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Bridging the gap between collective motility and
epithelial–mesenchymal transitions through the
active finite voronoi model†

Junxiang Huang, ab Herbert Levineabc and Dapeng Bi *ab

We introduce an active version of the recently proposed finite Voronoi model of epithelial tissue. The

resultant Active Finite Voronoi (AFV) model enables the study of both confluent and non-confluent

geometries and transitions between them, in the presence of active cells. Our study identifies six distinct

phases, characterized by aggregation–segregation, dynamical jamming–unjamming, and epithelial–

mesenchymal transitions (EMT), thereby extending the behavior beyond that observed in previously

studied vertex-based models. The AFV model with rich phase diagram provides a cohesive framework

that unifies the well-observed progression to collective motility via unjamming with the intricate

dynamics enabled by EMT. This approach should prove useful for challenges in developmental biology

systems as well as the complex context of cancer metastasis. The simulation code is also provided.

1 Introduction

During development and remodeling, as well as during wound
healing and invasion, the ability of cells to migrate
collectively1,2 is crucial for biological functions.

Mesenchymal phenotypes3 exhibit distinct cellular beha-
viors during movement, characterized by features like polarized
morphology and dynamic cytoskeletal changes. One notable
trait is their tendency to exhibit lower confluency, resulting in
fewer triple junctions. This reduced cell–cell contact allows
mesenchymal cells to adapt to dynamic microenvironments
more readily, facilitating their capacity for individual or collec-
tive migration, invasive behavior, and responsiveness to
chemical and mechanical cues. In contrast, epithelial tissues
maintain a tightly packed and organized structure with exten-
sive intercellular contacts such as adherens junctions, tight
junctions, and desmosomes.4 These junctions create a cohesive
barrier, essential for functions like absorption, secretion, and
providing a protective layer. Unlike mesenchymal cells, epithe-
lial cells typically find themselves ‘‘caged’’ by their neighbors,
an arrangement that shares a striking resemblance with
glassy materials.5 Despite these constraints, cells within an

epithelium can still move collectively as sheets rather than
individually, relying on coordinated cell–cell interactions to
maintain tissue integrity and function.1 This fundamental
distinction in cellular behavior underscores the diverse roles
these tissue types play in physiological processes and brings
forth numerous crucial challenges in the fields of active matter
physics and non-equilibrium statistical mechanics.6–8

Research over the past several years9–19 has demonstrated
the importance of understanding epithelial motility through
the paradigm of the jamming and unjamming transition.
During the unjamming transition (UJT), an epithelial collective
transforms from a jammed phase where cells behave solid-like,
toward an unjammed phase where cells flow in a fluid-like
manner. In both the jammed and unjammed phases, the
cellular collective retains intact epithelial junctions and remain
in a confluent state where there are no gaps between cells.

The UJT paradigm complements the existing mechanism of
the epithelial-to-mesenchymal transition (EMT).3,20–24 During
EMT, an epithelial cell progressively acquires mesenchymal
characteristics that, in the limit of full EMT, lead to bulk
dissociation and single-cell, dispersed, mesenchymal migration.
This transition to a migratory state is defined by disruption of
apico-basal polarity and cell–cell junctions. Graded changes
along this axis define epithelial plasticity often described in
terms of partial EMT or hybrid E/M states.25 Therefore, under-
standing the interplay of UJT and EMT in the mechanics and
organization of a multicellular collective is crucial.

In the past two decades, a number of computational
approaches have been proposed to understand the emergence
of collective behaviors in multicellular systems. In particular, a
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class of cell-based models known as vertex models has been
proven effective for capturing epithelial mechanics.26–29 In the
vertex model, each cell is represented as a deformable poly-
gonal inclusion, with edges and vertices shared by neighboring
cells. This class of models necessarily assumes that exactly
three cells meet at any vertex in an epithelial tissue and no gaps
exist between cells, i.e. the tissue exists at the confluent limit. In
the most common version, the dynamical degrees of freedom
are the vertex locations. On the other hand, in a confluent
Voronoi model, a cell i is parameterized by the corresponding
cell center ri, and cell shapes are determined by Voronoi
tessellation based on the cell centers {ri}.

Several previous studies have explored the connections between
the aforementioned EMT and tissue-level unjamming.17,30,31 This is
particularly important in the context of partial EMT, which has also
been shown to give rise to collective (as opposed to individual) cell
motility.32 In general, it appears that these processes represent
distinct modes of ‘‘liquefaction’’, but the precise relationship
between them has not yet been fully investigated. Previous efforts
based on confluent Vertex or Voronoi-based models have had
difficulties dealing with this question, due to the fact that these
models specifically aim at simulating epithelial cells. An ideal
candidate model to address this open question would have
the ability to have both an unjamming transition and EMT (or a
combination of both) under suitable parameters.

