ON THE EXTRACTION OF RF FINGERPRINTS FROM LSTM HIDDEN-STATE
VALUES FOR ROBUST OPEN-SET DETECTION

Luke Puppo', Weng-Keen Wong!, Bechir Hamdaoui!, Abdurrahman Elmaghbub!, Lucy Lin®
1School of EECS, Oregon State University, Corvallis, OR USA 97331

NOTE: Corresponding author: Weng-Keen Wong, wongwe@oregonstate.edu

Abstract — New capabilities in wireless metwork security have been enabled by deep learning that leverages and
exploits signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and
authenticate radio transmitters. Open-set detection is an area of deep learning that aims to identify RF data samples
captured from new devices during deployment (aka inference) that were not part of the training set; i.e. devices that
were unseen during training. Past work in open-set detection has mostly been applied to independent and identically
distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time
series with non-linear time dependencies among the samples. In this paper, we introduce a novel open-set detection
approach for RF data-driven device identification that extracts its neural network features from patterns of the hidden
state values within a Convolutional Neural Network Long Short-Term Memory (CNN+LSTM) model. Ezxperimental
results obtained using real datasets collected from 15 IoT devices, each enabled with LoRa, wireless- Wi-Fi, and wired-
Wi-Fi communication protocols, show that our new approach greatly improves the area under the precision-recall curve,

and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.

Keywords — Deep learning, network authentication, open-set detection, radio frequency

1. INTRODUCTION

The proliferation of Internet Of Things (ToT) devices
in sensitive environments, such as military bases, gov-
ernment buildings, and private businesses, creates a
need for detecting anomalous devices that pose secu-
rity threats. These devices can easily bypass security
measures as they can be concealed. Traditional detec-
tion methods are ineffective at identifying unauthorized
wireless devices, especially with attacks like cloning and
man-in-the-middle [1].

1.1 Deep learning-based RF Fingerprinting

RF fingerprinting is a recognized key method to enhance
security in IoT networks [2, 3, 4]. It extracts device-
specific features from RF signals to identify wireless
transmitters, leveraging unique hardware imperfections
during transmitter manufacturing. Feature extraction
methods range from hand-crafted to deep learning-based
approaches that identify features from raw RF signals.
This paper proposes HiNoVa, a new machine learning-
based open-set detection method that identifies unau-
thorized (also referred to as unknown or unseen) IoT de-
vices and authorized (also referred to as known or seen)
devices. HiNoVa is tested on datasets collected from de-
vices using LoRa and Wi-Fi protocols [5]. LoRa is a
wireless communication technology designed for IoT de-
vices that operates in the sub-gigahertz frequency range,
enabling long-range, low-power, bidirectional communi-
cation. LoRa’s advantages include longer range, better

penetration through obstacles, and low power consump-
tion, making it suitable for IoT applications that re-
quire a wide area network coverage. However, LoRa has
lower data rates than Wi-Fi, making it unsuitable for
high-speed data transfer applications. The crowded sub-
gigahertz frequency range can also lead to interference
from other devices. Each of the protocols, LoRa and
Wi-Fi, has its practical use and is commonly adopted
by various transmitters, and hence, our proposed open-
set detection method is tested using both protocols.

1.2 Open-set detection

Supervised machine learning algorithms are increasingly
being used to perform RF fingerprinting [6]. How-
ever, these algorithms typically operate under closed-
set recognition, meaning that they assume the classes
encountered during testing are identical to those seen
during training. This means that if a Neural Network
(NN) is trained to identify the two classes of cats and
dogs, it fails to recognize an unknown type of animal,
such as a bird, as a distinct animal and will instead mis-
classify it as either a cat or a dog. This limitation is
particularly problematic in real-world scenarios where
device fingerprinting is used for security purposes such
as network access authentication. In this authentication
use case, the classes correspond to known or legitimate
devices and it is crucial for the system to accurately de-
tect unknown or illegitimate devices (i.e. the open-set
devices) to raise security alerts.

For these types of problems, open-set detection [7] can
be used, where the classifier needs to recognize that data
samples do not belong to any of the known devices seen
during training, and raises an alert when this happens.
Our work introduces HiNoVa, a novel open-set detection
approach for authenticating wireless devices using RF
fingerprinting.

1.3 Contributions

We present HiNoVa, a novel open-set detection method
for wireless communication protocols. HiNoVa leverages
the Hidden Node Values within a trained Long-Short-
Term Memory (LSTM) unit of a deep NN to generate a
unique device fingerprint for each known device. Then,
new fingerprints encountered during deployment can be
compared against the fingerprints of known devices, en-
abling the system to accurately identify unknown de-
vices. After undergoing training on a set of known de-
vices, the open-set detection process is highly efficient
and can be performed in real time even on consumer-
grade devices. This makes HiNoVa an ideal solution
for wireless security applications, where the ability to
quickly identify unauthorized /unknown devices is of ut-
most importance.

The paper is structured as follows: Section 3 presents
the machine learning architecture used by our method.
Section 4 presents the details of the HiNoVa algorithm.
Section 5 describes the LoRa, wireless-Wi-Fi, and wired-
Wi-Fi datasets used in our evaluation and Section 6 eval-
uates the performance of HiNoVa using these datasets.
The last section concludes the paper. For ease of ref-
erence, Table 1 contains a list of acronyms used in this
publication, along with their meanings.

Table 1 — Acronyms that are used in this publication, along with
their meanings.

Acronym | Meaning

AUPRC Area Under the Precision-Recall Curve

CNN Convolutional Neural Network

CSS Chirp Spread Spectrum

DTW Dynamic Time Warping
Independently and Identically Dis-

1.1.D. .
tributed

IoT Internet of Things

1Q In-phase and Quadrature

LSTM Long Short-Term Memory

NN Neural Network

ReLU Rectified Linear Unit

RF Radio Frequency

RNN Recurrent Neural Network

USRP Universal Software Radio Peripheral

2. RELATED WORK

Open-set detection is an area of machine learning that
has attracted considerable attention and the literature
is vast. We will refer the reader to a survey such as
[8] and in this section, we will only highlight the most
closely related approaches.

One of the simplest approaches to open-set detection is
to use the predicted class probability as an indicator of
the model’s confidence that the data instance belongs to
one of the known devices [9]. In an NN, the predicted
class probability is the maximum class probability out-
put by a softmax distribution. If this value is low, it
indicates that the instance is likely from an unknown
device.

Recent work [10, 11] shows that the maximum logit score
(which we refer to as MaxzLogit) is a stronger baseline for
detecting open-set instances. Logits are the outputs of
the last linear layer of a deep neural network. In classi-
fication, these logits are the inputs to the softmax layer,
which normalizes the logits to be a valid probability.
Normalizing the logits removes information about their
raw magnitude, which is valuable for detecting open-set
instances [10]. The MaxLogit score is the value of the
largest logit, which is indicative of the uncertainty of the
classifier as to the device; an open-set instance should
have a lower maximum logit value.

