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Abstract

We classify simple bounded weight modules over the complex simple Lie super-

algebras sl(∞ | ∞) and osp(m | 2n), when at least one of m and n equals ∞. For

osp(m | 2n) such modules are of spinor-oscillator type, i.e., they combine into one

of the known classes of spinor o(m)-modules and oscillator-type sp(2n)-modules. In

addition, we characterize the category of bounded weight modules over osp(m | 2n)

(under the assumption dim osp(m | 2n) = ∞) by reducing its study to already known

categories of representations of sp(2n), where n possibly equals ∞. When classifying

simple bounded weight sl(∞ | ∞)-modules, we prove that every such module is inte-

grable over one of the two infinite-dimensional ideals of the Lie algebra sl(∞ | ∞)0̄.

We finish the paper by establishing some first facts about the category of bounded

weight sl(∞ | ∞)-modules.
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1 Introduction

The representation theory of the three simple infinite-dimensional finitary complex

Lie algebras sl(∞), o(∞), and sp(∞) has made notable progress in the last three

decades, see for instance [4, 5, 15, 17–19]. For a summary of highlights of this theory,

see [14]. The theory of representations of the super-counterparts of the Lie algebras

sl(∞), o(∞), and sp(∞) is still much less developed. For a finite-dimensional Lie

superalgebra k, the category of all representations of k is almost never equivalent to

the category of all representations of the Lie algebra k0̄, the even part of k. However,

in that case there is a general result claiming that a category of representations of k

with fixed strongly typical central character is equivalent to a corresponding category

of representations of k0̄.

This result does not provide a clear guideline for the case of Lie superalgebras

of infinite rank since the center of the enveloping algebra of Lie superalgebras like

sl(∞ | ∞) or osp(∞ | ∞) is trivial. Nevertheless, in the study of reasonably small

categories of representations over the Lie superalgebras sl(∞ | ∞) and osp(∞ | ∞),

one may rely on different intuition and obtain results not necessarily following the

above pattern. For instance, in [20] it is shown that the category of tensor modules

over the Lie superalgebra osp(∞ | ∞) (respectively, over sl(∞ | ∞)) is equivalent

to the categories of tensor modules over each of the Lie algebras o(∞) and sp(∞)

(respectively, over sl(∞)). A somewhat similar phenomenon can be seen in the paper

[3], where it is proved that the categories of integrable bounded weight modules over

various Lie superalgebras like sl(∞ | ∞) or osp(∞ | ∞) are semisimple.

In the present paper, we study the categories of arbitrary (i.e., not necessarily inte-

grable) bounded weight modules over the complex Lie superalgebras osp(m | 2n),

where at least one of m and n equals ∞, and over the Lie superalgebra sl(∞ | ∞).

Before describing our results we should recall that for the infinite-dimensional Lie

algebras sl(∞), o(∞), sp(∞) simple bounded weight modules have been classified

in [10] and their structure has been further studied in [2].

Our first main result claims that any simple bounded weight module over an infinite-

dimensional Lie superalgebra osp(m | 2n) has just length two (or one for a trivial

module) over the Lie algebra osp(m | 2n)0̄ = o(m)⊕sp(n). Moreover, such a module

(unless it is a natural or trivial module) is determined by a pair (S, N ), where S is a

spinor o(m)-module and N is an sp(2n)-module of oscillator type, i.e., a close relative

of the oscillator representations of sp(2n). (The notions of spinor o(m)-modules and

oscillator-type sp(2n)-modules make sense also for m = ∞ and n = ∞ due to the

results of [10].) This spectacular fact allows us to identify simple bounded weight

osp(m | 2n)-modules, other than trivial and natural modules, as modules of “spinor-

oscillator type”. The latter class of modules of osp(m | 2n) glues spinor and oscillator-

type modules together, and is the ultimate super-symmetric version of both spinor

o(m)-modules and oscillator-type sp(2n)-modules.

The classification of simple bounded weight sl(∞ | ∞)-modules is also very inter-

esting and constitutes our second main result. In particular, we show that every such

module is integrable and semisimple with respect to a simple ideal of sl(∞ | ∞)0̄

 (sl(∞)⊕sl(∞))+ C, and this nicely resembles the answer for the case of
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osp(∞ | ∞) where a bounded weight osp(∞ | ∞)-module is necessarily integrable

and semisimple as an o(∞)-module.

Our main method of classification is a reduction to weight modules of Weyl

and Clifford superalgebras of infinitely many variables. We denote these superal-

gebras respectively by D(∞ | ∞) and Cl(∞ | ∞). There are natural homomorphisms

U (osp(∞ | ∞)) → Cl(∞ | ∞) and U (sl(∞ | ∞)) → D(∞ | ∞), see Sect. 3.2. One

of our central ideas is that, with the exception of Schur powers of the natural and conatu-

ral representations (for osp(∞ | ∞) this exception applies only to the trivial and natural

representations), all simple bounded weight osp(∞ | ∞)- or sl(∞ | ∞)-modules are

annihilated by the kernel of the respective homomorphism. This facilitates a reduction

of the study of simple bounded weight osp(∞ | ∞)- and sl(∞ | ∞)-modules, as well

as of the respective categories of bounded weight modules, to the study of weight

modules of the associative superalgebras Cl(∞ | ∞) and D(∞ | ∞) and their relevant

subalgebras. The above method applies also to the case of osp(m | 2n) where m or n

is finite, and to sl(∞ | n) for n ∈ Z>0 as well.

Here is a brief description of the content of the paper. Section 2 is devoted to

preliminaries. In Sect. 3 we undertake a study of the categories of weight modules

over Clifford and Weyl superalgebras. In particular, we establish that any such simple

module is multiplicity free. In Sects. 4 and 5 we apply the above results to the case

of osp(m | 2n) where at least one of m and n equals infinity. We show that any sim-

ple non-integrable bounded weight osp(m | 2n)-module is a spinor-oscillator module.

Moreover, we prove that the category of spinor-oscillator representations is equivalent

to the category of multiplicity free non-integrable weight modules over the Lie algebra

osp(m | 2n)0̄ = o(m)⊕sp(2n).

The case of sl(∞ | ∞) is discussed in Sect. 5. Here we give a classification of

the simple bounded weight sl(∞ | ∞)-representations and make a first step towards

understanding the category of such representations. A deeper study of this category

should be a separate project.

2 Preliminaries

The base field is C. By Sn we denote the symmetric group on n letters. A superspace is a

Z2-graded vector space where Z2
..= Z/2Z, and a superalgebra is a Z2-graded algebra.

We use the indices 0̄ and 1̄ to indicate Z2-gradings. A purely even (respectively, purely

odd) superspace is a superspace V such that V = V0̄ (resp., V = V1̄). By  we denote

the parity change functor on superspaces: (V )0̄ = V1̄, (V )1̄ = V0̄. If V = V0̄ ⊕V1̄

is a superspace, then the dual superspace equals V ∗
0̄

⊕V ∗
1̄

, where V ∗
0̄

= Hom(V0̄, C),

V ∗
1̄

= Hom(V1̄, C) and Hom stands here for homomorphisms of purely even

spaces.

We write Sk V and k V for the kth symmetric and exterior powers for a superspace

V . If W is a superspace of parity p ∈ Z2 (i.e., W = W0̄ for p = 0̄ and W = W1̄ for

p = 1̄), then Sk W (respectively, k W ) is a superspace of parity kp ∈ Z2 (respectively,

123



5 Page 4 of 39 D. Grantcharov et al.

kp + 1̄ ∈ Z2). For a general superspace V = V0̄ ⊕V1̄ we have

Sk V =


i+ j=k

Si V0̄ ⊗ j V1̄, k V =


i+ j=k

i V0̄ ⊗ S j V1̄.

An even symmetric (respectively, even antisymmetric) bilinear form on a superspace

V is a parity-preserving linear operator S2V → C (respectively, 2V → C).

In this paper we work with the Lie superalgebras gl(a | b), sl(a | b), osp(2a | 2b),

osp(2a + 1 | 2b), where a, b ∈ Z0  {∞}. Their defining representation is the

simple module of respective dimension (a | b), (a | b), (2a | 2b), (2a +1 | 2b). In what

follows we use the term defining representation more loosely to include also the

defining representation with changed parity. The Lie superalgebras gl(a | b), sl(a | b),

osp(2a | 2b), osp(2a + 1 | 2b) can be equipped with a fixed even symmetric invariant

form ( · , · ). All homomorphisms of superalgebras are assumed to preserve the Z2-

grading. All modules over purely even (i.e., non-Z2-graded) associative algebras or

Lie algebras are assumed to be purely even unless otherwise stated.

We assume that Cartan subalgebras of the Lie superalgebras considered are fixed,

and use standard notation for the roots. Note that these Cartan subalgebras are purely

even and all root spaces are either purely even or purely odd. Therefore the roots

are designated as even or odd. Concretely, the even roots of gl(a | b) and sl(a | b)

are i − k,  j − l , while the odd roots are ±(i −  j ), where 1  i = k  a,

1  j = l  b. The even roots of osp(2a | 2b) are ±(i ± k), ±( j ± l), ±2 j , and

the odd roots are ±(i −  j ). For osp(2a + 1 | 2b) we have in addition the even roots

±i and the odd roots ± j .

We should point out that for a = ∞ the Lie superalgebras osp(2a + 1 | 2b) and

osp(2a | 2b) are isomorphic, and the difference in root systems is the result of different

choices of Cartan subalgebras. A less brief discussion of the Lie superalgebras we

consider and their root systems can be found in [3].

Let s be a Lie algebra or Lie superalgebra with a fixed Cartan subalgebra h = h0̄.

A weight module M is an s-module that is semisimple as h-module. The h-isotypic

components of M are the weight spaces of M : we denote them by M for  ∈ h∗.
The weight spaces of M are superspaces. Every weight module M has a well-defined

support:

supp M = { ∈ h∗ | M = 0}.

A weight module is bounded if the dimension (d0 | d1) of any weight space of M

is less or equal to (a | b) for some fixed a, b ∈ Z0, i.e., d0  a, d1  b. The degree

d(M) of a bounded weight module M equals the maximum value of the sum d0 + d1

over all weight spaces of M .

Each of our Lie superalgebras has (up to isomorphism) two natural modules which

we denote by V and V . These modules are weight modules, and for gl(a | b) and

sl(a | b) we assume that the weight spaces of weight i in V are purely odd and the

weight spaces of weight  j in V are purely even. For osp(2a +1 | 2b) and osp(2a | 2b)

we make the opposite choice. We have
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supp V =





{i ,  j | i, j > 0} if g = sl(a | b) or g = gl(a | b),

{0, ±i , ± j | i, j > 0} if g = osp(2a + 1 | 2b),

{±i , ± j | i, j > 0} if g = osp(2a | 2b).

For gl(a | b) and sl(a | b) modules V∗ and V∗ are also well defined. They are char-

acterized by equalities supp V∗ = −supp V , supp V∗ = −supp V , and by the fact

that the weight spaces of weight −i in V∗ are purely odd and the weight spaces of

weight −i in V∗ are purely even.

We now recall some facts about multiplicity free weight s-modules for a finite-

dimensional Lie algebra s, i.e., bounded weight s-modules M with d(M) = 1. Their

classification has been part of a major effort to classify simple weight modules with

finite-dimensional weight spaces. Some of the main contributors have been Britten,

Lemire, Fernando, Futorny, Benkart, Mathieu, and Mathieu’s paper [12] can be con-

sidered as the crown of this effort. It follows from a result of Fernando [6] that for

s = o(n), n  5, every multiplicity free simple weight o(n) is finite-dimensional,

hence is a trivial module, natural module, or a spinor module. For s = sp(2n) the only

multiplicity free simple finite-dimensional s-modules are the trivial and the natural

modules, and there is a “coherent family” of infinite-dimensional multiplicity free

simple weight s-modules [1, 12]. For every Borel subalgebra b  h, there are pre-

cisely two nonisomorphic multiplicity free simple b-highest weight modules in this

family. These highest weight modules are known as oscillator or Shale–Weil mod-

ules, and every other infinite-dimensional multiplicity free simple weight module is

obtained from one of them via twisted localization, see [12]. For s = sl(n) the simple

multiplicity free weight modules have been classified in [1] and have been further

studied by Mathieu in [12]. In this paper we will not refer to the description of all

simple multiplicity free weight modules for sl(n) and sp(2n), but for understanding

our results it is essential to know that simple multiplicity free weight modules, and

more generally simple bounded weight modules, are well studied.

