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ABSTRACT 

Lead zirconate titanate (PZT) is widely used in energy 

harvesting because of its excellent material properties. 

However, as the material contains lead, there are significant 

environmental concerns with its production and use. 

Flexoelectricity refers to the coupling between strain 

gradient and electric polarization that exists, in principle, 

in all dielectric materials and would allow for energy 

harvesting without using piezoelectric materials. However, 

the effect is very weak in most materials.  Promisingly, it 

has recently been shown that space charge polarized 

materials (i.e., semiconducting materials with insulating 

barrier layers) can exhibit enhanced flexoelectricity. This 

space charge induced flexoelectric effect opens up the 

possibility of a non-toxic replacement for PZT in energy 

harvesting applications. In this paper we investigate the use 

of doped silicon with hafnium oxide insulating layers as 

flexoelectric transducers that could replace PZT in many 

applications including energy harvesting. Specifically, we 

experimentally demonstrate flexoelectricity in a bending 

beam and show an effective flexoelectric coefficient of 4.9 

/. Finally, we develop and demonstrate a finite 

element model for flexoelectricity.  
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INTRODUCTION 

Lead zirconate Titanate (PZT) is a widely used 

material in a variety of applications requiring 

electromechanical transduction, including energy 

harvesting. The lead contained in the PZT represents an 

environmental risk all along the value chain (i.e. mining to 

end device disposal) and is increasingly subject to health, 

safety, and environmental legislation [1] . Despite decades 

of research effort, no good, environmentally friendly drop-

in replacement for PZT has been found. 

Flexoelectricity is a size-dependent electromechanical 

effect that generally refers to the coupling between the 

strain gradient and electric polarization in which the strain 

gradient breaks the inversion symmetry and induces an 

electric response. Based on linear continuum theory of 

flexoelectricity, the electric polarization P in a linear 

dielectric is  

    ∇ (1) 

where  is the electric field component,  is the 

mechanical strain tensor,  is the second-order dielectric 

susceptibility tensor, and  is the fourth-order tensor of 

flexoelectric coefficients. Although the effect was 

discovered several decades ago, it did not gain much 

attention since the effect was found to be insignificant at 

the macroscopic level. The induced polarization scales 

with strain gradient. Furthermore, the flexoelectric 

coefficient scales with dielectric permittivity [2]. 

Therefore, it is possible to improve the flexoelectric 

induced polarization by enhancing both the dielectric 

permittivity and the strain gradient.  

A bending beam produces a strain gradient through its 

thickness as a result of an externally applied force. 

However, except for beams with sub-micron thickness, the 

achievable strain gradients are too small to achieve a 

significant electrical polarization [3]. However, larger 

strain gradients can be achieved by compressing a 

truncated pyramid as shown by Cross [4]. The flexoelectric 

effect also scales with the dielectric permittivity. Space 

charge polarization refers to the electrical polarization of a 

material that occurs when charge carriers can migrate an 

appreciable distance before being blocked by an insulating 

interface. Space charge structures can have an effective 

dielectric permittivity as high as ~100,000 and can exhibit 

flexoelectric-like behavior. Figure 1 illustrates the space 

charge induced flexoelectric (SCIF) effect in a 

semiconducting medium with dielectric interface layers. 

Recently, Narvaez et al. [5] demonstrated that bending 

semiconducting barium strontium titanate (BST) with 

mobile charges can induce flexoelectric coefficients as 

high as two orders of magnitude beyond the already-large 

coefficients of BST. Their demonstrated flexoelectric 

coefficient (nearly 1000 ) is the largest so far 

reported. Based on the fact that space charge polarization 

in semiconductors can generate a flexoelectric-like 

response with effective flexoelectric coefficients larger 

than insulators, it is possible that transducers made of 

semiconducting materials with insulating interfaces 

fabricated into truncated pyramid structures could exhibit a 

large flexoelectric response.  

 

 
 

Figure 1: Illustration of space charge induced flexoelectric 

(SCIF) effect. (a) SCIF structure: semiconducting bulk 

with dielectric interface layers on each side. Note, 

although both positive and negative mobile charge carriers 

are shown, the bulk can be either p- or n-type. (b) 

Illustration of space charge polarization resulting from 

strain gradient. 