In general, then, although confluent vertex models and
Voronoi-based approaches have successfully revealed the
density-independent rigidity transition in dense epithelial sys-
tems, their ability to accurately describe cell movements and
tissue properties in a low cell density is limited. Inspired by this
limitation, various efforts have proceeded towards devising
different models to describe non-confluent biological tissues.
One example is provided by the cellular Potts model,33 which
has no difficulty in generating nonconfluent phases if the cell-
medium energy is lower than cell–cell one. Next, a generalized
version of the vertex model allows for a deformable free-shape
connected boundary but cannot accommodate topology
changes.34 In the Subcellular Element model, each individual
cell is composed of numbers of ‘‘elements’’ which have short-
range viscoelastic interactions, resulting in adaptive cell shapes
and intercellular spaces.35,36 Kim et al. add intermediate ver-
tices into vertex model to allow for more complex cell shapes,
and further introduce extracellular spaces by simulating them
as ‘‘virtual cells’’.37 Finally, Loewe et al. used a multi-phase field
model, in which cells are treated as deformable and overlap-
ping active particles, to allow for the emergence of inter-cellular
gaps.38 Many of these recent models require more degrees of
freedom and therefore are significantly more complex than
vertex-models.

In one recent effort to bridge the gap between confluent and
non-confluent tissue mechanics models while maintaining the
simplicity and ease of use of earlier vertex models, Teomy et al.
extended the confluent Voronoi approach to create a Finite
Voronoi (FV) model.39 Here, a maximal size is assumed for the
cells, which then guarantees that the resulting tissue becomes
non-confluent at a sufficiently low density. While there has

been a thorough study of the static morphological and thermal
fluctuations of the FV model, the lack of inclusion to date of
active forcing means that the dynamical organization of the
multicellular structure and possible collective motility have
remained unexplored.

In this work, we construct an Active Finite Voronoi (AFV)
model by incorporating into the FV model self-propelled active
forces.40,41 We systematically explore the interplay of activity and
intercellular mechanical interactions and comprehensively map
out the different emergent phases. In addition to recapitulating
the previously observed confluent unjamming/jamming beha-
viors, we discover that activity and cell–cell interactions can also
drive the tissue to undergo an epithelial–mesenchymal transition.
Interestingly, the model exhibits a rich set of epithelial and
mesenchymal morphological and dynamical phases. In fact, we
reveal six different phases defined by an aggregation–segregation
transition, a dynamical jamming–unjamming transition, and an
epithelial–mesenchymal transition. The existence of these phases
and the transitions between them could potentially provide novel
insight into recently observed tissue behavior.

2 Model

In a conventional Voronoi tessellation, space is partitioned based
on the shortest distance between pairs of points. This allows
Voronoi tessellations to tile all of space. At the edge of a cluster of
points, the neighborhood of points will extend to spatial infinity,
giving rise to unbounded cell sizes. For this reason, conventional
Voronoi-based models typically employ periodic boundary condi-
tions. In order to explore non-confluent regimes, following pre-
vious studies,39,42,43 the FV model augments a conventional
Voronoi tessellation by introducing a length scale l, which sets
the maximum neighborhood belonging to any point.39 In other
words, every cell lies entirely within a circle of radius l about the
center. The resulting cell boundaries consist of both polygonal
segments (contacting edges, shown as blue lines in Fig. 1) and
circular arcs (non-contacting edges, shown as pink curves in
Fig. 1): on one hand, cells separated by a distance less than 2l
will still have contacting edges determined by the conventional
Voronoi tessellation. On the other hand, for edges that are more
than l from cell centers, cell boundaries are replaced by circular
arcs of radius l. This allows cell-unoccupied regions and inter-
cellular gaps to arise naturally when two neighboring centers are
more than 2l away. As in the standard Voronoi model, the cell
center positions {ri} are the dynamical degrees of freedom and the
cellular structure are determined by the aforementioned combi-
nation of Voronoi tessellation and length scale l.

To incorporates the mechanics of the cell layer, we follow
previous vertex-based model approaches27,44 and write an
energy function to, which captures cell–cell interactions and
single cell-mechanics. Specifically,

~E ¼
XN
i¼1

KAð ~Ai � ~A0Þ2 þ KP
~Pi
2

� �
þ lðcÞ

X
2lðcÞ

þ lðnÞ
X

lðnÞ; (1)
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where KA and KP are the area and perimeter elastic moduli. {Ãi}
and {P̃i} are cell areas and perimeters, and A0 is the preferred
area. The first term arises from resistance to cell volume change.
The second term KPP̃i

2 results from energy cost of cortex defor-
mation, due to the presence of proteins and other molecules
such as actin and myosin that provide structural support to the
cellular semi-permeable membrane.27,44 l(c) and l(n) are corre-
spondingly cortical tensions on contacting edges (cell–cell inter-
faces) and non-contacting edges (boundary edges).

