



NOTE

# Low occurrence of ranavirus in the Prairie Pothole Region of Montana and North Dakota (USA) contrasts with prior surveys

Brian J. Tornabene<sup>1,\*</sup>, Erica J. Crespi<sup>2</sup>, Bernardo A. Traversari<sup>2</sup>, Kenzi M. Stemp<sup>3</sup>, Creagh W. Breuner<sup>1</sup>, Caren S. Goldberg<sup>4</sup>, Blake R. Hossack<sup>1,5</sup>

<sup>1</sup>Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA

<sup>2</sup>School of Biological Sciences, Center for Reproductive Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA

<sup>3</sup>Department of Biology, Appalachian State University, 287 Rivers St, Boone, NC 28608, USA

<sup>4</sup>School of the Environment, Washington State University, PO Box 644236, Pullman, WA 99163, USA

<sup>5</sup>US Geological Survey, Northern Rocky Mountain Science Center, 32 Campus Drive, Missoula, MT 59812, USA

**ABSTRACT:** Ranaviruses are emerging pathogens that have caused mortality events in amphibians worldwide. Despite the negative effects of ranaviruses on amphibian populations, monitoring efforts are still lacking in many areas, including in the Prairie Pothole Region (PPR) of North America. Some PPR wetlands in Montana and North Dakota (USA) have been contaminated by energy-related saline wastewaters, and increased salinity has been linked to greater severity of ranavirus infections. In 2017, we tested tissues from larvae collected at 7 wetlands that ranged in salinity from 26 to 4103 mg Cl l<sup>-1</sup>. In 2019, we used environmental DNA (eDNA) to test for ranaviruses in 30 wetlands that ranged in salinity from 26 to 11 754 mg Cl l<sup>-1</sup>. A previous study (2013–2014) found that ranavirus-infected amphibians were common across North Dakota, including in some wetlands near our study area. Overall, only 1 larva tested positive for ranavirus infection, and we did not detect ranavirus in any eDNA samples. There are several potential reasons why we found so little evidence of ranaviruses, including low larval sample sizes, mismatch between sampling and disease occurrence, larger pore size of our eDNA filters, temporal variation in outbreaks, low host abundance, or low occurrence or prevalence of ranaviruses in the wetlands we sampled. We suggest future monitoring efforts be conducted to better understand the occurrence and prevalence of ranaviruses within the PPR.

**KEY WORDS:** Pathogens · Contaminants · Salinity · Amphibians

*Resale or republication not permitted without written consent of the publisher*

## 1. INTRODUCTION

Ranaviruses (family *Iridoviridae*) are emerging pathogens that infect amphibians, reptiles, and fishes and have been associated with amphibian mortality events worldwide (Duffus et al. 2015). Ranaviruses are globally widespread, have been detected in amphibians in more than 25 countries, and have been reported in most states in the USA (Duffus et al.

2015). However, ranaviruses are likely more widespread than reported because monitoring efforts are lacking in some regions, amphibians can be rare or cryptic, signs of infection can be missed, and mortality events and decomposition of amphibians can occur quickly (Brunner et al. 2015, Miller et al. 2015).

One area where ranavirus data are scarce is in North America's Prairie Pothole Region (PPR), which has thousands of potholes (i.e. wetlands) and is

\*Corresponding author: brian.tornabene@umontana.edu

affected by anthropogenic activities such as farming and energy extraction. The high density of wetlands and connectivity among populations in the PPR could increase transmission and occurrence of ranaviruses (Gray et al. 2004, Greer & Collins 2008, Firkins 2015). Transmission and occurrence of ranaviruses could also be affected by habitat degradation or chemical contamination, which can increase physiological stress, reduce immune responses, and increase susceptibility to diseases (Greer & Collins 2008, Hall et al. 2020). In the eastern USA, salinity stress from road salt contamination can increase the severity of ranavirus epidemics (Hall et al. 2020). In the PPR, energy extraction over the past 50 yr and accidental spills of high-salinity wastewaters (hereafter, wastewaters) have contaminated surface waters there (Gleason & Tangen 2014), suggesting the potential for the environment to increase disease risk.

