)p*(Y) | xi» 2}
Ep{p*2(Y) | xi, 0} + /(1 — T)E;{p*(Y) | Xuc}

n
V) =ny! Z vin() = nt Y rkn(y — yi)y.
i=1 i=1
We first establish in Lemma 2 that given regularity conditions
(A1)-(A4), the linear operator £**, as well as its inverse, is well
behaved.

(A1) The working model p}‘x(y, X) or p}lx(y, X, E) satisfies the
completeness condition stated in Lemma 1.

(A2) p*(y) > & for all y on the support of py(y) where § is a
positive constant, and p*(y) is twice differentiable and its
derivative is bounded.

(A3) The function u**(t,y) is bounded and has bounded
derivatives with respect to t and y on its support. The
function a** (y) in (7) is bounded.

(A4) The support sets of g(x, y), py (), p*(y) are compact.

Lemma 2. Let ||la]lcc = sup,, la(y)|. Under Conditions (Al)-
(A4), the linear operator L** : L°°(R) — L°°(R) is invertible. In
addition, there exist positive finite constants c1, ¢, such that for
alla(y) € L(R), (1) cillalloo < 1L (@ lloo < c2llalloo, and (ii)
1L (@) loo < 1 Mllallso-

The proof of Lemma 2 is in Section S.6 of the supplementary
materials. To analyze the asymptotic normality of the estimator
6, we add two more regularity conditions on the kernel function
and the bandwidth .

(A5) The kernel function K(-) > 0 is symmetric, bounded, and
twice differentiable with bounded first derivative. It has
support on (—1, 1) and satisfies fil K(Hdt = 1.

(A6) The bandwidth h satisfies nj(logn;)~*h*> — oo and
nznl_lh4 — 0.

Condition (A5) is standard for kernel functions. Note that we

only need a one-dimensional kernel function K(-) in our esti-

mation procedure. Condition (A6) specifies the requirement of
the bandwidth h associated with kernel function K(-). In general
weneedbothh~! = o{n}/z(log n)2}andh = o(n_1/2n1/4). If

7 is further assumed to be bounded away from zero, the second

. —1/4 .
requirement becomes i = o(n; /) and one can simply choose

h = ny '3 to meet both requirements. We are now ready to

present the asymptotic normality of the estimator 6 below. Its

proofis contained in Section S.7 of the supplementary materials.

Theorem 1. Assume E satisfies ||E —¢&ll2 = Op(ng 1/2)

and E;{HSE(Y, x,¢)|l2 | x} is bounded, where S* 0,x,¢) =

0 logp}lx(y, x,£)/0¢. For any choice ofp}‘x(y, X, I;) and p* (),
under Conditions (A1)-(A6),

V@ —6) > N(0,02)

in distribution as n; — oo, where 002 equals

7=
[ Es{a** (V)p*(Y) | X) }

var(fqﬁ (XRRY)—i—i

E5{0*2(Y) | X} + /(1 — mEp{p*(Y) | X}

{p*(Y) — p(Y)}> .

In Theorem 1, the only requirement on E is ||E -l =
Op(nfl/ 2). Thus, the asymptotic variance o£ N (E — ¢) does
not affect the result in Theorem 1 as long as ¢ is ,/#; -consistent
for ¢. This is easily achievable by constructing a standard MLE or
moment based estimator for ¢ in the regression model of Y given
X, pyx(7»%,¢), based on the n; observations from population
‘P. Also, Theorem 1 indicates that, instead of solving the exact
equation (7), solving the approximate equation (8) does not
affect 6 in terms of its leading order asymptotic property. In
other words, if one could solve (7) for a**(-) and construct
the corresponding estimator, it would have exactly the same
asymptotic distribution as 6 here, as long as the kernel function
K(-) and the bandwidth h are appropriately chosen.

In addition, it is clear that the estimator @ is J/n1-consistent,
even if # goes to infinity much faster than n; does. The intuition
is that when we only have #n; complete observations in this prob-
lem, although a much larger ny can help us better understand the
label shift mechanism, it cannot improve the convergence rate of
0.