For s = sl(∞), sp(∞), o(∞), simple bounded weight modules are described

explicitly in [10]. In the case of o(∞), any bounded weight module is integrable,

i.e., it is a direct limit of finite-dimensional o(n)-modules for n → ∞. More precisely,

if M is a simple bounded weight o(∞)-module, then M is a trivial module, a natural

module, or a direct limit of spinor modules. We refer to the latter direct limits simply as

spinor o(∞)-modules. For s = sp(∞) the result is similar. Namely, a simple bounded

weight sp(∞)-module is a trivial module, a natural module, or a direct limit of simple

multiplicity free infinite-dimensional sp(2n)-modules for n → ∞. A difference with

the case of o(∞) is that a direct limit of simple multiplicity free infinite-dimensional

modules is not integrable. We call such a direct limit a simple weight sp(∞)-module

of oscillator type.

In the sequel we will need the following general lemma about associative superal-

gebras.

Lemma 2.1 Let A be an associative superalgebra and X be a simple A-module. Then

X 0̄ and X 1̄ are simple A0̄-modules.
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Proof If Y  X 0̄ (respectively, Y  X 1̄) is a proper nonzero A0̄-submodule, then AY

is an A-submodule of Y and (AY )0̄ = Y (respectively, (AY )1̄ = Y ). 
We conclude Sect. 2 with some facts concerning finite-dimensional Lie (super)

algebras s. For a partition (equivalently, a Young diagram) , let S · denote the

corresponding Schur functor.

Proposition 2.2 Let s = sl(n) and V be the defining s-module. If n  || then d(SV )

equals the dimension of the simple S||-module Z associated to .

Proof It suffices to consider the case n = ||. Let {e1, . . . , en} be the standard h-

eigenbasis of V . Let  = 1 +· · ·+ n . Then the weight space (V ⊗n) has a structure

of W × Sn-module, where W  Sn is the Weyl group of sl(n). Moreover, as an

Sn-module (V ⊗n) is isomorphic to the regular representation of Sn . Therefore, the

isomorphism

(V ⊗n) 




(SV )⊗ Z

forces dim(SV ) = dim Z. 
Lemma 2.3 Let s be a simple finite-dimensional Lie algebra, and L(), L()

be simple finite-dimensional modules with respective highest weights , . Then

d(L( + ))  d(L()).

Proof Let π : L()⊗ L() → L( + ) be the unique surjective homomorphism.

Then the restriction of π to L()⊗ L() is injective, where  is a weight of L()

of maximal multiplicity. 
Lemma 2.4 Let s = o(2n + 1), o(2n), or sp(2n). Then a finite-dimensional module

L() is either multiplicity free or d(L())  n − 1.

Proof Let i be the i th fundamental weight of s. Set s = o(2n +1). Then d(L(1)) =

d(L(n)) = 1. For k = 2, . . . , n − 1 we have L(k)  k V , thus d(L(k)) =
n

k/2


 n − 1. Next we note that

d(L(21)) = d(S2V ) = n,

d(L(2n)) = d(n V ) =


n

n/2


 n − 1,

and

d(L(1 + n))  d(L(1)⊗ L(n)) − d(L(n)) = n.

Consequently, for  = 1, . . . , n, 21, 2n, 1 +n we see that d(L())  n − 1.

For any other  the inequality follows from Lemma 2.3.

The case of o(2n) is similar.
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Now let s = sp(2n). Then d(L(1)) = d(V ) = 1. For k > 1 we have L(k) =

k V /k−2V . Hence d(L(k)) =


n
k/2

 − 
n

k/2−1


 n − 1. Next, L(21) is

the adjoint representation and hence d(L(21)) = n. For  = 1, . . . , n, 21, the

statement follows again from Lemma 2.3. 
In this paper a bounded primitive ideal of U (s) is defined as a primitive ideal which

annihilates a simple bounded weight s-module. It is a result of [16] that if M and N

are simple weight modules annihilated by the same bounded primitive ideal I , then M

and N are bounded and d(M) = d(N ). This allows to define the degree of a bounded

primitive ideal I  U (s) by setting d(I ) ..= d(M) for any simple bounded weight

s-module M annihilated by I .

Lemma 2.5 Let s = sp(2n), sl(n) and I be a bounded primitive ideal of U (s) of

degree d. Assume that U (s)/I is infinite-dimensional. Then either d  rk s − 1 or

d = 1. If d = 1 and s = sl(n), then I = AnnU (s)L(a1) or I = AnnU (s)L(an) for

some a /∈ Z0. If d = 1 and s = sp(2n), then I is the Joseph ideal (annihilator of an

oscillator module).

Proof Assume first d > 1. The inequality d  rk s − 1 for s = sl(n) follows from

[10, Lemma 2.25].

We proceed to show that d  rk s = n for s = sp(2n). Theorem 12.2 in [12]

implies d = 1
2n−1 dim Lo() for some simple finite-dimensional o(2n)-module Lo()

of highest weight  =


i=1 ii with i ∈ 1/2 + Z. Since d > 1, we have  =
n−1, n . Moreover, if |k | = | k+1| for some k  1, the stabilizer of  in the

Weyl group has at most k! (n − k)! elements. Therefore the orbit of  has at least
n
k


2n−1 elements, implying d  n. Consider now the case when all absolute values

|i | are equal. Under this assumption, there are two possibilities: (i) all i are equal,

or (ii) 1 = · · · = n−1 = −n . We set  =  − (n−1 + n) in case (i) and

 =  − (n−1 − n) in case (ii). Then  is a weight of Lo() and the Weyl group

orbit of  has at least n2n−1 elements. This implies again d  n. 
Lemma 2.6 Let s = osp(1 | 2n) and let L() be the simple s-module with highest

weight  relative to the Borel subsuperalgebra with simple roots 1 − 2, . . . , n−1 −
n, n . Assume d(L()) < n. Then  = 1,  = 0, or  = −(1 + · · · + n)/2.

Proof We use Lemmas 2.4 and 2.5. The restriction of L() to s0 = sp(2n) can

have only simple constituents with highest weights 0, 1, or −(1 + · · · + n)/2,

−(1 + · · · + n−1)/2 − 3n/2. 

3 Cliord andWeyl superalgebras and weight modules over them

3.1 Definitions andmain properties

Let a, b ∈ Z0  {∞}. The Weyl superalgebra D(a | b) is the associative superalgebra

with generators {xi , ∂i | i = 1, . . . , a; −1, . . . , −b} of parity

x̄i = ∂̄i =


0 if i > 0,

1 if i < 0
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satisfying the relations

[xi , x j ] = [∂i , ∂ j ] = 0, [∂i , x j ] = i j ,

where [u, v] ..= uv − (−1)ūv̄vu and i j is Kronecker’s delta. The Clifford superal-

gebra Cl(a | b) is the associative superalgebra with generators {i , i | i = 1, . . . , a;

−1, . . . , −b} of parity

̄i = ̄i =


0 if i > 0,

1 if i < 0

satisfying the relations

{i ,  j } = {i ,  j } = 0, {i ,  j } = i j ,

where {u, v} ..= uv + (−1)ūv̄vu. In what follows, whenever xi , ∂i , i , i are used we

assume that the index i is nonzero.

We define a Z-grading on D(a |b) (respectively, on Cl(a |b)) by setting deg xi
..= 1,

deg ∂i
..= −1 (respectively, deg i

..= 1, deg i
..= −1). If A = D(a | b) or A =

Cl(a | b) we denote by Aev the subsuperalgebra of elements of even degree, and by

An the subsuperspace of elements of degree n. Note that A0̄, A0, and Aev are three

different subsuperalgebras of A.

For a, b ∈ Z0, D(a | b) (respectively, Cl(a | b)) is naturally embedded in

D(a + 1 | b) and D(a | b + 1) (respectively, in Cl(a + 1 | b) and Cl(a | b + 1)), and

D(∞ | ∞) = lim−→ D(a | b), Cl(∞ | ∞) = lim−→ Cl(a | b).

3.2 Connection to classical Lie superalgebras

Let V2a|2b be the subsuperspace of D(a | b) with basis {xi , ∂i | − b  i  a}. Then

V2a|2b has an even anti-symmetric form given by the commutator map [V2a|2b, V2a|2b]

→ C. The Lie superalgebra osp(2b | 2a) for which this form is invariant can be

identified canonically with S2V2a|2b. The symmetrization map

V ⊗2
2a|2b → D(a | b), v⊗w → 1

2


v⊗w + (−1)v̄w̄w⊗v



factors through S2V2a|2b and defines a homomorphism of Lie superalgebras

osp(2b | 2a) → D(a | b). This induces a homomorphism of associative superalge-

bras

a|b : U (osp(2b | 2a)) → D(a | b).

Similarly, let U2a|2b be the subsuperspace of Cl(a | b) with basis {i , i | − b 
i  a}. Then U2a|2b has an even symmetric bilinear form given by the symmetrizer
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map {U2a|2b, U2a|2b} → C. The Lie superalgebra osp(2a | 2b) for which this form is

invariant can be identified canonically with 2U2a|2b. The alternization map

U⊗2
2a|2b → Cl(a | b), v⊗w → 1

2


v⊗w − (−1)v̄w̄w⊗v



factors through 2U2a|2b and defines a homomorphism of Lie superalgebras

osp(2a | 2b) → Cl(a | b). This induces a homomorphism of associative superalge-

bras

a|b : U (osp(2a | 2b)) → Cl(a | b).

The Chevalley basis vectors eα and the respective relations of the Lie superalgebras

osp(2b | 2a) (and also of osp(2a | 2b)) have been computed in [7, Section 3.2]. Up to

scalar multiples, the homomorphism a|b has the form

ek−l
→ x−l∂−k, e−k−l

→ x−k x−l , ek+l
→ ∂−k∂−l ,

e−i − j
→ xi x j , e−2i

→ x2
i , ei + j

→ ∂i∂ j ,

e2i
→ ∂2

i , e−k+i
→ x−k∂i , ek−i

→ xi∂−k,

e−k−i
→ x−k xi , ek+i

→ ∂−k∂i ,

and the homomorphism a|b has the form

ek−l
→ lk, e−k−l

→ kl , ek+l
→ kl ,

e−i − j
→ −i− j , e−2i

→ 2
−i , ei + j

→ −i− j ,

e2i
→ 2

−i , e−k+i
→ k−i , ek−i

→ k−i ,

e−k−i
→ k−i , ek+i

→ k−i ,

where k = l, i = j .

Lemma 3.1 The image of a|b coincides with D(a | b)ev and the image of a|b

coincides with Cl(a | b)ev.

Proof Let us consider a|b : U (osp(2b | 2a)) → D(a | b). For any vw ∈ S2V2a|2b we

have a|b(vw) ∈ D(a | b)2 ⊕ D(a | b)0⊕ D(a | b)−2. Therefore

a|b(U (osp(2b | 2a)))  D(a | b)ev.

Moreover, the above formulas for a|b show that a|b(C⊕osp(2b | 2a)) is the span

of

S = {1, xi∂ j , ∂i∂ j , xi x j | −b  i, j  a}.

By a simple induction argument one shows that S generates D(a | b)ev, and the state-

ment follows. A similar argument applies to a|b. 
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By C[x] we denote the symmetric superalgebra of the superspace with basis

{xi | − b  i  a}. The superspace C[x] is a simple faithful D(a | b)-module, and

we call it the defining D(a | b)-module. Furthermore, C[x]ev = C[x]  D(a | b)ev

is a simple faithful D(a | b)ev-module and hence ker a|b is a primitive ideal of

U (osp(2b | 2a)). The pullback of C[x]ev to U (osp(2b | 2a)) is a simple highest weight

module of U (osp(2b | 2a)) of highest weight 1
2

b
i=1 i − a

j=1  j


relative to the

Borel subsuperalgebra with positive roots

p ± q for p > q, 2p, p ± q , p ± q for p < q,

where the sum
b

i=1 i − a
j=1  j is an infinite formal sum if b = ∞ or a = ∞.

Similarly, the defining Cl(a | b)-module [ ] is the exterior superalgebra of the

superspace with basis {i | − b  i  a}. The module [ ] is a simple and faith-

ful Cl(a | b)-module. Furthermore, [ ]ev = [ ]  Cl(a | b)ev is a simple faithful

Cl(a | b)ev-module and hence ker a|b is a primitive ideal of U (osp(2a | 2b)). The pull-

back of [ ]ev is a simple highest weight osp(2a | 2b)-module with highest weight
1
2

a
i=1 i − b

j=1  j


, and it is isomorphic to the pullback of C[x]ev. These two

isomorphic highest weight modules have purely even highest weight spaces. Next, the

pullback of the odd-degree part [ ]odd of [ ] is a simple osp(2a | 2b)-module with

highest weight 1
2

a
i=1 i − b

j=1  j

 − 1. The pullbacks of [ ]odd and C[x]odd

are isomorphic and have purely odd highest weight spaces.