Surveys for ranaviruses are lacking in the PPR, including in Montana and North Dakota (USA). A few studies have detected ranaviruses in the PPR of South Dakota (USA) and Saskatchewan and Alberta (Canada) (Bollinger et al. 1999, Vilaça et al. 2019, Davis et al. 2020). Only one study in Montana has reported verified ranavirus infections, and it was from a montane environment >500 km from the PPR (Patla et al. 2016). In North Dakota, a comprehensive state-wide survey during 2013–2014 revealed that ranaviruses infected multiple amphibian species and ranaviruses were prevalent throughout the state (35% of amphibians tested and 56% of sites with at least one infected amphibian; Firkins 2015). However, we are unaware of studies of variation in ranavirus occurrence across a large salinity gradient where amphibians occur (e.g. <26–4103 mg Cl l<sup>-1</sup>), which is common in the PPR (Gleason & Tangen 2014, Hossack et al. 2018). With the goal of gaining insight into the potential influence of salinity on ranavirus dynamics, we sampled larvae of 3 amphibian species from wetlands in 2017 and sampled water from 30 wetlands across a salinity range of <26–11 754 mg Cl l<sup>-1</sup> in 2019 to test for environmental DNA (eDNA) evidence of ranavirus.

## 2. MATERIALS AND METHODS

### 2.1. Study species and sample collection

Three habitat-generalist amphibian species occur throughout the study area (Fig. 1): boreal chorus frogs *Pseudacris maculata*, northern leopard frogs *Lithobates pipiens*, and barred tiger salamanders

(also known as western tiger salamanders) *Ambystoma mavortium*. Abundance of each species in wetlands is affected by contamination from wastewaters (Hossack et al. 2018). Although wood frogs (*Lithobates sylvatica*) can occur at the edge of the study area (e.g. in Lostwood National Wildlife Refuge), they are rare and were not sampled.

In 2017, we used dipnets in mid-June to early July to collect 1–9 larvae of each species that occurred in each of 7 wetlands (3–18 larvae per wetland collectively; Fig. 1, Table 1). We sampled larvae across a gradient of wastewater contamination. Larvae were collected for a separate study wherein interrenal glands were dissected (Tornabene et al. 2021), and we opportunistically sampled these larvae for ranavirus infection. We tested salinity of wetlands in 2017 and 2019 using Hach QuanTab chloride titration strips with a lower limit of detection of 26 mg Cl l<sup>-1</sup> ( $\pm 10\%$  accuracy).

In late June 2019, we expanded our efforts and collected water samples from 30 wetlands to assay for ranavirus DNA (Fig. 1, Table 1). eDNA methods provide a noninvasive method of assaying for ranavirus, and eDNA concentrations of ranavirus have been found to be highly correlated with ranavirus infection severity of individuals (Hall et al. 2016). We collected 3 replicate filter samples from a pooled water sample at each wetland and negative field controls (Goldberg et al. 2018). Prior to use, we sterilized 1 l polypropylene bottles with  $\geq 10\%$  bleach and triple rinsed with tap water. To collect a pooled water sample, we triple rinsed bottles with site water and then collected equal amounts of water at each of  $\geq 4$  points in each wetland. Water samples were placed in coolers with ice, filtered within 24 h using single-use filter funnels (47 mm, 5  $\mu$ m mixed cellulose ester filters; Millipore SMWP04700), then preserved in 1 ml of 99% ethanol. We used 5  $\mu$ m filters because we assayed for multiple pathogens (B. R. Hossack and C. S. Goldberg unpubl. data) and to maximize volume of water filtered at our study sites with high turbidity and organic matter (Barnes et al. 2021). Per-filter volumes ranged from 300 to 1000 ml (mean  $\pm$  SD = 741  $\pm$  123 ml; Table 1).

### 2.2. Ranavirus DNA extraction and quantification

For larval tissue samples collected in 2017, we dissected kidney, liver, and spleen from each larva using flame-sterilized tools and pooled tissues. We assayed for ranavirus infection in pooled tissues following the methods of Hall et al. (2020). Briefly, we