Finally, Theorem 1 also indicates that, when ¢ is a /-
consistent estimator for £ such that pyy (%, &) = pyix(y,X),
and p*(y) is correctly specified as p(y), the corresponding esti-
mator 6 achieves the semiparametric efficiency bound and is the
efficient estimator. We state this result formally as Corollary 1.
Since it is a special case of Theorem 1, its proof is omitted.



Corollary 1. Assume E satisfies ||E — ¢l = Op(nl_l/z) and

ES{1IS7 (Y, x, &) ll2 | x} is bounded. If py x (v, X, &) = pyix(y>X)
and p*(y) = p(y), under Conditions (A1)-(A6),

V11 Beft — 0) — N[O, var{y/7 s (X, R, RY)}]

in distribution as n; — oo.

5. Alternative Estimator 8: Singly Flexible in p*(y)

Because the assessment of Ej (- | x) only relies on the observed
data, instead of adopting an arbitrary known model Ef(- | x)
or parametric model Ef(- | X,{), one might be willing to
estimate E,(- | x) in a model free fashion and replace E;(~ |
x) in the estimation procedure presented in Section 4.2 by a
well-behaved estimator Ep( | x). Here we consider a general
estimator Ep( | x) which has convergence rate faster than n; -4
This rate is achievable for many nonparametric regression or
machine learning algorithms (Chernozhukov et al. 2018), see for
example, Chen and White (1999) for a class of neural network
models, Wager and Walther (2015) for a class of regression trees
and random forests, and Bickel, Ritov, and Tsybakov (2009),
Bithlmann and Van De Geer (2011), Belloni and Chernozhukov
(2011), and Belloni and Chernozhukov (2013) for a variety of
sparse models. Meanwhile, we still do not aim to estimate o (y)
since we do not have the Y-data in population Q. We denote the
corresponding estimator 6 and call it singly flexible because of
its flexibility in using a working model p*(y).

The idea behind the estimator 6 is similar to 8, therefore, we
only emphasize the difference from Section 4.2. Similar to (7),
we define a*(y) as the solution of

E[ Ep{a*(Y)p*(Y) | X}

Ep{0*2(Y) | X} + /(1 — m)Ep{p*(Y) | X}

Equivalently, a*(y) satisfies L*(a*)(y) = v(y), where
L*(a)(y) = py(»)E

[ Ep{a(Y)p*(Y) | X} | }
Ep{p*2(Y) | X} + /(1 — m)Ep{p*(Y) | X}

Iy} =y. (10)

= /a(t)u*(t,y)dt, and

u*(t,y) = py(»)

/ p*Opyx(t,x)
Ep{p*2(Y) | x} 4+ /(1 — m)E,{p*(Y) | x}

g(x, y)dx.

Using the estimator Ep('
equation (10) as

| x), we approximate the integral

- Ep{a*(Mp*(V) | X) ly
Ep{o*2(Y) | X} + /(1 = 1)Bplp* (V) | X}

i Epla*(V)p*(Y) | xi)
~ Ep{p*2(Y) | xi} + /(1 — MEy{p* (V) | xi}
riKp(y — yi)

(11)

S Ky = )
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and we write @*(p) as the solution to £*(@*)(y) = v(y), where

L @) =ny" Y riknly — i)
i=1
Epfa(¥)p*(¥) | xi)
Ep{p*Z(Y) | x;} + 7/ (1 — 1)Ep{p*(Y) | i}

We summarize the algorithm for computing the estimator 6
below.

Algorithm 2 Alternative Estimator 6: Single Flexible in p*(y)

Input: data from population P: (y;,x;, s = 1),i = 1,..., 11,
data from population Q: X1 =0),j=n+1,...,n, and
value wr = n;/n.

do

(a) adopt a working model for p(y), denoted as p*(y);

(b) adopt a nonparametric or machine learning algorithm for
estimating Ep( | x), denoted as Ep( | x);

(c) compute W; = [Ep{p*2(Y) | xi} + /(1 — 1)Ep{p*(Y) |
;)] lfori=1,...,n

(d) obtain a* *(-) by solvmg the integral equation (11);

(e) compute b*(xl) = W,EP{N(Y),O (V) | xj}fori=1,.