The pullbacks of C[x]ev and C[x]odd (equivalently, of [ ]ev and [ ]odd),

together with their counterparts with changed parity, are four pairwise nonisomor-

phic osp(2a | 2b)-modules, which we define to be spinor-oscillator representations.

A general spinor-oscilator representation is the twist of some of these four modules

by an automorphism of the Lie superalgebra osp(2a | 2b). For b = 0 (respectively, for

a = 0) the spinor-oscillator representations are nothing but the spinor representations

of o(2a) (respectively, the oscillator or Shale–Weil representations of sp(2b)). (It is

well known that for a fixed Borel subalgebra there are precisely two isomorphism

classes of purely even spinor or, respectively, oscillator representations.)

The isomorphisms of the pullbacks of C[x]ev and [ ]ev imply the following.

Corollary 3.2 ker b|a = ker a|b and hence Cl(a | b)ev and D(b | a)ev are isomor-

phic associative superalgebras.

Remark 3.3 It is known that Cl(a | b) is the universal enveloping algebra of the Jordan

superalgebra U2a|2b ⊕C1, while D(a | b) is the quotient of the universal enveloping

algebra of the Heisenberg superalgebra V2a|2b ⊕Cz by the ideal (z − 1). Furthermore,

it is easy to see that the superalgebras D(b | a) and Cl(a | b) are not isomorphic unless

ab = 0.

Now, we note that a|b(osp(2a | 2b))⊕V2a|2b is closed under supercommutator,

and the corresponding Lie superalgebra is isomorphic to osp(2a + 1 | 2b). Hence we

have a surjective homomorphism

a|b : U (osp(2a + 1 | 2b)) → Cl(a | b).
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The explicit formulas for a|b are the same as those for a|b, with the following

addition:

ek
→ k, e−k

→ k, e−i
→ −i , ei

→ −i .

The pullback via a|b of the defining Cl(a | b)-module [ ] is an irreducible

osp(2a + 1 | 2b)-module with highest weight 1
2

a
i=1 i − b

j=1  j


with respect

to the Borel subsuperalgebra with positive roots

p ± q for p > q, p, 2p, p ± q , p ± q for p < q, p.

We call this highest weight module, together with its counterpart with changed

parity, a spinor-oscillator representation of osp(2a + 1 | 2b). Moreover, ker a|b is

the primitive ideal of a spinor-oscillator representation of osp(2a + 1 | 2b).

We note also that gl(a | b) is the reductive part of a parabolic subalgebra of

osp(2a | 2b), and by composing the injection gl(a | b) → osp(2a | 2b) with b|a

we obtain a surjective homomorphism

U (gl(a | b)) → D(b | a)0  Cl(a | b)0. (1)

Similarly, the embedding gl(a | b) → osp(2b | 2a) induces a surjective homomor-

phism

U (gl(a | b)) → D(a | b)0  Cl(b | a)0. (2)

We denote by ϒ−
a|b the restriction of the homomorphism (1) to U (sl(a | b)), and ϒ+

a|b

the restriction of the homomorphism (2) to U (sl(a | b)).

We will use the homomorphisms ϒ±
a|b in Sect. 6.

3.3 Tensor product isomorphisms

Let Cl†(a | b) (respectively, D†(a | b)) be the superalgebra defined by the same gener-

ators and relations as Cl(a | b) (respectively, D(a | b)), but where the generators i , i

(respectively, xi , ∂i ) for i > 0 are endowed with the opposite parity.

Then one can check that the correspondence −i → xi , −i → ∂i , i = 1, . . . , b,

defines an isomorphism of superalgebras

Cl(0 | b)  D†(b | 0), (3)

and the correspondence i → x−i , i → ∂−i , i = 1, . . . , b, defines an isomorphism

of superalgebras

Cl†(b | 0)  D(0 | b). (4)
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Lemma 3.4 We have the following isomorphisms of associative superalgebras:

D(a | b)  D(a | 0)⊗ D(0 | b)  D(a | 0)⊗Cl†(b | 0), (5)

Cl(a | b)†  D(0 | a)⊗ D†(b | 0). (6)

Proof The isomorphisms (5) follow from (4) and from the fact that xi , ∂i commute

with x− j , ∂− j for all positive i, j . Similarly, the isomorphism (6) follows from (3)

and from the fact that i , i anticommute with − j , − j for all positive i, j . 

Corollary 3.5 We have isomorphisms of (purely even) associative algebras:

(a) D(a | b)0̄  D(a | 0)⊗Cl(b | 0)ev, Cl(a | b)0̄  Cl(a | 0)⊗ D(b|0)ev;

(b) (D(a | b)ev)0̄  D(a | 0)ev ⊗ D(0 | b)ev, (Cl(a | b)ev)0̄  Cl(a|0)ev ⊗Cl(0 | b)ev.

Proof Part (a) is a consequence of the existence of isomorphisms Cl†(b | 0)0̄ 
Cl(b | 0)ev and D†(b | 0)0̄  D(b | 0)ev. Part (b) follows straightforwardly from part

(a). 

3.4 Simple weight modules over Clifford andWeyl algebras

In the rest of the paper, A stands for D(a | b) or Cl(a | b) unless a restriction on A

is made explicit. Set ui
..= xi∂i (i = 0) for A = D(a | b), ui

..= ii (i = 0) for

A = Cl(a | b), and define

hA
..= span {ui | i = 0}.

Let {i | i = 0}  h∗
A be the system dual to {ui | i = 0}. Then h∗

A =


i =0 Ci .

For convenience, we will write the elements of h∗
A as formal (possibly infinite) sums

i =0 aii . We set

Q A
..=



i =0

Zi .

One can easily see that the abelian Lie algebra hA acts semisimply on A via the

adjoint action. In other words,

A =


α∈RA{0}

Aα, Aα = {x ∈ A | adh(x) = α(h)x for every h ∈ hA},

and RA is the set of all α ∈ Q A\{0} such that Aα = 0. If A = Cl(a | b), then

RA  {0} =



i =0

aii ∈ Q A

 ai = 0 for almost all i , and ai ∈ {0, 1} for i > 0


.
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If A = D(a | b), then

RA  {0} =



i =0

aii ∈ Q A

 ai = 0 for almost all i , and ai ∈ {0, 1} for i < 0


.

Moreover, for A = Cl(a | b) we have i ∈ Ai, i ∈ A−i if i = 0. For A = D(a | b)

we have xi ∈ Ai, ∂i ∈ A−i if i = 0.

Note that each superspace Aα is purely even or purely odd. Define the parity function

on Q A to be the homomorphism of abelian groups p : Q A → Z2 which records the

parity of the superspace Aα for α ∈ RA. Explicitly, p(i ) = 0 for i > 0 and p( j ) = 1

for j < 0.

Lemma 3.6 (a) The subalgebra HA
..= A0 is generated by hA.

(b) If A = D(a | b) then HA is isomorphic to C[u]/(u2
i − ui )i<0.

(c) If A = Cl(a | b) then HA is isomorphic to C[u]/(u2
i − ui )i>0.

(d) Every root space 0 = Aα is a cyclic HA-module.

Proof Straightforward computations. 
Set

h
A

..=

 ∈ h∗

A | (ui ) = 0, 1 with i < 0 for A = D(a | b), i > 0 for A = Cl(a | b)

.

In what follows, we refer to the elements of h
A as to the weights of A. An element

 of h
A is a formal sum

 =


i =0

ii

with the only restriction that i ∈ {0, 1} for i > 0 if A = Cl(a | b), and i ∈ {0, 1}

for i < 0 if A = D(a | b). Note that h
A is not a vector space.

Remark 3.7 Let g be a Lie superalgebra isomorphic to osp(2a | 2b) (respectively,

osp(2a+1 | 2b)) with fixed Cartan subalgebra h. Set A = Cl(a | b) and let F : U (g) →
A be the homomorphism a|b (respectively, a|b). Then F(U (h)) = HA. We have

Specm HA = h∗
A, Specm U (h) = h∗,

where Specm denotes maximal spectrum. Set

τ ..=
1

2



i>0

i −


j>0

 j


.

The map f : h∗
A → h∗ induced by F is not linear but affine, i.e.,

f ( + ) = f () + f () − f (0)
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with f (0) = τ . Moreover,

f (i ) =


i − τ, i > 0,

−i − τ, i < 0.

Similarly if g = osp(2b | 2a), A = D(a | b) and F ..= a|b, we have

f (i ) =


−i − τ, i < 0,

i − τ, i > 0.

Let C be the unique (1 | 0)-dimensional HA-module on which hA acts via .

According to Lemma 3.6 (a)–(c) every simple HA-module is one-dimensional and is

isomorphic to C for some  ∈ h
A.

An A-module X is a weight module if X is semisimple as an HA-module, i.e., if X

has a decomposition

X =


∈h
A

X,

where X ..= {x ∈ X | hx = (h)x for every h ∈ hA} is the -weight space of X .

The support of a weight module X is

supp X = { ∈ h
A | X = 0}.

Lemma 3.8 Let X be a simple weight A-module. Then the weight spaces of X are

purely even or purely odd. Hence X and X are never isomorphic.

Proof Let 0 = x ∈ (X) , where  ∈ Z2. Then

X = Ax =


α∈Q A

(Aαx = Xα+),

i.e., all nonzero vectors in Xα+ are purely even (respectively, purely odd) if  +

p(α) = 0̄ (respectively, if  + p(α) = 1̄). 
For the remainder of the paper we fix an extension of the parity function p : Q A →

Z2 to a map p : h
A → Z2 satisfying p( + α) = p() + p(α) for any α ∈ Q A and

any  ∈ h
A. Note that such an extension is not unique.

We call a weight A-module X preferred if for any  ∈ supp X , the weight space X

is purely even if p() = 0̄ and the weight space X is purely odd if p() = 1̄. Lemma

3.8 implies that, if X is a simple weight module then exactly one of the modules X

or X is preferred. Moreover, any weight A-module X decomposes uniquely into a

direct sum X1⊕X2 for some preferred modules X1 and X2.

Proposition 3.9 The category of preferred weight A†-modules is equivalent to the

category of preferred weight A-modules as an abelian category.
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Proof The superalgebra A† has its own parity function p† : Q A† → Z2 with the

property p†(α) = 1 for α = i ,  j . We can extend this function to a map p† : h
A† →

Z2 satisfying p†( + α) = p†() + p†(α) for any α ∈ Q A† . Then, for a preferred

weight module X we set

X† ..=


∈supp X

p†()−p() X.

It is clear that ·† is a functor from the category of preferred weight A-modules to the

category of preferred weight A†-modules. Moreover, the functor (·†)† is isomorphic

to the identity functor. 
In order to proceed with our study of weight A-modules, for any  ∈ h

A we

introduce a certain multiplicity free weight A-module F() such that  ∈ supp F().

First, assume A = D(a | b) and fix  ∈ h
A. We can write  = {i } with i ∈ C

for i > 0 and i = 0, 1 for i < 0. Let B be the subalgebra in D(0 | b) generated by

all xi for i < 0 such that i = 1, and by all ∂i for i < 0 such that i = 0. Then B is

a local supercommutative algebra, and we denote by J its maximal ideal.

Set R ..= C[xi , x−1
i ]i>0. Consider the D(a | 0)-module F+() ..= Rx defined by

the relations ∂i x = i x−1
i x and the D(0 | b)-module

F−() ..= D(0 | b)⊗B (B/J ).

Finally using the first isomorphism of (5), we define the A-module F() by setting

F() ..= F+()⊗p()F−().

Now let A = Cl(a | b). Here we use the isomorphism (6), and set

F() ..= p()(F−()⊗ F+()†)†,

where now F−() is a D(0 | a)-module and F+() is a D(b | 0)-module.

By construction,  ∈ supp F() and all weight spaces of F() are 1-dimensional.

Lemma 3.10 The A-module F() is preferred, indecomposable, and has a simple

socle (i.e., a simple submodule which is contained in any nonzero submodule of F()).

Under the assumption i /∈ Z for all i > 0 if A = D(a | b), and  j /∈ Z for all j < 0

if A = Cl(a | b), the module F() is simple.

Proof Let A = D(a | b). The fact that F() is preferred follows directly from the

definition of F().

Define the weight ̃ ∈ supp F() by setting

̃i
..=


i if i < 0 or i /∈ Z,

0 otherwise.