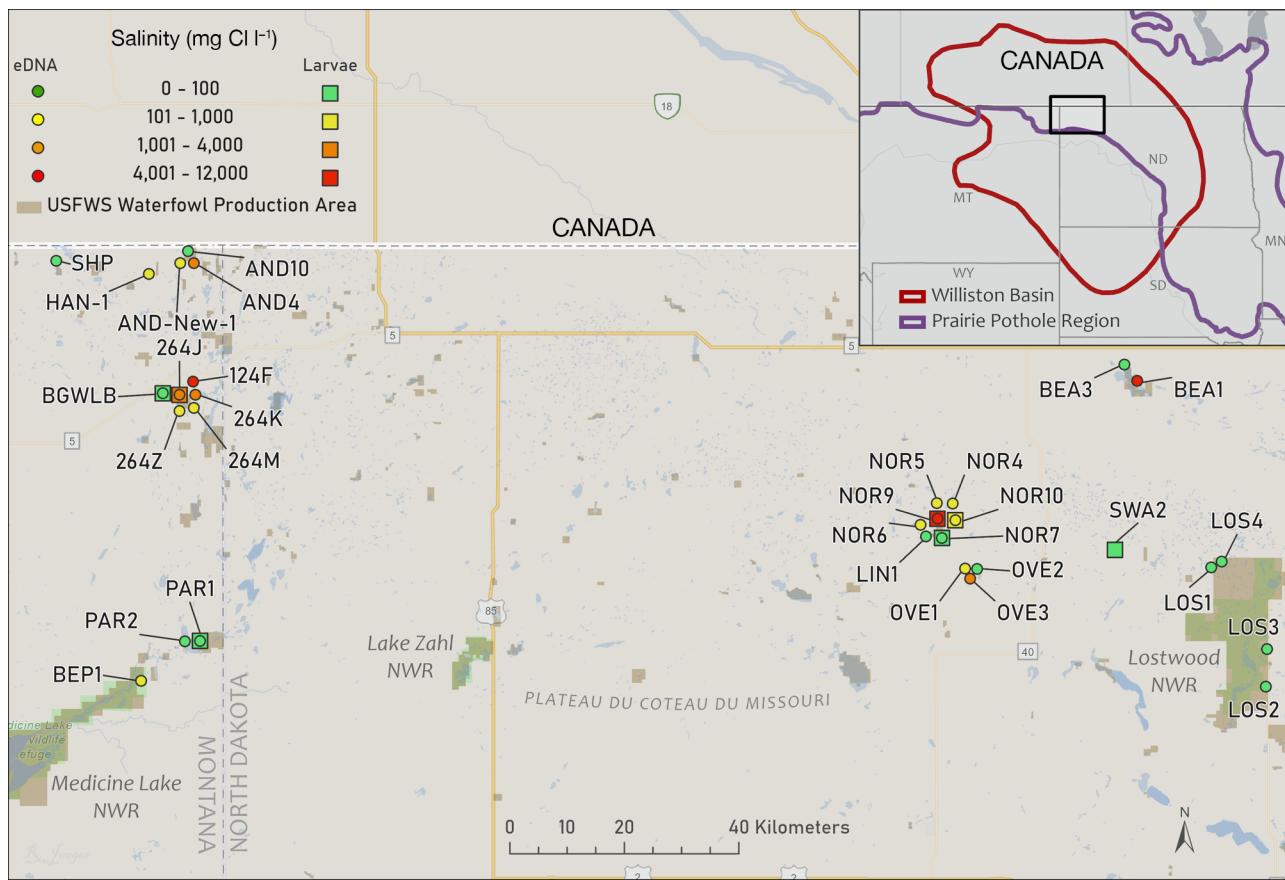



Fig. 1. Study area in Prairie Pothole Region of Montana and North Dakota, USA, where we collected larval tissue samples (squares) and eDNA (circles). No eDNA samples were positive for ranavirus, and only 1 larval barred tiger salamander was positive for ranavirus at site NOR9. See Table 1 for site attributes. USFWS: US Fish and Wildlife Service. Basemap sources: Esri, HERE, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, NOAA, and State of North Dakota