 

In this paper we present experimental verification of 

(a) (b) 
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the SCIF effect using a doped silicon cantilever beam with 

hafnium oxide (HfO2) insulating layers. We report on the 

development and initial demonstration of a computational 

system to model and further investigate the physics of 

flexoelectric transducers, primarily those based on arrays 

of truncated pyramids. 

 

EXPERIMENTAL DEMONSTRATION 

To examine the effectiveness of space charge induced 

flexoelectricity, we experimentally measured the 

flexoelectric coefficient of a beam (1cm long, 5cm wide, 

and 500 m thick), with an insulating HfO2 layer of 30 nm 

on both silicon surfaces (see Figure 2).  

 

 
 

Figure 2: a) Schematic showing space charge polarization 

resulting from strain gradient (bending in this case) in a 

cantilever beam. b) Photograph of the arrangement used to 

measure the flexoelectric coefficient () of a silicon-

based barrier layer capacitor flexoelectric beam. Strain 

gauges are visible at the root of the cantilever. A 

piezoelectric stack actuator in the foreground is used to 

provide a controlled strain gradient to the sample. 

 

Oscillatory bending stress was delivered to the beam 

and the strain gradient-induced displacement currents were 

measured by a lock-in amplifier. Figure 3 shows the 

flexoelectric polarization driven by the strain gradient in 

the beam. The effective permittivity of the beam is 35,000 

due to space charge polarizability, and the average 

effective flexoelectric coefficient was 4.9 +/- 0.4 .  

We anticipate that by optimizing the geometry and 

composition of the barrier layer as well as the conductivity 

of the Si, it may be possible to increase the effective 

permittivity and the flexoelectric coefficient by another 

order of magnitude. 

 

 
 

Figure 3: Direct flexoelectric effect. Flexoelectric 

coefficient ()  is measured experimentally for HfO2/Si 

cantilevers. 

PYRAMIDAL TRANSDUCER 

As mentioned, the flexoelectric effect would be 

significant only in beams with very low thicknesses [3], 

which might be difficult to achieve in practice. As an 

alternative, truncated pyramidal structures as illustrated in 

Figure 4 can achieve a high strain gradient [4].  

  

                        

       
 

Figure 4: Illustration of 3D pyramidal array transducer. a) 

Pyramid loaded in compression resulting in a strain 

gradient and flexoelectric charge separation. b) 3-

dimesional SCIF pyramid arrays in silicon. 

 

In order to compare the flexoelectric material and 

structure performance to piezoelectric materials, Cross [4] 

proposed calculating an effective piezoelectric charge 

coefficient, , of truncated pyramids based on the 

flexoelectric coefficient, material stiffness, and pyramid 

geometry [4]. Assuming that the material has a single a 

nonzero longitudinal flexoelectric coefficient . Based 

on equation (1), the resulting polarization is  

  





 (2) 

Linearly interpolating the strain in a truncated pyramid in 

which the top square face has length  and the bottom 

square face has length , it is possible to rewrite the above 

equations as 

  


  






 (3) 

where  and  are elastic constant and the pyramid height 

respectively and   is the stress at the bottom surface as a 

result of the mechanical load () that is   




. The 

resulting electrical polarization in a piezoelectric solid with 

the same geometry is    in which  is the 

piezoelectric charge coefficient. Equating the polarization 

in the flexoelectric pyramid with the polarization in the 

piezoelectric solid, one can obtain the effective 

piezoelectric charge coefficient as  

  


  



ℎ


 (4) 

Figure 5 shows calculations for the effective  

coefficient compared to PZT-5A as a function of pyramid 

height (ℎ) for different pyramid base lengths () assuming 

  100  and that the angle of the pyramid is 54.7 

degrees following the silicon crystal planes. With 

reasonable geometries (i.e. pyramid thickness of 20  

and pyramid base length of 50 – 100 ), effective  

values an order of magnitude larger than PZT-5A are 

possible. Even with flexoelectric coefficients well below 

100  significant improvements over PZT-5A are 

possible. 

 

a) b) 
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Figure 5: Effective  coefficient for flexoelectric pyramids 

vs pyramid height for 4 pyramid base lengths. Only bottom 

to top area ratios less than 10 allowed. 

 

The pyramidal structures analyzed and tested by Cross 

[4] were made of non-semiconducting BST which is very 

challenging to micromachine. Implementing SCIF 

transducers with doped silicon, on the other hand, affords 

the promise of transducers such as those illustrated in 

Figure 4 with very high effective piezoelectric coefficients 

made from non-toxic materials that are easily amenable to 

micromachining. 

