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Abstract

We classify simple bounded weight modules over the complex simple Lie super-
algebras sl(co | 0o) and osp(m | 2n), when at least one of m and n equals co. For
osp (m | 2n) such modules are of spinor-oscillator type, i.e., they combine into one
of the known classes of spinor o(m)-modules and oscillator-type sp (2rn)-modules. In
addition, we characterize the category of bounded weight modules over osp (m | 2n)
(under the assumption dim osp (m | 2n) = o00) by reducing its study to already known
categories of representations of sp (2n), where n possibly equals co. When classifying
simple bounded weight s[(co | co)-modules, we prove that every such module is inte-
grable over one of the two infinite-dimensional ideals of the Lie algebra sl(oo | 00)g.
We finish the paper by establishing some first facts about the category of bounded
weight s[ (oo | oo)-modules.
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1 Introduction

The representation theory of the three simple infinite-dimensional finitary complex
Lie algebras s[(c0), 0(00), and sp(oco) has made notable progress in the last three
decades, see for instance [4, 5, 15, 17-19]. For a summary of highlights of this theory,
see [14]. The theory of representations of the super-counterparts of the Lie algebras
50(00), 0(00), and sp (00) is still much less developed. For a finite-dimensional Lie
superalgebra &, the category of all representations of £ is almost never equivalent to
the category of all representations of the Lie algebra £j, the even part of £. However,
in that case there is a general result claiming that a category of representations of £
with fixed strongly typical central character is equivalent to a corresponding category
of representations of €.

This result does not provide a clear guideline for the case of Lie superalgebras
of infinite rank since the center of the enveloping algebra of Lie superalgebras like
sl(co | 00) or osp(co | 00) is trivial. Nevertheless, in the study of reasonably small
categories of representations over the Lie superalgebras s[(co | 00) and osp (oo | 00),
one may rely on different intuition and obtain results not necessarily following the
above pattern. For instance, in [20] it is shown that the category of tensor modules
over the Lie superalgebra osp(co | 00) (respectively, over sl(co | 00)) is equivalent
to the categories of tensor modules over each of the Lie algebras o(oco) and sp (co)
(respectively, over s[(00)). A somewhat similar phenomenon can be seen in the paper
[3], where it is proved that the categories of integrable bounded weight modules over
various Lie superalgebras like sl(0co | 00) or osp (0o | 00) are semisimple.

In the present paper, we study the categories of arbitrary (i.e., not necessarily inte-
grable) bounded weight modules over the complex Lie superalgebras osp (m | 2n),
where at least one of m and n equals oo, and over the Lie superalgebra sl(co | 00).
Before describing our results we should recall that for the infinite-dimensional Lie
algebras sl(00), 0(00), sp(co) simple bounded weight modules have been classified
in [10] and their structure has been further studied in [2].

Our first main result claims that any simple bounded weight module over an infinite-
dimensional Lie superalgebra osp(m |2n) has just length two (or one for a trivial
module) over the Lie algebra osp (m | 2n)5 = o(m) @ sp (n). Moreover, such a module
(unless it is a natural or trivial module) is determined by a pair (S, N), where S is a
spinor o(m)-module and N is an sp (2n)-module of oscillator type, i.e., a close relative
of the oscillator representations of sp(2n). (The notions of spinor o(m)-modules and
oscillator-type sp(2n)-modules make sense also for m = oo and n = oo due to the
results of [10].) This spectacular fact allows us to identify simple bounded weight
osp (m | 2n)-modules, other than trivial and natural modules, as modules of “spinor-
oscillator type”. The latter class of modules of osp (m | 2n) glues spinor and oscillator-
type modules together, and is the ultimate super-symmetric version of both spinor
o(m)-modules and oscillator-type sp (2n)-modules.

The classification of simple bounded weight s[(oo | 00)-modules is also very inter-
esting and constitutes our second main result. In particular, we show that every such
module is integrable and semisimple with respect to a simple ideal of s[(co | 00)g
~ (sl(0c0)@sl(00))a@ C, and this nicely resembles the answer for the case of
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0sp (0o | 0o0) where a bounded weight osp (oo | co)-module is necessarily integrable
and semisimple as an o(co)-module.

Our main method of classification is a reduction to weight modules of Weyl
and Clifford superalgebras of infinitely many variables. We denote these superal-
gebras respectively by D (oo | 00) and Cl(oo | 00). There are natural homomorphisms
U (0sp (00| 00)) — Cl(oco|00) and U (sl(co | 00)) — D(o0 | 00), see Sect.3.2. One
of our central ideas is that, with the exception of Schur powers of the natural and conatu-
ral representations (for osp (0o | 00) this exception applies only to the trivial and natural
representations), all simple bounded weight osp (0o | 00)- or sl(oco | co)-modules are
annihilated by the kernel of the respective homomorphism. This facilitates a reduction
of the study of simple bounded weight 0sp (00 | 00)- and sl (oo | 00)-modules, as well
as of the respective categories of bounded weight modules, to the study of weight
modules of the associative superalgebras Cl (oo | 00) and D (oo | 00) and their relevant
subalgebras. The above method applies also to the case of osp (m | 2n) where m or n
is finite, and to sl(co | n) for n € Z- ¢ as well.

Here is a brief description of the content of the paper. Section?2 is devoted to
preliminaries. In Sect.3 we undertake a study of the categories of weight modules
over Clifford and Weyl superalgebras. In particular, we establish that any such simple
module is multiplicity free. In Sects.4 and 5 we apply the above results to the case
of osp (m | 2n) where at least one of m and n equals infinity. We show that any sim-
ple non-integrable bounded weight osp (m | 2n)-module is a spinor-oscillator module.
Moreover, we prove that the category of spinor-oscillator representations is equivalent
to the category of multiplicity free non-integrable weight modules over the Lie algebra
osp(m |2n)g = o(m) @sp(2n).

The case of sl(co|oo) is discussed in Sect.5. Here we give a classification of
the simple bounded weight sl(oco | 0o)-representations and make a first step towards
understanding the category of such representations. A deeper study of this category
should be a separate project.

2 Preliminaries

The base field is C. By S, we denote the symmetric group on n letters. A superspace is a
Z»-graded vector space where Z, := 7 /27, and a superalgebrais a Z,-graded algebra.
We use the indices 0 and 1 to indicate Z,-gradings. A purely even (respectively, purely
odd) superspace is a superspace V such that V = Vj (resp., V = V7). By Il we denote
the parity change functor on superspaces: (I1V)g = Vi, (IIV)] = V5. If V = V3@ V3
is a superspace, then the dual superspace equals V@ VT*’ where V(-;k = Hom(Vj, ©),
VI* = I[MHom(ITVj, C) and Hom stands here for homomorphisms of purely even
spaces.

We write SV and AV for the kth symmetric and exterior powers for a superspace
V. If W is a superspace of parity p € Z> (i.e., W = W for p = Oand W = Wi for
p = 1),then S*W (respectively, AX W) is a superspace of parity kp € Z, (respectively,
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kp + 1 € Z»). For a general superspace V = V5@ V; we have

v = P sveenivi, AV =P Aav;esiv.
i+j=k i+j=k

An even symmetric (respectively, even antisymmetric) bilinear form on a superspace
V is a parity-preserving linear operator SV — C (respectively, A2V — C).

In this paper we work with the Lie superalgebras gl(a | b), sl(a | b), osp (2a | 2b),
0sp(2a + 1|2b), where a,b € Zxo U {oo}. Their defining representation is the
simple module of respective dimension (a | b), (a | b), (2a | 2b), (2a+ 1 | 2b). In what
follows we use the term defining representation more loosely to include also the
defining representation with changed parity. The Lie superalgebras gl(a | b), sl(a | D),
0sp (2a | 2b), 0sp(2a + 1|2b) can be equipped with a fixed even symmetric invariant
form (-, -). All homomorphisms of superalgebras are assumed to preserve the Z,-
grading. All modules over purely even (i.e., non-Z-graded) associative algebras or
Lie algebras are assumed to be purely even unless otherwise stated.

We assume that Cartan subalgebras of the Lie superalgebras considered are fixed,
and use standard notation for the roots. Note that these Cartan subalgebras are purely
even and all root spaces are either purely even or purely odd. Therefore the roots
are designated as even or odd. Concretely, the even roots of gl(a|b) and sl(a |b)
are &; — &, d; — J;, while the odd roots are +(&; — §;), where 1 < i # k < a,
1 < j #1 < b. The even roots of 0sp(2a | 2b) are £(&; = &), =(§; £6;), £2§;, and
the odd roots are =(¢; — ;). For 0sp(2a + 1| 2b) we have in addition the even roots
=+e¢; and the odd roots £4;.

We should point out that for a = oo the Lie superalgebras osp(2a + 1|2b) and
0sp (2a | 2b) are isomorphic, and the difference in root systems is the result of different
choices of Cartan subalgebras. A less brief discussion of the Lie superalgebras we
consider and their root systems can be found in [3].

Let s be a Lie algebra or Lie superalgebra with a fixed Cartan subalgebra ) = b;.
A weight module M is an s-module that is semisimple as h-module. The h-isotypic
components of M are the weight spaces of M: we denote them by M* for A € h*.
The weight spaces of M are superspaces. Every weight module M has a well-defined
support:

supp M = {n € h*| M" # 0}.

A weight module is bounded if the dimension (dy| d1) of any weight space of M
is less or equal to (a | b) for some fixed a, b € Z>, i.e.,dy < a,d; < b. The degree
d(M) of a bounded weight module M equals the maximum value of the sum dy + d
over all weight spaces of M.

Each of our Lie superalgebras has (up to isomorphism) two natural modules which
we denote by V and ITV. These modules are weight modules, and for gl(a | b) and
sl(a | b) we assume that the weight spaces of weight ¢; in V are purely odd and the
weight spaces of weight §; in V are purely even. For osp(2a + 1| 2b) and osp (2a | 2b)
we make the opposite choice. We have
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{ei, 851, j > 0} if g=sl(a|b)org=gl(ald),
supp V = 1 {0, +&;, £8;]i, j > 0} if g = osp(2a+ 1]2b),
{ei, £8;]i,j >0} if g=osp(a|2b).

For gl(a | b) and sl(a | b) modules V, and ITV, are also well defined. They are char-
acterized by equalities supp V., = —supp V, supp [1V, = —supp [1V, and by the fact
that the weight spaces of weight —eg; in V, are purely odd and the weight spaces of
weight —¢; in TV, are purely even.

We now recall some facts about multiplicity free weight s-modules for a finite-
dimensional Lie algebra s, i.e., bounded weight s-modules M with d(M) = 1. Their
classification has been part of a major effort to classify simple weight modules with
finite-dimensional weight spaces. Some of the main contributors have been Britten,
Lemire, Fernando, Futorny, Benkart, Mathieu, and Mathieu’s paper [12] can be con-
sidered as the crown of this effort. It follows from a result of Fernando [6] that for
s = o(n), n > 5, every multiplicity free simple weight o(n) is finite-dimensional,
hence is a trivial module, natural module, or a spinor module. For s = sp(2n) the only
multiplicity free simple finite-dimensional s-modules are the trivial and the natural
modules, and there is a “coherent family” of infinite-dimensional multiplicity free
simple weight s-modules [1, 12]. For every Borel subalgebra b O b, there are pre-
cisely two nonisomorphic multiplicity free simple b-highest weight modules in this
family. These highest weight modules are known as oscillator or Shale-Weil mod-
ules, and every other infinite-dimensional multiplicity free simple weight module is
obtained from one of them via twisted localization, see [12]. For s = s[(n) the simple
multiplicity free weight modules have been classified in [1] and have been further
studied by Mathieu in [12]. In this paper we will not refer to the description of all
simple multiplicity free weight modules for sl(n) and sp (2n), but for understanding
our results it is essential to know that simple multiplicity free weight modules, and
more generally simple bounded weight modules, are well studied.