Esri, HERE, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, NOAA, and State of North Dakota

used Qiagen DNA Blood and Tissue kits following manufacturer protocols to extract DNA. To quantify and detect ranavirus DNA, we used a TaqMan real-time quantitative PCR assay specific to ranavirus capsid protein gene (Picco et al. 2007). We used synthetic gBlock standards ( $5 \times 10^2$  to  $5 \times 10^6$  copies; IDT) to quantify against unknown samples (Stilwell et al. 2018), and negative extraction controls were included with each set of extractions. eDNA samples were analyzed using the same methods, except with adding a Qiashredder (Qiagen) step prior to extraction (Goldberg et al. 2011), substitution of Environmental Master Mix in the assay to overcome inhibition common in eDNA samples, and multiplexing with the assay of Boyle et al. (2004). Inhibition was detected by including an internal positive control in each well (Qiagen or ThermoFisher). Samples where  $C_q$  was increased by  $>3$  were considered inhibited. We cleaned any samples testing as inhibited using a OneStep PCR Inhibitor Removal Kit (Zymo); these

samples were then re-analyzed and confirmed to be uninhibited using this criterion. Extraction and PCR setup were conducted in a dedicated, restricted-access lab. For both tissue and eDNA samples, we defined positive samples as those with exponential amplification in 2 or 3 wells and negative samples as those without amplification in any wells. One eDNA sample tested positive in one well on the initial run and none on a follow-up run; we considered this sample as negative.

### 3. RESULTS AND DISCUSSION

We found scarce evidence of ranavirus in our samples in both 2017 and 2019. Of the tissues from 69 larvae from 7 wetlands, only 1 tiger salamander larva was positive for ranavirus infection (at site NOR9; Table 1). From 30 wetlands spanning nearly 130 km in eastern Montana and western North Dakota, no

Table 1. Study sites in the Prairie Pothole Region of Montana (MT) and North Dakota (ND), USA, sampled for amphibian larvae in 2017 and eDNA in 2019. WPA: Waterfowl Production Area; NWR: National Wildlife Refuge; BCF: boreal chorus frog; NLF: northern leopard frog; BTS: barred tiger salamander; NC: those species were not captured in that site during sampling. The asterisk (\*) denotes the site where 1 larval barred tiger salamander was positive for ranavirus (NOR9). For 2017 and 2019, a dash (–) denotes that no larval samples were taken from that site in 2017 or no eDNA samples were taken from that site in 2019. The lower detection limit for salinity was 26 mg Cl l<sup>-1</sup>. Volume filtered (ml) refers to water volume filtered for eDNA in 2019; a dash (–) denotes that eDNA was not collected at that site