(f) obtain g as

~ 1 " ri * % ) l—ri/\* )
0= o Z |:;P Olyi — b (x)} + mb (Xz)i| . (12)

i=1

Output: 6.

To develop the asymptotic normality of the estimator 6,
instead of Condition (A3), we need

(A7) The function u*(t, y) is bounded and has bounded deriva-
tives with respect to ¢ and y on its support. The function
a*(y) in (10) is bounded.

We present Theorem 2, with its proof contained in Section S.8
of the supplementary materials.

Theorem 2. Assume Ep satisfies |Ep{a(Y) | x} — Ep{a(Y) |
x} = op(nl_l/ 4) for any bounded function a(y). For any choice
of p*(y), under Conditions (A2), (A4)-(A7), /ni1 (6 — 0) —
N(0,02) in distribution as n; — oo, where o equals

N R
var (ﬁqﬁeﬁ(x, R,RY) + ﬁ

[ Ep{a*(N)p*(V) | X} B Y]
Ep(p2(Y) | X} +7/(1 = m)Bp{p* (V) | X]

{p™(Y) — p(Y)}> .

It is direct from Theorem 2 that when the posited model
p* () is correctly specified, the estimator 6 becomes the efficient
estimator for 6. We point out this consequence as Corollary 2.

Corollary 2. Assumeﬁp satisfies |Ep{a(Y) | x}—Ep{a(Y) | x}| =
0p (nl_l/4) for any bounded function a(y). If p*(y) = p(y), under
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Conditions (A2), (A4)-(A7),
V11 (Oet — 0) — N[O, var(y/7 gt (X, R, RY)}]

in distribution as n; — oo.

Last but not least, Sections 4 and 5 here only present the
results for estimating & = E4(Y). The whole story can be
extended to a general parameter 6 such that E,{U(X,Y,0)} =
0, and the results are stated in Sections S.9 and S.10 of the
supplementary materials. In our numerical studies in Sections 6
and 7, we analyze both E4(Y) and the tth quantile of population
Q, defined as 7,,(Y) = inf [y :Eg{I(Y < »)} > t]|, where 0 <
t < 1. This corresponds to E,; [nt {Y - rq,t(Y)}]] = 0 where
ne(r)y =t—I(r <0).

6. Simulation Studies
6.1. Continuous Outcome

We conduct simulation studies to assess the finite sample per-
formance of our proposed methods. We report the results for
the mean E;(Y) and the median 7,405(Y) of the outcome Y in
population Q.

We first generate a binary indicator R;,i = 1,...,n from
the Bernoulli distribution with probability 0.5, and record n; =
Yi,ri, m = mny/n. Then we generate Y; from N(0,1) if
R; = 1 and from N(1,1) if R; = 0. The X | Y distribu-
tion is generated from a three-dimensional normal with mean
(—=0.5,0.5,1)TY; and covariance I, the identity matrix. This
implies, E4(Y) = 1, 7405 = 1 and the true density ratio model
p(y) = exp(—0.5 + y). One can derive that py|x (y, X, ¢) follows
normal with mean (1,x7)8 where 8 = (0,—0.2,0.2,0.4)T and
variance 02 = 0.4. Here we denote ¢ = (ﬂT,OZ)T.

We use the following misspecified working models.
We define p*(y) = c*exp(—0.7+1.2y), where ¢* =
m/{n 'YL riexp(—0.7+1.2y;)} in order to satisfy
E{Rp*(Y)} = m. For the working model p}‘x, we define
X* = [x,exp(x2/2),x3/{1 + exp(x2)} + 10]* and define
p}‘x(y, x*,£*) as the normal distribution with mean (1,x*7)g*
where B* = (—7.000,—0.223,0.363,0.664)" and variance
0*2 = 0.449. The parameter £* = (B*T,0*H)T is obtained by
minimizing the Kullback-Leibler distance Dy (py|x |l p;lx).