We claim that F()̃ generates a simple submodule of F() which is the socle of

F(). Indeed, note that if  ∈ supp F(), the construction of F() shows that the
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map F() → F()+i of multiplication by xi is an isomorphism for all positive

i , and that the map F() → F()−i of application of ∂i is an isomorphism iff

i = 0. Furthermore, for i < 0 the map F() → F()+i of multiplication by xi is

an isomorphism iff  +i ∈ supp F(), and similarly the map F() → F()−i of

application of ∂i is an isomorphism iff  − i ∈ supp F(). Consequently, the cyclic

submodule of F() generated by any nonzero weight vector contains the weight space

F()̃. This proves our claim, and we see that F() is indecomposable as it has a

simple socle.

Finally, if i /∈ Z for all i > 0 then  = ̃ and F() is simple.

The case of A = Cl(a | b) is handled in a similar manner. 

For ,  ∈ h
A we write  ≈  if  −  ∈ Q A and the respective sets of indices i

for which i ∈ Z0 and i ∈ Z0 coincide.

Theorem 3.11 (a) Every simple weight A-module is multiplicity free.

(b) For every  ∈ h
A, up to isomorphism, there exist precisely two simple A-modules

X() and X() whose supports contain , and such that X() is preferred.

(c) supp X() = { ∈ h
A |  ≈ }.

(d) Let − ∈ Q A. The modules X() and X() are isomorphic if and only if  ≈ .

Proof Set P() ..= A⊗HA
(p()

C) for  ∈ h
A. Then by Frobenius reciprocity

HomA(P(), F()) = 0. Hence the weight space P() is nonzero and generates

P(). Since each weight space of P() is a cyclic HA-module (Lemma 3.6 (d)), the

A-module P() is multiplicity free.

Therefore the sum N of all submodules Z of P() with Z = 0 constitutes

the unique maximal proper submodule of P(). Since P() is multiplicity free, the

quotient X() ..= P()/N and the module X() are (up to isomorphism) the only

two simple A-modules whose supports contain . Note that X() is preferred, while

X() is not. This proves (a) and (b).

(c) It follows from (b) that the supports of non-isomorphic simple preferred modules

are disjoint. It remains to check that supp X() is exactly the equivalence class of .

We start by the following observation. If we fix a nonzero vector z ∈ P() then

a basis of P() is formed by the vectors x
a1

i1
. . . x

ak

ik
∂

b1

j1
. . .

bl

jl
z for some disjoint sets

of indices i1 < · · · < ik , j1 < · · · < jl and some as, bs ∈ Z>0 if is, js > 0 and

as = bs = 1 if is, js < 0.

Let A = D(a | b). Fix a nonzero vector v ∈ X(). Let  ∈ supp X() and let

 =  +


i∈I

aii

with ai ∈ Z\0 for some finite subset I  Z. Set I ± = {i ∈ I | ai > (< 0)}.

Then, by the above observation, every vector w ∈ X() is proportional to


i∈I + x
ai

i

·


j∈I − ∂
−a j

j v. Next, for i > 0 the relation ∂i xi − xi∂i = 1 implies that for

any nonzero v ∈ X()


we have ∂iv
 = 0 if and only if (ui ) = 0; similarly

xiv
 = 0 if and only (ui ) = −1. Since (ui ) = 0, 1 for i < 0, we conclude
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that


i∈I + x
ai

i


j∈I − ∂

−a j

j v = 0 if and only if  ≈ . The case A = Cl(a | b) is

analogous.

(d) Direct corollary of (c). 
Next we would like to decompose the simple weight A-modules in accordance with

the isomorphisms (5) and (6). We start by discussing weight modules of A = Cl(b | 0)

and A = D(0 | b). In these cases we identify the subsets A of Z [1, b] (where b = ∞
is possible) with the weights of A via the map

A → A,

where A =


i∈A
i for A = Cl(b | 0) and A =


i∈A

−i for A = D(0 | b).

Accordingly, we write X(A) instead of X(A).

Lemma 3.12 Let A(b) = Cl(b | 0) or A(b) = D(0 | b).

(a) If b < ∞, then the category of preferred weight A(b)-modules is semisimple and

has, up to isomorphism, one simple object X(∅).

(b) If b = ∞ then, up to isomorphism, the simple preferred weight A(b)-modules

can be enumerated by equivalence classes of subsets of Z>0 with respect to the

following equivalence relation: A is equivalent to B if the symmetric difference

AB is finite. In other words, up to isomorphism, there is exactly one simple weight

A(b)-module X(A) corresponding to A.

(c) We have X(A)  X(B) if and only if AB is finite.

Proof Claim (a) for A(b) = Cl(b | 0) is an immediate consequence of the fact that A(b)

is a matrix algebra. The case A(b) = D(0 | b) with b < ∞ follows from Proposition

3.9.

(b) follows from Theorem 3.11 (b).

(c) We note that A ≈ B if and only if AB is finite. 
Proposition 3.13 (a) Every simple preferred weight D(a | b)-module X is isomorphic

to X+⊗ (X−)† for some simple preferred weight D(a | 0)-module X+ and some

simple preferred weight Cl(b | 0)-module X−.

(b) Every simple preferred weight Cl(a | b)-module X is isomorphic to

((X+)†⊗ (X−)†)† for some simple preferred weight Cl(a | 0)-module X+ and

some simple preferred weight D(b | 0)-module X−.

Proof We prove (a) since (b) is similar. For any weight  ∈ supp X we can choose a

simple preferred weight D(a | 0)-module X+ and a simple preferred weight Cl(b | 0)-

module X− so that  ∈ supp(X+⊗ (X−)†). Moreover, it is clear from the construction

that the module X+⊗ (X−)† is simple. Therefore Theorem 3.11 implies the claim. 

3.5 Categories of weight modules over Clifford andWeyl algebras

Let WA denote the category of preferred weight A-modules. To study the category of

all weight A-modules, it suffices to study the category WA. Indeed, since every weight
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A-module decomposes canonically as X1⊕X2 where X1 and X2 are preferred, the

morphisms in the category of all weight A-modules are recovered by the morphisms

in the category WA (the latter morphisms necessarily preserve the Z2-grading).

Recall the A-module P() introduced in the proof of Theorem 3.11.

Lemma 3.14 The A-module P() is an indecomposable projective object in the cat-

egory WA. The category WA has enough projectives.

Proof By Frobenius reciprocity we have

Hom A(P(), X)  HomhA
(p()

C, X)  X

for any preferred module X in WA. This implies the projectivity of P(). The inde-

composability of P() follows from the fact that P() has a unique maximal proper

submodule.

Noting that any X ∈ WA is a quotient of


∈supp X P()⊗ X, we see that WA

has enough projectives. 
We introduce the following equivalence relation on the set of weights h

A:  ∼ 

⇔  ∈  + Q A. Note that the relation ∼ is weaker than the relation ≈, i.e.,  ≈ 

implies  ∼ . Let  denote a ∼-equivalence class in h
A, and let W


A be the full

subcategory of WA with objects X satisfying supp X  . Since the support of

every indecomposable weight A-module X belongs to  for some class , we have a

decomposition

WA =


W

A.

Proposition 3.15 The subcategories W

A are blocks of WA.

Proof If X and X  are two simple weight A-modules from WA satisfying  ∼  for

some  ∈ supp X and  ∈ supp X , then the modules X and X  occur as simple con-

stituents in the A-module F(). We know from Lemma 3.10 that F() is a preferred

indecomposable module. This implies the assertion. 
Lemma 3.16 If A = Cl(a | 0) or A = D(0 | b) then WA is a semisimple category.

Proof It suffices to prove that every indecomposable projective module P ∈ WA is

simple. For this, note that P is an object of W

A for some , and let  ∈ h

A belong to

supp P . Then Hom HA
(p()

C, P) = 0 and Frobenius reciprocity yields a nonzero

homomorphism P → P() = A⊗HA
(p()

C). The key observation is that under

the assumption A = Cl(a | 0) or A = D(0 | b), the A-module P() is simple. This

together with the projectivity of P() allows us to conclude that P  P(). 
The following proposition extends Proposition 3.13 to indecomposable modules.

Proposition 3.17 (a) If X is an indecomposable module from WD(a|b), then X is iso-

morphic to X+⊗ (X−)† for some indecomposable module D(a | 0)-module X+

from WD(a|0) and some simple module X− from WCl(b|0).
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(b) If X is an indecomposable module from WCl(a|b), then X is isomorphic to

((X+)†⊗ (X−)†)† for some simple module X+ from WCl(a|0) and some inde-

composable module X− from WD(b|0).

Proof (a) Set A = D(a | b). The indecomposability of X implies supp X  +Q A for

some  ∈ h
A. If S and S are simple subquotients of X then supp S  supp S + Q A,

and therefore S and S have the same support when restricted to D(0 | b). This, together

with Proposition 3.13 (a), implies the existence of isomorphisms S  Y ⊗ (X−)† and

S  Z ⊗ (X−)† for some simple module X− ∈ WCl(b|0) and some simple modules

Y , Z ∈ WD(a|0). Moreover, according to Lemma 3.16, the restriction of X to D(0 | b)

is a semisimple D(0 | b)-module. Hence this restriction is isomorphic to an isotypic

component of the simple D(0 | b)-module (X−)†. This allows us to conclude that the

map

Hom D(0|b)((X−)†, X)⊗ (X−)† → X

is an isomorphism.

Therefore we can set X+ ..= Hom D(0|b)((X−)†, X). Finally, the indecomposability

of X implies the indecomposability of X+.

(b) The proof is similar, but instead of Proposition 3.13 (a) one uses Proposition

3.13 (b). 
Corollary 3.18 (a) If b < ∞ then the category WD(a|b) is equivalent to the category

WD(a|0). The category WD(a|∞) decomposes into a direct product of subcategories

W[A] where [A] runs over equivalence classes of subsets of Z>0 as in Lemma 3.12,

and each subcategory W[A] is equivalent to the category WD(a|0).

(b) If a < ∞ then the category WCl(a|b) is equivalent to the category WD(b|0). The

category WCl(∞|b) decomposes into a direct product of subcategories W[A] where

[A] runs over equivalence classes of subsets of Z>0 as in Lemma 3.12, and each

subcategory W[A] is equivalent to the category WD(b|0).

(c) Every block of WD(ab) and of WCl(ab) is equivalent to the block W

D(c|0)

of

WD(c|0) for some c  ∞ and  = Q D(c|0).

(d) Two blocks B1 and B2 of WD(c|0) are equivalent if and only if c(B1) = c(B2)

where c(B) denotes the cardinality of the set of isomorphism classes of simple

objects in B.

Proof Again we prove just (a) since (b) is similar. Let X− be a preferred simple

Cl(b | 0)-module and WA(X−) be the full subcategory of WA with objects of the form

X+⊗ (X−)† for preferred weight D(a | 0)-modules X+. It follows from Proposition

3.17 that WA is the direct product of its subcategories WA(X−) where X− runs over the

set of isomorphism classes of Cl(b | 0)-modules. Each category WA(X−) is equivalent

to the category of preferred weight D(a | 0)-modules via the functors ·⊗ (X−)† and

Hom D(0|b)((X−)†, · ). If b < ∞, there is a single isomorphism class to which X−
belongs. If b = ∞, the isomorphism classes of modules in WCl(b|0) are enumerated

by the equivalence classes of subsets of Z>0 from Lemma 3.12.

(c) and (d) follow from parts (a) and (b) and from the classification of blocks in WD(c|0)

for c < ∞ in [11], and in WD(∞|0) in [9]. 
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We conclude this section by a structural result on indecomposable weight A-

modules with finite-dimensional weight spaces.

Theorem 3.19 Any indecomposable A-module X in WA with finite-dimensional

weight spaces has a strict A-module filtration X =


n∈R Xn (i.e., Xn  Xm for

n < m) for some interval R in Z, satisfying


n∈R Xn = {0} and such that Xn/Xn−1

is a simple A-module for any n, n − 1 ∈ R.

Proof Due to Corollary 3.18 we can reduce this statement to the case A = D(a | 0). If a

is finite then X has finite length and the statement is trivial. For any a, a preferred simple

weight D(a | 0)-module is determined up to isomorphism by its support. Therefore, if

X belongs to a block B with c(B) < ∞, the statement is trivial since X necessarily

has finite length.

We can thus assume that X belongs to a block B with c(B) = ∞, and by Corollary

3.18 (c) we can assume further that  = Q A. Then, simple objects in B are enumerated

(up to isomorphism) by finite subsets A of Z>0. For a subset A, we set A
..= − 

i∈A
i

and choose a basis {vA

i } of the weight subspace X A . Let U be the union of these bases.