| Site      | State | Location            | Salinity<br>(mg Cl l <sup>-1</sup> ) | 2017 |     |     | 2019<br>eDNA | Volume filtered (ml) |      |
|-----------|-------|---------------------|--------------------------------------|------|-----|-----|--------------|----------------------|------|
|           |       |                     |                                      | BCF  | NLF | BTS |              | Mean (SD)            | Sum  |
| 264J      | MT    | Rabenberg WPA       | 2495                                 | NC   | NC  | 3   | Y            | 785 (79)             | 2355 |
| BGWLB     | MT    | Private             | <26                                  | NC   | NC  | 3   | Y            | 800 (200)            | 2400 |
| NOR10     | ND    | Norman WPA          | 727                                  | 9    | 5   | NC  | Y            | 750 (50)             | 2250 |
| NOR7      | ND    | Norman WPA          | 44                                   | NC   | 1   | 8   | Y            | 773 (46)             | 2320 |
| NOR9*     | ND    | Norman WPA          | 4103                                 | NC   | 4   | 9   | Y            | 770 (61)             | 2310 |
| PAR1      | MT    | Pary WPA            | 30                                   | NC   | 9   | NC  | Y            | 785 (26)             | 2355 |
| SWA2      | ND    | Swanson WPA         | <26                                  | 9    | 9   | NC  | –            | –                    | –    |
| 124F      | MT    | Rabenberg WPA       | 11754                                | –    | –   | –   | Y            | 483 (126)            | 1450 |
| 264K      | MT    | Rabenberg WPA       | 1002                                 | –    | –   | –   | Y            | 798 (100)            | 2395 |
| 264M      | MT    | Rabenberg WPA       | 445                                  | –    | –   | –   | Y            | 775 (139)            | 2325 |
| 264Z      | MT    | Rabenberg WPA       | 552                                  | –    | –   | –   | Y            | 792 (14)             | 2375 |
| AND-10    | MT    | Anderson WPA        | <26                                  | –    | –   | –   | Y            | 733 (379)            | 2200 |
| AND-4     | MT    | Anderson WPA        | 3371                                 | –    | –   | –   | Y            | 748 (50)             | 2245 |
| AND-New-1 | MT    | Anderson WPA        | 179                                  | –    | –   | –   | Y            | 760 (53)             | 2280 |
| BEA1      | ND    | Beaver WPA          | 4089                                 | –    | –   | –   | Y            | 703 (6)              | 2110 |
| BEA3      | ND    | Beaver WPA          | <26                                  | –    | –   | –   | Y            | 717 (29)             | 2150 |
| BEP1      | MT    | Berger Pond WPA     | 164                                  | –    | –   | –   | Y            | 813 (23)             | 2440 |
| HAN-1     | MT    | Hansen WPA          | 476                                  | –    | –   | –   | Y            | 539 (248)            | 2155 |
| LIN1      | ND    | Lindell WPA         | <26                                  | –    | –   | –   | Y            | 763 (55)             | 2290 |
| LOS1      | ND    | Lostwood NWR        | <26                                  | –    | –   | –   | Y            | 800 (0)              | 2400 |
| LOS2      | ND    | Lostwood NWR        | <26                                  | –    | –   | –   | Y            | 793 (12)             | 2380 |
| LOS3      | ND    | Lostwood NWR        | <26                                  | –    | –   | –   | Y            | 803 (6)              | 2410 |
| LOS4      | ND    | Lostwood NWR        | <26                                  | –    | –   | –   | Y            | 767 (58)             | 2300 |
| NOR4      | ND    | Norman WPA          | 151                                  | –    | –   | –   | Y            | 780 (159)            | 2340 |
| NOR5      | ND    | Norman WPA          | 164                                  | –    | –   | –   | Y            | 750 (50)             | 2250 |
| NOR6      | ND    | Norman WPA          | 377                                  | –    | –   | –   | Y            | 753 (81)             | 2260 |
| OVE1      | ND    | Private             | 137                                  | –    | –   | –   | Y            | 617 (29)             | 1850 |
| OVE2      | ND    | Private             | <26                                  | –    | –   | –   | Y            | 600 (0)              | 1800 |
| OVE3      | ND    | Private             | 1521                                 | –    | –   | –   | Y            | 783 (29)             | 2350 |
| PAR2      | MT    | Pary WPA            | 71                                   | –    | –   | –   | Y            | 783 (76)             | 2350 |
| SHP       | MT    | Shoveler Puddle WPA | <26                                  | –    | –   | –   | Y            | 767 (58)             | 2300 |

water samples had detectable ranavirus eDNA. Our findings contrast previous sampling in the same area that found moderately high prevalence of ranaviruses in 2013 and 2014 (35% of amphibians and 56% of sites; Firkins 2015). There are several possibilities for these different results, including our low sample sizes, mismatch in study designs, temporal variation in outbreaks, low occurrence or prevalence of ranavirus and amphibian abundance in the wetlands we sampled, and our eDNA sampling methods.

The very low number of larvae we collected could have affected our ability to detect ranavirus, particularly if occurrence or prevalence were also low in our study area (Gray et al. 2015). For instance, if population sizes and prevalence are generally low within a wetland (e.g. 100 and 2%, respectively) we would

have needed to sample 75 larvae to detect ranavirus; however, even with higher prevalence (e.g. 20%) we would have needed to sample 8 larvae and we generally sampled fewer than that per species (Gray et al. 2015). Future research in the study area should include collecting much higher sample sizes in case prevalence is low.

Presence of ranavirus is often detected via mortality events, which generally occur in mid- to late summer and are often attributed to immunosuppression during metamorphosis (Green et al. 2002, Greer et al. 2005). The previous survey near our study area (Firkins 2015) had a longer sampling period (i.e. April through September), and most ranavirus-positive amphibians were adults and juveniles (post-metamorphosis). Over 5 yr, we did not observe mortality

events at wetlands we sampled for ranavirus and monitored amphibian populations (2015–2019; Hossack et al. 2018), whereas mortality events are evident in the Greater Yellowstone Ecosystem annually, even in early spring (Patla et al. 2016). In contrast, our sampling concluded by early July in both years, and we only collected larvae. Larvae are often more susceptible to death from ranavirus than adults and juveniles, which could have also reduced our ability to find infected individuals if they quickly perish and decompose (Duffus et al. 2015). We may have also missed ranavirus outbreaks because their occurrence can be sporadic among years (Brunner et al. 2015).