Recent approaches to open-set detection focus on lever-
aging internal node values and activation patterns of
neurons inside neural networks to detect open-set sam-
ples. For example, ReAct [12] analyzes the internal acti-
vations of neural networks and identifies highly distinc-
tive signature patterns for open-set distributions. Di-
etterich et al. [11] argue that detecting novel objects
in object recognition applications with an open set of
possible categories is a familiarity-based problem rather
than a novelty-based problem. Their familiarity hypoth-
esis posits that state-of-the-art methods based on the
computed logits of visual object classifiers succeed by
detecting the absence of familiar learned features rather
than the presence of novelty.

Much of the literature for open-set detection applies to
data instances that are independent and identically dis-
tributed (i.i.d). To our knowledge the only work for
open-set detection on time series is by Akar et al. [13],
which clusters the time series in each known class to
identify a class-specific barycenter. Then, during de-
ployment, new time series are identified by how close
they are to these barycenters, where the closeness is de-
termined by Dynamic Time Warping (DTW) and also
by cross-correlation. Time series that are not close to
the barycenters of known devices are flagged as an un-
known device. DTW has a complexity of O(T?), where
T'is the length of the two time series to be aligned. The
algorithm by Akar et al. uses DTW in the inner loop

of several operations and is extremely computationally
expensive.

A handful of papers have applied open-set detection to
RF fingerprinting. Gritsenko et al. [14] use the maxi-
mum probability from the softmax layer and the ratio of
slices predicted to belong to each device to establish the
confidence in the device prediction. Hanna et al. [15]
investigate a variety of methods such as the maximum
softmax probability and methods that incorporate data
from known unauthorized devices. Gaskin et al. [16, 17]
propose Tweak, a lightweight calibration approach that
leverages metric learning to achieve high open-set accu-
racy without the need for model retraining, making it
more suitable for resource-constrained applications. In a
recent work, Karunaratne et al. [18] use generative deep
learning models to produce synthetic data from unau-
thorized devices, which are used to augment the train-
ing set. Our approach differs from these approaches by
modeling the sequential nature of the time series data
with a CNN+LSTM and leveraging these sequential re-
lationships for open-set detection.

Another closely related area to open-set detection is
anomaly detection [19]. In anomaly detection, the goal
is to identify individual outliers that are rare with re-
spect to the nominal (i.e. “normal”) data instances.
Anomaly detection has some subtle differences with
open-set detection. First, in open-set detection, data
instances from the unknown class come from a semanti-
cally coherent grouping that is different from the known
classes. In contrast, the anomalies found by anomaly
detection need not form a coherent grouping. Second,
the anomalies in a typical anomaly detection setting
make up a small fraction of the data, with the nomi-
nal instances forming a large proportion of the data. In
open-set detection, the unknown classes can potentially
contain a large number of data instances. Despite these
subtleties, anomaly detection techniques can, in some
cases, be applied to open-set detection and vice versa;
however, open-set detection methods have been found
to outperform anomaly detection methods for detecting
unknown devices [20].

3. THE CNN-LSTM NEURAL NET-
WORK ARCHITECTURE

In deep learning, a Recurrent Neural Network (RNN)
layer is a layer type that allows for the processing of
sequential data such as a time series by maintaining a
memory state that can store information about the re-
cent past. It consists of a single time step of the RNN,
which involves computing a hidden state vector h, and
an output vector y, at each time step ¢. The vector h,
depends not only on the input vector z, at time step ¢,
but also on the hidden state vector h,_; at the previous
time step. This dependence allows the network to main-
tain a memory of past inputs and use this information

to inform its current output.

One limitation of this RNN layer is that it can have
difficulty remembering long-term dependencies in the
input sequence. To overcome this difficulty, the Long
Short-Term Memory (LSTM) [21] layer was developed
to handle long-term dependencies in the input sequence
more effectively.

3.1 Long-Short-Term Memory (LSTM) layer

The LSTM layer consists of the following equations,
where © represents an element-wise product:

iy = o(Wimy + by + Wiihy_y + by;) (1)
fe=0Wipzy +bip+Wyihy 1 +byy) (2)
gy = tanh(WigIt + by + Wygheq + bhg) (3)
0y = o(Wigy + by + Wiohy 1 +bp,) (4)
G =[0c¢ 1+, 04 (5)
h, = 0, © tanh(c;) (6)

Each term in the LSTM equations is described below:
e z,: The input vector at time ¢.
e h;_;: The previous hidden state vector.

e i, fis 9s, 0,0 The input gate, forget gate, cell gate,
and output gate activation vectors, respectively.

e ¢;: The memory cell content vector, containing old

memory cell content and newly added cell content.
o Wiy, Wip, Wiy, Wi, The weight matrices for input
gates, forget gates, cell gates, and output gates for
the input vector.

o Wyis Wig, Wiy, Wit The weight matrices for the
input gates, forget gates, cell gates, and output
gates for the previous hidden state.

o byis by, by, byt The bias vectors for the input gates,
forget gates, cell gates, and output gates for the
input vector.

o bpis by bpgs bpot The bias vectors for the input
gates, forget gates, cell gates, and output gates for
the previous hidden state.

e h;: The hidden state at time ¢.

The LSTM network has a cell state that can store in-
formation for long periods of time, and three gates that
control the flow of information: the input gate, forget
gate, and output gate. The input gate controls the input
to the cell state, the forget gate controls how much of
the previous cell state is retained, and the output gate
controls the output from the cell state.

At each time step, the LSTM network takes an input
x,, the previous hidden state h,_; and the previous cell
state c,_;, and uses these to compute the input gate 7,,
forget gate f,, cell gate g,, and output gate o,.

The cell state ¢, (Eqn (5)) is updated based on the input
gate i,, forget gate f,, and cell gate g,. The input gate
(Eqn (1)) controls how much new information is added
to the cell state and the forget gate (Eqn (2)) controls
how much old information is retained. The cell gate
(Eqn (8)) controls what new information is added to
the cell state, by applying an activation function (e.g.
tanh) to the input and previous hidden state.

Finally, the output gate o, (Eqn (4)) controls how much
of the current cell state is output as the new hidden state
h,. The new hidden state (Eqn (6))is computed by ap-
plying the tanh function to the updated cell state ¢, and
then multiplying it by the output gate o,. The hidden
state now contains both short and long-term memory,
making it an excellent choice for an informative latent
description.