For s = sl(c0), sp(00), 0(c0), simple bounded weight modules are described
explicitly in [10]. In the case of 0(c0), any bounded weight module is integrable,
i.e., it is a direct limit of finite-dimensional o(n)-modules for n — oco. More precisely,
if M is a simple bounded weight o(co)-module, then M is a trivial module, a natural
module, or a direct limit of spinor modules. We refer to the latter direct limits simply as
spinor 0(00)-modules. For s = sp(00) the result is similar. Namely, a simple bounded
weight sp (co0)-module is a trivial module, a natural module, or a direct limit of simple
multiplicity free infinite-dimensional sp (2n)-modules for n — oo. A difference with
the case of 0(o0) is that a direct limit of simple multiplicity free infinite-dimensional
modules is not integrable. We call such a direct limit a simple weight sp (00)-module
of oscillator type.

In the sequel we will need the following general lemma about associative superal-
gebras.

Lemma 2.1 Let A be an associative superalgebra and X be a simple A-module. Then
X and Xy are simple Ag-modules.
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Proof If Y C X (respectively, Y C X7) is a proper nonzero Ag-submodule, then AY
is an A-submodule of Y and (AY)g5 = Y (respectively, (AY); =Y). |

We conclude Sect.2 with some facts concerning finite-dimensional Lie (super)
algebras s. For a partition (equivalently, a Young diagram) u, let S, - denote the
corresponding Schur functor.

Proposition 2.2 Lets = sl(n) and V be the defining s-module. If n > |j1| thend (S, V)
equals the dimension of the simple S, |-module Z,, associated to .

Proof 1t suffices to consider the case n = |u|. Let {ej, ..., e,} be the standard b-
eigenbasis of V. Letw = &1 + - - - +&,. Then the weight space (V®")® has a structure
of W x S,-module, where W =~ S, is the Weyl group of sl(n). Moreover, as an
S,-module (V®)® is isomorphic to the regular representation of S,. Therefore, the
isomorphism

Ve~ P V) ez,
nw
forces dim (S, V)® = dim Z,,. |

Lemma23 Let s be a simple finite-dimensional Lie algebra, and L(u), L(v)
be simple finite-dimensional modules with respective highest weights |1, v. Then
d(L(n+v)) = d(L(w)).

Proof Let m: L(n)® L(v) — L(u + v) be the unique surjective homomorphism.
Then the restriction of 7 to L(u)*® L(v) is injective, where A is a weight of L(u)
of maximal multiplicity. |

Lemma24 Lets = o(2n + 1), 0(2n), or sp(2n). Then a finite-dimensional module
L(w) is either multiplicity free or d(L(p)) > n — 1.

Proof Let w; be the ith fundamental weight of 5. Set s = 0(2n+1). Then d(L(w1)) =
d(L(w,)) = 1. Fork = 2,...,n — 1 we have L(wy) =~ AV, thus d(L(wy)) =
(Lkr/lZJ) > n — 1. Next we note that

d(LQ2wy)) =d(S*V) =n,
n
d(L(2 =d(A"V) = >n—1,
(LQwn)) ( ) (Ln/zj) n
and
d(L(w1 + wp)) 2 d(L(01) ® L(wn)) — d(L(wy)) = n.
Consequently, for u = wy, ..., oy, 201, 20,, w1 +w, we see thatd(L(n)) > n — 1.

For any other p the inequality follows from Lemma 2.3.
The case of 0(2n) is similar.
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Now let s = sp(2n). Then d(L(w1)) = d(V) = 1. For k > 1 we have L(wy) =
ARV /AT2V . Hence d(L(@) = ()y) = (42,-1) = n — 1. Next, LQwy) is
the adjoint representation and hence d(L(2w;)) = n. For u # wi, ..., w,, 2wy, the
statement follows again from Lemma 2.3. O

In this paper a bounded primitive ideal of U (s) is defined as a primitive ideal which
annihilates a simple bounded weight s-module. It is a result of [16] that if M and N
are simple weight modules annihilated by the same bounded primitive ideal 7, then M
and N are bounded and d(M) = d(N). This allows to define the degree of a bounded
primitive ideal I C U(s) by setting d(I) := d(M) for any simple bounded weight
s-module M annihilated by /.

Lemma25 Let s = sp(2n), sl(n) and I be a bounded primitive ideal of U (s) of
degree d. Assume that U (s)/1 is infinite-dimensional. Then either d > tks — 1 or
d=1.1Ifd =1ands = sl(n), then I = Anny)L(aw1) or I = Anny )L (awy,) for
somea & Z»o. Ifd = 1 and s = sp(2n), then I is the Joseph ideal (annihilator of an
oscillator module).

Proof Assume first d > 1. The inequality d > rks — 1 for s = sl(n) follows from
[10, Lemma 2.25].

We proceed to show that d > rks = n for s = sp(2n). Theorem 12.2 in [12]
implies d = 2,1%, dim L, (}) for some simple finite-dimensional 0(2r)-module L, (})
of highest weight A = >"._; A;&; with 4; € 1/2 + Z. Since d > 1, we have A #
Wn—1, ®y. Moreover, if [Ax | # |Ar+1| for some k > 1, the stabilizer of A in the
Weyl group has at most k! (n — k)! elements. Therefore the orbit of A has at least
(Z) 2"~ elements, implying d > n. Consider now the case when all absolute values

|A;| are equal. Under this assumption, there are two possibilities: (i) all A; are equal,

or (i) Ay = -+ = A1 = —A,. Weset u = A — (g,—1 + &) in case (i) and
n = A— (en—1 — &) in case (ii). Then u is a weight of L, (1) and the Weyl group
orbit of 1 has at least n2"~! elements. This implies again d > n. O

Lemma 2.6 Let s = osp(l|2n) and let L(i) be the simple s-module with highest
weight | relative to the Borel subsuperalgebra with simple roots §1 — 82, ..., 8,1 —
Sns On. Assume d(L()) <n. Thenu =61, u =0, 0r p = —(1+ -+ 38,)/2.

Proof We use Lemmas 2.4 and 2.5. The restriction of L(X) to s9 = sp(2n) can
have only simple constituents with highest weights 0, §;, or — (51 + --- + 8,)/2,
=1+ +8-1)/2 —38,/2. O
3 Clifford and Weyl superalgebras and weight modules over them

3.1 Definitions and main properties

Leta, b € Z>oU{oo}. The Weyl superalgebra D(a | b) is the associative superalgebra

with generators {x;, 9;|i = 1,...,a; —1,..., —b} of parity
_ = 0 if i >0,
Xi=0; = .
1 ifi<O

@ Springer



5 Page8of39 D. Grantcharov et al.

satisfying the relations
[xi, x;]1 =10;,9;]1 =0, [9;,x;] =3,

where [u, v] := uv — (—1)* vy and d;j is Kronecker’s delta. The Clifford superal-

gebra Cl(a | b) is the associative superalgebra with generators {&;,n;|i = 1,...,a;
—1,..., —b} of parity

é-—_ _ 0 if i >0,

PEIE i <0

satisfying the relations
6.8} =mi.n;} =0, {ni, &} =dij,

where {u, v} .= uv + (—1)’2’3vu. In what follows, whenever x;, 0;, &, n; are used we
assume that the index i is nonzero.

We define a Z-grading on D(a|b) (respectively, on Cl(a|b)) by setting deg x; := 1,
degd; = —1 (respectively, deg&; = 1, degn; == —1).If A = D(a|b) or A =
Cl(a | b) we denote by Aey the subsuperalgebra of elements of even degree, and by
A, the subsuperspace of elements of degree n. Note that Ay, Ao, and Aey are three
different subsuperalgebras of A.

For a,b € Zxo, D(a|b) (respectively, Cl(a|b)) is naturally embedded in
D(a +1|b)and D(a|b + 1) (respectively, in Cl(a + 1|b) and Cl(a | b + 1)), and

D(oc | o0) =lim D(a|b), Cl(co|o0) = limCl(a|b).

3.2 Connection to classical Lie superalgebras
Let Vo425 be the subsuperspace of D(a | b) with basis {x;, 9;| — b < i < a}. Then
V24|25 has an even anti-symmetric form given by the commutator map [ V2425, V24251

— C. The Lie superalgebra osp(2b|2a) for which this form is invariant can be
identified canonically with 52 Vaa|2p- The symmetrization map

1 .
VZ%éb_)D(C”b)a U®wr—>§(v®w+(_l)vww®v)

factors through S2V2a|2b and defines a homomorphism of Lie superalgebras
0sp(2b|2a) — D(a|b). This induces a homomorphism of associative superalge-
bras

Dyp: Ulosp(2b|2a)) — D(a|b).

Similarly, let Up42p be the subsuperspace of Cl(a | b) with basis {§;,n;| — b <
i < a}. Then Upq)pp has an even symmetric bilinear form given by the symmetrizer
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map {Uzq2p, Uzapp} — C. The Lie superalgebra osp (2a | 2b) for which this form is
invariant can be identified canonically with A2U2a|2b. The alternization map

1 -
U?;%Zb — Cl(a |b)7 VRW > E (v@w — (_1)wa®v)

factors through A2U2a|2b and defines a homomorphism of Lie superalgebras
0sp(2a |2b) — Cl(a|b). This induces a homomorphism of associative superalge-
bras

Wy U(osp(2a|2b)) — Cl(a | b).
The Chevalley basis vectors ey and the respective relations of the Lie superalgebras
0sp (2b | 2a) (and also of osp(2a | 2b)) have been computed in [7, Section 3.2]. Up to

scalar multiples, the homomorphism &, has the form

Cep—ey P> X0k, €_g—g F> XkX_|, €gpte > 00—,

2
e_5—8; > XiXj, e s = Xi, es;+s; > 0i0j,
2
ey, = 0f, e_g 45 H> X_10;, Co—8; M Xj0_,
€_gp—5; F> X_kXi, gyt > 0 0;,
and the homomorphism W, ;, has the form
Cer—g = é%lﬁk, €—gr—g = éksl’ Certe; = NN,
2
e—5—s; —> §-i5—j, e_a5 — &7;, es;+8; > N—ill—j,
2
ey, = N7, g4 P> Exn—i, eg—s; > Mkb—i,
€_g—8; > Ek%'*ia Cep+8; > NikN—i»

where k #£ 1,1 # j.

Lemma 3.1 The image of @4 coincides with D(a|b)ey and the image of Yy
coincides with Cl(a | b)ey.

Proof Let us consider @5 : U(osp(2b|2a)) — D(a|b). Forany vw € S2V2a|2h we
have @, (vw) € D(a|b)2@® D(a|b)o® D(a|b)_;. Therefore

@y (U (0sp(2b | 2a))) C D(a|b)ey.

Moreover, the above formulas for @, show that ®,;,(C & osp(2b | 2a)) is the span
of

S = {1,)6,‘31',3,'3]‘,)6,')6]‘ | =b <i,j <al

By a simple induction argument one shows that S generates D(a | b)ey, and the state-
ment follows. A similar argument applies to Wy p,. O
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By C[x] we denote the symmetric superalgebra of the superspace with basis
{xi| —b < i < a}. The superspace C[x] is a simple faithful D(a | b)-module, and
we call it the defining D(a |b)-module. Furthermore, Cl[x]ey = C[x] N D(a | b)ey
is a simple faithful D(a |b)cy-module and hence ker @, is a primitive ideal of
U (0sp(2b | 2a)). The pullback of C[x]ey to U (0sp (2b | 2a)) is a simple highest weight
module of U (0sp(2b | 2a)) of highest weight 1 (3°7_ &; — >9_18;) relative to the
Borel subsuperalgebra with positive roots

Sp£84 for p>gq, 25,, 6p*e,, epte; for p<q,

where the sum Z?:l & — Z‘;zl d; is an infinite formal sum if b = 0o or a = co.

Similarly, the defining Cl(a | b)-module A[£] is the exterior superalgebra of the
superspace with basis {§; | — b < i < a}. The module A[£] is a simple and faith-
ful Cl(a | b)-module. Furthermore, A[§]ey = A[E] N Cl(a | b)ey is a simple faithful
Cl(a | b)ey-module and hence ker W, is a primitive ideal of U (osp (2a | 2b)). The pull-
back of A[€]ey is a simple highest weight osp(2a | 2b)-module with highest weight
%(Z?:l & — Z}J’.Zl 87), and it is isomorphic to the pullback of C[x]ey. These two
isomorphic highest weight modules have purely even highest weight spaces. Next, the
pullback of the odd-degree part A[£]oqq of A[£]1s a simple osp (2a | 2b)-module with
highest weight 5 (3¢, & — Zl]’-zl 8j) — 81. The pullbacks of A[&]oaq and C[x]oqd
are isomorphic and have purely odd highest weight spaces.