Note that every cyclic A-module is multiplicity free and has at most countably many

cyclic submodules generated by vectors of weights of the form A. Consider the set

X of cyclic submodules of X consisting of all modules Au for u ∈ U and all cyclic

submodules of Au generated by weight vectors (the weights necessarily having the

form B for finite subsets B of Z>0). Then X is a partially ordered set with respect to

the inclusion order. Clearly, X =


Y∈X
Y .

We claim that any interval in this partial order is finite. To prove this, it suffices

to consider an interval of the form [Av, Aw] where Av  Aw. Let v ∈ X A and

w ∈ X B for some finite sets A, B. Note that Aw is a quotient of the indecomposable

projective A-module P(B). Therefore

v = d


i∈I

xi



j∈J

∂ jw

for some d ∈ C
∗ and some finite subsets J  A, I  Z>0\B. If Av  Au  Aw

then

u = d  

i∈I 
xi



j∈J 
∂ jw, v = d  

i∈I 
xi



j∈J 
∂ jv.

Note that I = I  I , J = J  J . Since for fixed I , J there exist finitely many

choices for I , I , J , J , the claim follows.

Recall that by the Szpilrajn theorem [21] any partial order can be extended to a total

order. Moreover, we claim that any interval-finite partial order on a countable set I

can be extended to an interval-finite total order. Indeed, assume that I does not have a

smallest or greatest element. (If I is bounded above or below, the proof is similar). We

can choose a sequence of distinct elements {xi | i ∈ Z} such that if xi < x j then i < j ,

and also I =


[xi , xi+1]. Let Un =
n−1

i=−n[xi , xi+1] for n > 0. Using induction we

can define a total order on Un as required. Indeed, one can see that Un+1\Un = Y  Z
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where all elements of Z are not less than elements of Un and all elements of Y are

not greater than the elements of Un . On the other hand, both Y and Z are finite and

therefore one can clearly define a suitable total order on them.

This argument endows X with a total order ≺ such that the ordered set (X, ≺) is

isomorphic to (Z, <), (Z<0, <), (Z>0, <), or some finite interval of Z. We enumerate

the elements of X using this isomorphism. Set Xn
..=


i<n Yi for Yi ∈ X. Let us prove

that the A-module Xn/Xn−1 is simple for any n. Indeed, Xn/Xn−1  Yn/(Yn  Xn−1).

Since Yn Xn−1 contains all proper cyclic submodules of Yn , the submodule Yn Xn−1

is the unique maximal submodule of Yn and the quotient Yn/(Yn  Xn−1) is simple. If

(X, ≺) has no minimal element then clearly


n Xn = {0}. If X1 = Y1 is the minimal

element of (X, ≺), then X1 is simple and we add X0
..= {0}. 

Example 3.20 Let A = D(∞ | 0),  ∈ Q A, and let X be an indecomposable A-module

of infinite length with finite weight multiplicities.

(a) Theorem 3.19 implies that X admits a Z>0-filtration with simple quotients when-

ever X has a simple submodule contained in any nonzero submodule of X . Therefore

the A-module F() has such a filtration by Lemma 3.10.

(b) Similarly, if X has a unique maximal submodule then X admits a Z<0-filtration

with simple quotients. In particular, this applies to the A-module P().

(c) Fix an isomorphism A  A⊗ A of associative algebras and consider X ..=

F()⊗ P() as an A-module via this isomorphism. One can see that X has nei-

ther a simple submodule nor a simple quotient. Nevertheless, by Theorem 3.19 the

module X admits a Z-filtration with simple quotients.

3.6 Weight modules over Aev and A0̄ for A = D(a | b) or A = Cl(a | b)

Let τ : Q A → Z/2Z be a surjective homomorphism of abelian groups. We define

B ..=


τ ()=0̄

A, B  ..=


τ ()=1̄

A.

Then B is a subsuperalgebra of A containing HA, and the decomposition A =

B ⊕ B  defines a Z/2Z-grading.

In this subsection we establish an equivalence between the category WA and the

category WB of preferred weight B-modules. This result applies to the particular

cases B = A0̄ and B = Aev. (For B = A0̄ preferred B-modules are purely even

B-modules.)

The root lattice Q B = ker τ is an index-two subgroup in Q A. Consider the block

W

A for some equivalence class   h

A. Note that  =  , where  ..= ( +

Q B)   for some  ∈ . This decomposition depends on the choice of  but only

up to swapping  and . By W

B we denote the subcategory of WB of B-modules

with support in .

Theorem 3.21 The abelian categories W

A and W


B are equivalent.
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Proof We define functors R : W

A → W


B and I : W


B → W


A by setting

R(X) ..=


∈
X, I (Y ) ..= A⊗B Y .

We observe that R is exact, I is right exact, and I is left adjoint to R. Therefore, there

are canonical morphisms of functors φ : I R → IdWA
and  : IdWB

→ RI . It remains

to check that both functors are isomorphisms on objects. Recall that for any  ∈ 

the induced module P() = A⊗HA
(p()

C) is projective in WA. Similarly, the

B-module Q() ..= B ⊗HA
(p()

C) is projective in WB . By construction we have

I (Q())  P() and R(P())  Q(). Thus φ(P())  P() and (Q()) 
Q(). Every object in WA (respectively, WB ) has a resolution with terms given by

direct sums of P()-s (respectively, Q()-s). Hence φ and  are isomorphisms on

objects. 

3.7 Weight modules over A0

Here we classify simple bounded A0-modules. We note that hA  A0 and that the

root lattice Q A0 is the sublattice of Q A generated by i −  j for i, j = 0, i = j . As

before, we can work with preferred modules only. We introduce a new equivalence

relation on h
A by setting  ≈0  iff  ≈  and  −  ∈ Q A0 .

Theorem 3.22 (a) For every  ∈ h
A there exists a unique (up to isomorphism) pre-

ferred simple weight module Y () such that  ∈ supp Y ().

(b) Two simple preferred A0-modules Y () and Y () are isomorphic if and only if

 ≈0 .

Proof (a) We define the A0-module Y () to be the A0-submodule of X() generated

by the weight space X(). It is simple since for every nonzero A0-submodule Z of

Y () we have

Z = AZ  Y () = X()  Y () = Y ().

Furthermore any simple weight A0-module, whose support contains , is isomorphic

to the unique simple quotient of the induced module A0 ⊗HA
C. This proves (a).

(b) It follows from (a) that Y () and Y () are isomorphic if and only if  ∈ supp Y ().

On the other hand,

supp Y () = supp X()  ( + Q A0).

This implies the statement. 

Let A = D(a | b). Any A0-module M is also a module over Lie A0, the Lie superalge-

bra associated to A0. We call M integrable if M is integrable as an sl(a | b)-module.
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Proposition 3.23 (a) A simple weight A0-module Y () is integrable if and only if

i ∈ Z0 for all i > 0 or i ∈ Z<0 for all i > 0.

(b) Every simple weight A0-module is integrable as a D(0 | b)0-module.

Proof (a) By a direct inspection of supp Y () one sees that, if  satisfies the condition

of the proposition, then any  ∈ supp Y () satisfies the same condition. Therefore

the set ( + Zα)  supp Y () is finite for any  ∈ supp Y () and any root α of

sl(a | b). This implies that Y () is integrable whenever  satisfies the condition of the

proposition.

On the other hand, if there exist i, j > 0, i = j , such that  j is not an integer or

i ∈ Z0 and  j ∈ Z<0, then xi∂ j acts freely on Y ().

(b) For any  ∈ h
A and any α = i −  j for i, j < 0, at most one of  + α and  − α

lies in h
A. Since the support of any weight A0-module is a subset of h

A, the statement

follows. 

Proposition 3.24 Suppose A = D(∞ | ∞). A simple A0-module Y () is faithful if

and only if the set of values

Si = {i |  ∈ supp Y ()}

is infinite at least for one i .

Remark 3.25 The formula

supp Y () = { ∈ h
A |  ≈0 }

(see Theorems 3.11 and 3.22) shows that if Si is infinite for some i > 0, then Si is

infinite for all positive i . On the other hand, by the definition of h
A, we have i = 0, 1

for every  ∈ supp Y () and i < 0. Furthermore, the condition of the proposition

does not hold if and only if

(1) i ∈ Z0 for all i > 0 and i = 0 for almost all i ,

(2) i ∈ Z<0 for all i > 0, i = −1 for almost all positive i and i = 1 for almost

all negative i .

Proof Observe that if Si is finite for some i > 0 then


s∈Si
(ui − s) ∈ AnnA0 Y (),

where ui = xi∂i . Hence Y () is not faithful.

In view of Remark 3.25, it remains to show that if Si is infinite for every positive

i then AnnA0 Y () = 0. Clearly, AnnA0 Y () is a weight hA-module with respect to

the adjoint action of hA. Furthermore, for any u ∈ A

0 there exists v ∈ A

−
0 such that

uv = 0. Thus it suffices to prove that AnnA0 Y ()  HA = {0}. Assume that u ∈ HA.

There exist k, l > 0 such that u can be written in the form

u =


B

pB(u1, . . . , uk)u B
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for some polynomials pB , where the sum runs over all subsets B of {−1, . . . , −l} and

u B
..=



i∈B

ui



i∈{−1,...,−l}\B

(1 − ui ).

Set

Tk
..= {(1, . . . , k) |  ∈ supp Y ()},

T B
k,l

..=


(1, . . . , k)

  ∈ supp Y (), i = 1 for i ∈ B

i = 0 for i /∈ B, −l  i  −1


.

Note that our assumption that Si is infinite for every positive i implies that Tk is a

Zariski dense subset of C
k. Consider the subalgebra Al generated by xi , ∂i for all

i > 0 and i < −l and set Al
0

..= A0  Al . Then Al
0 is isomorphic to A0. Next, note

that u BY () is a simple Al
0-module for every B  {−1, . . . , −l}. Furthermore, after

substituting A0 for Al
0 and Y () for u BY (), we see that T B

k,l = Tk is Zariski closed

in C
k. Now uY () = 0 implies pB(u1, . . . , uk)u BY () = 0, which is equivalent to

pB(T B
k,l) = 0. Hence pB = 0 and u = 0. 

Corollary 3.26 The ideals ker ϒ± are primitive ideals of U (sl(∞ | ∞)).

4 Classication of simple bounded weight osp-modules at innity

We are now ready to describe the category of bounded weight g-modules for g =

osp(2a | 2b), osp(2a+1 | 2b). In what follows we assume that g is infinite dimensional,

i.e., that at least one of a, b equals ∞. We fix an exhaustion of g as lim−→ gk , where

gk  osp(2ak | 2bk) or gk  osp(2ak + 1 | 2bk), and ak, bk ∈ Z>0 satisfy ak = a for

a < ∞ and bk = b for b < ∞.

We start with the following observation.

Proposition 4.1 If M is a bounded g-module, then the restriction of M to o(2a) or

o(2a + 1) is integrable and semisimple.

Proof M is a bounded semisimple h-module, and hence M is a bounded weight

(o(2a)+h)- or (o(2a +1)+h)-module. Therefore, as an o(2a)- or o(2a +1)-module,

M is isomorphic to a direct sum of bounded weight o(2a)- or o(2a + 1)-modules.

As mentioned in Sect. 2, a bounded weight o(2a)- or o(2a + 1)-module is integrable

for a = ∞, and is a sum of finite-dimensional modules for a < ∞. Therefore the

semisimplicity claim holds trivially for a < ∞. For a = ∞ the semisimplicity claim

follows from [15, Theorem 3.7]. 
Recall that an odd reflection is the replacement of a Borel subsuperalgebra b of g by

a Borel subsuperalgebra b of g such that exactly one odd root α of b is not a root

of b (and hence −α is a root of b). If Lb() denotes an irreducible g-module with

b-highest weight  and purely even highest-weight vector, then Lb() is isomorphic
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either to Lb() or to Lb( − α). The latter case, called a typical reflection, occurs

precisely when (, α) = 0, while the former case, called an atypical reflection, occurs

when (, α) = 0.

By Jg we denote the kernel of a|b if g = osp(2a | 2b), and respectively of a|b

if g = osp(2a + 1 | 2b). Recall that Jg is the annihilator of any spinor-oscillator

representation. Moreover, it is obvious that Jg = lim−→ Jgk
whenever g = lim−→ gk for an

inductive system of finite-dimensional Lie superalgebras gk of type osp.

Lemma 4.2 Let q = osp(m | 2n) for m, n ∈ Z0, and I  U (q) be a bounded

primitive ideal of degree d. Assume that at least one of the simple ideals of q0̄ has rank

greater than d. Then d = 1. Moreover I = Jq, unless I is the augmentation ideal or

the annihilator of a defining module.