Although ranavirus has been detected near our study system, it could have low occurrence or prevalence within the wetlands we sampled due to regular drying of temporary wetlands or low host abundances. Some wetlands in our study system are temporary and dry regularly, which could decrease persistence of ranaviruses in wetlands among years (Brunner et al. 2007, 2015). Lower amphibian abundance, possibly as a result of wastewater contamination, could limit the number of hosts and reservoirs and thereby decrease transmission (Greer et al. 2008, Hossack et al. 2018). However, we did not detect ranavirus eDNA in water samples from 4 uncontaminated wetlands at Lostwood National Wildlife Refuge where amphibians are more abundant and a previous study found a ranavirus-positive northern leopard frog (Firkins 2015). Other potential hosts are also limited in our wetlands because we sampled from fishless wetlands and rarely saw reptiles.

Larger pore size of our filters could have limited our detection of ranavirus in eDNA samples. We used larger pore size relative to other ranavirus eDNA studies (e.g. 5 compared to 0.22  $\mu\text{m}$ ; Hall et al. 2016) because of tradeoffs between volume of water processed and capture efficiency (Barnes et al. 2021) and because we sampled for multiple pathogens (B. R. Hossack and C. S. Goldberg unpubl. data). Previous studies have suggested that using larger pore sizes can increase volume filtered, and capture most eDNA, when detection is the primary objective (Barnes et al. 2021). However, because of the larger pore size used, our data likely reflect detection of infected tissues compared to smaller, free-floating ranavirus particles (i.e. detection of outbreaks compared to detection of ranavirus in the system). Nevertheless, other studies have detected ranavirus using similar filter pore size and water volumes (B. R. Hossack and C. S. Goldberg unpubl. data). Future studies are warranted to better understand capture efficiency of

ranavirus eDNA using filters with different pore sizes.

Amphibian populations are affected by multiple interacting stressors in the PPR (Firkins 2015, Gustafson & Newman 2016, Hossack et al. 2018). Unfortunately, our results do not provide insight into factors linked with ranavirus prevalence or dynamics. The disparity between our results and a previous study in the same area emphasizes the need for continued monitoring efforts to better understand the occurrence and prevalence of ranaviruses and other pathogens, and factors influencing their occurrence and prevalence, in the PPR.

**Acknowledgements.** Animal collection procedures were approved by the University of Montana IACUC (Permit #024-18BHWB-050818). We collected larvae under USFWS permits #62560-16-022 and #61530-18-003; Montana Fish, Wildlife & Parks scientific collection permits #2017-104-W and #2018-083-W; and North Dakota Game and Fish collection licenses #GNF04334863 and #GNF04882458. This study was funded by University of Montana, US Geological Survey (USGS RWO 103 to B.R.H.), National Science Foundation (NSF-DEB 1754474 to E.J.C.), and the Nelson Schwab Family Foundation. Many thanks to several technicians for field assistance and R. Jaeger for help with our figure. We are grateful to the 4 anonymous reviewers for reviews of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. This manuscript is US Geological Survey Amphibian Research and Monitoring Initiative (ARMI) contribution no. 807.

## LITERATURE CITED

- Barnes MA, Chadderton WL, Jerde CL, Mahon AR, Turner CR, Lodge DM (2021) Environmental conditions influence eDNA particle size distribution in aquatic systems. Environ DNA 3:643–653
- Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG (1999) Pathology, isolation, and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildl Dis 35:413–429
- Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (*Batrachochytrium dendrobatidis*) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148
- Brunner JL, Schock DM, Collins JP (2007) Transmission dynamics of the amphibian ranavirus *Ambystoma tigrinum* virus. Dis Aquat Org 77:87–95
- Brunner JL, Storfer A, Gray MJ, Hoverman JT (2015) Ranavirus ecology and evolution: from epidemiology to extinction. In: Gray MJ, Chinchar GD (eds) Ranaviruses: lethal pathogens of ectothermic vertebrates. Springer, New York, NY, p 71–104
- Davis DR, Ferguson KJ, Schwarz MS, Kerby JL (2020) Effects of agricultural pollutants on stress hormones and viral infection in larval salamanders. Wetlands 40:577–586
- Duffus ALJ, Waltzek TB, Stöhr AC, Allender MC and others (2015) Distribution and host range of ranaviruses. In: Gray MJ, Chinchar GD (eds) Ranaviruses: lethal patho-

gens of ectothermic vertebrates. Springer, New York, NY, p 9–57

Firkins MP (2015) Prevalence and distribution of ranavirus, chytrid fungus, and helminths in North Dakota amphibians. MSc, University of North Dakota, Grand Forks, ND