The pullbacks of Clx]ey and Clx]ogg (equivalently, of A[£]ey and A[&]odq),
together with their counterparts with changed parity, are four pairwise nonisomor-
phic 0sp (2a | 2b)-modules, which we define to be spinor-oscillator representations.
A general spinor-oscilator representation is the twist of some of these four modules
by an automorphism of the Lie superalgebra osp (2a | 2b). For b = 0 (respectively, for
a = 0) the spinor-oscillator representations are nothing but the spinor representations
of 0(2a) (respectively, the oscillator or Shale—Weil representations of sp (2b)). (It is
well known that for a fixed Borel subalgebra there are precisely two isomorphism
classes of purely even spinor or, respectively, oscillator representations.)

The isomorphisms of the pullbacks of C[x]ey and A[&]ey imply the following.

Corollary 3.2 ker @), = ker Wy, and hence Cl(a | b)ey and D (b | a)ey are isomor-
phic associative superalgebras.

Remark 3.3 Itis known that Cl(a | b) is the universal enveloping algebra of the Jordan
superalgebra Up,op @ C1, while D(a | b) is the quotient of the universal enveloping
algebra of the Heisenberg superalgebra V5,25, @ Cz by the ideal (z — 1). Furthermore,
it is easy to see that the superalgebras D (b | a) and Cl(a | b) are not isomorphic unless
ab =0.

Now, we note that W, ;(05p (2a | 2b)) @ V24|25 is closed under supercommutator,

and the corresponding Lie superalgebra is isomorphic to osp(2a + 1 |2b). Hence we
have a surjective homomorphism

Oup: U(osp(2a + 1|2b)) — Cl(a|b).
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The explicit formulas for ®,, are the same as those for W, ,, with the following
addition:

e&k g nka e*é‘k = ék’ 678[ g E*l’? €s; g n7i~

The pullback via ®,;, of the defining Cl(a | b)-module A[&] is an irreducible

0sp(2a + 1|2b)-module with highest weight 1(3°¢_, & — le:] 87) with respect
to the Borel subsuperalgebra with positive roots

8px£6, for p>gq, 8,,256,,0pxey, cpxe, for p<gq, egp.

We call this highest weight module, together with its counterpart with changed
parity, a spinor-oscillator representation of osp(2a + 1|2b). Moreover, ker ®;, is
the primitive ideal of a spinor-oscillator representation of osp (2a + 1| 2b).

We note also that gl(a|b) is the reductive part of a parabolic subalgebra of
05p(2a | 2b), and by composing the injection gl(a |b) — osp(2a|2b) with @y,
we obtain a surjective homomorphism

U(gl(a|b)) — D(b|a) =~ Cl(a|b)o. 6]

Similarly, the embedding gl(a |b) — osp(2b|2a) induces a surjective homomor-
phism

U(gl(a|b)) — D(a|b)o = Cl(b|a)o. 2)

We denote by Ta_‘b the restriction of the homomorphism (1) to U (sl(a | b)), and T;uy
the restriction of the homomorphism (2) to U (sl(a | b)).
We will use the homomorphisms T;'Tb in Sect. 6.

3.3 Tensor product isomorphisms

Let Clf(a | b) (respectively, D¥(a | b)) be the superalgebra defined by the same gener-
ators and relations as Cl(a | b) (respectively, D(a | b)), but where the generators &;, 1;
(respectively, x;, 9;) for i > 0 are endowed with the opposite parity.

Then one can check that the correspondence §é_; — x;, n—; — 9;,i = 1,...,b,
defines an isomorphism of superalgebras

C1(0|b) ~ DT (b0, (3)
and the correspondence & +— x_;, n; — 0—;,i = 1, ..., b, defines an isomorphism
of superalgebras

Cl'(b|0) ~ DO b). 4)
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Lemma 3.4 We have the following isomorphisms of associative superalgebras:

D(a|b) ~ D(a|0)®D(0|b) ~ D(a|0)QCI (b ]0), ®)
Cl(a|b)' ~ DO |a)®D'(b]0). (6)
Proof The isomorphisms (5) follow from (4) and from the fact that x;, 9; commute
with x_;, d_; for all positive i, j. Similarly, the isomorphism (6) follows from (3)
and from the fact that &;, ; anticommute with §_;, n_; for all positive 7, j. O
Corollary 3.5 We have isomorphisms of (purely even) associative algebras:
(@ D(alb)sg = D(a|0)®Cl(b|0)ev, Cl(a|b)j = Cl(a|0)®D(b|0)ey;
(®) (D(a|b)ev)y = D(a|0)ey®@D(0]b)ey, (Cl(a|b)ev)y = Cl(al0)ey ®CL(O]D)ey.

Proof Part (a) is a consequence of the existence of isomorphisms CIT(b|0)(-) o~
Cl(b|0)ey and DT(b [0)5 = D(b|0)ey. Part (b) follows straightforwardly from part
(a). m]

3.4 Simple weight modules over Clifford and Weyl algebras
In the rest of the paper, A stands for D(a |b) or Cl(a | b) unless a restriction on A

is made explicit. Set u; := x;0; (i # 0) for A = D(a|b), u; = &n; (i # 0) for
A = Cl(a | b), and define

ha = span{u;|i # 0}.
Let {¢;]i # 0} C b’ be the system dual to {u;|i # 0}. Then b} = ]_[#0 C¢;.

For convenience, we will write the elements of b as formal (possibly infinite) sums
2 i 20 aiti- We set

Oa = @ZQ-

i#£0

One can easily see that the abelian Lie algebra h4 acts semisimply on A via the
adjoint action. In other words,

A= EB A% A% ={x € A|ady(x) = a(h)x forevery h € b},
aeRAU{0}

and Ry is the set of all @ € Q 4\ {0} such that A # 0. If A = Cl(a | b), then

R4 U{0} = {Zaigi € 04 ‘ a; = 0 for almost all i, and @; € {0, 1} fori > O}.
i#0
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If A= D(a|b), then
R4 U{0} = {Zaigi € 04 ‘ a; = 0 for almost all i, and a; € {0, 1} fori < O}.
i#0

Moreover, for A = Cl(a | b) wehave & € A%, n; € A=% ifi # 0.For A = D(a | b)
we have x; € A%, 9; € A% if i # 0.

Note that each superspace A“ is purely even or purely odd. Define the parity function
on Q4 to be the homomorphism of abelian groups p: Q4 — Z, which records the
parity of the superspace A” for o € R,. Explicitly, p(¢;) = Ofori > Oand p(¢;) = 1
for j <O0.

Lemma 3.6 (a) The subalgebra Hy := A is generated by b 4.
(b) If A = D(a|b) then Hy is isomorphic to (C[u]/(ul? — Ui)i<0-
(c) If A =Cl(a|b) then Hy is isomorphic to (C[u]/(u% — Ui)i>0-
(d) Every root space 0 # A% is a cyclic Ha-module.

Proof Straightforward computations. O
Set

by = {,uehf\ | w(uj) =0,1withi <0for A= D(a|b),i >0f0rA:Cl(a|b)}.

In what follows, we refer to the elements of h; as to the weights of A. An element
wof b is a formal sum

n = ZM[Q
i#0

with the only restriction that u; € {0, 1} fori > 0if A = Cl(a|b), and u; € {0, 1}
fori < 0if A = D(a|b). Note that hX is not a vector space.

Remark 3.7 Let g be a Lie superalgebra isomorphic to osp(2a | 2b) (respectively,

0sp(2a+1|2b)) with fixed Cartan subalgebra . Set A = Cl(a | b) andlet F: U(g) —

A be the homomorphism W, (respectively, Ogp). Then F(U (h)) = Ha. We have
Specm Hy = b%, Specm U (h) = h*,

where Specm denotes maximal spectrum. Set

c=5(Za-Xo)

i>0 j>0
The map f: b’ — b* induced by F is not linear but affine, i.e.,
fu+v)=fw+ f) — f0)
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with f(0) = t. Moreover,

e, i >0,
f(é‘l)_{é_i—r, i <0.
Similarly if g = 0sp(2b|2a), A = D(a|b) and F := P4, we have
_Je-i—t, i <0,
f(g')_[a,-—r, i >0.

Let C,, be the unique (1]0)-dimensional H4-module on which hy4 acts via pu.
According to Lemma 3.6 (a)—(c) every simple H4-module is one-dimensional and is
isomorphic to C,, for some 1 € b.

An A-module X is a weight module if X is semisimple as an H4-module, i.e., if X
has a decomposition

X:@X“,

neby

where X* := {x € X |hx = u(h)x forevery h € hu} is the u-weight space of X.
The support of a weight module X is

supp X = {1 € b1 | X" # 0}.

Lemma3.8 Let X be a simple weight A-module. Then the weight spaces of X are
purely even or purely odd. Hence X and T1X are never isomorphic.

Proof Let 0 # x € (X*),, where k € Z,. Then

X = Ax = @ (A% = X,

OteQA

Le., all nonzero vectors in X i are purely even (respectively, purely odd) if ¥ +
p(a) = 0 (respectively, if « + p(a) = 1). O

For the remainder of the paper we fix an extension of the parity function p: Q4 —
Zytoamap p: by — 7Z satisfying p(u + a) = p(u) + p(a) forany o € Q4 and
any u € ;. Note that such an extension is not unique.

We call a weight A-module X preferred if for any 1 € supp X, the weight space X*
is purely even if p(u) = 0 and the weight space X** is purely odd if p(11) = 1. Lemma
3.8 implies that, if X is a simple weight module then exactly one of the modules X
or [1X is preferred. Moreover, any weight A-module X decomposes uniquely into a
direct sum X @ [1X, for some preferred modules X and X».

Proposition 3.9 The category of preferred weight A-modules is equivalent to the
category of preferred weight A-modules as an abelian category.
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Proof The superalgebra AT has its own parity function p: Q At — Zp with the
property p'(a) = 1fora = ¢;, 8 j- We can extend this function to a map ph hX.;. —
Z satisfying pT(u +a) = pT(,LL) + pT(a) for any o € Q4. Then, for a preferred
weight module X we set

X = EB P w=r xn.
pesupp X

It is clear that -T is a functor from the category of preferred weight A-modules to the
category of preferred weight A-modules. Moreover, the functor (-)" is isomorphic
to the identity functor. O

In order to proceed with our study of weight A-modules, for any v € b} we
introduce a certain multiplicity free weight A-module F'(u) such that € supp F ().

First, assume A = D(a | b) and fix u € bx. We can write © = {u;} with u; € C
fori > 0and u; = 0,1 fori < 0. Let B be the subalgebra in D(0 | b) generated by
all x; for i < O such that u; = 1, and by all 9; for i < O such that u; = 0. Then B is
a local supercommutative algebra, and we denote by J its maximal ideal.

Set R := Clx;, xl._l],->o. Consider the D(a | 0)-module FT (1) :== Rx* defined by
the relations 9;x* = p;x;” Ix" and the D(0 | b)-module

F~(u) = DO|b)®p (B/J).

Finally using the first isomorphism of (5), we define the A-module F(u) by setting
F(u) = FH(w)@MPWF~ ().
Now let A = Cl(a | b). Here we use the isomorphism (6), and set

F(p) =TP"W(F~ (@ Fr(w"hHT,

where now F~ (1) is a D(0 | a)-module and F¥ () is a D(b | 0)-module.
By construction, ¢ € supp F' (1) and all weight spaces of F(u) are 1-dimensional.

Lemma3.10 The A-module F (1) is preferred, indecomposable, and has a simple
socle (i.e., a simple submodule which is contained in any nonzero submodule of F (11)).
Under the assumption j; ¢ Z foralli > 0if A = D(a|b), and uj ¢ Z forall j <0
if A = Cl(a | b), the module F () is simple.

Proof Let A = D(a|b). The fact that F(u) is preferred follows directly from the
definition of F(u).
Define the weight ft € supp F'(i) by setting

L if i <0 or u; ¢ 7Z,
Hi= 0 otherwise.