Proof For m  1 the statement follows directly from Lemmas 2.6 and 2.5. Therefore

in the rest of the proof we assume that m  2.

By Musson’s Theorem [13], I = AnnU (q)Lb() for some Borel subsuperalgebra b

and some weight . For  = 0, the ideal I is the augmentation ideal. For the rest of the

proof we assume  = 0. Let s be a simple ideal of q0̄ of rank greater than d + 1. We

can choose the Borel subsuperalgebra b so that its base of simple roots contains a base

of simple roots for s. By  we denote the weight of s obtained from  by restriction.

In order to study the annihilator I of the simple highest weight q-module Lb(),

we will consider Lb() as a highest weight module over a variable Borel subalgebra

b obtained from b by some sequence of odd reflections. Then  will denote the

corresponding highest weight, and  will be its restriction to s. Lemma 2.4 implies

that the simple s-modules with highest weights  and  are necessarily multiplicity

free.

We may assume that b is obtained from b by odd reflections with respect to some

isotropic odd roots α1, . . . , αr . It is essential to note that there are at most four non-

isomorphic multiplicity free simple weight s-modules which have a highest weight

with respect to a fixed Borel subalgebra of s. (Indeed, these are the trivial, natural,

and spinor modules for s  o(m), and the trivial, natural, and oscillator modules for

s  sp(2n).) This shows that each of the weights  and  can take at most four

different values. Moreover, since ,  have the same image modulo the root lattice of

q, it is easy to check that for a given  there is a unique  with  = . Therefore in a

shortest chain of odd reflections connecting b and b there can be at most one typical

reflection.

Assume s = sp(2n). If m = 2 + 1 we fix the simple roots

1 − 2, . . . ,  − 1, . . . , n−1 − n, n,

and if m = 2 we take the simple roots

1 − 2, . . . ,  − 1, . . . , n−1 − n, 2n .

Set  = a11 + · · · + a + . The above conditions and Lemma 2.5 show that

for  =  one of the following holds:
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(1)  = 0,  = 1,

(2)  = 1,  = 0,

(3)  = −(1 + · · · + n)/2,  = −(1 + · · · + n−1)/2 − 3n/2,

(4)  = −(1 + · · · + n−1)/2 − 3n/2,  = −(1 + · · · + n)/2.

Consider the first case. We start by applying the odd reflections corresponding to the

sequence of odd roots −1, . . . , 1−1. Since  = 0, exactly one of these reflections

must be typical, say with respect to p − 1. This implies ap+1 = · · · = a = 0,

a1 = · · · = ap−1 = −1. Next, an application of the reflections corresponding to

 − 2, . . . , 1 − 2 cannot change . This is only possible for p = 1 and  = 1,

and then Lb() is a defining representation.

Let us deal with the second case. The odd reflections with respect to the roots

 − 1, . . . , 1 − 1 do not change , i.e., they are all atypical. Therefore a1 = · · · =

a = −1, but then the reflection with respect to  − 2 is typical and  = 1 + 2.

This proves that the second case is impossible.

Now, consider the third case. Here we perform in some order all odd reflections

with roots i −  j , i = 1, . . . , , j = 1, . . . , n − 1, and check that all these reflections

do not change . This forces a1 = · · · = a = 1/2. Hence  = (1 + · · · + )/2 −
(1 + · · · + n)/2 and Lb() is a spinor-oscillator representation.

Finally, let us look at the fourth case. We can show that a1 = · · · = a = 1/2 in

the same way as in the third case. Therefore, if m is even we have  = (1 + · · · +

)/2 − (1 + · · · + n−1)/2 − 3n/2, and Lb() is a spinor-oscillator representation

not isomorphic up to parity change to a spinor-oscillator representation that occurred

in the third case. If m is odd, then by Lemma 2.6 the restriction of  to osp(1 | 2n)

with roots ±i ±  j , r − s, ±i for r = s, must equal −(1 + · · · + n)/2. This

contradicts our assumption for , therefore the fourth case forces m to be even.

This proves our claim for s = sp(2n) since in case (1) I is the annihilator of a

defining representation, while in cases (3) and (4) I is the annihilator of a spinor-

oscillator representation.

We conclude the proof by essentially repeating the above argument for s = o(m).

For m = 2 we fix the simple roots

1 − 2, . . . , n−1 − n, n − 1, 1 − 2, . . . , −1 − , −1 + ,

and for m = 2 + 1 we choose the simple roots

1 − 2, . . . , n−1 − n, n − 1, 1 − 2, . . . , −1 − , .

A priori there are the following cases for  = :

(1)  = 0,  = 1,

(2)  = 1,  = 0,

(3)  = (1 + · · · + )/2,  = (1 + · · · + −1 − )/2,

(4)  = (1 + · · · + −1 − )/2,  = (1 + · · · + )/2.

All these cases can be treated in the same way as above. 
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Corollary 4.3 Let q and I are as in the previous lemma. Then the superalgebra of

h-invariants (U (q)/I )h is abelian. Hence any simple weight q-module annihilated by

I is multiplicity free.

We are now ready to prove the following.

Proposition 4.4 Let M be a simple bounded g-module. Then M is multiplicity free.

Moreover, M satisfies AnnU (g)M = Jg or M is a trivial or a natural module.

Proof Let I ..= Ann M , U ..= U (g)/I , and let  be a weight of M . Then a standard

argument shows that M is a simple Uh-module. Next, set

hk
..= gk  h, U k

..= U (gk)/(U (gk)  I ).

We have Uh = lim−→ U
hk

k . Since g is infinite-dimensional, Lemma 4.2 and Corollary

4.3 imply that for sufficiently large k the simple U
hk

k -constituents of the module

M are one-dimensional. By passing to the direct limit we obtain dim M = 1.

Furthermore, again by Lemma 4.2 we see that the annihilator of U (gk)M equals Jgk
,

unless U (gk)M is a trivial representation or a defining representation. The statement

follows by passing to the direct limit. 
Remark 4.5 The claim of Proposition 4.4 is proved in [10] in the case where g = g0̄,

i.e., for g = sp(∞), o(∞).

We say that a simple weight g-module M is of spinor-oscillator type if it is anni-

hilated by Jg, i.e., M is obtained by pullback along the homomorphism a,b from a

weight Cl(a | b)-module or, respectively, along the homomorphism a,b from a weight

Cl(a | b)ev-module. Proposition 4.4 implies the following.

Corollary 4.6 Let M be a simple bounded weight g-module such that M  V , V ,

C, C. Then M is of spinor-oscillator type.

Note that every simple weight sp(2b)-module T of oscillator type (as defined in

Sect. 2) is the pullback of a (unique, up to isomorphism) simple weight Cl(0 | b)ev-

module T . This follows from the fact that the ideal ker 0,b of U (sp(2b)) is the

primitive ideal not only of the oscillator representations but of any simple multiplicity

free weight module of sp(2b). For b < ∞ this is well known, and for b = ∞ see [10].

Given T as above, the module T generates a unique simple weight Cl(0 | b)-module

which has the form T ⊕T  as a Cl(0 | b)ev-module. The pullback of T  to sp(2b) is by

definition the twin of T and is a simple module. Similarly, any spinor o(2a)-module

is the pullback of a simple weight Cl(a | 0)ev-module, and we call two spinor o(2a)-

modules twins if they are pullbacks of the two simple Cl(a | 0)ev-constituents of a

simple Cl(a | 0)-module. For o(2a + 1) we declare two spinor o(2a + 1)-modules to

be twins if they are isomorphic.

We are ready to state our explicit description of simple bounded weight g-modules.

Theorem 4.7 Let M be a simple bounded weight g-module of spinor-oscillator type.

Then the following statements hold:
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(a) M0̄ and M1̄ are simple g0̄-modules.

(b) There exist twin spinor o(2a)- or o(2a + 1)-modules S and S, and twin simple

sp(2b)-modules T and T  of oscillator type, such that

M0̄  S ⊗T , M1̄  (S⊗T ). (7)

The modules S, S, T , T  are unique up to isomorphism and determine M up to

isomorphism.

(c) Any pair (S, T ) where S is a spinor o(2a)- or o(2a + 1)-module and T is a simple

sp(2b)-module of oscillator type determines a simple bounded weight g-module

M of spinor-oscillator type for which (7) holds.

Proof Let A = Cl(a | b). Claim (a) follows directly from Lemma 2.1 since the map

a|b : U (g0̄) → (Aev)0̄ (respectively, a|b : U (g0̄) → A0̄) is surjective.

(b) Note that if the statement holds for M then it holds for M .

If g = osp(2a + 1 | 2b) then we can assume that M is the pullback of a simple

preferred weight Cl(a | b)-module X . By Proposition 3.13 (b) there is an isomorphism

X  ((X+)†⊗ (X−)†)† for some simple preferred weight Cl(a | 0)-module X+ and

some simple preferred weight D(b | 0)-module X−. Next, using the isomorphism

Cl(a | b)0̄  Cl(a | 0)⊗Cl(0 | b)ev from Corollary 3.5 we see that X 0̄  X+⊗ R(X−)

and X 1̄  X+⊗ (X−/R(X−)) where the functor R is defined in Sect. 3.6. Thus, S = S
is isomorphic to the pullback to o(2a + 1) of X+ while T and T  are isomorphic to

the pullbacks to sp(2b) of R(X−) and X−/R(X−), respectively.

Now let g = osp(2a | 2b). We can assume that M is the pullback of R(X) for a

simple preferred weight Cl(a | b)ev-module X . Then

R(X)0̄  R(X+)⊗ R(X−), R(X)1̄  (R(X+)/X+)⊗ (X−/R(X−)).

Therefore S and S are isomorphic to the respective pullbacks to o(2a) of R(X+)

and (R(X+)/X+), and T and T  are the same as in the case of osp(2a + 1 | 2b).

The uniqueness of S and T , and hence also of S and T , is clear from the iso-

morphism of g0̄-modules M0̄  S ⊗T . The fact that S, S, T , T  determine M up to

isomorphism is a consequence of the observation that M0̄ determines R(X)0̄, which

in turn determines X+ and R(X−) for g = osp(2a + 1 | 2b) (respectively, R(X+) and

R(X−) for g = osp(2a | 2b)), and ultimately X+ and X− since R is an equivalence

of categories. Then M is the pullback of ((X+)† ⊗ (X−)†)† for g = osp(2a + 1 | 2b)

and of R((X+)† ⊗ (X−)†)† for g = osp(2a | 2b).

(c) The given pair (S, T ) determines a pair (X+, X−), where S is the pullback of a

simple weight Cl(a | 0)-module X+ and T is the pullback of a simple weight Cl(0 | b)-

module (X−)† for a simple weight D(b | 0)-module X−. Then M is recovered from

X+ and X− as in the proof of part (b). 
Remark 4.8 There is an alternative definition of pairs of twins (S, S) or (T , T ) in

terms of the supports of the weight modules S and T . Recall that in [10] the supports

of all simple bounded (equivalently, multiplicity free) weight o(∞)- and sp(∞)-

modules are described explicitly, and moreover a given such module is determined up
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to isomorphism by its support. For a finite-dimensional orthogonal or symplectic Lie

algebra it is well known that a simple multiplicity free weight module is determined

by its support as well. Both if a < ∞ or a = ∞, for any spinor o(2a)-module S there

exists a unique (up to isomorphism) spinor module S such that for every i ∈ Z>0,

 + i ∈ supp S for some  ∈ supp S. Similarly, if b < ∞ or b = ∞, for every

sp(2b)-module T of oscillator type there exists a unique (up to isomorphism) module

T  of oscillator type such that for every i ∈ Z>0, +i ∈ supp S for some  ∈ supp S.

It is straightforward to show that the pairs (S, S) and (T , T ) are precisely the pairs of

twins defined above. This observation leads to another proof of Theorem 4.7(b) based

on analyzing the supports of the g0̄-modules M0̄ and M1̄.

Consider the decomposition g0̄ = go⊕gsp , where go  o(2a) or go  o(2a + 1)

and gsp  sp(2b). Set ho = hgo and hsp = hgsp . Then h∗ = h∗
o ⊕h∗

sp . Moreover,

if o  h∗
o and sp  h∗

sp we put o + sp
..= {1 + 2 | 1 ∈ o, 2 ∈ sp}.

Corollary 4.9 Let M be as in Theorem 4.7. Then

supp M = (supp S  supp S) + (supp T  supp T )  h∗
o ⊕h∗

sp .