3.2 Convolutional Neural Network LSTMs

Convolutional Neural Networks (CNNs) have been suc-
cessful at image recognition because of their locality
bias, which assumes that nearby pixels are useful in
identifying an object. The key component of a CNN re-
sponsible for this locality bias is the convolutional layer,
which convolves a set of filters to the input data in order
to extract local features. The filters are typically small
in size and slide over the input data in a sequential, lin-
ear fashion. This results in a feature map that highlights
patterns in the input data and these patterns have the
property of translational invariance (i.e. moving a cat a
few pixels over still makes the cat present in the image).
A CNN can also be combined with an LSTM layer by
piping the output of the convolutional layer into the
LSTM. We call this hybrid a CNN+LSTM, which is
well suited for discovering patterns in RF transmissions,
which have cyclic patterns over time that are predictive
of the device.

4. METHODOLOGY

Fig. 1 provides an overview of the entire HiNoVa algo-
rithm and illustrates how each component interacts with
the others. The top half shows how the training data is
processed and the bottom half represents the detection
phase operating on test data.

4.1 Preprocessing

The data captured from IoT devices during testing is ini-
tially processed and stored in the In-phase and Quadra-
ture (IQ) format. The IQ components of an RF signal
are crucial in accurately reproducing the original sig-
nal and are represented as complex numbers, with the

Training

Hidden
Node
Values

Data In
B - —_—

CNN+LSTM
Training

Trained

Hidden
Node
Value

Fingerprint

)
1 Open-Set
_4 Fingerprint Flag
Hidden Correlation

Node
Values

Pre-
Processing Model

Inference

Dataln

_____ > — ==

_______/

Detection

Fig. 1 — An overview of the HiNoVa framework.

Raw IQ data Slice Auto-correlated

Representation
|

Fig. 2 — An overview of the preprocessing pipeline.

Slice Slice Slice

real and imaginary values represented by I and Q, re-
spectively. During testing, each IoT device sends a 20-
second message, which is captured by a USRP receiver
and saved in a complex number format.

To preprocess the data for analysis, the complex num-
bers are converted back into their I and Q parts and
then segmented into non-overlapping time windows of
2048 samples which we call a slice. A signal correlation
function is then run on each of the 2048 I and Q samples,
each correlated with itself (I to Tand Q to Q) to produce
the auto-correlation at lags 0 to 2047. The resulting
(2 x 4096) matrix emphasizes cyclostationary features,
which are a key part of RF fingerprinting. This new slice
contains a mirror image as a result of auto-correlation,
so the first half (2 x 2048) is used as the modified feature
set (i.e. slice) for training. Fig. 2 illustrates the pre-
processing pipeline. In Section 6.4, we show that this
preprocessing step to produce an auto-correlated rep-
resentation of the data results in a substantially more
effective detector than the raw IQ) signal. On a current
state-of-the-art laptop, converting a one second window
of IQQ data to this auto-correlated representation takes
less than 70 milliseconds. This fast preprocessing makes
it viable to deploy a trained HiNoVa detector in a time-
critical setting.

4.2 Training

The architecture for the CNN+LSTM is shown in Table
2. We train the model with the ADAM optimizer [22]
at a fixed learning rate (0.0001) with a cross-entropy
loss function. We will discuss hyperparameter tuning in

Section 6.1.

Table 2 — HiNoVa’s CNN+4LSTM architecture. Notation: Con-
volutional2D(channels in:channels out, kernel dims), Batch-
Norm2D(num features), MaxPool2D(pool dims), ReLU is a Rec-
tified Linear Unit.

Input

1
Convolutional2D (1:16, 2x256)

BatchNorm2D(16)

ReLU
Dropout(10%)
Convolutional2D (16:16, 2x256)
BatchNorm2D(16)

ReLU

Convolutional2D (16:32, 2x256)
BatchNorm2D(32)
ReLU
Dropout(10%)
Convolutional2D (32:32, 2x256)
BatchNorm2D(32)
ReLU
MaxPool2D(2x2)

LSTM(64)
Fully Connected Layer

LogSoftmax Layer
1

Known or Unknown Device

4.3 Detection

During the detection phase, the IQ data is preprocessed
in the same way as in training. Fach slice is passed
through the trained CNN+4+LSTM and the final transi-
tion in the LSTM layer is extracted. The final transi-
tion was determined to be the most suitable for anal-
ysis due to the fact that at this point, the LSTM has
processed all prior information within the slice. As a
result, the internal nodes of the LSTM, specifically the
forget gate and cell state, now contain both the long-
term and short-term memory associated with the entire
slice. This encoding effectively represents the transmis-
sion of the device during this specific time slice and is
used to create a unique fingerprint.

4.4 Hidden state value fingerprinting

Algorithm 1 shows how HiNoVa uses the hidden state
values within a trained CNN-+LSTM to produce a
unique fingerprint for each device in the training set.
The first step involves aggregating, for each known de-
vice, the hidden node values from all the correctly classi-

0.14

0.12

0.10

0.08

Probability

0.06

Activation Value Bins

0.04

0.02

0.00
(0] 20 40 60

Hidden Node

(a) Device 5 fingerprint

Activation Value Bins
Probability

(] 20 40 60
Hidden Node

(b) Device 6 fingerprint

Fig. 3 — Two unique fingerprints using HiNoVa under the wireless-
Wi-Fi Dataset (described in Section 5).

fied slices during training. Then, for each known device,
a histogram with B bins is built that describes the dis-
tribution of the hidden state values (i.e. h, in Eqn (6))
for each hidden layer node in the LSTM. With M hidden
state nodes, this histogram will be a (M x B) matrix,
which serves as the unique fingerprint for that device.
Examples of these fingerprints are shown in Fig. 3.

4.5 Open-set fingerprint correlation

A number of different approaches can be used to com-
pare test set device fingerprints to the fingerprints of
the known devices. For instance, we could compute the
probability of a test slice belonging to the histogram
for that device, since the histogram is a valid proba-
bility distribution. We experimented with different ap-
proaches and found that correlations produced the best
results. The most common approach for measuring cor-
relation is Pearson’s correlation coefficient, which makes
a strong assumption that the relationship between two
variables is linear. To avoid this strict assumption, we
investigated Kendall’s 7 [23], which is a non-parametric
measure of correlation that quantifies the rank-order as-

Algorithm 1 The Fingerprint Generation Algorithm

Require: H > Hidden node values from correctly
classified training slices
FP « zeroes(Ky,, n X M X B)

—_

2: for k + 0 to (Ky,,0un — 1) do > Over known
devices

3 for m < 0 to (M — 1) do [> Over hidden nodes

4 Hy, ,,, < Hlk,m]

5 FP[k,m,] < Histogram(H,,,,B)

6: end for

7: end for

8 return FP

1. Kppown: the number of closed-set devices
2. M: the number of hidden nodes

3. B: the number of bins in the histogram

N

. Histogram(Values, B): Creates a histogram for
Values with B bins

sociation between two variables.