We implement the following seven estimators:

1. shift-dependent™: 6 in (3) with Pr(»);
2. doubly-flexible*: 6 in (9) with p*(y)
Py x (%, £*), theoretically analyzed in Theorem 1;

and

3. singly-flexible™: 6 in (12) with p*(y), theoretically
analyzed in Theorem 2;

4. shift-dependent?: 6 in (3) with correct o();

5. doubly-flexiblel: @ff with correct p(y) and
Pyx(y, X, §), theoretically analyzed in Corollary 1;

6. singly-flexible’: f4 with correct p(y), theoretically
analyzed in Corollary 2; 1

n —1;

7. oracle: the \/ng-consistent estimator % Yo ==V

Note that the last four estimators (shown as “gray” in Figure 1)
are unrealistic since they either use the unknown models p(y)
and py|x (¥, X, ¢) or the Y-data in population Q.

In implementing estimators doubly-flexible™,
singly-flexible®, doubly-flexible’ and
singly-flexible®, we solve the integral equations (8)
and (11) using the Nadaraya-Watson estimator for E(- | y)
with Gaussian kernel and bandwidth h = nfl/ ? that is
discussed in Condition (A6). Numerically, the integrations
are approximated by the Gauss-Legendre quadrature with 50
points on the interval [—5,5] and the integral equations are
evaluated at y;,i = 1,...,n;. In addition, for estimators
singly-flexible* and singly-flexible®, we
estimate E,(- | x) using the Nadaraya-Watson estimator

based on the product Gaussian kernel with bandwidth 2.5n1_1/ 7

where the order comes from the optimal bandwidth nl_l/ +d)

with d the dimensionality of covariate X. See Section S.5 of the
supplementary materials for technical details on the numerical
implementation.

Based on 1000 simulation replicates, Figure 1 illustrates
the boxplots of the estimates for the mean and the median.
With the misspecified working model p*(y), the estimator
shift-dependent™ is biased; in contrast, the proposed esti-
mators doubly-flexible™ and singly-flexible®™
are both unbiased. When the correct model p(y) is used,
not surprisingly, all of the estimators shift-dependent?,
doubly-flexible? and singly-flexible? are unbi-
ased. It is also clear that the two proposed flexible estimators
are always more efficient than the shift-dependent estimator no
matter the correct model p(y) is used or not.

To further demonstrate the efficiency comparison and the
inference results, in Table 1, we report the mean squared error
(MSE), the empirical bias (Bias), the empirical standard error
(SE), the average of estimated standard error (§E), and the
empirical coverage at 95% confidence level (CI), for each of
the estimators. The estimator shift-dependent™® has an
incorrect coverage (over-coverage for mean estimation and
under-coverage for median estimation) because of its severe
bias. This issue is not mitigated at all or becomes even worse
in Table 1 when we increase the size of the stacked ran-
dom sample from 500 to 1000. On the contrary, the esti-
mators doubly-flexible™ and singly-flexible®
are correctly covered. Though there is no theoretical justifi-
cation, doubly-flexible* is slightly less efficient than
singly-flexible™ in this setting. This indicates that the
effort of correctly estimating E,(- | x) pays off in the sense
of improving the estimation efficiency. With the correct p(y)
model used, each of the estimators doubly-flexible®
and singly-flexible’ is more efficient than its counter-
part doubly-flexible™ and singly-flexible®. The
J/No-consistent estimator oracle is the most efficient one in
this simulation setting.