Moreover M is never isomorphic to M, and supp M determines the isomorphism

class of M up to application of .

Remark 4.10 The pairs (M, M) for g are appropriate superanalogs of twin pairs for

o(2a) or sp(2b).

5 On the category of bounded weight osp-modules

Now we turn our attention to the category Bg of bounded g-modules. In this section,

g stands for osp(2a + 1 | 2b) or osp(2a | 2b) for all, possibly finite, a and b.

Let Bosc
g denote the full subcategory of Bg with simple objects of spinor-oscillator

type. Every M ∈ Bg decomposes uniquely into a direct sum M ⊕ M  with M  ∈ Bosc
g

and M  being a direct sum of finitely many copies of trivial and defining modules. This

follows from a simple inspection of supports which shows that any simple subquotient

of M isomorphic to V , V , C, C splits as a direct summand of M . By BA for g =

osp(2a+1 | 2b) (respectively, BAev for g = osp(2a | 2b)) we denote the category of all

weight A-modules (respectively, Aev-modules) whose sets of weight multiplicities are

uniformly bounded. Note that the objects of BA(respectively, BAev ) are not necessarily

preferred A-modules (respectively, Aev-modules).

Remark 5.1 Note that for a finite rank superalgebra A, the category BA coincides with

the category of all weight A-modules with finite weight multiplicities. However, for

superalgebras A of infinite rank this is not longer true.

Observe that, if a and b are finite then the indecomposable modules in Bosc
g have

finite length. Indeed, the support of every such module M lies in a single coset of the

root lattice of g. Since the root lattice of g0̄ has index 2 in the root lattice of g, the
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support of M over g0̄ lies in at most 2 cosets of the root lattice of g0̄. As a consequence,

M has finite length as a g0̄-module by [12, Lemma 3.3].

The following is our first main result about the category Bosc
g .

Theorem 5.2 Let A = Cl(a | b) for b = 1. If g = osp(2a + 1 | 2b) then the category

Bosc
g is equivalent to the category BA. If g = osp(2a | 2b) then the category Bosc

g is

equivalent to the category BAev .

As a first step we prove Theorem 5.2 for finite a and b.

Lemma 5.3 Let dim g < ∞. Then the restriction map

Ext1
g,h(M, N ) → Ext1

g0̄,h(M, N )

is injective.

Proof We have to show that any exact sequence in Bosc
g

0 → N → R → M → 0

which splits over g0̄ splits also over g. It suffices to show that H 1(g, g0̄; Hom(M, N ))0̄

= 0, where Hom stands for the homomorphisms of vector spaces disregarding the Z2-

grading, see [8, Sections 3.1 and 4.5]. Any indecomposable object in Bosc
g has finite

length and therefore it is enough to prove that this cohomology vanishes for simple

M and N . Writing down the first three terms of the complex computing relative

cohomology, we have

0 → Hom0
g0̄

(M, N )
d−→ Hom0

g0̄
(g1̄ ⊗ M, N ) → Hom0

g0̄
(2g1̄ ⊗ M, N ) → · · · ,

where Hom0
g0̄

denotes homomorphisms of g0̄-modules preserving the Z2-grading.

Note that the second term of the complex does not vanish if and only if supp M1̄ 
(supp N0̄ + 1̄) or supp M0̄  (supp N1̄ + 1̄) is non-empty. Using Theorem 4.7 we

see that this can happen if and only if M  N . In the latter case

Hom0
g0̄

(g1̄ ⊗ M, M) = Hom0
g0̄

(g1̄ ⊗ M0̄, M1̄)⊕Hom0
g0̄

(g1̄ ⊗ M1̄, M0̄) = C
2

and

End0
g0̄

(M) = End0
g0̄

(M0̄)⊕End0
g0̄

(M1̄) = C
2.

Consider ϕ0 ∈ Hom0
g0̄

(g1̄ ⊗ M0̄, M1̄) and ϕ1 ∈ Hom0
g0̄

(g1̄ ⊗ M1̄, M0̄) defined by

the formula ϕi (g ⊗m) = gm where g ∈ g1̄ and m ∈ Mi . Set

i (m) ..=


m if m ∈ Mi

0, if m /∈ Mi .

Then ϕi = d(i ). Hence H 1(g, g0̄; End(M))0̄ = 0. 
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For g0̄ = go⊕gsp we say that a simple module Z has spinor-oscillator type if

Z  S ⊗T for some spinor go-module S and some gsp-module T of oscillator type.

By Bosc
g0̄

we denote the category of Z2-graded bounded weight g0̄-modules with simple

constituents of spinor-oscillator type.

Corollary 5.4 Theorem 5.2 holds in the case dim g < ∞ (and b = 1).

Proof Note that if b = 0 the statement is trivial since Bosc
g is a semisimple category

with objects that are finite direct sums of (finite-dimensional) spinor modules. Next,

for g = sp(2b) with 1 < b < ∞ the statement is proven in [11] (see Remark

5.1). Therefore, if g = osp(2a + 1 | 2b) (respectively, g = osp(2a | 2b)), we have

an equivalence of the categories Bosc
g0̄

and BA0̄
(respectively, B(Aev)0̄

), where BA0̄

(respectively, B(Aev)0̄
) is the category of Z2-graded weight A0̄-modules (respectively,

(Aev)0̄-modules) whose sets of weight multiplicities is uniformly bounded.

Let us prove that the pullback a projective object P in BA (respectively, BAev ) is

projective in Bosc
g . Since P is induced from a finite-dimensional HA-module, P is

projective in BA0̄
(respectively, B(Aev)0̄

). By the above equivalence, the pullback of P

is projective in Bosc
g0̄

. Now Lemma 5.3 implies that P is projective in Bosc
g .

Since any object M in Bosc
g is a quotient of a projective module, M is obtained by

pullback from BA (respectively, BAev )-module. 
Next we recall the following statement.

Proposition 5.5 ([3, Corollary A.3]) Let g = lim−→ gk be a direct limit of Lie superal-

gebras. Let Q = lim−→ Qk and R = lim−→ Rk be weight g-modules. Assume that R has

finite-dimensional weight spaces. Then Ext1
gk ,hk

(Qk, Rk) = 0 for all k  0 implies

Ext1
g,h(Q, R) = 0.

We are now ready for

Proof of Theorem 5.2 We only need to consider the case g = osp(2a + 1 | 2b) or

g = osp(2a | 2b) where dim g = ∞. We fix an exhaustion g = lim−→ gk for gk =

osp(2ak + 1 | 2bk) or gk = osp(2ak | 2bk), where one of the sequences ak or bk may

stabilize.

Since our desired equivalence will be obtained simply by pullback via the homo-

morphisms a|b or a|b, it suffices to show that every object in Bosc
g is the pullback of

some weight A-module (respectively, Aev-module). For this, notice that Proposition

5.5 implies that if P = lim−→ Pk is a direct limit of projective objects in Bosc
gk

, then P is

a projective object in Bosc
g . Next, Theorem 5.2 holds for gk and thus every Pk is the

pullback of a projective object in BAk
for g = osp(2a + 1 | 2b) (respectively, B(Ak )ev

for g = osp(2a | 2b)). Since every object of Bosc
g is a quotient of some P as above, we

conclude that every object of Bosc
g is the pullback of some object of BA (respectively,

BAev ). 
Corollary 5.6 Theorem 5.2 shows that for b = 1 any indecomposable object M of

Bosc
g has a filtration similar to the filtration which exists on an indecomposable weight

A-module with finite-dimensional weight spaces according to Theorem 3.19.
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Remark 5.7 For b = 1 every module in Bosc
g has finite length.

The following is our second main result about the category Bosc
g . Let (Bosc

g0̄
)0̄ be

the category of purely even bounded weight g0̄-modules with simple constituents of

spinor-oscillator type.

Corollary 5.8 If b > 1 then the category Bosc
g is equivalent to the category (Bosc

g0̄
)0̄.

The functor E : M → M0̄ establishes an equivalence.

Proof The statement follows from Theorem 5.2 and from the equivalence of categories

established in Theorem 3.21 for B = A0̄. 
Corollary 5.9 For b  2 every non-semisimple block of the category of bounded g-

modules is equivalent to a block of bounded D(k | 0)- or D(∞ | 0)-modules with

integral weights.

The category of bounded weight D(k | 0)-modules for finite k is described, for

example, in [11]. For the case of D(∞ | 0) see [9].

6 Simple bounded weight sl(∞ | ∞)-modules

We start by two lemmas concerning sl(m | n)-modules for m, n ∈ Z0. Given a Lie

superalgebra q  sl(m | n) we fix the simple roots of q as

1 − 2, . . . , m−1 − m, m − 1, 1 − 2, . . . , n−1 − n,

and let 1, . . . , m−1, m, m+1, . . . , m+n−1 denote the dual basis (fundamental

weights). There is an obvious embedding sl(m)  q0̄, and we consider 1, . . . , m−1

also as fundamental weights of sl(m).

Lemma 6.1 Let q = sl(m | n) for m  3. Let M be a simple bounded highest weight

q-module with highest weight  and such that d(M) < m − 1. Assume that M is

not integrable over the simple ideal sl(m)  q0̄. Then  = a1 with a /∈ Z0, or

 = −(1 + a)k−1 + ak for 2  k  m.

Proof Denote by  the weight of sl(m) obtained from  by restriction. By Lemma

2.5,

AnnU (sl(m))L() = AnnU (sl(m))L(a1) or

AnnU (sl(m))L() = AnnU (sl(m))L(am−1)

for some a /∈ Z0. Since the primitive ideals AnnU (sl(m))L(a1) and

AnnU (sl(m))L(am−1) have degree 1, the result of [16] mentioned before Lemma

2.5 shows that also d(L()) = 1. Therefore [1, Proposition 3.4] implies that  is one

of the following weights:

(1) a1 for a /∈ Z0,
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(2) bm−1 for b /∈ Z0,

(3) −(1 + a)k−1 + ak for some 2  k  m − 1 and arbitrary a.

Let us deal first with the cases (1) and (3). Consider the odd reflections with respect

to the roots m − 1, . . . , m − n of q. Since the restriction to sl(m) of the highest

weight of M with respect to any reflected Borel subsuperalgebra must satisfy the

same respective condition (1) or (3), all these reflections must be atypical. This is

only possible if the restriction of  to the Cartan subalgebra of sl(n) equals zero.

Furthermore, we have (, m − 1) = 0. This implies  = a1 or  = −(1 + a)k−1

+ ak for 2  k  m − 1, respectively.

Now let  = bm−1 as in (2). After performing all odd reflections with respect

to the roots m − 1, . . . , m − n , we obtain a highest weight  of M such that its

restriction to sl(m) equals cm−1 and b − c ∈ Z0. Next, we perform odd reflections

with respect to the roots m−1 − 1, . . . , m−1 − n . By the same argument as in cases

(1) and (3), these latter reflections must be atypical. Therefore the restriction of 
to sl(m) equals zero and (, m−1 − 1) = 0. In other words,  = cm−1 for some

c /∈ Z0. Finally, passing via odd reflections to the original Borel subsuperalgebra

yields  = bm−1 + (1 − b)m . To finish the proof we set a = 1 − b. 
Recall the homomorphisms

ϒ+
m|n : U (sl(m | n)) → D(m | n)0,

ϒ−
m|n : U (sl(m | n)) → D(n | m)0

from Sect. 3.2. Note that those homomorphims map the Cartan algebra of sl(m | n)

to the subalgebra spanned by ui − u j for all i, j = 0, i = j . Moreover, the map f

induced by ϒ+
m|n (respectively, ϒ−

m|n) from (Span {ui − u j | i = j})∗ to h∗ is linear,

and is determined by the correspondence i → i , − j →  j (respectively, −i → i ,

 j →  j ).

Corollary 6.2 Let M be a bounded simple non-integrable q = sl(m | n)-module with

d(M) < min(m, n) − 1. Then d = 1 and AnnU (q)M contains ker ϒ−
m|n or ker ϒ+

m|n .

Proof Without loss of generality we can assume that M is not integrable over sl(m).

Then AnnU (q)M = AnnU (q)L() where  is one of the weights in Lemma 6.1. It

suffices to show that L() is obtained by pullback from a weight D(m | n)0-module.

Consider the D(m | n)-module

F() ..= xa
k C [x±1

1 , . . . , x±1
m , x−1, . . . , x−n],

where k = 1, a /∈ Z0 if  = a1, and a ∈ C if  = −(1 + a)k−1 + ak for

2  k  m.