 

MODELING RESULTS 

Admittedly, the analogy implied by Cross when 

calculating an effective piezoelectric charge coefficient 

may not fully reflect the behavior of a large array of 

pyramids when implemented in a transducer. Therefore, in 

this section, we calculate the effective piezoelectric charge 

coefficient using a 3D finite element simulation.  

Numerical study of flexoelectricity is relatively rare 

since the equations involve high-order spatial derivatives. 

Some numerical results on flexoelectricity in 2D [6], [7] 

and 3D [8], [9] have been reported recently. However, there 

is currently no publicly available finite element (FE) code 

that models bulk flexoelectricity. Furthermore, in order to 

fully study the SCIF effect, mobile charge carrier diffusion 

equations would need to be added to the models. As a first 

step, in this study, we developed a three-dimensional finite 

element model in FEniCs [10]–[12] (an open source 

computing platform) that can simulate bulk 

flexoelectricity. We developed a tetrahedron element in 

which the three components of displacement are 

interpolated using quadratic Lagrangian shape functions 

and the electric potential is interpolated using linear 

Lagrangian shape functions. We applied this FE model to 

a truncated pyramid made of BST (see material properties 

in table 1) similar to the structure proposed in [13] and 

calculated an effective piezoelectric charge coefficient.  

 

Table 1: BST material properties. 

    

22.67 121  141.6  

 

Figure 6 shows the results of the 3D simulation of the 

truncated pyramid under compression. The simulation 

predicts an induced voltage of -0.88V on the top electrode. 

With this voltage, the resulting effective piezoelectric 

charge coefficient is 6.0 /. The predicted value 

matches the value reported by other studies [13] lending 

confidence to the accuracy of the FE model. 

 

 
Figure 6: Distribution of (a) the electric potential φ and (b) 

the through-thickness mechanical displacement u3 in the 

deformed configuration of the pyramid. The dimensions of 

the pyramids in the simulation are   1.13 ,  

2.72 , and   0.76  as defined in Figure 4. 

  

The results shown in Figure 6 constitute a preliminary 

step and are shown in order to demonstrate the accuracy of 

the FE model. The effective piezoelectric charge 

coefficient is not competitive with PZT. However, this is 

largely a geometric effect, and with smaller pyramids, the 

effective charge coefficient should be dramatically higher 

(see Figure 5). As an example, a pyramid whose size has 

been decreased by a factor of 10 would have an effective 

piezoelectric charge coefficient that is 10 times higher 

(equation (4)). Numerical simulation also confirms these 

results. Simulating the same pyramid shown in Figure 6, 

but scaled down by a factor of 10, results in a voltage of -

79.8V. The resulting effective piezoelectric charge 

coefficient is 54.9 /, an increase of 9.15 times. It is 

worth noting here that the large effective piezoelectric 

charge coefficient for small pyramids could be misleading. 

Consider the coupling coefficient squared () that 

represents the amount of converted energy divided by the 

applied energy. For a piezoelectric material, 
 


 


. 

One might conclude that an increase 10X in the effective 

piezoelectric charge coefficient would result in a 10X in the 

coupling coefficient (). However, as  cannot exceed 1, 

such a conclusion would clearly not be warranted. This 

indicates a need for a more comprehensive approach to 

evaluate the flexoelectric material performance. 

Furthermore, the simulation is for bulk flexoelectricity, not 

space charge flexoelectricity. Although a publicly available 

FE code to simulate bulk flexoelectricity is a needed 

contribution in its own right, we plan to extend this 

formulation to be able to accurately simulate the SCIF 

effect. 

 

CONCLUSIONS 

In this paper, we have demonstrated key building 

blocks to realize a new energy harvesting transduction 

technology, space charge induced flexoelectric (SCIF) 

transducers. These building blocks include an experimental 

demonstration of the effect by means of a doped silicon 

beam with HfO2 insulting layers that showed a flexoelectric 

coefficient of 4.9 +/- 0.4 . Truncated pyramids can, 
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in principle, generate much higher strain gradients, and 

thus larger flexoelectric polarizations, than bending beams. 

To this end we developed a computational platform that 

can model bulk flexoelectricity as a first step toward a full 

computational system to enable numerical studies of SCIF 

transducers and serve as design an optimization tool.  
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