In epithelial cells, non-contacting edges tend to carry higher
tension than contacting edges.45 This cortical tension differ-
ence origins from feedback between adhesion molecules and
cytoskeletal dynamics. The normal projection of cortical ten-
sion on non-contacting edges (cell-unoccupied region inter-
faces) is balanced by cortical elasticity; the tension required
for this force balance is lower for contacting edges (cell–cell
interfaces) due to the contribution of adhesion from neighbor-
ing cells. The factor 2 in the third term of eqn (1) comes from
the fact that each contacting edge is shared by two cells. Using

the relationship
PN
i¼1

~Pi ¼
PN
i¼1

~Li
ðnÞ þ

P
2lðcÞ; where L̃(n)i is the total

length of non-contacting edges in the i-th cell, the above
equation can be simplified to

~E¼
XN
i¼1

KA
~Ai� ~A0

� �2þKP
~Piþ

lðcÞ

2KP

� �2

þ lðnÞ�lðcÞ
� 	

~Li
ðnÞ� lðcÞ

2KP

� �2

;

(2)

where the last term is a constant and can be dropped. This
equation can be further simplified in two ways: on one hand, l
can be used as the length unit in the system in order to non-
dimensionalize the perimeter and area quantities, i.e. let Pi = P̃i/
l, L(n)i = L̃(n)i /l, Ai = Ãi/l

2, and A0 = Ã0/l
2 be all dimensionless. We

also introduce P0¼� lðcÞ

2KPl
as the dimensionless preferred cell

perimeter, which indicates the relative strength of extensile
tension on contacting edges versus elastic contractile tension.
A high P0 value may result from a high cortical tension on the
edge, i.e. high |l(c)|, which is typical in fluid-like epithelial
states; or it may reflect a weak membrane elasticity, i.e. small
KP, which is common in mesenchymal states. On the other
hand, KA is extracted from the tensions and elastic coefficients,
which gives kP = KP/KA, along with L = (l(n) � l(c))/KA, the
normalized tension difference coefficient between contacting
edges and non-contacting edges. A large L value will encourage
cells to form cell–cell interfaces with neighbors and eliminate
intercellular gaps in order to reduce the total length of non-
contacting edges. The inclusion of L is similar to the inclusions
of the cell-medium interaction in the cellular Potts models.46

With these transformations, the simplified effective energy
function can be expressed as

E¼
XN
i¼1

Ai�A0ð Þ2þkP Pi�P0ð Þ2þLLðnÞ
i : (3)

The mechanical interaction force experienced by cell i is
defined as the gradient of eqn (3), i.e. Fi = �riE. In addition to
Fi, we implement polarized self-propulsion force on each cell.
Following the Self-Propelled Voronoi model,40,41 we assign
to cell i a polarity vector n̂i. The cell i feels a self-propulsion
force of constant magnitude v0/m directed along n̂i, where the
mobility m is the inverse of a frictional drag. Taken together,
these forces control the over-damped equation of motion of
each cell center

dri

dt
¼ mFi þ v0n̂i: (4)

In actual biological systems, the polarity can depend on a
variety of cues from a cell’s past history and from interactions
with neighbors.47 Here we adopt a simplified approach and let
the polarity orientation n̂i = (cos yi,sin yi) obey rotational diffu-
sion, given by

@yi ¼ ZiðtÞ; ZiðtÞZjðt 0Þ
D E

¼ 2Drdðt� t 0Þdij ; (5)

where Zi(t) is a white noise process with zero mean and variance
2Dr. The magnitude of angular diffusivity Dr determines the
memory of stochastic noise of the self-propulsion direction,
leading to a polarity persistence time scale t = 1/Dr. When Dr is
small, the polarity direction n̂i changes slowly and leads to
more persistent self-propelling force. For large Dr c 1, the
corresponding persistence time scale t - 0 is much shorter
than other dynamical time scales in the system, and eqn (5)
approaches simple memory-free Brownian motion. In the SPV
model, it has been observed that increasing Dr can significantly

Fig. 1 An example of a tissue snapshot from the AFV model illustrating its
salient features. The red dots denote the cell centers. The blue lines represent
contacting edges shared by two cells, and the pink curves represent non-
contacting edges which are circular arcs with radius l. Triple junction vertices
that connect three cells are indicated by hollow purple dots. The cyan arrows
indicate the polarity directions of the self-propulsion force applied on the cell
centers. Note that isolated cells are circular in shape.
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decrease tissue fluidity at a fixed cell motility, highlighted by
the finding that a solid-like tissue at large Dr can be fluidized
simply by reducing its Dr value.