We claim that F (u)’l generates a simple submodule of F(u) which is the socle of
F (). Indeed, note that if v € supp F' (), the construction of F(u) shows that the
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map F(u)” — F(u)"*% of multiplication by x; is an isomorphism for all positive
i, and that the map F(u)” — F(u)"~% of application of 9; is an isomorphism iff
v; # 0. Furthermore, for i < 0the map F ()" — F(u)" % of multiplication by x; is
an isomorphism iff v+ ¢; € supp F (), and similarly the map F ()" — F(u)"~% of
application of 9; is an isomorphism iff v — ¢; € supp F (u). Consequently, the cyclic
submodule of F' (1) generated by any nonzero weight vector contains the weight space
F(u)™. This proves our claim, and we see that (1) is indecomposable as it has a
simple socle.

Finally, if u; ¢ Z for alli > 0 then u = i and F(p) is simple.

The case of A = Cl(a | b) is handled in a similar manner. O

For j1,v € b}y we write u ~ v if u — v € Q4 and the respective sets of indices i
for which u; € Z>o and v; € Z>( coincide.

Theorem 3.11 (a) Every simple weight A-module is multiplicity free.

(b) Forevery i € b, up to isomorphism, there exist precisely two simple A-modules
X () and T1X () whose supports contain u, and such that X () is preferred.

(c) supp X (1) = { € b | A ~ u.

(d) Let u—v € Qa. The modules X (j0) and X (v) are isomorphic if and only if u = v.

Proof Set P(u) == A®p, (Hp(“)(CM) for 4 € b. Then by Frobenius reciprocity
Homy (P (), F(r)) # 0. Hence the weight space P(u)" is nonzero and generates
P(w). Since each weight space of P(u) is a cyclic Hs-module (Lemma 3.6 (d)), the
A-module P (u) is multiplicity free.

Therefore the sum N of all submodules Z of P(u) with Z*# = 0 constitutes

the unique maximal proper submodule of P (u). Since P () is multiplicity free, the
quotient X () := P(n)/N and the module I1X (1) are (up to isomorphism) the only
two simple A-modules whose supports contain . Note that X (u) is preferred, while
ITX (w) is not. This proves (a) and (b).
(c) It follows from (b) that the supports of non-isomorphic simple preferred modules
are disjoint. It remains to check that supp X (u) is exactly the equivalence class of w.
We start by the following observation. If we fix a nonzero vector z € P(u)* then
a basis of P(u) is formed by the vectors xl.a1 . .xiakk Bfll. . }]’l’ z for some disjoint sets
of indices i} < --- < ig, j1 < --- < j; and some ay, by € Z~ if ig, js > 0 and
as = by = 1ifis, j; <O.

Let A = D(a|b). Fix a nonzero vector v € X (u)*. Let v € supp X () and let

v=p+ Yag

iel
with @; € Z\O0 for some finite subset / C Z. Set [T = {i € I|a; > (< 0)}.
Then, by the .above observation, every vector w € X (u)" is proportional to [ [; ., + xl.a’
Tljer- aj‘“fv. Next, for i > 0 the relation d;x; — x;9; = 1 implies that for

any nonzero v’ € X(u)" we have 9;v' = 0 if and only if v/(x;) = 0; similarly
x;v' = 0 if and only v'(u;) = —1. Since v'(u;) = 0,1 for i < 0, we conclude
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that [];c;+ x;" Hje[* 8]._a'iv # 0 if and only if 4 ~ v. The case A = Cl(a|b) is
analogous.

(d) Direct corollary of (c). |

Next we would like to decompose the simple weight A-modules in accordance with
the isomorphisms (5) and (6). We start by discussing weight modules of A = Cl1(b | 0)
and A = D(0] b). In these cases we identify the subsets A of ZN[1, b] (where b = oo
is possible) with the weights of A via the map

A gy,

where ¢y = ) ;cp8i for A = CI(b|0) and ¢y = ) ;. ¢—i for A = D(0]|Db).
Accordingly, we write X (A) instead of X (¢a).

Lemma3.12 Let A(b) = Cl(b|0) or A(b) = D(0| D).

(a) If b < oo, then the category of preferred weight A(b)-modules is semisimple and
has, up to isomorphism, one simple object X (D).

() If b = oo then, up to isomorphism, the simple preferred weight A(b)-modules
can be enumerated by equivalence classes of subsets of Z~q with respect to the
following equivalence relation: A is equivalent to B if the symmetric difference
AAB is finite. In other words, up to isomorphism, there is exactly one simple weight
A(b)-module X (A) corresponding to A.

(¢c) We have X(A) >~ X (B) if and only if AAB is finite.

Proof Claim (a) for A(b) = Cl(b | 0) is animmediate consequence of the fact that A (b)
is a matrix algebra. The case A(b) = D(0|b) with b < oo follows from Proposition
3.9.

(b) follows from Theorem 3.11 (b).
(c) We note that ¢y ~ ¢p if and only if AAB is finite. O

Proposition 3.13 (a) Every simple preferred weight D(a | b)-module X is isomorphic
to Xt ® (X )T for some simple preferred weight D(a | 0)-module X and some
simple preferred weight C1(b | 0)-module X .

(b) Every simple preferred weight Cl(a|b)-module X is isomorphic to
(XHTexHHF for some simple preferred weight Cl(a|0)-module X+ and
some simple preferred weight D(b | 0)-module X ™.

Proof We prove (a) since (b) is similar. For any weight € supp X we can choose a
simple preferred weight D(a | 0)-module X and a simple preferred weight C1(b | 0)-
module X~ sothat . € supp(X*® (X)T). Moreover, it is clear from the construction
that the module X+ ® (X™)7 is simple. Therefore Theorem 3.11 implies the claim. O

3.5 Categories of weight modules over Clifford and Weyl algebras

Let Wy denote the category of preferred weight A-modules. To study the category of
all weight A-modules, it suffices to study the category W 4. Indeed, since every weight
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A-module decomposes canonically as X1 I[1X, where X| and X» are preferred, the

morphisms in the category of all weight A-modules are recovered by the morphisms

in the category W4 (the latter morphisms necessarily preserve the Z,-grading).
Recall the A-module P (w) introduced in the proof of Theorem 3.11.

Lemma 3.14 The A-module P () is an indecomposable projective object in the cat-
egory W a. The category 'W 4 has enough projectives.

Proof By Frobenius reciprocity we have
Hom 4(P(p), X) =~ Homy, (M"Y C,, X) ~ X*

for any preferred module X in W 4. This implies the projectivity of P(u). The inde-
composability of P (u) follows from the fact that P (1) has a unique maximal proper
submodule.

Noting that any X € Wy is a quotient of @ﬂesuppx P(un)® X", we see that Wy
has enough projectives. O

We introduce the following equivalence relation on the set of weights bh: u ~ v
& 1 € v+ Qa. Note that the relation ~ is weaker than the relation &, i.e., u =~ v
implies 1 ~ v. Let I denote a ~-equivalence class in b, and let WE‘ be the full
subcategory of W, with objects X satisfying supp X C TI'. Since the support of
every indecomposable weight A-module X belongs to I" for some class I', we have a
decomposition

Wa =[] Wk

Proposition 3.15 The subcategories Wg are blocks of 'W 4.

Proof 1If X and X' are two simple weight A-modules from W, satisfying u ~ v for
some i € supp X and v € supp X', then the modules X and X’ occur as simple con-
stituents in the A-module F'(1t). We know from Lemma 3.10 that F(u) is a preferred
indecomposable module. This implies the assertion. O

Lemma3.16 If A = Cl(a|0) or A = D(0|b) then W4 is a semisimple category.

Proof 1t suffices to prove that every indecomposable projective module P € Wy is
simple. For this, note that P is an object of WI; for some I', and let . € b belong to
supp P. Then Hom g, (IT7 (“)(CM, P) # 0 and Frobenius reciprocity yields a nonzero
homomorphism P — P(u) = A®p, (TP C,,). The key observation is that under
the assumption A = Cl(a |0) or A = D(0|b), the A-module P(u) is simple. This
together with the projectivity of P(u) allows us to conclude that P ~ P (u). O

The following proposition extends Proposition 3.13 to indecomposable modules.

Proposition 3.17 (a) If X is an indecomposable module from Wpap), then X is iso-
morphic to X+t ® (X - for some indecomposable module D(a |0)-module X™
Sfrom W p 0y and some simple module X~ from Wci (o).
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(b) If X is an indecomposable module from Wciapy, then X is isomorphic to
(XHTR XN for some simple module X+ from Wci(aj0) and some inde-
composable module X~ from W pp|0)-

Proof (a)Set A = D(a | b). The indecomposability of X implies supp X C u+ Q 4 for
some 4 € h;. If S and §” are simple subquotients of X then supp S C supp '+ Q 4,
and therefore S and S’ have the same support when restricted to D (0 | b). This, together
with Proposition 3.13 (a), implies the existence of isomorphisms § >~ ¥ ® (X )" and
S'~7Z(X =)t for some simple module X~ € Wci|0) and some simple modules
Y, Z € Wp|0).- Moreover, according to Lemma 3.16, the restriction of X to D(0 | b)
is a semisimple D (0| b)-module. Hence this restriction is isomorphic to an isotypic
component of the simple D (0 | b)-module (X —)T. This allows us to conclude that the
map

Hom pop (X)), X))@ (X )T — X

is an isomorphism.
Therefore we can set X T := Hom pop) (X = X). Finally, the indecomposability
of X implies the indecomposability of XT.

(b) The proof is similar, but instead of Proposition 3.13(a) one uses Proposition
3.13(b). |

Corollary 3.18 (a) If b < oo then the category Wpa|p) is equivalent to the category
Wp(aj0). The category W p(a|0c) decomposes into a direct product of subcategories
Wia) where [A] runs over equivalence classes of subsets of Z~ as in Lemma 3.12,
and each subcategory Wa is equivalent to the category W p(a|0).

(b) If a < oo then the category Wciap) Is equivalent to the category Wp (o). The
category Wci ooy decomposes into a direct product of subcategories Wia) where
[A] runs over equivalence classes of subsets of Z~q as in Lemma 3.12, and each
subcategory W is equivalent to the category W pp0)-

(c) Every block of Wpp) and of Wciap) is equivalent to the block WE(Clo) of
WD(C\O) for some ¢ < 00 and ' = Q pc|0).

(d) Two blocks B and B> of Wp(c|o) are equivalent if and only if c(B1) = c(B>)
where c(8) denotes the cardinality of the set of isomorphism classes of simple
objects in B.

Proof Again we prove just (a) since (b) is similar. Let X~ be a preferred simple
CI(b | 0)-module and W 4 (X ™) be the full subcategory of W4 with objects of the form
Xt® (X)) for preferred weight D(a | 0)-modules X . It follows from Proposition
3.17 that W is the direct product of its subcategories W 4 (X ~) where X ~ runs over the
set of isomorphism classes of C1( | 0)-modules. Each category W4 (X ™) is equivalent
to the category of preferred weight D(a | 0)-modules via the functors - ® (X )" and
HomD(OH,)((X_)T, -). If b < oo, there is a single isomorphism class to which X
belongs. If b = oo, the isomorphism classes of modules in Wcy )0y are enumerated
by the equivalence classes of subsets of Z-.¢ from Lemma 3.12.

(c) and (d) follow from parts (a) and (b) and from the classification of blocks in Wpc|0)
for ¢ < oo in [11], and in Wp 0|0y in [9]. |
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We conclude this section by a structural result on indecomposable weight A-
modules with finite-dimensional weight spaces.

Theorem 3.19 Any indecomposable A-module X in W4 with finite-dimensional
weight spaces has a strict A-module filtration X = UneR X, (ie, X, C Xy for
n < m) for some interval R in Z, satisfying (,cg Xn = {0} and such that X,,/ X, —1
is a simple A-module for anyn,n — 1 € R.

Proof Due to Corollary 3.18 we can reduce this statement to the case A = D(a | 0).Ifa
is finite then X has finite length and the statement is trivial. For any a, a preferred simple
weight D(a | 0)-module is determined up to isomorphism by its support. Therefore, if
X belongs to a block B with ¢(*B) < oo, the statement is trivial since X necessarily
has finite length.