Gleason RA, Tangen BA (eds) (2014) Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States. Scientific Investigations Report 2014–5017, US Geological Survey, Reston, VA

Goldberg CS, Pilliod DS, Arkle RS, Waits LP (2011) Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. *PLOS ONE* 6:e22746

Goldberg CS, Strickler KM, Fremier AK (2018) Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: increasing efficacy of sampling designs. *Sci Total Environ* 633:695–703

Gray MJ, Smith LM, Brenes R (2004) Effects of agricultural cultivation on demographics of Southern High Plains amphibians. *Conserv Biol* 18:1368–1377

Gray MJ, Brunner JL, Earl JE, Ariel E (2015) Design and analysis of ranavirus studies: surveillance and assessing risk. In: Gray MJ, Chinchar GD (eds) Ranaviruses: lethal pathogens of ectothermic vertebrates. Springer, New York, NY, p 209–240

Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. *Ann NY Acad Sci* 969:323–339

Greer AL, Collins JP (2008) Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host population. *J Anim Ecol* 77:364–369

Greer AL, Berrill M, Wilson PJ (2005) Five amphibian mortality events associated with ranavirus infection in south central Ontario, Canada. *Dis Aquat Org* 67:9–14

Greer AL, Briggs CJ, Collins JP (2008) Testing a key assumption of host–pathogen theory: density and disease transmission. *Oikos* 117:1667–1673

Gustafson KD, Newman RA (2016) Multiscale occupancy patterns of anurans in prairie wetlands. *Herpetologica* 72:293–302

Hall EM, Crespi EJ, Goldberg CS, Brunner JL (2016) Evaluating environmental DNA-based quantification of ranavirus infection in wood frog populations. *Mol Ecol Resour* 16:423–433

Hall EM, Brunner JL, Hutzelniler B, Crespi EJ (2020) Salinity stress increases the severity of ranavirus epidemics in amphibian populations. *Proc R Soc B* 287:20200062

Hossack BR, Smalling KL, Anderson CW, Preston TM, Cozzarelli IM, Honeycutt RK (2018) Effects of persistent energy-related brine contamination on amphibian abundance in National Wildlife Refuge wetlands. *Biol Conserv* 228:36–43

Miller DL, Pessier AP, Hick P, Whittington RJ (2015) Comparative pathology of ranaviruses and diagnostic techniques. In: Gray MJ, Chinchar GD (eds) Ranaviruses: lethal pathogens of ectothermic vertebrates. Springer, New York, NY, p 179–208

Patla DA, St-Hilaire S, Ray A, Hossack BR, Peterson CR (2016) Amphibian mortality events and ranavirus outbreaks in the Greater Yellowstone Ecosystem. *Herpetol Rev* 47:50–54

Picco AM, Brunner JL, Collins JP (2007) Susceptibility of the endangered California tiger salamander, *Ambystoma californiense*, to ranavirus infection. *J Wildl Dis* 43: 286–290

Stilwell NK, Whittington RJ, Hick PM, Becker JA and others (2018) Partial validation of a TaqMan real-time quantitative PCR for the detection of ranaviruses. *Dis Aquat Org* 128:105–116

Tornabene BJ, Hossack BR, Crespi EJ, Breuner CW (2021) Evaluating corticosterone as a biomarker for amphibians exposed to increased salinity and ambient corticosterone. *Conserv Physiol* 9:coab049

Vilaça ST, Bienentreu JF, Brunetti CR, Lesbarrières D, Murray DL, Kyle CJ (2019) Frog virus 3 genomes reveal prevalent recombination between ranavirus lineages and their origins in Canada. *J Virol* 93:e00765-19

*Editorial responsibility:* Douglas Woodhams,  
Boston, Massachusetts, USA

*Reviewed by:* R. Newman and 3 anonymous referees

*Submitted:* June 24, 2021

*Accepted:* October 22, 2021

*Proofs received from author(s):* December 4, 2021