To compute Kendall’s 7, let fp; = (fp}, ..., fp}*B) be

7
the M x B features (i.e. matrix values) for the fin-
gerprint for the ith known device. Furthermore, let
fp; = (fpjl, s fpé”*B) be the M * B matrix values for
the fingerprint of the jth device seen in the test set.
Kendall’s 7 measures the rank correlation in terms of the
ranks of the magnitudes of the features (fp}, ..., fpM*B)

3
and (fp]l, s fpé”*B). Specifically, two feature indices
il and 42 are said to be concordant if fpi' > fpi?
and fpj»1 > fpj»2 (or equivalently if fpi' < fpi? and
fp§1 < fp;?), otherwise they are said to be discordant.
Computing Kendall’s 7 (see (7)) requires the number of
concordant (P) and discordant pairs (@), as well as the
number of tied pairs of feature indices only in fp, (7)
and only in fp; (U).

_ P-q
T /PG Pr QLU)

We chose Kendall’s 7 because it produced better perfor-
mance than a linear correlation.

Algorithm 2 illustrates the unknown device detection
process. Each test device has its slices converted to a
test fingerprint, which is an M x B histogram. The test
fingerprint for the kth test device was compared to all
the known fingerprints, and its maximal rank correlation
coefficient 7} was computed. We use (1—7;) to indicate
the degree to which the test device was not correlated
to a known device. If the value (1 — 77) was above a
threshold, an open-set flag was raised.

Algorithm 2 The Open-Set Detector

Require: FP > Fingerprint Tensor (Alg. 1)
Require: H,, ,, ¢ Koot X M X Sieqt

Require: FP, , < zeroes(Kiest X M x B)
Require: result + zeroes(Kiqot)

1: for k< 0 to (K., —1) do

2: for m < 0to M —1do

3: F Py [k, m,:|«<~Histogram(H,.s [k, m,:], B)
4: end for

5: end for

6: for k < 0 to (K., —1) do

7: for | < 0 to (K}, 0, — 1) do

8: T = KT (flatten(F P[l]), flatten(F Py, 4[k]))
9: end for
10: 7o = max(7y ;)
11: resultlk] = (1 — 1)
12: end for

13: return result

1. K,.q: the total number of test devices

2. M: the number of hidden nodes

. Siest the number of test slices per device
. B: the number of bins in the histogram

. H

test: the hidden state values for the test slices

. FP, ,, : the test fingerprints
. Kipown © the number of known devices

. KT: Kendall’s 7 correlation function

© o0 N O ot ks W

. flatten: function to flatten 2D matrix to 1D vector
10. 75,: The rank correlation coefficient for device k

11. result: the per-device vector of unthresholded pre-
dictions (higher is more indicative of an unknown
device)

5. TESTBED AND DATASETS

This work utilizes three RF datasets: LoRa, wireless-
Wi-Fi, and wired-Wi-Fi which have been collected using
a testbed of 15 PyCom IoT devices as transmitters [5,
24]: nine Fipy boards and six Lopy4 boards on top of
PySense sensor shields (pictured in Fig. 4 (top)). Py-
com devices are equipped with ESP32, Semtech SX1276,
and Sequans Monarch chips that support Wi-Fi b/g/n,
Bluetooth, LoRa, Sigfox, and Narrowband IoT network
protocols. On the reception side, we used an Ettus Uni-
versal Software Radio Peripheral (USRP) B210 with a
VERT900 antenna for the data acquisition.

5.1 LoRa dataset

We transmitted LoRa transmissions using LoRa modu-
lation, a proprietary physical layer implementation that
utilizes a variant of the Chirp Spread Spectrum (CSS)
technique [25]. This technology operates in the subGHz
ISM band and strategically balances data rate with cov-
erage range, power consumption, and/or link robust-
ness. FEach Pycom device was connected to a dedi-
cated LoRa antenna, powered by a LiPo battery, and
set up to transmit LoRa signals within the 915MHz US
band, configured with the following parameters: Raw-
LoRa mode, 125kHz bandwidth, a Spreading Factor
(SF) of 7, a preamble of 8, a TX power of 20dBm, and
a coding rate of 4/5. The devices were programmed
to send the same LoRa messages for 20s in a round-
robin fashion with a 15min gap between devices, gen-
erating 20M complex-valued samples per device. Posi-
tioned five meters from the receiver, these transmissions
were captured by the USRP B210 receiver and sampled
at a rate of 1 MSps. The datasets can be downloaded
from NetSTAR Laboratory at http://research.engr.ore-
gonstate.edu/hamdaoui/datasets. Detailed description
of the LoRa dataset is provided in [5].

5.2 Wi-Fi dataset

We reprogrammed the same 15 Pycom devices to trans-
mit Wi-Fi IEEE802.11B frames at a center frequency
of 2.412GHz and a bandwidth of 20MHz. The data-
capturing process was initiated 12 minutes after de-
vice activation to ensure the stability of the hardware
[26]. The transmitters were programmed to consecu-
tively transmit identical IEEE 802.11b frames, each last-
ing 559 microseconds, with a small gap in between. To
eliminate any data dependency on the identity of the
Wi-Fi transmitter, all transmitters were set to broad-
cast identical packets, featuring the same spoofed MAC
address and a payload of zero bytes. For data acquisi-
tion, we employed an Ettus USRP B210 receiver, syn-
chronized with an external signal synthesizer to enhance
both sampling accuracy and stability. The power sup-
ply for all devices was facilitated through USB connec-
tions from an HP laptop. This setup and synchroniza-

Fig. 4 — IoT testbed consisting of 15 Pycom transmitting devices
(top) and a USRP B210 receiving device (bottom).

tion strategy were crucial in ensuring precise and sta-
ble data capture, providing a robust foundation for our
subsequent analysis. The Wi-Fi frames have been sam-
pled and digitally down-converted at a sample rate of
45MSps. Each Wi-Fi capture lasts for two minutes gen-
erating more than 5000 frames per device where each
frame consists of 25,170 complex-valued samples. While
the transmitters were located 1m away from the receiver
and connected to the same antenna in the wireless-Wi-
Fi dataset, a 12inch SMA cable was used to connect
them directly to the USRP receiver in the wired-Wi-Fi
dataset as shown in Fig. 4 (right). Both of these datasets
are publicly available at http://research.engr.oregon-
state.edu/hamdaoui/datasets. Detailed descriptions of
the Wi-Fi dataset are provided in [27, 28].