We can thus assume that X belongs to a block ‘B with ¢(®B) = oo, and by Corollary
3.18 (c) we can assume further that I' = Q 4. Then, simple objects in B are enumerated
(up to isomorphism) by finite subsets A of Z..o. For asubset A, weset £y == — >, ea Gi
and choose a basis {le} of the weight subspace X ¢, Let U be the union of these bases.
Note that every cyclic A-module is multiplicity free and has at most countably many
cyclic submodules generated by vectors of weights of the form ¢4. Consider the set
X of cyclic submodules of X consisting of all modules Au for u € U and all cyclic
submodules of Au generated by weight vectors (the weights necessarily having the
form ¢p for finite subsets B of Z- ). Then X is a partially ordered set with respect to
the inclusion order. Clearly, X = ZYEDC Y.

We claim that any interval in this partial order is finite. To prove this, it suffices
to consider an interval of the form [Av, Aw] where Av C Aw. Let v € X% and
w € X% for some finite sets A, B. Note that Aw is a quotient of the indecomposable
projective A-module P (¢p). Therefore

v:dnxinajw

iel jeJ

for some d € C* and some finite subsets J C A, I C Z-o\B. If Av C Au C Aw
then

u=d’l_[xi ]_[ajw, v=d"Hx,- 1_[ djv.

iel’ jel iel” jel”

Note that I = I'u 1”7, J = J'u J”. Since for fixed I, J there exist finitely many
choices for I, I”, J', J”, the claim follows.

Recall that by the Szpilrajn theorem [21] any partial order can be extended to a total
order. Moreover, we claim that any interval-finite partial order on a countable set /
can be extended to an interval-finite total order. Indeed, assume that / does not have a
smallest or greatest element. (If / is bounded above or below, the proof is similar). We
can choose a sequence of distinct elements {x; | i € Z} such thatif x; < x; theni < j,
and also I = | J[x;, x;+1]. Let U, = U;:ln [x;, xix+1] for n > 0. Using induction we
can define a total order on U, as required. Indeed, one can see that U, 1\ U, = YU Z
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where all elements of Z are not less than elements of U, and all elements of Y are
not greater than the elements of U,,. On the other hand, both Y and Z are finite and
therefore one can clearly define a suitable total order on them.

This argument endows X with a total order < such that the ordered set (X, <) is
isomorphic to (Z, <), (Z g, <), (Z~¢, <), or some finite interval of Z. We enumerate
the elements of X using this isomorphism. Set X, := Zi<n Y; forY; € X. Letus prove
that the A-module X,/ X, is simple for any n. Indeed, X,/ X,,—1 = Y,/ (Y, N X;,—1).
Since Y;; N X,,—1 contains all proper cyclic submodules of Y;,, the submodule Y, N X},
is the unique maximal submodule of Y}, and the quotient Y,/ (Y, N X,,—1) is simple. If
(X, <) has no minimal element then clearly (), X, = {0}. If X| = Y} is the minimal
element of (X, <), then X is simple and we add X := {0}. |

Example 3.20 Let A = D(c0|0), € Q4,and let X be an indecomposable A-module
of infinite length with finite weight multiplicities.

(a) Theorem 3.19 implies that X admits a Z-.o-filtration with simple quotients when-
ever X has a simple submodule contained in any nonzero submodule of X. Therefore
the A-module F'(1) has such a filtration by Lemma 3.10.

(b) Similarly, if X has a unique maximal submodule then X admits a Z o-filtration
with simple quotients. In particular, this applies to the A-module P (u).

(c) Fix an isomorphism A ~ A® A of associative algebras and consider X =
F(u)® P(u) as an A-module via this isomorphism. One can see that X has nei-
ther a simple submodule nor a simple quotient. Nevertheless, by Theorem 3.19 the
module X admits a Z-filtration with simple quotients.

3.6 Weight modules over Aey and A for A = D(a | b) orA = Cl(a | b)

Let t: Q4 — Z/2Z be a surjective homomorphism of abelian groups. We define

B = @A“, B'= @A“.

T(u)=0 (=1

Then B is a subsuperalgebra of A containing Hy, and the decomposition A =
B ® B’ defines a Z/27Z-grading.

In this subsection we establish an equivalence between the category W4 and the
category Wp of preferred weight B-modules. This result applies to the particular
cases B = Ap and B = Aey. (For B = Aj preferred B-modules are purely even
B-modules.)

The root lattice Q p = ker 7 is an index-two subgroup in Q 4. Consider the block
Wg for some equivalence class I' C h. Note that I' = I'"U T, where I := (1 +
Qp) NT for some u € I'. This decomposition depends on the choice of p but only
up to swapping I'” and I'”. By Wg we denote the subcategory of Wg of B-modules
with support in ™.

Theorem 3.21 The abelian categories Wg and Wg/ are equivalent.
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Proof We define functors R: Wg — Wg/ and [ : Wg/ — Wg by setting

RX)= @D X" 1(¥)=A®zY.
nel’

We observe that R is exact, / isright exact, and / is left adjoint to R. Therefore, there
are canonical morphisms of functors¢: IR — Idw, andy: Idw, — RI.Itremains
to check that both functors are isomorphisms on objects. Recall that for any u € T
the induced module P(u) = AQ®p, (H”(“)(CM) is projective in W 4. Similarly, the
B-module Q(u) == BQmu, (Hp(“)(C,L) is projective in Wp. By construction we have
1(Q(w) =~ P(n) and R(P(n)) =~ Q(n). Thus ¢ (P(n)) =~ P(u) and ¥ (Q(n)) =
Q (). Every object in Wy (respectively, Wp) has a resolution with terms given by
direct sums of P(u)-s (respectively, Q(u)-s). Hence ¢ and i are isomorphisms on
objects. O

3.7 Weight modules over Ay

Here we classify simple bounded Ag-modules. We note that h4 C Ao and that the
root lattice Q 4, is the sublattice of Q4 generated by ¢; — ¢; fori, j #0,i # j. As
before, we can work with preferred modules only. We introduce a new equivalence
relation on b by setting v ~ v iff u ~ vand u —v € Q4.

Theorem 3.22 (a) For every u € [)X there exists a unique (up to isomorphism) pre-
ferred simple weight module Y (i) such that u € supp Y (1).
(b) Two simple preferred Ag-modules Y (iu) and Y (v) are isomorphic if and only if

=0 V.

Proof (a) We define the Ag-module Y () to be the Ag-submodule of X (1) generated
by the weight space X (u)*. It is simple since for every nonzero Ag-submodule Z of
Y () we have

Z=AZNY() =XwNYw =Y.

Furthermore any simple weight Ag-module, whose support contains p, is isomorphic
to the unique simple quotient of the induced module Ao ®p, C,,. This proves (a).

(b) It follows from (a) that Y () and Y (v) are isomorphic if and only if u € supp Y (v).
On the other hand,

supp Y'(v) = supp X(v) N (v + Q4)-

This implies the statement. O

Let A = D(a|b). Any Ag-module M is also a module over Lie Ao, the Lie superalge-
bra associated to Ag. We call M integrable if M is integrable as an sl(a | b)-module.
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Proposition 3.23 (a) A simple weight Ag-module Y (u) is integrable if and only if
Wi € Zixo foralli > 0orp; € Zg foralli > 0.
(b) Every simple weight Ag-module is integrable as a D(0 | b)g-module.

Proof (a) By a direct inspection of supp Y (1) one sees that, if  satisfies the condition
of the proposition, then any v € supp Y (u) satisfies the same condition. Therefore
the set (v + Za) N supp Y (w) is finite for any v € supp Y () and any root o of
sl(a | b). This implies that Y (w) is integrable whenever u satisfies the condition of the
proposition.

On the other hand, if there exist i, j > 0,7 # j, such that 4 ; is not an integer or
Wi € Zzp and pu; € Z, then x;9d; acts freely on Y (u)*.

(b) Forany € b and any o = ¢; — ¢ for i, j < 0, at most one of u +« and u — «

lies in by Since the support of any weight Ap-module is a subset of by, the statement
follows. o

Proposition 3.24 Suppose A = D(oco|00). A simple Ag-module Y (1) is faithful if
and only if the set of values

Si ={vi|v €suppY ()}

is infinite at least for one i.

Remark 3.25 The formula

supp Y () = {v € by | v =g pu}

(see Theorems 3.11 and 3.22) shows that if S; is infinite for some i > 0, then S; is
infinite for all positive i. On the other hand, by the definition of hX, we have v; =0, 1
for every v € supp Y () and i < 0. Furthermore, the condition of the proposition
does not hold if and only if

(1) ;i € Zxp foralli > 0and pu; = 0 for almost all 7,
(2) ni € Zoforalli > 0, u; = —1 for almost all positive i and pu; = 1 for almost
all negative i.

Proof Observe that if S; is finite for some i > O then HSES,- (u; —s) € Anny, Y (u),
where u; = x;0;. Hence Y (u) is not faithful.

In view of Remark 3.25, it remains to show that if S; is infinite for every positive
i then Anng,Y () = 0. Clearly, Anng,Y (1) is a weight § 4-module with respect to
the adjoint action of h4. Furthermore, for any u € Ag there exists v € A, ¥ such that
uv # 0. Thus it suffices to prove that Anng, Y () N Hy = {0}. Assume that u € Hy.
There exist k, [ > 0 such that # can be written in the form

U= ZPB(M, oo UK UB
B
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for some polynomials pp, where the sum runs over all subsets B of {—1, ..., —/} and

up=[Tu [T a—u.

ieB  ie{—1,...—~I}\B

Set

Ty = A{(v1, ..., ) |v € supp Y (n)},
1 = {(vl,...,vk) v € supp Y (u), v; = 1fori € B }

v =0fori¢ B, —1 <i<—1

Note that our assumption that S; is infinite for every positive i implies that T} is a
Zariski dense subset of CK. Consider the subalgebra A’ generated by x;, 8; for all
i >0andi < —/[ and set Aé = Ag N Al. Then Af) is isomorphic to Ag. Next, note
that upY (u) is a simple Af)-module for every B C {—1, ..., —l}. Furthermore, after
substituting Ao for Af) and Y (u) for upY (), we see that T,fl = Ty is Zariski closed
in CK. Now uY () = 0 implies pp(uy, ..., ur)upY (u) = 0, which is equivalent to
pB(T,f,) = 0. Hence pg = 0and u = 0. O

Corollary 3.26 The ideals ker Y* are primitive ideals of U (sl(c0 | 00)).

4 Classification of simple bounded weight osp-modules at infinity

We are now ready to describe the category of bounded weight g-modules for g =
0sp (2a | 2b), osp (2a+1 | 2b). In what follows we assume that g is infinite dimensional,
i.e., that at least one of a, b equals co. We fix an exhaustion of g as li)n gk, where
gk = 0sp (2ay | 2by) or g = 0sp (2ay + 1| 2by), and ag, by € Z~ satisfy ar = a for
a <ooand by =bforb < 0.

We start with the following observation.

Proposition 4.1 If M is a bounded g-module, then the restriction of M to 0(2a) or
0(2a + 1) is integrable and semisimple.

Proof M is a bounded semisimple h-module, and hence M is a bounded weight
(0(2a) +b)-or (0(2a + 1) + h)-module. Therefore, as an 0(2a)- or 0(2a + 1)-module,
M is isomorphic to a direct sum of bounded weight 0(2a)- or 0(2a + 1)-modules.
As mentioned in Sect. 2, a bounded weight 0(2a)- or 0(2a + 1)-module is integrable
for a = o0, and is a sum of finite-dimensional modules for ¢ < oo. Therefore the
semisimplicity claim holds trivially for a < oco. For a = oo the semisimplicity claim
follows from [15, Theorem 3.7]. O

Recall that an odd reflection is the replacement of a Borel subsuperalgebra b of g by
a Borel subsuperalgebra b’ of g such that exactly one odd root « of b is not a root
of b’ (and hence —« is a root of b’). If L (1) denotes an irreducible g-module with
b-highest weight A and purely even highest-weight vector, then L (X) is isomorphic

@ Springer



Bounded weight modules Page250f39 5

either to Ly (A) or to ITLy (A — «). The latter case, called a typical reflection, occurs
precisely when (A, o) # 0, while the former case, called an atypical reflection, occurs
when (A, @) = 0.

