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Abstract—Radio Frequency (RF) device fingerprinting has
been recognized as a potential technology for enabling automated
wireless device identification and classification. However, it faces
a key challenge due to the domain shift that could arise from
variations in the channel conditions and environmental settings,
potentially degrading the accuracy of RF-based device classifi-
cation when testing and training data is collected in different
domains. This paper introduces a novel solution that leverages
contrastive learning to mitigate this domain shift problem.
Contrastive learning, a state-of-the-art self-supervised learning
approach from deep learning, learns a distance metric such that
positive pairs are closer (i.e. more similar) in the learned metric
space than negative pairs. When applied to RF fingerprinting, our
model treats RF signals from the same transmission as positive
pairs and those from different transmissions as negative pairs.
Through experiments on wireless and wired RF datasets collected
over several days, we demonstrate that our contrastive learning
approach captures domain-invariant features, diminishing the
effects of domain-specific variations. Our results show large and
consistent improvements in accuracy (10.8% to 27.8%) over
baseline models, thus underscoring the effectiveness of contrastive
learning in improving device classification under domain shift.

Index Terms—Domain adaptation, device classification, deep
neural networks, contrastive learning, RF fingerprinting.

I. INTRODUCTION

Radio frequency (RF) device fingerprinting [1] plays an
important role in network security, enabling physical-layer-
based network access authentication and network device clas-
sification through its ability to identify devices from their
transmitted RF signals. The use of deep learning [2]–[7] in RF
fingerprinting has become prevalent in recent years as it en-
abled the extraction of device-specific features and signatures
solely from sampled raw RF signals, thereby eliminating the
need for data preprocessing and domain knowledge.

A significant real-world issue that affects the accuracy of
deep learning models is domain shift [8], [9], which occurs
when the training data from the source domain has a different
distribution than the distribution of the test data (i.e. the data
encountered during deployment) in the target domain. This
mismatch hampers the performance as models trained on the
source domain struggle to adapt to the characteristics of the
new target domain encountered during deployment, leading to
a degradation in performance [4], [6], [8].

Much attention has been given to the area of domain
adaptation (DA) in machine learning, which has the goal
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of dealing with domain shift. Success in domain adaptation
hinges on generalizing knowledge from the source to the
target domain by identifying domain-invariant aspects of the
data or modeling the differences between the source and
target domains. Various categories of deep learning-based
DA techniques exist. For instance, alignment-based methods
[10] concentrate on aligning feature distributions between
source and target domains. Adversarial-based methods [11]
employ a domain discriminator to differentiate domains and a
feature extractor to create indistinguishable features. Finally,
disentanglement-based methods [12], [13] learn to separate
domain-specific and domain-invariant features.

Dealing with domain shift in RF fingerprinting is crucial
for ensuring accurate and reliable device identification and
classification. Unfortunately, most recent deep learning domain
adaptation techniques [10], [12], [14] are designed for com-
puter images and are not readily applicable to the complexities
of RF data. Furthermore, domain adaptation is especially
challenging in RF fingerprinting, as RF signals exhibit domain
shift from many different factors such as non-stationarity and
variation due to changes in environmental/network settings.
These variations introduce domain-specific characteristics into
RF fingerprints, posing a challenge in developing accurate
and robust fingerprinting models that can generalize across
different domains.

A handful of approaches have been proposed to mitigate
the effects of domain shift in RF device fingerprinting models.
For instance, in [15], [16], multi-discrepancy and adversarial
methods have been employed to address the domain adaptation
classification of RF device fingerprinting under different SNRs
using both wired and simulated Rayleigh channel models.
A disentanglement-based method is also applied to address
the domain adaptation problem in RF device fingerprinting
[13], which aims to separate the domain-specific and domain-
invariant features present in the data.

In contrast to previous approaches, we introduce a domain
adaptation method that avoids the complexities associated with
alignment techniques, the need for strong domain knowledge
assumptions, or the instability often seen in adversarial train-
ing. Our approach is based on contrastive learning [17]–[20],
which has been shown to be a highly effective self-supervised
learning approach [21] for computer vision and natural lan-
guage processing. Contrastive learning relies on a pretext task
during a pre-training phase. This pretext task is designed to



train the network to learn an informative representation such
that the learned representation can be useful for a downstream
task such as classification. During pre-training, the network
optimizes a contrastive loss that results in a distance metric
such that a pair of similar instances (called a positive pair) is
closer together in this metric space than a pair of dissimilar
instances (called a negative pair). The ability of contrastive
learning to identify salient features from positive and negative
pairs makes it a natural fit for domain adaptation.