40,48

To study cell dynamics at medium density, we simulate a
constant number (N = 400) of cells under periodic boundary
condition with a box size L such that the packing fraction
equals f = 0.5 = Np/L2. The advantage of this choice compared
to open boundary condition is that it conserves the density of
self-propelled cells even with high diffusivity, and simulates
scenarios where cells freely leave and enter the field of interest
while the overall cell count is relatively stable. In this paper, the
results shown correspond to kP = 1, Dr = 0.1, and L = 0.2 which
reflects a relatively small difference between contacting and
non-contacting edge tensions, unless otherwise specified. We
choose A0 = p to reflect the preferred area for an isolated cell.
Changes of these parameters do not qualitatively change the
phase diagram but merely shift the locations of phase bound-
aries. We initialize systems as one large connected cluster and
relax it to steady state at zero temperature with P0 ranging from
4 to 8.8. We then turn on v0 with values ranging from 0 to 2.7
and conduct numerical simulations using molecular dynamics.
We typically perform 106 integration steps with a step size dt =
0.01 using Euler’s method.

3 Motility and cell–cell interactions
induce a clustering transition

Migrating cells transition between dispersed individual and
clustered multi-cellular collectives during embryonic develop-
ment, tumor progression, and wound healing.49 Although the
contribution of these transitions to motility and coordinated
behaviors are well-characterized for a confluent scenario, the
behaviors for a non-confluent low-density scenario is poorly
understood. As vertex-based models29 focus on scenarios where
tightly packed cells cover the entire surface and form confluent
epithelial monolayers, the ability of these models to simulate
how cell connectivity affect global dynamics and tissue proper-
ties are limited. On the other hand, a previous study using the
FV model39 has not analyzed the structural organization of cell
clusters over time nor included active forcing. These are clearly
important aspects of tissue behavior.

Here, we characterize cell clustering by first identifying the
‘‘giant cluster’’,50 which is the largest connected cluster within
the cellular system, and then analyzing the normalized giant
cluster size, defined as

NGC

N
� number of cells in the giant cluster

total cell number N
2 ð0; 1�;

which serves as an order parameter for cluster formation. For
any instantaneous configuration, we consider two cells to
belong to the same contiguous cluster if they share a contacting
edge (presented as blue straight edges in Fig. 1), or equiva-
lently, when the distance between their centers is less than 2l.
In Fig. 2(a), we plot the NGC/N as a function of the motility
parameter v0, for tissues at various values of P0 and fixed L =

0.2. A motility-driven dispersal transition is observed: at low v0,
cells form a single giant cluster corresponding to NGC = N.
Larger v0 values cause a break-up into smaller clusters, indi-
cated by a decreasing NGC/N value. We observe that the dis-
persal transition occurs for all P0 values tested, where the
sharpness of the transition depends on P0. Intriguingly, all
curves intersect at a common point v�0 � 1:85, which serves as a
crossover independent of P0. For v0 o v�0, NGC/N decreases as P0
increases; when v0 4 v�0, the behavior is flipped and NGC/N
increases with P0. Based on these observations, we hypothesize
that the behavior of NGC/N below and above v�0 can be described
by a scaling relation

NGC=N ¼ G
v0 � v�0
Pa
0

� �
; (6)

where G denotes a common scaling function. We replot all data

in terms of NGC/N vs.
v0 � v�0
Pa
0

based on the above ansatz in

Fig. 2(a) bottom-left inset, and obtain a collapse to a master
curve with v�0 ¼ 1:85� 0:06 and a = 1.50 � 0.12. The existence of
this collapse suggests that the transition will always occur at a
motility threshold

vsðP0Þ ¼ v�0 � cPa
0; (7)

where c = 0.06 � 0.005 is a positive constant obtained through
fitting to the location where NGC/N drops below 99%. In
addition, we plot the number of clusters as function of motility
v0 in Fig. 2(a) top-right inset. The curves confirm the above
observations that at low motility regime, cells remain in a large
cluster, and the cluster number remains close to 1. At larger v0,
large clusters start to break down into smaller pieces, indicated
by an increasing cluster number. Then eqn (7) is shown in
Fig. 2(b) which serves as a phase boundary between clustered
and dispersed states. The clustered region is characterized by a
high NGC/N value and low cluster number. When the dispersal
transition point is exceeded, NGC/N starts to drop and the
number of contiguous clusters increases, indicating entry into
the dispersed region. In practice, we label tissues with NGC/No
0.99 as being in the dispersed state indicated by blue dots, and
those with NGC/Nr 0.99 as being in a clustering state indicated
by red squares. We also have included representative snapshots
of the two states.