By Jg we denote the kernel of W, , if g = 0sp(2a | 2b), and respectively of O,
if g = osp(2a + 1]2b). Recall that Jg is the annihilator of any spinor-oscillator
representation. Moreover, it is obvious that Jg = 11_11)1 Jg, whenever g = h_r)n gk for an
inductive system of finite-dimensional Lie superalgebras gi of type osp.

Lemmad4.2 Let q = osp(m|2n) for m,n € Zxo, and 1 C U(q) be a bounded
primitive ideal of degree d. Assume that at least one of the simple ideals of qp has rank
greater than d. Then d = 1. Moreover 1 = Jg, unless I is the augmentation ideal or
the annihilator of a defining module.

Proof For m < 1 the statement follows directly from Lemmas 2.6 and 2.5. Therefore
in the rest of the proof we assume that m > 2.

By Musson’s Theorem [13], I = Anny q) Ly (4) for some Borel subsuperalgebra b
and some weight A. For A = 0, the ideal / is the augmentation ideal. For the rest of the
proof we assume A # 0. Let s be a simple ideal of qg of rank greater than d + 1. We
can choose the Borel subsuperalgebra b so that its base of simple roots contains a base
of simple roots for s. By ;= we denote the weight of s obtained from X by restriction.

In order to study the annihilator I of the simple highest weight g-module Ly (1),
we will consider Ly (A) as a highest weight module over a variable Borel subalgebra
b’ obtained from b by some sequence of odd reflections. Then A’ will denote the
corresponding highest weight, and 1 will be its restriction to 5. Lemma 2.4 implies
that the simple s-modules with highest weights  and u’ are necessarily multiplicity
free.

We may assume that b’ is obtained from b by odd reflections with respect to some
isotropic odd roots a7y, ..., «,. It is essential to note that there are at most four non-
isomorphic multiplicity free simple weight s-modules which have a highest weight
with respect to a fixed Borel subalgebra of s. (Indeed, these are the trivial, natural,
and spinor modules for s >~ o(m), and the trivial, natural, and oscillator modules for
s =~ sp(2n).) This shows that each of the weights & and u’ can take at most four
different values. Moreover, since A, A" have the same image modulo the root lattice of
q, it is easy to check that for a given u there is a unique ' with i’ # . Therefore in a
shortest chain of odd reflections connecting b and b’ there can be at most one typical
reflection.

Assume s = sp(2n). If m = 2¢ 4 1 we fix the simple roots

€1 —€&2,...,& —51,...,5,,_1 —8,1,5,,,
and if m = 2¢ we take the simple roots
&1 — €2y .., 80 — 081, ..., 00—1 — On, 26,.

Set A = aje] + -+ + apey + . The above conditions and Lemma 2.5 show that
for u # ' one of the following holds:
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(1) u=0,u'=34,
() u=28,u=0,
B u==@1+-+8)/2, 0 = =@+ +8-1)/2 — 38,/2,
@ p=—=Gr+-+8,-1)/2—38,/2, /= =1 +--- +8)/2.

Consider the first case. We start by applying the odd reflections corresponding to the
sequence of odd roots ¢ — 41, . . ., €1 —81. Since A # 0, exactly one of these reflections
must be typical, say with respect to ¢, — §1. This implies ap+1 = --- = a¢ = 0,
ay = --- = ap—1 = —1. Next, an application of the reflections corresponding to
&¢ — 82,...,&1 — & cannot change A This is only possible for p = 1 and A = ¢y,
and then Ly (1) is a defining representation.

Let us deal with the second case. The odd reflections with respect to the roots
& — 81, ...,&1 — &1 do not change A, i.e., they are all atypical. Thereforea; = --- =
ag = —1, but then the reflection with respect to &g — 85 is typical and u' = 81 + 8.
This proves that the second case is impossible.

Now, consider the third case. Here we perform in some order all odd reflections

withroots &; —8;,i =1,...,¢,j =1,...,n—1, and check that all these reflections
do not change A. This forcesa; = --- =ay = 1/2. Hence A = (1 + -+ + €7)/2 —
(61 + -+ 8,)/2 and Ly (1) is a spinor-oscillator representation.

Finally, let us look at the fourth case. We can show thata; = --- = ay = 1/2 in

the same way as in the third case. Therefore, if m is even we have A = (¢] + --- +
&0)/2 — (81 + -+ 6u—1)/2 —368,/2,and Ly (A) is a spinor-oscillator representation
not isomorphic up to parity change to a spinor-oscillator representation that occurred
in the third case. If m is odd, then by Lemma 2.6 the restriction of A to osp(1 |2n)
with roots £8; £ 68,8, — &5, £5; for r # s, must equal —(8y + - -- + §,)/2. This
contradicts our assumption for p, therefore the fourth case forces m to be even.

This proves our claim for s = sp(2n) since in case (1) I is the annihilator of a
defining representation, while in cases (3) and (4) [ is the annihilator of a spinor-
oscillator representation.

We conclude the proof by essentially repeating the above argument for s = o(m).
For m = 2¢ we fix the simple roots

81 —02,...,8u—1—0p,0p —&1,61 —€2,...,80-1 — &, &1 + &y,
and for m = 2¢ + 1 we choose the simple roots
81 =82, ..., 81— 8n,0n —€1,61 — €2, ..., 801 — &, &g

A priori there are the following cases for u # u':

() u=0,u'=e,
Q) mw=ce, =0,
B u=(e1+---+e)/2, W= (14 - +e—1—¢0)/2,
@ pw=C(1+ - +e—1—e)/2, W= (1+-+¢)/2

All these cases can be treated in the same way as above. O
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Corollary 4.3 Let q and I are as in the previous lemma. Then the superalgebra of
h-invariants (U (q)/1)Y is abelian. Hence any simple weight q-module annihilated by
1 is multiplicity free.

We are now ready to prove the following.

Proposition 4.4 Let M be a simple bounded g-module. Then M is multiplicity free.
Moreover, M satisfies Anny )M = Jg or M is a trivial or a natural module.

Proof Let I = Ann M, U := U(g)/1, and let 1 be a weight of M. Then a standard
argument shows that M* is a simple U"-module. Next, set

b =gk N, Uk :=Ulg)/(U(gr) N I).

We have U = lim U,?k . Since g is infinite-dimensional, Lemma 4.2 and Corollary

4.3 imply that for sufficiently large k the simple ﬁlkjk -constituents of the module
M* are one-dimensional. By passing to the direct limit we obtain dim M* = 1.
Furthermore, again by Lemma 4.2 we see that the annihilator of U (gi) M* equals J, g
unless U (gx) M” is a trivial representation or a defining representation. The statement
follows by passing to the direct limit. O

Remark 4.5 The claim of Proposition 4.4 is proved in [10] in the case where g = g;,
i.e., for g = sp(00), 0(00).

We say that a simple weight g-module M is of spinor-oscillator type if it is anni-
hilated by Jg, i.e., M is obtained by pullback along the homomorphism ®, ; from a
weight Cl(a | b)-module or, respectively, along the homomorphism W, ; from a weight
Cl(a | b)ey-module. Proposition 4.4 implies the following.

Corollary 4.6 Let M be a simple bounded weight g-module such that M % V, 11V,
C, TIC. Then M is of spinor-oscillator type.

Note that every simple weight sp(2b)-module T of oscillator type (as defined in
Sect.?2) is the pullback of a (unique, up to isomorphism) simple weight C1(0 | b)ey-
module 7. This follows from the fact that the ideal ker Wy p of U(sp(2b)) is the
primitive ideal not only of the oscillator representations but of any simple multiplicity
free weight module of sp (2b). For b < oo this is well known, and for b = oo see [10].

Given T as above, the module T generates a unique simple weight C1(0 | b)-module
which has the form T @ T’ as a C1(0 | b)ey-module. The pullback of 7”7 to sp (2b) is by
definition the twin of T and is a simple module. Similarly, any spinor 0(2a)-module
is the pullback of a simple weight Cl(a | 0)ey-module, and we call two spinor 0(2a)-
modules rwins if they are pullbacks of the two simple Cl(a | 0)cy-constituents of a
simple Cl(a | 0)-module. For 0(2a + 1) we declare two spinor 0(2a + 1)-modules to
be twins if they are isomorphic.

We are ready to state our explicit description of simple bounded weight g-modules.

Theorem 4.7 Let M be a simple bounded weight g-module of spinor-oscillator type.
Then the following statements hold:
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(a) My and My are simple gg-modules.
(b) There exist twin spinor 0(2a)- or 0(2a + 1)-modules S and S', and twin simple
sp(2b)-modules T and T’ of oscillator type, such that

My~S®T, M;~TI(S®QT). )

The modules S, S, T, T are unique up to isomorphism and determine M up to
isomorphism.

(c) Any pair (S, T) where S is a spinor 0(2a)- or 0(2a + 1)-module and T is a simple
sp (2b)-module of oscillator type determines a simple bounded weight g-module
M of spinor-oscillator type for which (7) holds.

Proof Let A = Cl(a |b). Claim (a) follows directly from Lemma 2.1 since the map
W U(gg) — (Aey)g (respectively, ©qpp: U(gg) — Ap) is surjective.
(b) Note that if the statement holds for M then it holds for ITM.

If g = osp(2a + 1]2b) then we can assume that M is the pullback of a simple
preferred weight Cl(a | b)-module X. By Proposition 3.13 (b) there is an isomorphism
X ~ (XHT® (X)) for some simple preferred weight Cl(a | 0)-module X+ and
some simple preferred weight D(b|0)-module X ™. Next, using the isomorphism
Cl(a|b)5 = Cl(a | 0) @ CI(0]| b)ey from Corollary 3.5 we see that X >~ XTO®R(X™)
and X7 >~ X+ ® (X~ /R(X™)) where the functor R is definedin Sect. 3.6. Thus, S = §’
is isomorphic to the pullback to 0(2a + 1) of X while T and T’ are isomorphic to
the pullbacks to sp(2b) of R(X™) and X~ /R(X ™), respectively.

Now let g = osp(2a | 2b). We can assume that M is the pullback of R(X) for a
simple preferred weight Cl(a | b)ey-module X. Then

R(X)5 =~ RIX)®R(X7), RX)i=(RX")/XH®X /R(X7)).

Therefore S and S’ are isomorphic to the respective pullbacks to 0(2a) of R(X™)
and (R(XT)/X™T), and T and T’ are the same as in the case of osp(2a + 1|2b).

The uniqueness of S and T, and hence also of S” and 77, is clear from the iso-
morphism of gg-modules My ~ S®T. The fact that S, S, T, T’ determine M up to
isomorphism is a consequence of the observation that Mg determines R(X)g, which
in turn determines X and R(X ™) for g = osp(2a + 1| 2b) (respectively, R(X ") and
R(X™) for g = 0sp(2a | 2b)), and ultimately X and X~ since R is an equivalence
of categories. Then M is the pullback of (X1)"® (X™)")T for g = 0sp(2a + 1|2b)
and of R(XH)T® (X™)"T for g = osp(2a | 2b).
(c) The given pair (S, T') determines a pair (X™, X~), where S is the pullback of a
simple weight Cl(a | 0)-module X+ and T is the pullback of a simple weight C1(0 | b)-
module (X )t for a simple weight D (b | 0)-module X . Then M is recovered from
Xt and X as in the proof of part (b). o

Remark 4.8 There is an alternative definition of pairs of twins (S, S") or (T, T’) in
terms of the supports of the weight modules S and 7. Recall that in [10] the supports
of all simple bounded (equivalently, multiplicity free) weight o0(co)- and sp(c0)-
modules are described explicitly, and moreover a given such module is determined up
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to isomorphism by its support. For a finite-dimensional orthogonal or symplectic Lie
algebra it is well known that a simple multiplicity free weight module is determined
by its support as well. Both if a < 0o or a = oo, for any spinor 0(2a)-module S there
exists a unique (up to isomorphism) spinor module S’ such that for every i € Z-,
u~+ e € supp S for some p € supp S. Similarly, if b < oo or b = oo, for every
5p (2b)-module T of oscillator type there exists a unique (up to isomorphism) module
T’ of oscillator type such that forevery i € Z-g,v+¢; € supp S’ for some v € supp S.
It is straightforward to show that the pairs (S, S") and (T, T") are precisely the pairs of
twins defined above. This observation leads to another proof of Theorem 4.7(b) based
on analyzing the supports of the gg-modules Mg and Mj.