Contrastive learning has been extensively applied to images
and video [17], [18], [20], [22], [23] but much less attention
has been given to time series data like RF signal data emitted
by RF wireless devices [24]. Recent work applies contrastive
learning to domain adaptation in the context of computer
vision [25], but to our knowledge, our work represents
the first application of contrastive learning to address do-
main adaptation in RF data-based device fingerprinting and
classification. When we apply contrastive learning to RF
device fingerprinting, we rely on a fundamental assumption:
data from the same transmission form positive pairs while
data from different transmissions form negative pairs. Our
research shows that by incorporating this single and intuitive
assumption, the contrastive learning framework guides the
model to emphasize the discriminative aspects of RF signals
while effectively ignoring domain-specific variations caused
by factors like channel conditions and noise.

The rest of this paper is organized as follows. Section II
describes the proposed method in detail. Section III presents
the experimental results and analysis. Finally, Section IV
concludes the paper and discusses future work.

II. METHODOLOGY

To make the trained model adaptable to the target domain,
we leverage contrastive learning to allow the model to learn
domain-invariant representations that transfer across domains,
resulting in better performance and generalization. In the fol-
lowing sections, we provide details on the dataset construction,
as well as on the pre-training, training and testing phases of
the proposed constrastive learning based framework.

A. WiFi Testbed and RF Dataset Collection

We used real RF datasets collected using our experimental
testbed of 15+ PyCom/IoT transmitting devices (a combi-
nation of Fipy and Lopy boards). The Pycom devices were
programmed to transmit IEEE 802.11b WiFi frames at a center
frequency of 2.412GHz and a bandwidth of 20MHz. These
transmitted frames were sampled and stored as IQ (In-phase
and Quadrature) data by an Ettus USRP (Universal Software
Radio Peripheral) B210 receiver at a sample rate of 45MSps.
Each WiFi capture lasts for 2 minutes generating more than
5000 frames per device with each frame consisting of 25170
complex-valued samples. We experimented with two scenar-
ios: Wireless-WiFi and Wired-WiFi. In the wireless scenario,
the transmitters were all located 1m away from the receiver
and transmitted wirelessly, whereas in the wired scenario, the
transmitters were directly connected to the receiver through an
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Fig. 1: An overview of how training and test data are created.

SMA cable, allowing to mask the impact the wireless channel.
More details on the testbed can be found in [26]–[28].

B. Dataset Construction

Fig. 1 illustrates the process for creating training and test
data using WiFi transmissions from the K = 15 different
Pycom devices described in the previous section. Specifically,
we created S datasets—referred to as Capture Sets or Sets,
which consist of portions of the tested devices’ transmissions
all captured at the same offset in time from the start of the
transmission. To ensure that the training sets and test sets
experience some form of domain shift, we deliberately choose
Sets captured on different days; one day for the source domain
and another day for the target domain. For example, we chose
Set 1 of day 1 (denoted as D1S1) as the source domain and
Set 1 of day 2 (denoted as D2S1) as the target domain.

Within a Set, we refer to the data belonging to a single
device as a Capture, which consists of 2500 consecutive, non-
overlapping IQ sliding windows (referred to as frames) with
windows size of 1000. Each Set is formed by taking the union
of the IQ frames from a transmission over all 15 devices,
resulting in 2500 × 15 frames in total within the Set. Each
frame has dimensions of 2× 1000 because the IQ sample has
the two dimensions of I and Q.

C. The Contrastive-Based Domain Adaptation Framework

Fig. 2 illustrates the three distinct stages of the proposed do-
main adaptation framework: the pre-training stage, the training
stage and the testing stage. In the first stage, we pre-train the
model based on the source and target dataset with a contrastive
learning approach. The goal of the pre-training stage is to
learn a domain-invariant representation without device labels
through the use of a base encoder. In the second stage, we use
the base encoder as a feature extractor and train a classifier
based on the extracted features and the device labels from the
source domain only. Finally, we apply the trained base encoder
and the trained classifier on the target data during the testing
stage. Next, we provide detailed description of each of the
three stages.