6. RESULTS AND DISCUSSION

For each of the three studied datasets, we set up three
experiments in which we randomly selected 10 devices
to be the known devices and five devices to be the un-
known devices. We then evaluate our approach using
a variant of 5-fold cross-validation designed to handle
evaluation of open-set detection. We use a dataset with
an equal number of data samples (i.e. slices) from each
of the 15 devices. We divide each device’s data into
five non-overlapping equally-sized partitions. Under the
traditional cross-validation process, in each fold of cross-
validation, four of the partitions for that device are used
as the training set while the remaining partition is used

as the test set. The partitions are reassigned to train-
ing and testing in the other folds, such that each fold
ends up using a different partition for testing, with no
overlap between test sets for each fold. Data from the
10 known devices follow this traditional 5-fold cross-
validation process. The main difference in our variant
occurs with the test partition in each fold. In open-set
detection, the test set contains both the test partition
for the 10 known devices, as well as the test partition for
the five unknown devices. We emphasize that in each
fold, the data from the five unknown devices are only
seen during testing and never seen during training.

Thus, to summarize the overall process, in each fold of
cross-validation, HiNoVa is trained on the training set.
After training, we generated 10 device fingerprints us-
ing the correctly classified samples from the 4 partitions
of the known device training data. During the detec-
tion phase, HiNoVa takes each test sample from the test
partition and compares it to the 10 known device finger-
prints to perform a binary prediction as to whether or
not the sample belongs to a known or unknown device.

6.1 Algorithms and performance metrics

We compare HiNoVa against a number of other open-set
detection methods. These are summarized next:

1) CNN with MaxLogit (CNN Max Logit): This
baseline uses a CNN augmented with the MaxLogit pro-
cess for detecting open set instances. As was pointed
out in a recent work [10], MaxLogit, though simple, is a
strong open-set detector.

2) CNN+LSTM with MaxLogit (CNN+LSTM
Max Logit): The previous baseline interprets each ob-
servation in a slice as an i.i.d. data instance. In reality,
the observations in a slice have a sequential relationship
and using a CNN+LSTM instead of a CNN enables the
detector to model these sequential relationships. As be-
fore, we use the MaxLogit approach for open-set detec-
tion.

3) OpenMax [29] (CNN+LSTM OpenMax): This
baseline re-weights the activation vectors that go into
the final Softmax layer to better separate the known
from the unknown devices. The weighting function uses
a Weibull distribution for modeling extreme values and
is used in OpenMax to model the right tail of the activa-
tion distribution corresponding to the highest activation
values. OpenMax only re-weights the activations for the
top « classes with the highest activation values.

4) Akar et al. [13] (Akar): This algorithm is the
most closely related work to our approach as it is an
open-set detector specifically for time series. We refer
to this approach as Akar. The Akar algorithm uses Dy-
namic Time Warping (DTW) to compute the similar-
ity between a test set time series and the barycenters of

known devices. Devices that are greater than a specified
threshold in terms of DTW distance to the barycenters
of known devices or less than a specified threshold in
terms of cross-correlation are declared to be open set
devices.

We use the Area Under Precision-Recall Curve
(AUPRC) as the evaluation metric [30] since there is
a significant class imbalance as we have twice as much
data from known devices than from unknown devices
during testing. AUPRC considers the trade-off between
precision and recall across a range of detection thresh-
olds and yields an overall threshold-independent sum-
mary statistic of the detector’s performance.

To determine the hyperparameter settings for our
deep learning models, we use post-hoc tuning on
CNN+LSTM MaxLogit. We use CNN+LSTM
MaxLogit because parts of its architecture are shared
with CNN MaxLogit and CNN+LSTM OpenMax.
Post-hoc tuning refers to looking at the performance
of CNN+LSTM MaxLogit on the test set, which gives
CNN+LSTM MaxLogit an unfair advantage as it is al-
lowed to see the test set, but we will show that even
with this advantage, HiNoVa still significantly outper-
forms the MaxLogit models.

Specifically, we post-hoc tune the kernel size (2 x 256)
and dropout rate (10%) in the CNN layer to achieve
high accuracy in closed set classification using a grid
search. Attaining good closed set accuracy has recently
been shown to produce good open set detectors [10].
We also post-hoc tune the number of hidden nodes to
achieve high AUPRC for the open-set prediction task for
CNN+LSTM MaxLogit. The resulting values of these
hyperparameters were applied to HiNoVa, which clearly
puts it at a disadvantage because these hyperparame-
ters were tuned for a completely different algorithm (i.e.
CNN+LSTM MaxLogit), but HiNoVa still performs well.

We evaluated HiNoVa with 25, 50, 75 and 100 bins and
found that it resulted in small differences in AUPRC
(< 0.03). As a result, we report results with 25 bins in
our experiments.

6.2 Comparison results

We begin by comparing HiNoVa against CNN+LSTM
Max Logit, CNN Max Logit and CNN+LSTM Open-
Max. Our evaluation is done using three different RF
datasets: LoRa, wireless-Wi-Fi, and wired-Wi-Fi, as de-
scribed in Section 5. Fig. 5 shows the average AUPRC
values for the LoRa, wireless-Wi-Fi, and wired-Wi-Fi
datasets respectively. HiNoVa consistently outperformed
the other methods, achieving statistically significant im-
provements (Wilcoxon Signed Rank Test, o = 0.05) in
all three experiments. CNN+LSTM MaxLogit, CNN

Average AUPRC
Average AUPRC
o

Exp. 1 Exp. 2 Exp.3 Exp. 1

® HiNoVa ®m CNN+LSTM Max Logit = CNN Max Logit
® CNN+LSTM OpenMax

(a) LoRa

® HiNoVa = CNN+LSTM Max Logit = CNN Max Logit
® CNN+LSTM OpenMax

(b) Wireless-Wi-Fi

Average AUPRC

1.00 1.00 1.00
0.75 0.75 075
0.50 0.50 0.50
0.25 I 0.25 0.25 I
0.00 0.00 0.00

Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp. 3

® HiNoVa = CNN+LSTM Max Logit = CNN Max Logit
= CNN+LSTM OpenMax

(c) Wired-Wi-Fi

Fig. 5 — Average test AUPRC for HiNoVa vs other algorithms on the (a) LoRa, (b) wireless-Wi-Fi and (c¢) wired-Wi-Fi datasets. The
differences between HiNoVa and the other algorithms are statistically significant (Wilcoxon Signed Rank Test, o = 0.05).

MaxLogit, and OpenMax lagged behind both HiNoVa by
a substantial gap in AUPRC, with no consistent top per-
former in this second tier of algorithms.

Overall, the results suggest that HiNoVa is an effec-
tive detector of unknown devices using LoRa, wireless-
Wi-Fi and wired-Wi-Fi protocols, outperforming other
methods by a significant margin. The hidden state val-
ues correspond to a compact representation of the au-
tocorrelation lags in the IQ data within a slice, and
the distribution of this representation, as represented
in the histogram used to derive the fingerprint, provides
an effective summary of the device-specific information
that HiNoVa is able to leverage. Finally, the MaxLogit
and OpenMax approaches only rely on the logits of the
penultimate layer of the NN. These logits, which are
used to derive the output probabilities from the NN,
lack the information contained in the fingerprints and
are thus less effective at identifying unknown devices.