Consider the decomposition gg = go® gsp, Where g, 2~ 0(2a) or go ~ 0(2a + 1)
and ggp = sp(2b). Seth, = hNg, and hsp = hNgsp. Thenh™ = b @h:p.Moreover,
if Ty C b} and T'sp C b:p weput Uy +Tsp = {y1 +121y1 € Lo, ¥2 € Usp}.

Corollary 4.9 Let M be as in Theorem 4.7. Then
supp M = (supp S Usupp ') + (supp T Usupp T') C by @by,

Moreover M is never isomorphic to TIM, and supp M determines the isomorphism
class of M up to application of T1.

Remark 4.10 The pairs (M, I[1M) for g are appropriate superanalogs of twin pairs for
0(2a) or sp(2b).

5 On the category of bounded weight 0sp-modules

Now we turn our attention to the category By of bounded g-modules. In this section,
g stands for osp (2a + 1 |2b) or osp(2a | 2b) for all, possibly finite, a and b.

Let B denote the full subcategory of B4 with simple objects of spinor-oscillator
type. Every M € By decomposes uniquely into a direct sum M'@ M” with M’ € By
and M” being a direct sum of finitely many copies of trivial and defining modules. This
follows from a simple inspection of supports which shows that any simple subquotient
of M isomorphic to V, I1V, C, TIC splits as a direct summand of M. By B4 for g =
o0sp (2a+1|2b) (respectively, B 4,, for g = osp(2a | 2b)) we denote the category of all
weight A-modules (respectively, Aey-modules) whose sets of weight multiplicities are
uniformly bounded. Note that the objects of B 4 (respectively, B 4., ) are not necessarily
preferred A-modules (respectively, Aey-modules).

Remark 5.1 Note that for a finite rank superalgebra A, the category B 4 coincides with
the category of all weight A-modules with finite weight multiplicities. However, for
superalgebras A of infinite rank this is not longer true.

Observe that, if @ and b are finite then the indecomposable modules in B;SC have
finite length. Indeed, the support of every such module M lies in a single coset of the
root lattice of g. Since the root lattice of gg has index 2 in the root lattice of g, the
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support of M over g lies in at most 2 cosets of the root lattice of g5. As a consequence,
M has finite length as a gg-module by [12, Lemma 3.3].
The following is our first main result about the category B*.

Theorem 5.2 Let A = Cl(a | b) for b # 1. If g = 0sp(2a + 1| 2b) then the category
BEC is equivalent to the category Ba. If g = 0sp(2a | 2b) then the category BEF is
equivalent to the category By, .

As a first step we prove Theorem 5.2 for finite @ and b.

Lemma5.3 Let dim g < oo. Then the restriction map
Exté’b(M, N) — Extéo’b(M, N)
is injective.
Proof We have to show that any exact sequence in BZ*
O—->N—->R—->M-—0

which splits over gg splits also over g. It suffices to show that H (g, gp: Hom(M, N));
= 0, where Hom stands for the homomorphisms of vector spaces disregarding the Z,-
grading, see [8, Sections 3.1 and 4.5]. Any indecomposable object in BZ* has finite
length and therefore it is enough to prove that this cohomology vanishes for simple
M and N. Writing down the first three terms of the complex computing relative
cohomology, we have

0 — Hom{, (M. N) LN Hom), (g7 ® M. N) — Hom (A2g; @M. N) — - .

where Homg() denotes homomorphisms of gz-modules preserving the Z,-grading.
Note that the second term of the complex does not vanish if and only if supp M7 N
(supp N + Aj) or supp Mg N (supp N7 + A7) is non-empty. Using Theorem 4.7 we
see that this can happen if and only if M >~ N. In the latter case

Homy (g ® M, M) = Homy_(g; ® My, M;) ®Homy_ (g7 ® My, Mg) = C
and
0 0 0 2
Endg (M) = Endg_ (M;) ®Endg (M7) = C.

Consider ¢g € Homgé(gi ® Mg, M7) and ¢ € Homg_(gi ® M7, Mp) defined by
the formula ¢; (g ® m) = gm where g € g; and m € M;. Set

m if m e M;
Vi(m) = . l
0, if m ¢ M;.
Then ¢; = d(/;). Hence Hl(g, gg: End (M))5 = 0. O
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For g5 = HoDgsp we say that a simple module Z has spinor-oscillator type if

>~ S®T for some spinor g,-module S and some gs,-module T of oscillator type.
By BOSC we denote the category of Z,-graded bounded weight g5-modules with simple
constltuents of spinor-oscillator type.

Corollary 5.4 Theorem 5.2 holds in the case dim g < oo (and b # 1).

Proof Note that if b = 0 the statement is trivial since BZ is a semisimple category
with objects that are finite direct sums of (finite-dimensional) spinor modules. Next,
for g = sp(2b) with 1 < b < oo the statement is proven in [11] (see Remark
5.1). Therefore, if g = o0sp(2a + 1|2b) (respectively, g = osp(2a | 2b)), we have
an equivalence of the categories CB"ZC and By, (respectively, B(a,,);), where B,
(respectively, Ba,,);) is the category of Z,-graded weight Ag-modules (respectively,
(Aey)g-modules) whose sets of weight multiplicities is uniformly bounded.

Let us prove that the pullback a projective object P in B4 (respectively, By, ) is
projective in B, Since P is induced from a finite-dimensional H4-module, P is
projective in B 4, (respectively, Bya,,);)- By the above equivalence, the pullback of P
is projective in Bg%c. Now Lemma 5.3 implies that P is projective in BF*.

Since any object M in B is a quotient of a projective module, M is obtained by
pullback from B 4 (respectively, B 4,,)-module. O

Next we recall the following statement.

Proposition 5.5 ([3, Corollary A.3]) Let g = lim gx be a direct limit of Lie superal-
—
gebras. Let Q = lim Qf and R = lim Ry be weight g-modules. Assume that R has
— —

finite-dimensional weight spaces. Then Exték b (Qk, Rr) = 0 forall k > 0 implies
Ext; p(Q. R) = 0.

We are now ready for

Proof of Theorem 5.2 We only need to consider the case g = osp(2a + 1|2b) or
g = o0sp(2a|2b) where dimg = oco. We fix an exhaustion g = lim g; for gx =
—

osp 2ay + 1|2by) or gr = osp(2ay | 2by), where one of the sequences ay or by may
stabilize.

Since our desired equivalence will be obtained simply by pullback via the homo-
morphisms ®,, or W, it suffices to show that every object in ‘Bgsc is the pullback of
some weight A-module (respectively, Aey-module). For this, notice that Proposition
5.5 implies that if P = hm Py is a direct limit of projective objects in 'BOSC then P is

a projective object in B‘”C Next, Theorem 5.2 holds for g, and thus every P is the
pullback of a projective object in By, for g = osp(2a + 1|2b) (respectively, B(a).,
for g = osp(2a | 2b)). Since every object of B is a quotient of some P as above, we
conclude that every object of B is the pullback of some object of B4 (respectively,
BAev ). O

Corollary 5.6 Theorem 5.2 shows that for b # 1 any indecomposable object M of
BYC has a filtration similar to the filtration which exists on an indecomposable weight
A-module with finite-dimensional weight spaces according to Theorem 3.19.
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Remark 5.7 For b = 1 every module in B has finite length.

The following is our second main result about the category Bg™. Let (Bg)5 be
the category of purely even bounded weight gzg-modules with simple constituents of
spinor-oscillator type.

Corollary 5.8 If b > 1 then the category BF* is equivalent to the category (CBE%C)().
The functor €: M — Mj establishes an equivalence.

Proof The statement follows from Theorem 5.2 and from the equivalence of categories
established in Theorem 3.21 for B = Aj. O

Corollary 5.9 For b > 2 every non-semisimple block of the category of bounded g-
modules is equivalent to a block of bounded D(k|0)- or D(oco|0)-modules with
integral weights.

The category of bounded weight D(k | 0)-modules for finite k is described, for
example, in [11]. For the case of D(oco|0) see [9].

6 Simple bounded weight s[(co | c0)-modules

We start by two lemmas concerning s[(m | n)-modules for m, n € Zx. Given a Lie
superalgebra q >~ sl(m | n) we fix the simple roots of q as

E1 — &2 s Em—1 — Ems Em _81781 _527"'73)171 _8117
and let w1, ..., Wnm—1, Om, Om+1, - .., Omyn—1 denote the dual basis (fundamental
weights). There is an obvious embedding sl (m) C qg, and we consider wy, . .., Wn_1

also as fundamental weights of s[(m).

Lemma 6.1 Let q = sl(m |n) for m > 3. Let M be a simple bounded highest weight
q-module with highest weight A and such that d(M) < m — 1. Assume that M is
not integrable over the simple ideal s\(m) C qg. Then A = awy with a ¢ Zxq, or
A=—(1+a)wg_1 +awg for2 <k <m.

Proof Denote by n the weight of s[(m) obtained from A by restriction. By Lemma
2.5,

Anny sigmy) L () = Anny(sim)) L(aw;) or

Anny signy) L () = Anny (sim)) L(@wm—1)
for some a ¢ Zxo. Since the primitive ideals Anny(siom))L(aw;) and
Ann y (s1(m)) L (awp—1) have degree 1, the result of [16] mentioned before Lemma

2.5 shows that also d(L(u)) = 1. Therefore [1, Proposition 3.4] implies that u is one
of the following weights:

(1) awi] fora g_f Z}o,
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(2) bwy— forb ¢ Z>,
3) —(1 4+ a)wk—1 + awy for some 2 < k < m — 1 and arbitrary a.

Let us deal first with the cases (1) and (3). Consider the odd reflections with respect
to the roots &, — 81, ..., & — 8, of g. Since the restriction to s[(m) of the highest
weight of M with respect to any reflected Borel subsuperalgebra must satisfy the
same respective condition (1) or (3), all these reflections must be atypical. This is
only possible if the restriction of A to the Cartan subalgebra of sl(n) equals zero.
Furthermore, we have (A, &, — §1) = 0. This implies A = aw; or A = —(1 +a)wy—1
+awy for 2 < k < m — 1, respectively.

Now let u = bwy,—1 as in (2). After performing all odd reflections with respect

to the roots &, — 81, ..., &m — Su, we obtain a highest weight A" of M such that its
restriction to sl(m) equals cw,,—1 and b — ¢ € Z3(. Next, we perform odd reflections
with respect to the roots €,,—1 — 81, ..., &m—1 — 6,. By the same argument as in cases

(1) and (3), these latter reflections must be atypical. Therefore the restriction of A’
to s[(m) equals zero and (1, &,,—1 — 81) = 0. In other words, A" = cw,—| for some
¢ ¢ Zxo. Finally, passing via odd reflections to the original Borel subsuperalgebra
yields A = bwy,—1 + (1 — b) w,,. To finish the proof we seta = 1 — b. O

Recall the homomorphisms

T+

mln*

U(sl(m|n)) — D(m|n)o,
:U(sl(m | n)) > D(n|m)y

m\n
from Sect.3.2. Note that those homomorphims map the Cartan algebra of sl(m | n)
to the subalgebra spanned by u; — u; foralli, j # 0,i # j. Moreover, the map f
induced by Tm|n (respectively, mln) from (Span{u; —u;|i # j})* to b* is linear,
and is determined by the correspondence ¢; > &;, {—j > 8 (respectively, {_; > &;,
Is i ) j).

Corollary 6.2 Let M be a bounded simple non-integrable q = sl(m | n)-module with
d(M) < min(m,n) — 1. Then d = 1 and Annyq)M contains kerT . or ker T

min*

Proof Without loss of generality we can assume that M is not integrable over sl (m).
Then Annyq)M = Annyq)L(A) where A is one of the weights in Lemma 6.1. It
suffices to show that L(}) is obtained by pullback from a weight D(m | n)p-module.
Consider the D (m | n)-module

+1 +1
F) =x{Clx{, ... X, X1, .0, X,

where k = 1,a ¢ Zyoif A = awj,anda € Cif A = —(1 + a) wk—1 + awy for
2<k<m.