The crossover point reveals an interesting regime in the
phase diagram v0 ¼ v�0 � 1:85

� �
where the system always pos-

sesses a giant cluster of a fixed size (NGC/N E 0.7) regardless of
the value of P0. Given that this point occurs at a fairly large
value of the motility, it leads to the question of how a large
cluster size is maintained. We therefore analyzed the cluster
size distribution (CSD) p(n) for different P0 values at the cross-
over point v0 ¼ v�0. Fig. 2(c) shows that the functional form of
the CSD is dependent on P0. At P0 = 4, the CSD initially
increases as a power-law of n, and then decreases at medium
cluster sizes with a power law decay of n�1.25 before finally
reaching NGC. When P0 = 8, the power-law decay has the form
n�1.75, suggesting a faster decay as cluster size increases.
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Similar exponents have been found in other active matter
systems with clustering or motility induced phase
separation.51–56 The broadness of the CSD suggests that these
systems do not have a typical cluster size, indicating the need
for a multi-scale analysis.

Having quantified the steady-state mean size of the cluster,
we now shift our focus to the temporal fluctuations in cluster
sizes. As illustrated in the simulation videos provided in the
ESI,† cell clusters can exhibit significant dynamism. Over time,
cells may aggregate and disintegrate from a cluster, reflecting a
highly dynamic process. The temporal fluctuation of NGC/N for
two representative cases is shown in Fig. 3(a). For a clustered
state (v0 = 1 and P0 = 4), where the giant cluster is stable, the
NGC/N trace is a flat line equals to 1 On the other hand, as
shown in Fig. 3(a) and (b), in a dispersed state, the giant cluster
size experiences continuous fluctuations as clusters dynami-
cally form and breakup. As cells interact and coalesce, larger
clusters emerge, resulting in an increase in the giant cluster
size. However, the instability of cell contacts in such a state
causes these clusters to be inherently transient. Over time, the
clusters disintegrate, leading to a reduction in the giant cluster
size. We also investigate the temporal evolution of cluster sizes
with using the autocorrelation time tNGC of the giant cluster
size. Fig. 3(c) shows tNGC for v0 = 1, when P0 o 5 the giant
cluster size NGC is always equal to N and the autocorrelation
time is infinity. When P0 4 5 the system enters dispersed state,

and as P0 increases the autocorrelation time decreases, indica-
tive of a tendency towards unstable cluster and faster cluster
size fluctuations.

Fig. 3 The fluctuation in NGC/N for dispersed states. (a) Two sample NGC/
N traces at v0 = 1. The solid lines correspond to realizations of P0 = 4 and
P0 = 8, respectively. The cyan dashed line indicate the average value of
P0 = 8 as visual aids. (b) The NGC/N average values of different P0 at v0 =
0.1 and v0 = 1, respectively, with the shaded band representing the
standard deviation. (c) The autocorrelation time of the giant cluster size,
tNGC, at different P0 and v0 = 1. For P0 o 5, the tNGC values go to infinity
and are not displayed on the plot.

Fig. 2 Formation of multicellular clusters in the AFV model. (a) The normalized giant cluster size NGC/N as a function of v0 at different P0 and at L = 0.2.
An initially connected tissue undergoes a dispersion transition at a critical activity vs(P0). Here the colors correspond to the legend in panel (b). (a-left-
inset) NGC/N vs. ðv0 � v�0Þ=Pa

0 for different P0 values, which are indicated by the curve colors. (a-right-inset) The number of contiguous clusters as a
function of v0 for different P0. (b) Tissue clustering phase diagram in the v0 � P0 plane for L = 0.2. The red data points correspond to the clustered state,
and the blue points correspond to dispersed tissues. The black line corresponds to vs(P0). The two sample tissue snapshots are from P0 = 4.2, v0 = 0.1
(clustered state) and P0 = 4.2, v0 = 2.1 (dispersed state). The red dots in the snapshots are cell centers, the blue lines are contacting edges between
adjacent cells, and the pink arcs are the non-contacting edges. The black rectangles annotate the periodic boundaries of our computational domain. (c)
The probability distribution function (PDF) for the cluster size for N = 400 systems is shown at v0 ¼ v�0. The dashed line and dot dashed line correspond to

power-laws with exponents respectively of �1.25 and �1.75, as visual aids.
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4 Epithelial–mesenchymal transition
driven by cell-shape changes and
motility

In a confluent epithelial layer, cells pack without intercellular
gaps, and triple junctions exist between any trio of three
neighboring cells. On the other hand, a classical signature of
EMT is the loosening of tight epithelial tissue organization.
This is accomplished by transcriptional suppression of
E-cadherin, a prototypical adhesion molecule responsible for
maintaining cell–cell adherens junctions, as well as the down-
regulation of other adhesion molecules such as claudins.21,57

Indeed, tissues undergoing EMT exhibit decreased tight
junctions58,59 and increased intercellular gaps;17 in the devel-
opmental biology context, these changes can be imaged
in vivo.60 In other words, when cells lose their epithelial
character as they become mesenchymal, triple junction vertices
will be lost and gradually replaced by the presence of inter-
cellular gaps.17,61 This morphology change reduces tensions
transmitted at cell–cell junctions and eventually helps enable
cell movement.23,62