6.2. Binary Outcome

We conduct an additional simulation study to compare our
proposed methods to existing methods in binary classification
case under the correct specification of p and pyx. We report the
results for estimation of E;(Y), the mean of the outcome Y in
population Q. For comparision, we implement the following six
estimators:
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(b) mean, n = 1000

shift—-dependent* -
doubly-flexible** -
singly—flexible* -
shift—-dependent® -
doubly—flexible° -

singly—flexible ° -

oracle -
0 2
(d) median, n = 1000
shift-dependent* - o—H]]—.u
doubly—flexible™ - —J—=e
singly—flexible* - —[D—O
shift-dependent® - O—m—d o
doubly—flexible° -
singly—flexible° -
oracle -
0 1 2

Figure 1. Boxplots of estimates in the simulation study in Section 6.1. Dashed line: the true estimand.

1. shift-dependent®: 6 in (3) with correct p(y);

2. BBSE: Black Box Shift Estimation by Lipton, Wang, and
Smola (2018);

3. RLLS: Regularized Learning under Label Shifts by Azizzade-
nesheli et al. (2019);

4. doubly-flexible®: é;ff with correct p(y)
Py1x (X, ), theoretically analyzed in Corollary 1;

5. singly-flexible’: G4 with correct p(y), theoretically
analyzed in Corollary 2;

. . . 1 n  1-ri
6. oracle: the \/no-consistent estimator - » i | ;—Ly;.

and

We refer the readers to Section S.11 of the supplementary mate-
rials for details on the data generating process and the imple-
mentation of the estimators.

To demonstrate the efficiency comparison, in Table 2,
we report the mean squared error (MSE), the empirical
bias (Bias), the empirical standard error (SE), and the
asymptotic relative efficiency (ARE, the ratio of SE of each
estimator to doubly-flexible®) from 1000 simulation
replicates. Agreeing with the results in Corollaries 1 and
2, our proposed estimators doubly-flexible® and
singly-flexible? performed more efficiently than
the existing methods BBSE and RLLS in terms of MSE.
ARE further indicates that doubly-flexible®’ was
about 1.5 times more efficient than BBSE and RLLS in
terms of standard error. It is also worthwhile to note that
doubly-flexible’and singly-flexible? performed
similarly to each other, suggesting that both estimators achieved
the semiparametric efficiency. In addition, in this simulation
setting, we can also observe that doubly-flexible’ and
singly-flexible® were almost as efficient as oracle,

while the performances of BBSE and RLLS are similar to or
worse than shift —dependento.

7. Data Application

We now illustrate the numerical performance of our proposed
method through analyzing the Medical Information Mart for
Intensive Care III (MIMIC-III), an openly available electronic
health records database, developed by the MIT Lab for Com-
putational Physiology (Johnson et al. 2016). It comprises dei-
dentified health-related records including demographics, vital
signs, laboratory test and medications, for 46,520 patients who
admitted to the intensive care unit of the Beth Israel Deaconess
Medical Center between 2001 and 2012.

The outcome of interest Y in our analysis is the sequential
organ failure assessment (SOFA) score (Singer et al. 2016), used
to track a patient’s status during the stay in an intensive care unit
to determine the extent of a patient’s organ function or rate of
failure. The score is based on six different sub-scores, with one
of each for the respiratory, cardiovascular, hepatic, coagulation,
renal and neurological systems. The SOFA score ranges from
0 (best) to 24 (worst). We include 16 covariates from either
chart events (6 variables, diastolic blood pressure, systolic blood
pressure, blood glucose, respiratory rate per minute, and two
measures from body temperature) or laboratory tests (10 vari-
ables, peripheral caillary oxygen saturation, two measures from
each of hematocrit level, platelets count and red blood cell count,
and three measures from blood urea nitrogen). We choose these
covariates through assessing whether the absolute correlation
with the outcome Y is greater than 0.2 and whether the missing
rate is less than 1%. In our analysis, we only include the first
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Table 1. Summary of estimation results in the simulation study in Section 6.1.