Let fi = xl_l. . .xk__llxlf and let Y; denote the D(m |n)g-submodule in F'(})
generated by fi. Note that the weight of f; equals aw; for k = 1, and equals
—(1 + a)wg—1 + awy for 2 < k < m. Then Y7 is a simple D (m | n)p-module and its
pullback along T;arm is isomorphic to L(awy), since by direct computation one can
see that any vector annihilated by all x;_;9; for 2 < i < m is proportional to f;.
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For k > 1, consider the D(m | n)g-submodule Z; C Y} generated by x;_10;(f) for
2 <i <m.Then f ¢ Z; and hence Xy := Yi/Z; # 0. Furthermore, the pullback
along T}j{n of Xy is isomorphic to L(—(1 4 a) wx—1 + awy) (again because any vector
annihilated by all x;_19; is proportional to f). =]

In the rest of this section g = sl(co | 00) and A = D(oc0 | 00). We fix an exhaustion
g = 11_n>1 gk, where g ~ sl(k | k). By g& we denote the ideals of gp Wwith respective

roots ¢; — ¢ and §; — &, and we write Y= instead of T;IOO.

Lemma 6.3 Let M be a simple bounded weight g-module not integrable over g+ or
g~ Then Annyg)M contains ker Y, or respectively ker Y~, and therefore M is
multiplicity free.

Proof Letv € M be anonzero weight vector and let My := U (g) v.If k > d(M) then
Corollary 6.2 implies that Annyg,) M} contains ker T,ffk. Therefore AnnygyM =

h_r)n Annyg,) My contains ker Y* = lim ker Tki. Since every simple weight Ag-
module is multiplicity free, the second assertion follows. O

Remark 6.4 One may observe that Lemma 6.3 holds also for the Lie superalgebra
sl(oo|n), n € Z-g, where one replaces g™ by the simple ideal s[(co) of sl(oc0 | n)g
and Y+ by T

ooln*

The simple bounded integrable g-modules have been classified in [3, Theorem 5.9].
Therefore, in order to classify all simple bounded weight g-modules it suffices to prove
the following.

Theorem 6.5 Let M be a simple bounded non-integrable g-module. Then

(a) M is multiplicity free.

(b) M is obtained from a simple weight Ag-module by pullback via precisely one of
the homomorphisms Y or Y=, and accordingly either g~ or g+ acts integrably
on M.

(¢) Pullback via Y* establishes a bijection between isomorphism classes of simple,
non-integrable over g*, bounded g-modules and isomorphism classes of simple
non-integrable weight Ag-modules.

Proof (a) follows directly from Lemma 6.3.

(b) Let C* denote the image of Y*. It is easy to see that C* C Aj. Lemma 6.3
implies that every simple non-integrable weight g-module is obtained by pullback
from a simple C*- or a C~-module. Therefore, to prove (b) we need to show that a
weight g-module obtained by pullback from a weight C*-module is in fact obtained
by pullback from the restriction of a weight Ag-module to C*. It suffices to prove the
statement for C T, since the other case follows by applying the obvious automorphism
of g.

Recall the basis {u;};cz of h4 introduced in Sect.3.4. By a slight abuse of notation
we denote by the same letter the preimage of u; in the Cartan subalgebra of gl(co | 00).
Then {w; = u; —u_1|i # —1} is a basis of the Cartan subalgebra of g. Let N be a
simple weight g-module, ;1 € supp N and ¢ € C. Note that we can endow N with a
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gl(oo | oo)-module structure by setting u_jv := (¢ + v(u—1) — w(u—1)) v for every
v € N". We denote this gl(co | oo)-module by N (u, c).

We claim that if M is the pullback of some simple weight C*-module, then we can
find 1, ¢ such that the gl (oo | co)-module N (i, ¢) is the pullback of some weight Ag-
module. Clearly, we can assume that M is not trivial. We pick some « € supp M such
that x (w;) # 0 for some i < —2. One readily sees that the relation w? = w; implies
k(w;) = £1,0fori < —2. Next, we choose a negative i such that k (w;) # 0. It easily
follows from the linearity of « that k (w;) = 0 or k (w;) = « (w;) for every negative j.
Finally, we setc = Oifx(w;) = land ¢ = 1ifx(w;) = —1. Then supp M (x, ¢) C f)X
and, since the restriction of M (k, ¢) to g is the pullback of some weight C *_module,
the gl (oo | o0)-module M (k, c) is the pullback of a weight Ap-module.

(c) Follows from Proposition 3.23 (b). |
Remark 6.6 1t is likely that Theorem 6.5 holds also for s[(co | n).

Remark 6.7 Note that the definition of h; implies that if M is the pullback of a weight
Ag-module via YT (respectively, Y7), then for ), a;e; + > jbjs; € suppM we
have a; € {0, 1} (respectively, b; € {0, 1}).

Proposition 6.8 A simple bounded weight g-module M is determined, up to isomor-
phism and a possible parity change, by supp M.

Proof Here we consider the case of non-integrable modules, and leave as an exercise
to the reader to check our claim for integrable modules using the classification result of
[3]. Let us observe that if M and N are not integrable, and one is obtained by pullback
via YT while the other is obtained by pullback via Y, then M and N cannot have
the same support.

Now, without loss of generality we can assume that M and N are obtained
by pullback from simple weight Ag-modules X and Y, respectively. Suppose that
suppM = suppN but suppX #* suppY. Then suppX = suppY =+ v where
T = Y ;. o — &). Since the supports of X and Y are subsets of b, this is only
possible if supp X = {0}, supp ¥ = {£t} or vice versa. Then, both M and N are nec-
essarily trivial and we have a contradiction. Consequently, supp M = supp N implies
supp X = supp Y, and then the Ap-modules X and Y are isomorphic up to parity
change by Theorem 3.22 (a). O

Let M*(u) denote the simple weight g-module obtained by pullback from the
simple weight Ag-module Y (1) via T*.

Proposition 6.9 Every multiplicity free simple weight g-module M is isomorphic to
the pullback of a simple weight Ag-module via X or Y~ If M is obtained by pullback
via both YT and Y=, then M is isomorphic to V,T1V, V,, I1V,, C or TIC.

Proof By Theorem 6.5 all non-integrable simple bounded g-modules are pullbacks of
Ao-modules via Y+ or Y, and hence are multiplicity free. Therefore it suffices to
check the statement for integrable multiplicity free modules.

Theorem 5.9 in [3] implies that, in addition to the six modules V, I1V, V,, [1V,,
C, C there are four families of multiplicity free simple integrable g-modules SV,
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SU Ve, AGV, A7 Vi. If one observes that all other three families are obtained from
S7V by a twist from a proper automorphism of s[(co | 00), it remains to check that
any simple module of the form ij V is isomorphic to M~ (u4) or [IM ™ (u4) fora
weight g € b.

Recall from [3] that A is a sequence of pairs (a,, b,) where a; < ap < --- isa
sequence of positive integers and b, € {0, 1} with the condition that b, = b, 4 if
a, = ay+1. Moreover, ijV is defined as the direct limit h_r)n 1% §9r v, where V,, is
the natural sl(n | n)-module. Let

na = Z(bisi + ((li —da;j—1 _bi)(si)’
i>0

where we set ap = 0. Then a direct verification shows that
supp S’V = supp M~ (n.4)-

Since a simple multiplicity free weight g-module is determined by its support up
to isomorphism and a possible application by TT, we conclude that SV >~ M~ (14)
if the weight space (S%’V)*4 has parity equal to p(u.4), and STV =~ TIM ™ (1 4)
otherwise. In fact, the parity of the weight space (S7’V)*4 depends only on by: the
weight space (S’ V)*4 is purely even for by = 0 and purely odd for by = 1.

Finally, the fact that each of the six modules V, I1V, V,, I1V,, C, I1C is obtained
by pullback via both Y+ and Y~ is straightforward. O

Proposition 6.10 If M is a simple bounded weight g-module then M is semisimple as
a gg-module.

Proof The statement is clear for integrable modules since every bounded integrable
gp-module is semisimple by [15, Theorem 3.7]. Therefore, without loss of generality
we can assume that M is isomorphic to M~ (w). Consider the lattice Q(A); With
generators &; — £;,8; — J;. Set

Y(u' = e rw"

veputn(er=81)+0ag;

Then Y (n)" is a simple (Ag)g-module and Y (1) = €,z ¥ (n)". Obviously, the
semisimplicity of ¥ (v) over (Ag)g implies semisimplicity of M over gg. O

Theorem 6.11 (a) Let g = sl(00). The following ideals are all bounded primitive
ideals of U (g):

Annyg)S;,V, Annyg)S; Vs, ker YT, ker Y.
(b) Let g = osp(2a + 1|2b) (respectively, g = osp(2a | 2b)) with at least one of a

and b equal infinity. Then U(g) has exactly three bounded primitive ideals: the
augmentation ideal, Anny )V, and ker O 4, (respectively, ker Wq)p).
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Proof (a) follows from Corollary 3.26, Theorem 6.5, Proposition 6.8, and the classi-
fication of simple bounded integrable g-modules in [3]. (b) follows from Corollary
4.6. |

Lemma 6.12 Let B denote the category of bounded weight g-modules, and let M, N €
B. Denote by Qg the root lattice of g.

(a) Extly (M, N) = Exth (N, M).

(b) If M is simple and ExtIB(M, N) #0, then supp M C supp N + Q.

(©) Ext%3 (ME(w), IM*(v)) = 0 for all i, v.

(d) IfExtlB (MY (), MT(v)) #0, thenu — v € Q 4, or at least one of M™ () and
M~ (v) is trivial.

(e) If Extly (M* (1), M~ (v)) # 0, then at least one of M (1) and M~ (v) is isomor-
phicto V,V,, C.

(f) If M and N are simple and d(M) > 1 then Extl3 (M,N)=0.

Proof (a) We consider the (contravariant) functor of contragradient duality -¥ on the
category B. Then MY >~ M, NY ~ N and

Exth (M, N) = Extly, (NY, M¥) = Extly (N, M).

(b)Let0 - M — R — N — 0 represent a nonzero element of Ext%3 (M, N). Then,

for some weight vector v € N, the image of M in R is a submodule of U (g) v’ where
v’ is a preimage of v in R of weight «. Then supp M C k + Qg C supp N + Q4.

(c) follows from comparing the parity of weight spaces of the modules M (1) with
the parity of the weight spaces of the modules TTM*(v).

(d) follows from (b).

(e) For a g-module M and a Lie subsuperalgebra ¢ of g we denote by I'¢ M the set of
locally finite ¢-vectors, i.e.,

TeM = {m € M| dim span{m, km,k*m, ...} < oo forall k € ¢}.

The superspace I'¢ M is a g-submodule of M. This is established for Lie algebras
in particular in [14, Theorem 8.2], and the proof for Lie superalgebras is the same.

By the semisimplicity result in [3], at least one of MT(u) and M~ (v) can be
assumed non-integrable. Moreover, by (a), the statement is symmetric with respect to
M () and M~ (v). Without loss of generality, assume that M~ (v) is not integrable.
Consider a non-split exact sequence

0—> M (v)—> N—> M () — 0.
Since I'g+ M~ (v) = M~ (v), there exists a root a of g~ such that g, acts freely
on M~ (v). If 'y, N # O then I'g, N is a submodule of N which does not coincide

with M~ (v), i.e., the sequence splits. Consequently, 'y, N = 0. Hence, for any
0 € supp M () we have 0 + na € supp M~ (v) for n > 2. Thus, we get that
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0; € {0, 1} for all i > 0, and therefore for all i by Remark 6.7. This is possible if and
only if M~ (v) is isomorphic to V, V, or C.

(H) If d(M) > 1 then using [3, Theorem 5.9] and Proposition 2.2 one can verify that M
is isomorphic to S, V, 1S, V, S, Vi, or I1S,, V, for some Young diagram A with more
than one row or more than one column. Assume M = S, V and Ext! (M, N) # 0.
Then the semisimplicity result (Theorem 6.1) in [3] implies that N is not integrable.
Consider a non-split exact sequence

0O—-N—-R—-M-—O.

Suppose N >~ M~ (v) for some v. The argument in the proof of (e) can be easily
modified to show that (8, ) € {£1, 0} for any weight 6 of M and any root & of g*.
This implies that A consists of a single column, and hence d(M) = 1. Similarly, if
N =~ M™(v) one proves that A consists of a single row and d(M) = 1. m|
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