1) Pre-training Stage: We now describe the neural network
framework used during the pre-training stage, as well as during
the training and testing stage (i.e., the classifier). During pre-
training, we use a model that is based on MoCo V3 [20] with a
modified ResNet-18 [29] network as the internal base encoder.
For the training stage, the classifier is a fully connected neural
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Fig. 2: The proposed training procedure and contrastive-based framework for addressing the domain shift issue in RF
fingerprinting. The overall domain adaptation process includes three stages: (a) pre-training, (b) training and (c) testing. The
source inputs consist of IQ frames from one day, while the target inputs are from another day. The pre-training stage uses
unlabeled data, meaning we do not know which device produced the data but we do know which captures come from the same
transmission. Labeled data in the form of device labels is only used during the training stage to train the classifier.
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Fig. 3: Illustrations of weak and strong data augmentation.

network with two hidden layers. Finally, for the testing stage,
the classifier has the same architecture as in the training phase.
The detailed components in the pre-training framework are
described below:

a) Data Augmentation: A data augmentation process
is needed to generate positive and negative pairs for con-
trastive learning by creating transformations from the original
training data. While several well-known data augmentations
for contrastive learning have been proposed in the literature
(e.g. rotation and flipping), many are not applicable to our
RF fingerprinting domain. Following [30], we employ both
weak and strong data augmentations for time series. Weak
augmentation (Fig. 3a) includes random scaling of IQ data,
meaning the augmented data is obtained by multiplying the
original data by a scaling factor. Strong augmentation (Fig.
3b) involves random jittering and segmentation permutation
of IQ data. Jittering entails a random amplitude shift of the
IQ data, achieved by adding random noise to the original data,

while segmentation permutation is a random rearrangement of
intervals of the IQ data along the time axis. This augmentation
enhances the model’s resilience to amplitude shifts and time
permutations in the IQ data.

For any data frame X , there are two augmented data frames
produced (Xweak and Xstrong as shown in Fig. 3), which are
fed into the contrastive model in Fig. 2a as query vector Xq

(the input of the base encoder in the contrastive model) and key
vector Xk (the input of the momentum encoder) respectively.
Intuitively, our contrastive learning model acts as a dictionary
lookup, which will match the query vector Xq (identifier)
with the key vector Xk (vector retrieved from the batch) as
a positive pair and pull them closer. Fig. 2a shows how IQ
data is augmented and fed into the contrastive model. The
solid arrow line represents feeding Xweak to the base encoder
as Xq; similarly, Xstrong is fed to the momentum encoder
as Xk. In addition, the dashed arrow lines also send Xstrong

to the base encoder and Xweak to the momentum encoder to
ensure symmetry in the loss function.

b) Pre-train Model: The pre-train model (Fig. 2a) con-
sists of two key encoders: the base encoder, with output
denoted as h, and the momentum encoder, with output denoted
as k. The base encoder uses a modified ResNet-18 architecture
as the backbone, where the modifications include adjustments
to the first convolutional layer (kernel size 100, stride size 20)
and the last convolutional layer (outputs a 128-dimensional
vector). The last few layers of the base encoder are a multi-
layer perceptron (MLP) projector network, which effectively
replaces ResNet-18’s final fully connected layer. This projector
network produces a 128-dimensional feature vector for use by
the classifier during training. During pre-training, this output
vector h is processed by a MLP predictor network, generating
an output vector q for the contrastive loss function. The
momentum encoder mirrors the base encoder’s architecture
and the same momentum update done in MOCO [18] keeps



the key representation up-to-date.
c) Loss Function: The pretext task of the contrastive

model is to predict q such that it is close in distance to k
by minimizing the modified soft nearest neighbor loss [31]
shown in Eq. (1). This loss is computed over a batch of N
frames. In Eq. (1), qi is the output of the predictor for the
i-th frame Xi, kj is the output of the momentum encoder for
the jth frame in the batch and y is the transmission ID. To
understand the soft nearest neighbor loss function, consider
the fraction inside the log term. For a given qi, this fraction
represents the probability of selecting a frame kj such that
it comes from the same transmission as qi. This probability
depends on the distance between kj and qi, where the distance
is measured as an exponentiated negative Euclidean distance
between qi and kj , along with a temperature hyperparameter τ
(which we set to 0.2) that adjusts the weight of these distances.
Putting everything together, the soft nearest neighbor loss
is the average negative log probability of selecting kj such
that it comes from the same transmission as qi (denoted as
the transmission ID yqi = ykj

). Thus, minimizing the loss
function reduces the distance, in the learned representation
space, between the i-th frame and all the frames from the
same transmission.