(a) mean R
n Estimator ) Py Xy, %) MSE Bias SE SE c
500 shift-dependent™ p*) - 0.0699 0.1840 0.1899 0.2791 1.000
doubly-flexible** p*() p’/;lx(y, X&) 0.0173 —0.0120 0.1311 0.1287 0.943
singly-flexible™ p*y) Ep(- | %) 0.0162 —0.0201 0.1258 0.1230 0.941
shift—dependento py) - 0.0533 0.0049 0.2309 0.2119 0.899
doubly-flexible® () PYx(, % ©) 0.0153 —0.0231 0.1214 0.1212 0.941
singly-flexible? py) Ep(- [ %) 0.0138 —0.0221 0.1155 0.1169 0.939
oracle - - 0.0040 0.0006 0.0636 0.0633 0.943
1000 shift-dependent™ p*(y) - 0.0561 0.1906 0.1406 0.2077 0.999
doubly-flexible** p*) pzlx(y, X&) 0.0085 0.0013 0.0922 0.0912 0.955
singly-flexible™ p*y) Ep(- | %) 0.0081 —0.0031 0.0899 0.0850 0.952
shift-dependent? Py - 0.0275 0.0024 0.1660 0.1533 0.927
doubly-flexible® p() pyx(y, % &) 0.0075 —0.0125 0.0856 0.0861 0.958
singly—ﬂexible0 ) Ep(- | %) 0.0069 —0.0094 0.0824 0.0827 0.955
oracle - - 0.0020 0.0008 0.0451 0.0447 0.945
(b) median R
n Estimator P ) Py Xy, %) MSE Bias SE SE c
500 shift-dependent™ p*) - 0.0695 0.2025 0.1687 0.1547 0.802
doubly-flexible** p*(y) phx(y, X, &) 0.0368 —0.0072 0.1918 0.1764 0.940
singly-flexible* p*(y) Ep(- | %) 0.0211 0.0024 0.1453 0.1390 0.941
shit‘t—dependent0 ) - 0.0178 0.0011 0.1336 0.1286 0.947
doubly-flexible? () PYXY, % E) 0.0093 —0.0033 0.0964 0.0950 0.951
singly-flexible? y26%) Ep(- [ %) 0.0071 —0.0162 0.0827 0.0881 0.956
oracle - - 0.0064 —0.0020 0.0799 0.0821 0.946
1000 shift-dependent™ p*(y) - 0.0554 0.2018 0.1210 0.1104 0.560
doubly-flexible** p*y) pax(y, X&) 0.0229 —0.0013 0.1515 0.1444 0.943
singly-flexible™ p*y) Ep(- | %) 0.0128 —0.0023 0.1130 0.1124 0.954
shift-dependent? ) - 0.0091 0.0005 0.0955 0.0915 0.934
doubly-flexible® () PYXY % E) 0.0047 0.0000 0.0688 0.0669 0.954
singly—ﬂexible0 ) Ep(- | %) 0.0036 —0.0098 0.0594 0.0625 0.948
oracle - - 0.0031 0.0004 0.0558 0.0578 0.959
Table 2. Summary of estimation results in the simulation study in Section 6.2.
n Estimator P Py|x MSE Bias SE ARE
200 shift—dependentO ] - 0.0059 —0.0007 0.0769 1.5135
BBSE - Py (. % §) 0.0060 —0.0048 0.0775 1.5250
RLLS - PYX(. % 8) 0.0060 —0.0048 0.0775 15250
doubly—ﬂexibleo P pyx(y, % &) 0.0026 —0.0039 0.0508 1
singly—ﬂexibleO ] Ep(- 1 %) 0.0025 —0.0001 0.0503 0.9899
oracle - - 0.0025 0.0014 0.0499 0.9824
400 shift—dependentO o - 0.0026 —0.0011 0.0514 1.4920
BBSE - pyx(, % §) 0.0033 —0.0041 0.0573 1.6635
RLLS - pYXY, % &) 0.0033 —0.0041 0.0573 1.6635
doubly-flexible? P py (. % &) 0.0012 —0.0026 0.0345 1
singly-flexible® P Ep(- 1 %) 0.0014 —0.0013 0.0372 1.0795
oracle - - 0.0012 —0.0005 0.0347 1.0062

admission if the patient was admitted to the intensive care unit
more than once. We also exclude patients whose outcome Y is
greater than or equal to 20, whose age is greater than or equal
to 65, and who has missing values in any of the covariates. This
results in a total of n = 16,691 records.