6.3 Comparison with Akar et al. [13]

For the Akar algorithm, we used the implementation
provided by the authors themselves'. The Akar algo-
rithm is computationally expensive as its use of DTW
as a distance metric is quadratic in the length of the
input time series. Even with efficient DTW methods in
their implementation, the algorithm is prohibitively slow
for the data in our experiments from Section 6.2, taking
weeks to complete. As such, we modified our experimen-
tal setup in Section 6.2 in the following ways. First, we
truncate the training data to be 25% of its original size.
Second, we reduce the number of known devices to six
and the number of unknowns to three. Finally, we report
AUPRC over one-fold of the 5-fold cross-validation (over
the truncated training data size) for our three datasets.
We also modified the Akar algorithm to output a binary
classification of known or unknown, rather than classify-
ing the device as one of K known devices or a (K + 1)th
value of unknown. This modification to a binary clas-
sification was necessary to allow direct comparison to
HiNoVa in terms of the AUPRC metric. We apply the

Thttps://github.com/tolgaakar/Open-Set-Recognition-for-Time-
Series-Classification

Akar algorithm to both the auto-correlation representa-
tion and the raw IQ version of the data.

The Akar algorithm also requires tuning of the « and
B hyperparameters which are used to set the thresholds
for the DTW distance (78%!) and the cross-correlation
(75¢) for device k respectively:

Tgist — ﬁ(]ﬁist + - O.gist (8)
T = i — B off (9)

Here, a and (3 define the multiples of standard deviations
beyond the means (fid*** and fi$°) such that a data in-
stance exceeding this threshold is declared an unknown
device. The source code for the original algorithm per-
forms a grid search over the training set for values of «
and [and then uses the best configuration of hyperpa-
rameter values on the test set. To speed up the exper-
iments, we perform post-hoc tuning on the Akar algo-
rithm, which evaluates the same combinations of («, 3)
used in the source code grid search but we report the
best setting of these hyperparameters on the test data
instead of the training data. By using the test data,
this post-hoc tuning reports the actual best performing
values of the hyperparameters for the Akar algorithm
on the test data, giving it an advantage over HiNoVa.

We also run HiNoVa on the auto-correlated representa-
tion of these same training datasets and report results
on the same single fold of cross-validation. We use the
hyperparameters for HiNoVa selected in the experiments
from Section 6.2.

Fig. 6 depicts the difference in AUPRC between
HiNoVa and the Akar variants. In general, the Akar
algorithm performs better using the raw IQ representa-
tion than the auto-correlation representation. However,
HiNoVa outperforms Akar, applied to the raw IQ repre-
sentation, in 8 out of 9 experiments, often by a substan-
tial amount. Due to only a single fold being run on each
experiment, we do not have a large enough sample size
to reliably perform a hypothesis test to establish statisti-
cal significance. The use of DTW by the Akar algorithm

1.00 1.00

1.00
075 075 075
9 9 9
'3 '3 ©
[[[
=) =) =)
T 050 050 050
& & &
g g g
3 3 3
< 02 < 02 < 02
000 — 000 — 000 —
Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
® HiNoVa m Akar (Auto-Correlated) = Akar (Raw 1Q) ® HiNoVa m Akar (Auto-Correlated) = Akar (Raw 1Q) ® HiNoVa ® Akar (Auto-Correlated) = Akar (Raw 1Q)
(a) LoRa dataset (b) wireless-Wi-Fi dataset (c) wired-Wi-Fi dataset
Fig. 6 — Test AUPRCs for HiNoVa vs Akar (Auto-Correlated) and Akar (Raw 1Q).
1.00 1.00 1.00
075 075 075
[¢] [¢] [¢]
'3 '3 '3
3 3 3
I 050 I 050 I 050
o o o
8 3 g
g g g
2 0 2 02 2 02
000 000 000
Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3
Auto-Correlated ® Raw IQ # Auto-Correlated @ Raw IQ = Auto-Correlated @ Raw IQ
(a) LoRa dataset (b) wireless-Wi-Fi dataset (c) wired-Wi-Fi dataset
Fig. 7 — Average test AUPRCs for HiNoVa using Auto-Correlated data vs Raw IQ data.
1.00 1.00 1.00
075 075 075
[¢]] [¢]
' '3 '
a a a
2 2 2
2 050 2 050 2 050
° ° °
g g g
8 8 8
2 02 < 02 < 02
000 000 000
Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp.3
® HiNovVa ® NoVa-C ® HiNoVa ® NoVa-C ® HiNovVa ® NoVa-C
(a) LoRa dataset (b) wireless-Wi-Fi dataset (c) wired-Wi-Fi dataset
Fig. 8 — Average test AUPRCs for HiNoVa vs HiNoVa-C.
100 100

Average AUPRC

o o
b S
g B
Average AUPRC
o
2
B
Average AUPRC

1.00

0.75

0.50 0.50

0.25 0.25 0.25

0.00 0.00 0.00
Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp. 3

Exp. 1 Exp. 2 Exp. 3
® HiNoVa - Single ® HiNoVa - Pairwise

® HiNoVa - Single ® HiNoVa - Pairwise ® HiNoVa - Single ® HiNoVa - Pairwise

(a) LoRa dataset (b) wireless-Wi-Fi dataset (c) wired-Wi-Fi dataset

Fig. 9 — Average test AUPRCs for the single hidden node detector vs the pairwise hidden node detector.

is largely focused on matching the overall shape of the
input data and is thus unable to learn an effective repre-
sentation of the input data that captures salient features
for detecting unknown devices. We also note that even
with the modifications to the experimental setup, the
runtime of Akar’s algorithm is still impractical for real-
time deployment as each experiment took several days
to complete.

6.4 Auto-correlated vs raw 1Q

We demonstrate the value of applying a preprocessing
step that converts the 2048 sample window of raw 1Q
data into the auto-correlated representation described in
Section 4.1. The auto-correlated representation reduces
noise and allows the deep learning layers to use features
related to auto-correlation in its prediction. This pre-
processing step can be run efficiently on large datasets
without significantly increasing system run-time; in our
implementation, we apply Python’s correlate function
which is an efficient matrix operation. We compare the
results of applying HiNoVa to the raw IQ values ver-
sus the auto-correlated representation using the same
experimental setup as in Section 6.2. Fig. 7 illustrates
the large improvement in AUPRC (0.20 to 0.65) with
using the auto-correlated representation versus the raw
IQ data. These improvements are statistically signifi-
cant (Wilcoxon Signed Rank Test, o = 0.05).