Lsnn(q, k, y, τ ) =

− 1

N

∑
i∈1...N

log


∑

j∈1...N
yqi

=ykj

exp (−∥qi−kj∥2

τ )∑
k∈1...N exp (−∥qi−kk∥2

τ )

 (1)

Following the example of MoCo V3 [20], both Xstrong and
Xweak should possess the capability to predict each other and
we symmmetrize the contrastive loss function to be: Lct =
2τ [Lsnn(qw, ks, y, τ) +Lsnn(qs, kw, y, τ)]. In this symmetric
version, we denote the output of the predictor as qw and output
of momentum encoder as ks for the case of sending Xweak

into the base encoder and Xstrong into the momentum encoder.
Similarly, for its symmetric counterpart, we denote the output
of the predictor as qs and output of momentum encoder as kw
for the case of sending Xstrong into base encoder and Xweak

into momentum encoder.
2) Training Stage: After the pre-training stage, we will use

the learned base encoder as the feature extractor to produce a
representation of the training data that is fed to the classifier.
We will train the classifier using labeled data (i.e. data that
has device labels) from the source domain (see Fig. 2b) so
that it can identify individual devices.

The classifier is a fully connected neural network with two
hidden layers. The input of the classifier is a 128-dimensional
vector extracted by the base encoder of pre-trained model,
and the output vector has a dimension of the number of
devices, which is the number of classes in the source and
target domain. The classifier is trained based on the cross-
entropy loss function.

3) Testing Stage: In this stage, the classifier predicts the
device ID using input frames from the target domain (see
Fig. 2c). Frames are first fed into the base encoder to produce
a new feature vector corresponding to a domain-invariant
representation of the input frame. This new feature vector is
provided as input to the classifier, which then predicts the
device label.

III. RESULTS

We present results that compare our contrastive learning
model (CTL) against two baseline models. The first baseline
model (CNN) is a CNN classifier based on a ResNet18
backbone. The second baseline model (AB) is an ablated
variant of our contrastive learning model which has the same
architecture as the contrastive learning model, but it only uses
the source domain data for pre-training. In contrast, the CTL
model uses both source and target domain data.

We considered wired and wireless scenarios, each consisting
of several Capture Sets from the same transmission (refer to
Section II-B for more details). Fig. 4 reports results based on
the average over all Sets, while Tables I to III report the results
of each individual Set.

A. Classification Accuracy: Comparison with CNN

The CTL model produces large increases in accuracy (10.8-
19.9%) over the CNN baseline in wired scenarios (Fig. 4a).
Table I shows the CTL model consistently outperforming the
CNN model across all Sets of the wired RF data, with accuracy
improvements of 9.9-24.8% on individual Sets.

Wired (Source → Target) Day 1 → 2 Day 2 → 1

#Device K = 16 CNN AB CTL CNN AB CTL

DayA S1 → DayB S1 50.4 57.8 71.9 67.5 46.0 78.8
DayA S1 → DayB S2 51.6 58.2 71.0 65.1 45.4 75.4
DayA S1 → DayB S3 53.6 57.9 67.6 66.5 42.8 76.4
DayA S1 → DayB S4 52.4 60.9 77.2 66.9 42.8 78.6

TABLE I: Classification accuracy of domain adaptation be-
tween individual Sets of day 1 and day 2 on wired RF devices
for CNN, AB and CTL.

Fig. 4b and 4c show that in wireless scenarios, contrastive
learning once again substantially improves accuracy (13.4%-
27.8%) over the CNN baseline. Tables II and III show that
CTL consistently produces large increases in accuracy (7.6%-
34.1%) for individual Sets.

Wireless (Source → Target) Day 1 → 2 Day 2 → 1

#Device K=15 CNN AB CTL CNN AB CTL

DayA S1 → DayB S1 35.4 39.6 53.5 42.3 65.9 68.5
DayA S1 → DayB S2 58.3 62.2 67.1 54.1 66.6 86.2
DayA S1 → DayB S3 52.8 55.1 66.9 60.5 70.4 83.0
DayA S1 → DayB S4 52.8 52.8 65.3 58.7 70.0 89.2

TABLE II: Detailed classification accuracy of domain adap-
tation between one Set of day 1 and another Set of day 2 on
wireless RF devices for CNN, AB and CTL.
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Fig. 4: Domain adaptation accuracy: from one day to another day on wired and wireless RF devices for CNN, AB and CTL.