In our analysis, we define the population P as patients with
private, goverment, and self-pay insurances (R = 1,n; =
11,695), and population Q as patients whose insurance type
is either Medicaid or Medicare (R = 0,n9 = 4,996). The
label shift assumption that the conditional distribution of X
given Y remains the same can be tested via the conditional

independence of X and R given Y. In our analysis, we test the
conditional independence between R and each of covariates by
the invariant environment prediction test (Heinze-Deml, Peters,
and Meinshausen 2018) in R package CondIndTests, and the
p-values range from 0.460 to 0.628. This indicates the label shift
assumption is indeed sensible in our analysis. We first compute
the sample mean (3.7409) and sample tth quantiles (1,1,3,5,8 for
t = (10,25,50,75,90)%) of SOFA scores among patients whose
insurance type is either Medicaid or Medicare. We regard these
estimates as oracle in order to compare with our proposed
methods.



Table 3. Estimation results in the data application.
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(a) mean

Estimator p) py (¥, %) Estimate diff.withoracle SE cl
shift-dependent™® p*(y) - 4.0529 0.3120 0.0593 [3.9367,4.1691]
doubly-flexible** P*(¥) Py ) 3.7579 0.0170 0.0803 [3.6005, 3.9153]
singly-flexible* p*(y) Ep(- |1 %) 3.7542 0.0133 0.0496 [3.6570, 3.8514]
oracle - - 3.7409 - 0.0405 [3.6616, 3.8202]

(b) quantiles R

T Estimator py) pyx(y, %) Estimate diff .withoracle SE Cl
10% shift-dependent™ p*() - 1.0000 0.0000 0.0102 [0.9801, 1.0199]
doubly-flexible** p*(y) pz,ix(y, X $) 0.9998 —0.0002 0.0095 [0.9812, 1.0185]
singly-flexible* 2*(y) Ep(- 1 %) 0.9998 —0.0002 0.0099 [0.9803, 1.0192]
oracle - - 1.0000 - 0.0218 [0.9572, 1.0428]
25% shift-dependent™ o*(y) - 1.9995 0.9995 0.0249 [1.9508, 2.0483]
doubly-flexible** p*(y) phx % ¢) 1.0002 0.0002 0.0276 [0.9460, 1.0543]
singly-flexible® p*(y) Ep(- 1 %) 1.0004 0.0004 0.0196 [0.9620, 1.0389]
oracle - - 1.0000 - 0.0315 [0.9383, 1.0617]
50% shift-dependent™ o*(y) - 3.0002 0.0002 0.0408 [2.9203, 3.0801]
doubly-flexible** p*() phx %) 3.0001 0.0001 0.0333 [2.9348, 3.0654]
singly-flexible* p*(y) Ep(- 1 %) 3.0005 0.0005 0.0334 [2.9350, 3.0659]
oracle - - 3.0000 - 0.0550 [2.8923, 3.1077]
75% shift-dependent™ p*) - 5.9999 0.9999 0.0742 [5.8544, 6.1454]
doubly-flexible** p*(y) phx W, %) 5.0001 0.0001 0.0759 [4.8512,5.1489]
singly-flexible* o*(y) Ep(- | %) 5.0001 0.0001 0.0381 [4.9254, 5.0748]
oracle - - 5.0000 - 0.0591 [4.8842,5.1158]
90% shift-dependent™ p*) - 8.9999 0.9999 0.1380 [8.7295,9.2703]
doubly-flexible** p*(y) phx v, x¢) 8.0004 0.0004 0.1003 [7.8039, 8.1969]
singly-flexible* o*(Y) Ep(- | %) 8.0004 0.0004 0.0638 [7.8754, 8.1253]
oracle - - 8.0000 - 0.1093 [7.7858,8.2142]