6.5 HiNoVa vs HiNoVa-C

A natural variant of the HiNoVa algorithm is to use the
cell state of the LSTM instead of the hidden state. His-
torically, in a recurrent neural network, which is a pre-
cursor to the LSTM, the hidden state corresponds to
the short term memory as it remembers the state in the
previous time step. In an LSTM, the cell state was intro-
duced as a longer term memory of patterns that extend
beyond the previous time step. However, in comparing
equations (5) and (6), the cell state ¢, misses any math-
ematical operation on the output gate, so intuitively,
the hidden state contains some information that the cell
state does not.

Using the same experimental setup as the beginning of
Section 6.2, we repeated the experiments with a version
of HiNoVa called HiNoVa-C, which builds the finger-
prints using patterns in the cell state rather than the
hidden state. Fig. 8 illustrates the results. For six ex-
periments (All LoRa experiments, experiments 1 and
2 for wireless-Wi-Fi and experiment 1 of wired-Wi-Fi),
HiNoVa outperforms HiNoVa-C while in two experi-
ments, the differences are much closer, with a slight im-
provement for HiNoVa-C in experiments 2 and 3 of the
wired-Wi-Fi dataset. These results suggest that the hid-
den state has a slight advantage when building device
fingerprints, but more investigation is needed to deter-
mine which parts of the internal state of a LSTM would

be best for RF fingerprinting.

6.6 Pairwise vs single hidden node values

Since LSTMs use the hidden node value from the previ-
ous time step (h;_;) to compute the value of the current
hidden node (h,), we explore building the RF finger-
print with the pair of hidden node values at consecutive
times (h,_;,h,) instead of the hidden node value at a
single time (h,). Fig. 9 compares the performance of
a single vs pairwise hidden node value detector. Fig.
9 shows that for HiNoVa, the results are mixed, with a
pairwise detector outperforming the single node detec-
tor in about half of the experiments. These results indi-
cate that pairwise transitions can have predictive value
in some cases, but in other cases they are simply noise.
Given the additional computational cost of the pairwise
node detector in both time and memory, we recommend
using the single node detector.

7. CONCLUSION

HiNoVa is a novel open-set detection method based on
the activation patterns of the hidden states within a
CNN+LSTM model. This approach significantly im-
proves the AUPRC on LoRa, wireless-Wi-Fi, and wired-
Wi-Fi datasets over other open-set detection methods.
Additionally, because of its structure, the proposed
method can run on standard consumer hardware with
minimal setup data and training time. Future work will
investigate using attention-based deep learning models.

8. ACKNOWLEDGEMENTS

This work is supported in part by Intel/NSF Award No.
2003273.

REFERENCES

[1] S. Mathur, A. Reznik, C. Ye, R. Mukherjee, A.
Rahman, Y. Shah, W. Trappe, and N. Mandayam.
“Exploiting the physical layer for enhanced secu-
rity [Security and Privacy in Emerging Wireless
Networks|”. In: IEEE Wireless Communications
17.5 (2010), pp. 63-70. DOI: 10.1109/MWC.2010.
5601960.

[2] A. Elmaghbub and B. Hamdaoui. “LoRa De-
vice Fingerprinting in the Wild: Disclosing RF
Data-Driven Fingerprint Sensitivity to Deploy-
ment Variability”. In: IEEE Access 9 (2021),
pp. 142893-142909. DOL: 10.1109/ACCESS . 2021 .
3121606.

[3] B.Hamdaoui and A. Elmaghbub. “Deep-learning-
based device fingerprinting for increased LoRa-
IoT security: Sensitivity to network deployment
changes”. In: IEEE network 36.3 (2022), pp. 204—
210.

[4]

[10]

[13]

B. Hamdaoui, N. Basha, and K. Sivanesan. “Deep
Learning-Enabled Zero-Touch Device Identifica-
tion: Mitigating the Impact of Channel Variability
Through MIMO Diversity”. In: IEEE Communi-
cations Magazine 61.6 (2023), pp. 80-85.

A. Elmaghbub and B. Hamdaoui. “Compre-
hensive RF Dataset Collection and Release:
A Deep Learning-Based Device Fingerprinting
Use Case”. In: 2021 IEEE Globecom Workshops
(GC Wkshps). 2021, pp. 1-7. po1: 10 . 1109/
GCWkshpsb52748.2021.9682024.

L. Puppo, W-K. Wong, B. Hamdaoui, and A. El-
maghbub. “HiNoVa: A Novel Open-Set Detection
Method for Automating RF Device Authentica-
tion”. In: IEEE Symposium on Computers and
Communications (2023), pp. 1122-1128.

W. J. Scheirer, A. de Rezende Rocha, A. Sapkota,
and T. E. Boult. “Toward Open Set Recognition”.
In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.7 (2013), pp. 1757-1772.
DOI: 10.1109/TPAMI.2012.256.

C. Geng, S. Huang, and S. Chen. “Recent Ad-
vances in Open Set Recognition: A Survey”. In:
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 43.10 (Oct. 2021), pp. 3614—
3631. DOI: 10.1109/TPAMI.2020.2981604.

D. Hendrycks and K. Gimpel. “A Baseline for De-
tecting Misclassified and Out-of-Distribution Ex-
amples in Neural Networks”. In: 5th International
Conference on Learning Representations, ICLR
2017. 2017.

S. Vaze, K. Han, A. Vedaldi, and A. Zisserman.
“Open-Set Recognition: A Good Closed-Set Clas-
sifier is All You Need”. In: International Confer-
ence on Learning Representations. 2022.

T. G. Dietterich and A. Guyer. “The familiarity
hypothesis: Explaining the behavior of deep open
set methods”. In: Pattern Recognition 132 (Dec.
2022), p. 108931.

Y. Sun, C. Guo, and Y. Li. “React: Out-of-
distribution detection with rectified activations”.
In: Advances in Neural Information Processing
Systems 34 (2021), pp. 144-157.

T. Akar, T. Werner, V. K. Yalavarthi, and L.
Schmidt-Thieme. “Open set recognition for time
series classification”. In: Advances in Knowledge
Discovery and Data Mining: 26th Pacific-Asia
Conference, Part II. Springer. 2022, pp. 354-366.

A. Gritsenko, Z. Wang, T. Jian, J. Dy, K. Chowd-
hury, and S. Ioannidis. “Finding a 'New’ Needle
in the Haystack: Unseen Radio Detection in Large
Populations Using Deep Learning”. In: 2019 IEEE
International Symposium on Dynamic Spectrum

[17]

[18]

[25]

[26]

Access Networks (DySPAN). IEEE Press, 2019,
pp. 1-10. DOT: 10.1109/DySPAN.2019.8935862.