Based on these observations, we searched for an order
parameter that could reflect the ratio between triple junction
vertices and inter-cellular gaps in order to quantify the degree
of ‘‘epithelial-ness’’ of a cell layer. Euler’s polyhedron formula
asserts that for a completely confluent cluster of N( j) cells in
open space, the number of triple junction vertices V( j)3 equals to
E( j)c � N( j) + 1, where E( j)c is the number of contacting edges.
When inter-cellular gaps develop, V( j)3 will decrease and deviate
from E( j)c � N( j) + 1. Thus, a natural confluency order parameter
for cell cluster j can be defined as

oð jÞ ¼ V
ð jÞ
3

max E
ð jÞ
c �Nð jÞ þ 1; 1

� 	 2 ½0; 1�; (8)

where the denominator has a lower bound of 1 to avoid
dividing by 0 when the cluster is made of a linear string of
cells. The order parameter o( j) = 0 for nonconfluent clusters
without any triple junction vertex, and o( j) = 1 for confluent
clusters. Then, for a system containing multiple contiguous
clusters, the global confluency order parameter can be defined
as weighted average of o( j)

O ¼

P
j

Nð jÞoð jÞ

P
j

Nð jÞ : (9)

The behavior of O as a function of P0 and v0 is shown in
Fig. 4(a). When P0 is low, cells are close-packed with each other,
resulting in confluent epithelial tissues with O B 1. As P0
increases, tissue confluency is gradually lost, indicated by a
decreasing O. The cell motility v0 has a weak yet opposite effect
on O for systems with different P0; cell motility enhances inter-
cellular gaps at low P0 while it tends to eliminate inter-cellular
gaps at high P0. In Fig. 4(b), we use O = 0.5 as the threshold to
distinguish an epithelial state, where triple junctions are

formed at a dominant fraction of the cell–cell interface inside
clusters, and a mesenchymal state, where intercellular gaps are
preferred. The E/M phase boundary is nearly vertical, indicating
a strong dependence on P0.

To better understand the nature of the epithelial to
mesenchymal transition in this model, we utilize a simple
mean-field calculation at zero motility. Consider a simple case
of a hexagonal cell packing. As illustrated in Fig. 4(c) and (d),
each cell has exactly 6 neighbors whose centers are located on
the vertices of a regular honeycomb lattice whose center coin-
cides with the central cell center. Each contacting edge has
length e, and the corresponding central angle equals 2y where
e = 2 sin y. When y o p/6, inter-cellular gaps exist instead of
triple junction vertices. As the non-contacting perimeter and
area of each cell are given by

L(n) = 2p � 12y, (10)

A = (p � 6y) + 3 sin y cos y, (11)

we can determine the mechanically stable configuration by
finding the minimum of eqn (3) with respect to the angle y.
A simple calculation yields

0 ¼ 1

N

@E

@y
¼ 24kPð1� cos yÞ 12y� 12 sin yþ P0 � 2pð Þ

þ 24 sin2 y 6y� 3 sin 2yþ A0 � 2pð Þ � 12L:

(12)

The confluency transition is predicted to occur when the
solution to eqn (12) is given by y = p/6. For the parameter set
used in this paper (L = 0.2, A0 = p, kP = 1), this condition gives
the critical point of P0 = 5.73, below which the system is
confluent. This estimate provides a reasonable approximation
for the phase boundary between epithelial and mesenchymal
states in Fig. 4(b), in the limit of v0 - 0. Nevertheless, this
mean-field analysis is a simplification as it captures the EMT as
a clear-cut switch rather than a spectrum.

Fig. 4 Tissue confluency properties. (a) O [defined in eqn (9)] as a function
of v0 for various P0 values ranging from 4 to 8.8 with an increment of 0.2.
The curve color corresponds to the tissue P0 value. The black arrow
indicates the curve ordering with increasing P0. (b) Tissue confluency
phase diagram for L = 0.2 in the v0–P0 plane. The marker color indicates
the tissue O value. The black dashed line corresponds to O = 0.5 and is
used as a boundary between epithelial/confluent state and mesenchymal/
nonconfluent state. (c) and (d) Illustrative snapshots of a nonconfluent/
confluent hexagonal tissue, respectively, used for our mean-field analysis.
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5 Glassy dynamics in confluent and
non-confluent regimes

So far we have characterized the behavior of the model based
on static, structural properties of the multicellular organiza-
tion. Next, we analyze the dynamical behavior of the model.
Previous studies have suggested that cells have the ability to
transition from solid-like to fluid-like state via separate
pathways. For example, during UJT, a tissue can fluidize while
remaining confluent.9,13,14 While during EMT,17,23 abolition of
the epithelial character is a necessary precondition for promot-
ing cell migration. Here, a natural question arises; while
dispersed states must be fluid-like, are all clustered phases
solid-like? Further, do the structural transitions observed in our
model coincide with dynamical transitions?