Wireless (Source → Target) Day 2 → 3 Day 3 → 2

#Device K=15 CNN AB CTL CNN AB CTL

DayA S1 → DayB S1 61.7 63.0 71.1 33.8 64.0 67.9
DayA S1 → DayB S2 76.3 84.3 94.6 53.4 61.3 71.0
DayA S1 → DayB S3 77.3 79.3 94.5 46.5 54.7 56.9
DayA S1 → DayB S4 75.2 76.2 92.6 46.4 57.7 54.0

TABLE III: Detailed classification accuracy of domain adap-
tation between one Set of day 2 and another Set of day 3 on
wireless RF devices for CNN, AB and CTL.

B. Classification Accuracy: Comparison with AB

Fig. 4 shows that the CTL model outperforms the AB
model, resulting in increases in accuracy of 13.2%-33.0%
for wired and 3.0%-13.5% for wireless. The CTL model
outperforms AB in all individual sets in both scenarios, as
shown in Tables II and III. The results of the AB model
highlight the importance of including target domain data in
pre-training. We emphasize the fact that the target domain
data is unlabeled, meaning that it does not contain device
labels identifying the device that generate a frame; without
device labels, the CTL model is not given any information
that matches frames in the source domain with frames in the
target domain generated by the same device. The high accuracy
of the CTL model indicates that even without explicit device
labels in the target domain, simply knowing that certain frames
come from the same transmission enables the CTL model to
capture crucial domain-invariant features that greatly improve
its adaptability and generalization.

For the majority of the experiments, the AB model outper-
forms the CNN model, highlighting the importance of pre-
training with source data. However, an exception is observed
in the ”Day 2 → 1” case of Fig. 4a, where the AB model’s
accuracy (44.3%) is much lower than that of the CNN model
(66.5%). This result suggests that pre-training with only source
domain data risks capturing domain-specific information,
which could harm performance. The CTL model, however,
combines target domain data with source domain data in the
pre-training process, thus capturing essential domain-invariant
features crucial for successful domain adaptation.
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Fig. 5: Confusion matrices between day 1 and day 2 on the
wired setup for CNN, AB and CTL. Confusion matrices are
normalized by row, enabling a clearer visualization of the
predicted accuracy distribution across different classes.

C. Confusion Matrix View on Device Level Analysis

The confusion matrices (Fig. 5) show that the CTL model
effectively shifts the prediction distribution from off-diagonal
to diagonal elements compared to the CNN and AB models.
This shift results in fewer misclassifications. For instance,
with device 14, the CNN model misclassifies 80% of the data
as device 1 (see Fig. 5a), whereas the CTL model correctly



classifies 100% of the data (see Fig. 5e). Similarly, for device
13, the CNN model misclassifies 80% as device 14, while
the CTL model only misclassifies 30%. Our experimental
studies, therefore, indicate that contrastive learning results
in a classification model that makes more precise, confident
predictions, resulting in a more accurate representation of data
patterns. We have also seen similar trends when using the
wireless RF data, though results for the wireless data scenario
were not included here due to the space limit.

From these confusion matrices, we are also able to identify
specific devices that are challenging to classify. Notably, for
the wired RF data scenario, some devices (e.g. devices 4 and
10) are invariably misclassified, regardless of the model (CNN,
AB, CTL) or the day (”Day 1 → 2”, ”Day 2 → 1”). Device
10, in particular, is consistently mistaken for device 5 with
high probability in all cases, warranting further investigation.

IV. CONCLUSION

This work is the first to apply contrastive learning to the
problem of RF fingerprinting under domain shift by construct-
ing positive pairs from the same transmission. Contrastive
learning results in large improvements in classification accu-
racy, largely due to the help of target data, without device
labels, in the pre-training stage. Further research, however,
is needed to explore several areas. First, investigating the
impact of wireless channel impairments, such as fading and
mobility, is essential to improving the model’s robustness.
Second, improving the scalability of contrastive learning is
important, especially in large-scale deployments, as the con-
trastive learning approach requires a significant increase in
the amount of data as the number of devices grows. Finally,
the confusion matrices from our experiments highlight that
certain devices are consistently misclassified, possibly due to
hardware issues, and we plan to investigate the cause of the
misclassifications.
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