To identify a reasonable working model p*(y), we model
the data Y + 0.001 from population P as a parametric gamma
distribution f (y, &, 8) = I'(a) "' B7%y* ! exp(—y/B) with I'()
the I'-function, the shape parameter ¢ > 0 and the scale
parameter 8 > 0. We estimate the unknown parameters o and
B as @ and Eusing the MLE. For the Y-data in population O,
we assume Y + 0.001 follows a similar gamma distribution with
shape parameter @ + 1 and scale parameter B. Hence, we use the
working model

_ f(y+0.001,@ +1,B)
f(y+0.001,@,8)

P*(y)

To implement the estimator doubly-flexible™**, we
impose a parametric model py x (y, X, {) by regressing Y +0.001
on X as a generalized linear model with gamma distribution,
and estimate ¢ using the MLE. To implement the estimator
singly-flexible®, we identify the first three principal
components from the 16 covariates, and then estimate E, (- | x)
as a function of those three principal components using the
Nadaraya-Watson estimator based on the product Gaussian
kernel with bandwidth 0.5n1_1/ 7. To solve the corresponding
integral equations, similar to Section 6.1, we approximate
E(- | y) by its Nadaraya-Watson estimator with the Gaussian
kernel and bandwidth h = nl_l/ > In addition, for numerical
implementation, the integration is approximated at 50 equally-
spaced points on the interval [0, 19], and the integral equations
are evaluated at each supporting point of {y; : i = 1,...,m}.
See Section S.5 of the supplementary materials for technical
details on the implementation.

The results are summarized in Table 3. The estimator
shift-dependent™® that relies on a misspecified model
p*(y) severely over-estimates the quantities compared to the
oracle estimate, in most of the scenarios including estimating
the mean, 25%, 75%, and 90% quantiles. As a consequence, the
oracle estimate cannot be covered by the confidence intervals.
In contrast, the proposed estimators doubly-flexible**
and singly-flexible®, although also rely on p*(y), pro-
vide almost identical estimates as oracle. Accordingly, the
confidence intervals from the proposed methods all cover the
oracle estimate. In these scenarios, singly-flexible* is
more efficient than doubly-flexible™*, which echoes our
findings in Section 6.

When estimating 10% and 50% quantiles, we find that
shift-dependent® gives almost the same estimate as
oracle. It might be plausible that the difference between p* (y)
and the true p(y) is minor for estimating these two quantities.
Nevertheless, the proposed estimators doubly-flexible**
and singly-flexible™ are still more efficient than the
estimator shift-dependent®.

Finally it is interesting to observe that, the estimator
oracle is even less efficient than the proposed estimators
doubly-flexible* and singly-flexible®, in esti-
mating all of the quantiles. This is because oracle is (/no-
consistent whereas the two proposed estimators are both /n;-
consistent. In this application, #; is 2.34 times greater than n,
which might result in the situation that the oracle estimate
being less efficient. In Section 6, we also considered situations
that n; is much larger than ny and similar phenomenon was
observed as well, with detailed results omitted.
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8. Conclusion

In this article, we estimate a characteristic of a target population
Q, via exploiting the data and information from a different but
relevant population P, under the label shift assumption. Dif-
ferent from most existing literatures, our proposal is devised to
accommodate both classification and regression problems. We
primarily propose the doubly flexible estimate, whose unique
feature is to simultaneously allow both models to be misspecified
thus is flexible: the density ratio model p(y) that governs the
label shift mechanism, and the conditional distribution model
pyx (¥, x) of population P. While the estimation of the latter can
be done via off-the-shelf procedures sometimes, it often faces
curse of dimensionality or computational challenges. Further,
estimating p(y) is even more difficult because the Y-data in
population Q is not accessible in our procedure.

Supplementary Materials

The supplement includes all of the technical details.
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