Let fk
..= x−1

1 . . . x−1
k−1xa

k and let Yk denote the D(m | n)0-submodule in F()

generated by fk . Note that the weight of fk equals a1 for k = 1, and equals

−(1 + a)k−1 + ak for 2  k  m. Then Y1 is a simple D(m | n)0-module and its

pullback along ϒ+
m|n is isomorphic to L(a1), since by direct computation one can

see that any vector annihilated by all xi−1∂i for 2  i  m is proportional to f1.
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For k > 1, consider the D(m | n)0-submodule Zk  Yk generated by xi−1∂i ( f ) for

2  i  m. Then f /∈ Zk and hence Xk
..= Yk/Zk = 0. Furthermore, the pullback

along ϒ+
m|n of Xk is isomorphic to L(−(1+a)k−1 +ak) (again because any vector

annihilated by all xi−1∂i is proportional to fk). 
In the rest of this section g = sl(∞ | ∞) and A = D(∞ | ∞). We fix an exhaustion

g = lim−→ gk , where gk  sl(k | k). By g± we denote the ideals of g0̄ with respective

roots i −  j and i −  j , and we write ϒ± instead of ϒ±
∞|∞.

Lemma 6.3 Let M be a simple bounded weight g-module not integrable over g+ or

g−. Then AnnU (g)M contains ker ϒ+, or respectively ker ϒ−, and therefore M is

multiplicity free.

Proof Let v ∈ M be a nonzero weight vector and let Mk
..= U (gk)v. If k > d(M) then

Corollary 6.2 implies that AnnU (gk )Mk contains ker ϒ±
k|k . Therefore AnnU (g)M =

lim−→ AnnU (gk )Mk contains ker ϒ± = lim−→ ker ϒ±
k . Since every simple weight A0-

module is multiplicity free, the second assertion follows. 
Remark 6.4 One may observe that Lemma 6.3 holds also for the Lie superalgebra

sl(∞ | n), n ∈ Z>0, where one replaces g+ by the simple ideal sl(∞) of sl(∞ | n)0̄

and ϒ+ by ϒ+
∞|n .

The simple bounded integrable g-modules have been classified in [3, Theorem 5.9].

Therefore, in order to classify all simple bounded weight g-modules it suffices to prove

the following.

Theorem 6.5 Let M be a simple bounded non-integrable g-module. Then

(a) M is multiplicity free.

(b) M is obtained from a simple weight A0-module by pullback via precisely one of

the homomorphisms ϒ+ or ϒ−, and accordingly either g− or g+ acts integrably

on M.

(c) Pullback via ϒ± establishes a bijection between isomorphism classes of simple,

non-integrable over g±, bounded g-modules and isomorphism classes of simple

non-integrable weight A0-modules.

Proof (a) follows directly from Lemma 6.3.

(b) Let C± denote the image of ϒ±. It is easy to see that C±  A0. Lemma 6.3

implies that every simple non-integrable weight g-module is obtained by pullback

from a simple C+- or a C−-module. Therefore, to prove (b) we need to show that a

weight g-module obtained by pullback from a weight C±-module is in fact obtained

by pullback from the restriction of a weight A0-module to C±. It suffices to prove the

statement for C+, since the other case follows by applying the obvious automorphism

of g.

Recall the basis {ui }i∈Z of hA introduced in Sect. 3.4. By a slight abuse of notation

we denote by the same letter the preimage of ui in the Cartan subalgebra of gl(∞ | ∞).

Then {wi = ui − u−1 | i = −1} is a basis of the Cartan subalgebra of g. Let N be a

simple weight g-module,  ∈ supp N and c ∈ C. Note that we can endow N with a
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gl(∞ | ∞)-module structure by setting u−1v
..= (c + (u−1) − (u−1))v for every

v ∈ N . We denote this gl(∞ | ∞)-module by N (, c).

We claim that if M is the pullback of some simple weight C+-module, then we can

find , c such that the gl(∞ | ∞)-module N (, c) is the pullback of some weight A0-

module. Clearly, we can assume that M is not trivial. We pick some  ∈ supp M such

that (wi ) = 0 for some i  −2. One readily sees that the relation w3
i = wi implies

(wi ) = ±1, 0 for i  −2. Next, we choose a negative i such that (wi ) = 0. It easily

follows from the linearity of  that (w j ) = 0 or (w j ) = (wi ) for every negative j .

Finally, we set c = 0 if (wi ) = 1 and c = 1 if (wi ) = −1. Then supp M(, c)  h
A

and, since the restriction of M(, c) to g is the pullback of some weight C+-module,

the gl(∞ | ∞)-module M(, c) is the pullback of a weight A0-module.

(c) Follows from Proposition 3.23 (b). 
Remark 6.6 It is likely that Theorem 6.5 holds also for sl(∞ | n).

Remark 6.7 Note that the definition of h
A implies that if M is the pullback of a weight

A0-module via ϒ+ (respectively, ϒ−), then for


i aii +


j b j j ∈ supp M we

have ai ∈ {0, 1} (respectively, b j ∈ {0, 1}).

Proposition 6.8 A simple bounded weight g-module M is determined, up to isomor-

phism and a possible parity change, by supp M.

Proof Here we consider the case of non-integrable modules, and leave as an exercise

to the reader to check our claim for integrable modules using the classification result of

[3]. Let us observe that if M and N are not integrable, and one is obtained by pullback

via ϒ+ while the other is obtained by pullback via ϒ−, then M and N cannot have

the same support.

Now, without loss of generality we can assume that M and N are obtained

by pullback from simple weight A0-modules X and Y , respectively. Suppose that

supp M = supp N but supp X = supp Y . Then supp X = supp Y ± τ where

τ =


i>0(i − i ). Since the supports of X and Y are subsets of h
A, this is only

possible if supp X = {0}, supp Y = {±τ } or vice versa. Then, both M and N are nec-

essarily trivial and we have a contradiction. Consequently, supp M = supp N implies

supp X = supp Y , and then the A0-modules X and Y are isomorphic up to parity

change by Theorem 3.22 (a). 
Let M±() denote the simple weight g-module obtained by pullback from the

simple weight A0-module Y () via ϒ±.

Proposition 6.9 Every multiplicity free simple weight g-module M is isomorphic to

the pullback of a simple weight A0-module via ϒ+ or ϒ−. If M is obtained by pullback

via both ϒ+ and ϒ−, then M is isomorphic to V , V , V∗, V∗, C or C.

Proof By Theorem 6.5 all non-integrable simple bounded g-modules are pullbacks of

A0-modules via ϒ+ or ϒ−, and hence are multiplicity free. Therefore it suffices to

check the statement for integrable multiplicity free modules.

Theorem 5.9 in [3] implies that, in addition to the six modules V , V , V∗, V∗,

C, C there are four families of multiplicity free simple integrable g-modules S∞
A

V ,
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S∞
A

V∗, ∞
A

V , ∞
A

V∗. If one observes that all other three families are obtained from

S∞
A

V by a twist from a proper automorphism of sl(∞ | ∞), it remains to check that

any simple module of the form S∞
A

V is isomorphic to M−(A) or M−(A) for a

weight A ∈ h
A.

Recall from [3] that A is a sequence of pairs (an, bn) where a1  a2  · · · is a

sequence of positive integers and bn ∈ {0, 1} with the condition that bn = bn+1 if

an = an+1. Moreover, S∞
A

V is defined as the direct limit lim−→ bn San Vn where Vn is

the natural sl(n | n)-module. Let

A
..=



i>0

(bii + (ai − ai−1 − bi )i ),

where we set a0 = 0. Then a direct verification shows that

supp S∞
A

V = supp M−(A).

Since a simple multiplicity free weight g-module is determined by its support up

to isomorphism and a possible application by , we conclude that S∞
A

V  M−(A)

if the weight space (S∞
A

V )A has parity equal to p(A), and S∞
A

V  M−(A)

otherwise. In fact, the parity of the weight space (S∞
A

V )A depends only on b1: the

weight space (S∞
A

V )A is purely even for b1 = 0 and purely odd for b1 = 1.

Finally, the fact that each of the six modules V , V , V∗, V∗, C, C is obtained

by pullback via both ϒ+ and ϒ− is straightforward. 
Proposition 6.10 If M is a simple bounded weight g-module then M is semisimple as

a g0̄-module.

Proof The statement is clear for integrable modules since every bounded integrable

g0̄-module is semisimple by [15, Theorem 3.7]. Therefore, without loss of generality

we can assume that M is isomorphic to M±(). Consider the lattice Q(A0)0̄
with

generators i −  j , i −  j . Set

Y ()n ..=


∈+n(1−1)+Q(A0)
0̄

Y () .

Then Y ()n is a simple (A0)0̄-module and Y () =


n∈Z
Y ()n . Obviously, the

semisimplicity of Y () over (A0)0̄ implies semisimplicity of M over g0̄. 
Theorem 6.11 (a) Let g = sl(∞). The following ideals are all bounded primitive

ideals of U (g):

AnnU (g)SV , AnnU (g)SV∗, ker ϒ+, ker ϒ−.

(b) Let g = osp(2a + 1 | 2b) (respectively, g = osp(2a | 2b)) with at least one of a

and b equal infinity. Then U (g) has exactly three bounded primitive ideals: the

augmentation ideal, AnnU (g)V , and ker a|b (respectively, ker a|b).
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Proof (a) follows from Corollary 3.26, Theorem 6.5, Proposition 6.8, and the classi-

fication of simple bounded integrable g-modules in [3]. (b) follows from Corollary

4.6. 
Lemma 6.12 Let B denote the category of bounded weight g-modules, and let M, N ∈
B. Denote by Qg the root lattice of g.

(a) Ext1
B

(M, N ) = Ext1
B

(N , M).

(b) If M is simple and Ext1
B

(M, N ) = 0, then supp M  supp N + Qg.

(c) Ext1
B

(M±(), M±()) = 0 for all , .

(d) If Ext1
B

(M+(), M+()) = 0, then  −  ∈ Q A0 or at least one of M+() and

M−() is trivial.

(e) If Ext1
B

(M+(), M−()) = 0, then at least one of M+() and M−() is isomor-

phic to V , V∗, C.

(f) If M and N are simple and d(M) > 1 then Ext1
B

(M, N ) = 0.

Proof (a) We consider the (contravariant) functor of contragradient duality · on the

category B. Then M  M , N  N and

Ext1
B

(M, N ) = Ext1
B

(N, M) = Ext1
B

(N , M).

(b) Let 0 → M → R → N → 0 represent a nonzero element of Ext1
B

(M, N ). Then,

for some weight vector v ∈ N , the image of M in R is a submodule of U (g)v where

v is a preimage of v in R of weight  . Then supp M   + Qg  supp N + Qg.

(c) follows from comparing the parity of weight spaces of the modules M±() with

the parity of the weight spaces of the modules M±().

(d) follows from (b).

(e) For a g-module M and a Lie subsuperalgebra k of g we denote by kM the set of

locally finite k-vectors, i.e.,

kM ..=

m ∈ M | dim span {m, km, k2m, . . . } < ∞ for all k ∈ k


.

The superspace kM is a g-submodule of M . This is established for Lie algebras

in particular in [14, Theorem 8.2], and the proof for Lie superalgebras is the same.

By the semisimplicity result in [3], at least one of M+() and M−() can be

assumed non-integrable. Moreover, by (a), the statement is symmetric with respect to

M+() and M−(). Without loss of generality, assume that M−() is not integrable.

Consider a non-split exact sequence

0 → M−() → N → M+() → 0.

Since g+ M−() = M−(), there exists a root α of g− such that gα acts freely

on M−(). If gα N = 0 then gα N is a submodule of N which does not coincide

with M−(), i.e., the sequence splits. Consequently, gα N = 0. Hence, for any

 ∈ supp M+() we have  + nα ∈ supp M−() for n  2. Thus, we get that
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i ∈ {0, 1} for all i > 0, and therefore for all i by Remark 6.7. This is possible if and

only if M−() is isomorphic to V , V∗ or C.

(f) If d(M) > 1 then using [3, Theorem 5.9] and Proposition 2.2 one can verify that M

is isomorphic to SV , SV , SV∗, or SV∗ for some Young diagram  with more

than one row or more than one column. Assume M = SV and Ext1(M, N ) = 0.

Then the semisimplicity result (Theorem 6.1) in [3] implies that N is not integrable.

Consider a non-split exact sequence

0 → N → R → M → 0.

Suppose N  M−() for some . The argument in the proof of (e) can be easily

modified to show that (, α) ∈ {±1, 0} for any weight  of M and any root α of g+.

This implies that  consists of a single column, and hence d(M) = 1. Similarly, if

N  M+() one proves that  consists of a single row and d(M) = 1. 
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