S. Hanna, S. Karunaratne, and D. Cabric. “Deep
Learning Approaches for Open Set Wireless
Transmitter Authorization” In: 2020 IEEE 21st
International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC).
2020, pp. 1-5. DOI: 10.1109/SPAWC48557 . 2020 .
9154254.

J. Gaskin, B. Hamdaoui, and W-K. Wong.
“Tweak: Towards portable deep learning models
for domain-agnostic LoRa device authentication”.
In: arXiv preprint arXiv:2209.00786 (2023).

J. Gaskin, A. Elmaghbub, B. Hamdaoui, and
W-K. Wong. “Deep Learning Model Portability
for Domain-Agnostic Device Fingerprinting”. In:
IEEE Access (2023).

S. Karunaratne, S. Hanna, and D. Cabric. “Open
Set RF Fingerprinting using Generative Out-
lier Augmentation”. In: 2021 IEEE Glob. Com-
mun. Conf. 2021, pp. 01-07. por: 10 . 1109 /
GLOBECOM46510.2021.9685335.

V. Chandola, A. Banerjee, and V. Kumar.
“Anomaly Detection: A Survey”. In: ACM Com-
put. Surv. 41.3 (July 2009). por: 10 . 1145/
1541880.1541882.

S. Hanna, S. Karunaratne, and D. Cabric. “Open
set wireless transmitter authorization: Deep learn-
ing approaches and dataset considerations”. In:
IEEE Trans. Cogn. Commun. Netw. 7.1 (2020),
pp. H9-72.

S. Hochreiter and J. Schmidhuber. “Long Short-
Term Memory”. In: Neural Computation 9 (1997),
pp. 1735-1780.

D. P. Kingma and J. Ba. “Adam: A Method
for Stochastic Optimization”. In: 3rd Int’l Conf.
on Learning Representations, ICLR 2015. Ed.
by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1412.6980.

M. Kendall. “A New Measure of Rank Correla-
tion”. In: Biometrika 30.(1-2) (1938), pp. 81-89.

A. Elmaghbub and B. Hamdaoui. “A Needle in a
Haystack: Distinguishable Deep Neural Network
Features for Domain-Agnostic Device Fingerprint-
ing”. In: 2023 IEEE Conference on Communica-
tions and Network Security (CNS). IEEE. 2023.

A. Augustin, J. Yi, T. Clausen, and W. M. Towns-
ley. “A study of LoRa: Long range & low power
networks for the internet of things”. In: Sensors
16.9 (2016), p. 1466.

A. Elmaghbub and B. Hamdaoui. “EPS: dis-
tinguishable 1Q data representation for domain-

adaptation learning of device fingerprints”. In:
arXiv preprint arXiv:2308.04467 (2023).

[27] A. Elmaghbub, B. Hamdaoui, and W-K. Wong.
“ADL-ID: Adversarial Disentanglement Learning
for Wireless Device Fingerprinting Temporal Do-
main Adaptation”. In: IEEE International Confer-
ence on Communication 2023 - Mobile and Wire-
less Network Symposium, pp. 6199-6204.

[28] B. Johnson and B. Hamdaoui. “On the Domain
Generalizability of RF Fingerprints Through Mul-
tifractal Dimension Representation”. In: IEEE

Conference on Communications and Network Se-
curity (CNS). IEEE. 2023, pp. 1-9.

[29] A. Bendale and T. E. Boult. “Towards Open Set
Deep Networks”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition. Los Alami-
tos, CA, USA: IEEE Computer Society, 2016,
pp- 1563-1572.

[30] S. Takaya and M. Rehmsmeier. “The precision-
recall plot is more informative than the ROC plot
when evaluating binary classifiers on imbalanced
datasets”. In: PloS one 10.3 (2015), e0118432.

AUTHORS

Luke Puppo earned his B.S.
(2021) and M.S. (2023) in
computer science from Oregon
State University. His inter-
ests are in data science, com-
puter vision, machine learning,
and generative Al. He currently
works in industry dealing with
time-series financial data.

Weng-Keen Wong received
his Ph.D. and M. S. de-
grees in computer science from
Carnegie Mellon University in
2004 and 2001 respectively. He
received his B.Sc. degree
from the University of British
Columbia in 1997. He is cur-
rently a professor in the School
of Electrical Engineering and Computer Science at Ore-
gon State University. From 2016-2018, he served as a
program director at the National Science Foundation
under the Robust Intelligence Program in the Division
of Information and Intelligent Systems. His research ar-
eas are in data mining and machine learning, with spe-
cific interests in anomaly detection, deep learning, prob-
abilistic graphical models, computational sustainability
and human-in-the-loop learning. He has authored over
70 papers in international journals and conferences.

Bechir Hamdaoui is a pro-
fessor in the School of Electri-
cal Engineering and Computer
Science at Oregon State Uni-
versity. He received M.S. de-
grees in both Electrical and
Comuter Engineering (2002)
and Computer Science (2004),
and the Ph.D. degree in ECE
(2005) all from the University
of Wisconsin-Madison. His research interests are in the
general areas of intelligent networked systems, with a
current focus on the intersection of applied AI, wire-
less, and security. He won several awards, includ-
ing the ISSIP 2020 Distinguished Recognition Award,
the ICC 2017 Best Paper Award, the IWCMC 2017
Best Paper Award, the 2016 EECS Outstanding Re-
search Award, and the 2009 NSF CAREER Award. He
serves/served as an associate editor for several journals,
including IEEE Transactions on Mobile Computing,
IEEE Transactions on Wireless Communications, IEEE
Network, and IEEE Transactions on Vehicular Technol-
ogy. He also chaired/co-chaired many IEEE conference
programs/symposia, including the 2021 IEEE GLOBE-
COM testbedsdwireless workshop, the 2017 INFOCOM
Demo/Posters program, the 2016 IEEE GLOBECOM
Mobile and Wireless Networks symposium, and many
others. He served as the chair of the IEEE Commu-
nications Society’s Wireless Communication Technical
Committee (WTC) for 2021 and 2022, and as a distin-
guished lecturer for the IEEE Communication Society
for 2016 and 2017.

Abdurrahman Elmaghbub
received the B.S. degree with
summa cum laude, and MS in
electrical and computer engi-
neering from Oregon State Uni-
versity in 2019 and 2021, re-
spectively, and is currently pur-
suing his Ph.D. degree in the
School of Electrical Engineer-
ing and Computer Science at Oregon State University.
His research interests are in the area of wireless commu-
nication and networking security with a current focus on
applying deep learning to wireless device classification.

Lucy Lin is currently in her
fourth year pursuing her Hon-
ors B.Sc. degree in computer
science at Oregon State Univer-
sity. She is an undergraduate
research assistant in Dr. Weng-
Keen Wong’s lab. Her research
interests are in machine learn-
ing and computer vision.