To answer this question, we characterize the dynamics of
cell motion in our system by measuring the mean-squared
displacement (MSD). In order to exclude the contribution of
collective rigid-body translations and rigid rotations of clusters,
we compute the MSD based on the relative displacement of
cells with respect to their nearest-neighbors. In Fig. 5(a) and (b),
we plot the MSD as a function of time lag Dt for systems with
different P0 and v0 values. For small v0 values, cells are caged at
long time scales, as indicated by the plateau of MSD. We also
plot the total number of T1 transitions in Fig. 6, suggesting
arrested motility due to caging effects and broken ergodicity,
both of which are characteristic signatures of glassy dynamics.
As v0 increases, cells begin to uncage and the MSD increases
asymptotically as MSDp Dtb, where bB 0 for P0 r 4 and bB 1
for P0 Z 7.

Following previous studies on tissue glassy dynamics,40 we
use the self-diffusivity Ds ¼ limDt!1 MSDðDtÞ=ð4DtÞ as an
order parameter to distinguish glassy and fluid states. We ran
simulations for 104 time units and used Dt = 5000 to calculate

Ds, which is much longer than the typical caging time scale in
fluid state. The calculated Ds is presented in units of D0 = v0

2/
(2Dr), the free diffusion constant of a self-propelling cell, to
accommodate the effect of varying motility. Then, the effective
diffusivity Deff � Ds/D0 is used as an order parameter to
distinguish glassy (jammed) and fluid (unjammed) states.
The behavior of Deff at different P0 and v0 is shown in
Fig. 5(c). For a given low v0 value, the order parameter Deff does
not necessarily follow the ordering of P0 values; At large v0
regime, high P0 systems always correspond to high Deff values.
In Fig. 5(d), we plot phase diagram of cell dynamics in the v0–P0
plane according to Deff: the glassy states correspond to a finite
Deff below a noise floor of 10�8, and the unjammed states
correspond to Deff that exceeds this threshold.

The position of the dynamical phase boundary suggests that
the energy barrier for cell rearrangements is lower than that for
cluster breakup. This difference gives raise to the existence of
stable fluid-like clusters, within which cells exchange neighbors
frequently yet stay as members of the same connected cluster.
This possibility is in good agreement with experimental obser-
vations of bulk epithelial colonies, for example Madin-Darby
canine kidney (MDCK) cells form a confluent epithelial sheet
through a highly motile expanding process lasting for one
week.63,64

Next we also use the number of cell rearrangements as an
alternative indicator of tissue fluidity. To this end, we general-
ize the concept of a T1 transition for use in the AFV model: in
confluent vertex- or Voronoi-based models, a system of N cells
possesses 3N edges, and each cell rearrangement occurs as a T1
event, which involves the elimination of an existent edge and
formation of a new edge. As the total edge number is no longer
conserved in the AFV model, edge elimination and new edge
formation can happen independently. To generalize the
method to count cell rearrangements, we consider the inde-
pendent elimination or formation of an edge each as half of a
T1 event; this choice will give the usual T1 transition number for
confluent states.65 In addition, the elimination and formation
of a new edge between a given pair of cells will be taken to
cancel out each other, and contribute 0 to the T1 counting
rather than 1. This choice is necessary because cell contacts are
‘‘shallow’’ in some jammed mesenchymal systems, where a pair

Fig. 5 Tissue glassy properties. (a) MSD traces for different P0 ranging
from 4 to 8, with L = 0.2 and v0 = 0.4. (b) MSD traces for different v0 with a
fixed P0 = 5.6. (c) Deff as a function of v0 for different P0. The black dashed
line corresponds to Deff = 10�8. (d) Tissue diffusivity phase diagram as a
function of P0 and v0. Orange data points correspond to glassy tissues with
vanishing Deff; green points correspond to flowing tissues (finite Deff).

Fig. 6 The cumulative T1 number traces for different P0 ranging from 4 to
8 with L = 0.2 and v0 = 0.4.
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of cells could keep forming and breaking a short contacting
edge due to local fluctuations. In Fig. 6, we show some sample
traces of the total T1 rearrangement counted in such a manner.
The T1 traces confirm the existence of jammed/unjammed
phases, as discussed in the main text. For systems in a jammed
state, e.g. P0 = 4 at v0 = 0.4, the T1 number trace suggests the
cells are caged by their neighbors. On the other hand, for
systems in a unjammed state, the T1 rearrangement number
increases over time, indicating a diffusive behavior.

6 Discussion and conclusions

In this work, we have introduced a new approach to tissue
dynamics, referred to as the Active Finite Voronoi (AFV) model.
This model retains the simplicity of the active Voronoi/vertex-
based approach, which has made it a very popular strategy for
studying confluent epithelial systems. However, the addition of
a maximal size for cells allows the system to dynamically deter-
mine the degree of confluency as a function of the system
parameters. The observation of the E/M transition using our
model extends the behavior of the vertex-based models studied
previously. The traditional vertex model, constrained to be conflu-
ent, exhibits a transition to a fluid-like phase at high P0, and there is
only a confluent and fluid-like phase for high P0 systems. In
contrast, our new model allows for the observation of a new non-
confluent phase wherein cells are given the possibility of developing
intercellular gaps. Furthermore, the confluency transition is not
necessarily coincident with the tissue dispersal and glassy
transitions. As we have seen, this enables the system to exhibit
an epithelial–mesenchymal transition, as has been observed in
developmental biology, wound healing, and cancer metastasis.

In general, the AFV exhibits three phase transitions and
thereby defines six different possible phases, as shown in
Fig. 7(a). One critical parameter is the preferred perimeter, P0.
On the low P0 side, triple junction vertices are energetically
preferred, indicating an epithelial state; On the high P0 side,
cell–cell interfaces are dominated by inter-cellular gaps, sug-
gesting that tissues are in a mesenchymal state. Parallel to
these two states, when v0 is low, tissues stay in glassy (clustered
and dynamically arrested) state; by increasing v0, cell rearran-
gements become more frequent and tissues can enter
unjammed (clustered and flowing) state; finally, when v0 is
high, cells are no longer able to stay connected, and tissues
transition to a dispersed state which much be flowing. We show
some sample instantaneous tissues snapshots in Fig. 7(b).
Sample videos of these six phases are included in ESI.†

In the AFV, isolated cells, whether fully disconnected or
shallowly linked with others, by design, retain a round shape.
This aspect of the model is a simplification, given that in
experimental observations, cells devoid of epithelial connectiv-
ity often exhibit a more spindle-like form. For future explora-
tion, it would be beneficial to incorporate a version of the AFV
model that provides cells with additional degrees of freedom,
such as elongation. This enhancement would permit cells to
assume non-circular shapes when isolated.

In this work, we did not consider cell proliferation and
apoptosis in our model. Should cell density increase overall
due to cell division or apoptosis, we anticipate that the tissue
would experience density-driven jamming.66 However, it’s also
likely that a real tissue would manifest contact inhibition of
locomotion67 as cell density rises, corresponding to a reduction
in v0 with increased density. Intriguingly, even in situations
where tissue homeostasis is maintained through an equilibrium

Fig. 7 Summary of phase diagram. (a) Sketch of the phase diagram with all three phase boundaries, on the v0–P0 plane for L = 0.2. This structure is
qualitatively robust for all values of L. (b) Sample snapshots of four dictinct phases. The (P0,v0) values for each state are: clustered Epithelial phase (4,0.1);
clustered mesenchymal phase (8.8,0.1); dispersed epithelial phase (4.4,2.6); dispersed mesenchymal phase (8.8,2.6). Note that clustered state could be
glassy or unjammed, but the dispersed state must be unjammed.
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between cell division and apoptosis, the tissue would inevitably
fluidize due to the constant injection of energy from cell
division.68 Incorporating changes in number density would
introduce an additional dimension to the phase diagram of
AFV. This could be an engaging avenue for future exploration.
Concerning cell–matrix interactions, our model adopts a
simplified approach, encapsulating only the viscous friction
between the cell and the extracellular matrix or substrate. It
could provide valuable insights to expand our analysis and
incorporate a more comprehensive model for the viscoelastic
cell–matrix interactions, possibly paralleling the approach
employed by Ajeti et al.69

It is worth mentioning that all of these phase transitions are
reversible. For example, by changing v0 from 0.2 to 2, systems
with P0 = 4 undergo a dispersal transition characterized by
breaking apart of the bulk. Once the v0 value is reset to 0.2,
small contiguous clusters gradually merge into bigger clusters,
once they collide during drifting. Given a long enough time, the
system is always able to revert back to the clustered state, even
though the final merged clusters have some morphological
differences from the original ones; for example, there are
more holes inside the clusters, and the contour shapes are
more irregular. Thus, there can be some level of microscopic
hysteresis, but none at the level of the macroscopic phase
structure.

There are a variety of experimental systems that can be
studied with this new model. Wong’s group has
demonstrated49 that under the right conditions cells can form
disconnected fractal clusters, similar in principle to those
illustrated in Fig. 1. In a simple animal (Trichoplax adhae-
rens70), overall motility can introduce enough stress to cause
fracture of the epithelial tissue; amazingly, the fracture
can transition from brittle to ductile behavior.71 Finally,
the issue of the detachment of cell clusters from primary
tumors is very much at the heart of trying to understand
the initial stages of the metastatic process.72–74 The AFV
can be used to predict cluster size distributions and thereby
provide a check on the accuracy of previous attempts46 to
accomplish this task.
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