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Horizontal gene transfer (HGT) plays a significant role in rapidly

propagating diverse traits throughout bacterial populations,

thereby accelerating natural evolution and leading to complex

community structures. Critical gene transfer rates underlying

these occurrences dictate the efficiency and speed of gene

spread; these rates are often highly specific to HGT mechanism

and environmental context, and have historically been

challenging to reliably quantify. In this review, we examine

recent works that leverage rigorous quantitative methods to

precisely measure these rates in a variety of settings beginning

with in vitro studies and advancing to in situ measurements; we

emphasize contexts where quantification across multiple

scales of complexity has led to fundamental biological insights.

Finally, we highlight the applications of these measurements

and suggest potential methodological advances to improve our

understanding.
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Introduction
The discovery of horizontal gene transfer (HGT) in the

early 20th century was a milestone for classic microbiol-

ogy. By the 1950s, the three main mechanisms of HGT –

conjugation, transformation, and transduction – had been
www.sciencedirect.com 
identified [1–3] (Figure 2), though other less common

mechanisms have since been described. In each case,

mobile genetic elements (MGEs) are taken up by recipi-

ent cells that enjoy the benefits and suffer the costs of

associated gene maintenance and expression. These

MGEs take diverse forms including plasmids, integra-

tive conjugative elements, insertion sequences, trans-

posable elements, and gene cassettes/integrons [4].

Moreover, MGEs encode diverse cargo including meta-

bolic traits [5,6], virulence factors [7,8], and antibiotic

resistance genes [9,10]. In turn, the prevalence of par-

ticular MGEs, and the population-level advantages

derived thereof, are highly dependent on their associ-

ated transfer rates. These rates are often modulated by

specific cellular systems and factors, including gene

content, donor and recipient strain/species, cell physiol-

ogy, and environmental conditions [11,12�]. Here, we

highlight recent studies that utilize emergent quantita-

tive techniques to measure these transfer rates in

increasingly complex biological contexts: in vitro, in vivo,
and in situ. We emphasize computational and systems

biology approaches and briefly discuss the limitations

associated with each scale of measurement. Finally, we

discuss tangible applications of such insights and poten-

tial strategies to fill current knowledge gaps, with an

emphasis on microbial risk assessment, an exciting

example with public health applications. Overall, we

demonstrate that although each context has unique

drawbacks and strengths, all are invaluable in under-

standing HGT; ultimately, their combination generates

fundamental, actionable insights.

Quantifying HGT rates under different levels of
complexity
MGE transfer rates are universal to all scales and mecha-

nisms of HGT; nonetheless, each is subject to different

biophysical constraints. For example, conjugal plasmid

transfer rates (conjugation efficiencies) are highly depen-

dent on donor cell physiology, whereas recipient cell

competency is crucial to transformation efficiency. Given

the range of potentially interdependent HGT rate-mod-

ulating factors, a detailed understanding requires com-

plementary insights across multiple levels of complexity.

Below, we highlight key works that quantify gene transfer

rates across these contexts; whether in vitro, in vivo, or in
situ, each scale of investigation seeks to balance tradeoffs

between parallel objectives of quantitative precision and

biological relevance (Figure 1).
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Figure 1
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Quantification scales of HGT.

The three experimental scales at which to measure HGT are shown from left to right, with increasing biological complexity: in vitro, in vivo, and in

situ and metascale quantification. The definition of each is shown at the top, and the top advantages and disadvantages of each experimental

design are shown below.
In vitro quantification of HGT

By in vitro, we specifically refer to laboratory experi-

ments under highly controlled conditions. These

approaches rely on quantitative experimental techni-

ques including microfluidics [13], qPCR [14], and flow

cytometry [15,16], amongst others, to isolate and
Current Opinion in Microbiology 2021, 62:103–109 
quantify the biophysical transfer process [17�]. Despite

being inherently simplified reflections of natural HGT,

they are ideal environments to measure specific rates and

isolate modulating factors. For example, Perez-Mendosa

and de la Cruz used a novel luminescence assay, wherein

visible light emitted as a result of plasmid transfer was
www.sciencedirect.com
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Figure 2
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Conjugation Transformation Transduction

Mechanisms of horizontal gene transfer.
directly proportional to the conjugation efficiency, in

order to quantify the transfer rate of nearly 24 000

Escherichia coli mutants [18], each harboring a distinct

genetic modification; results indicated specific recipient

strain characteristics that impacted conjugation effi-

ciency. In these and other cases [19], rapid phenotyping

facilitated a broad exploration of relevant genetic space.

In vitro quantitative rigor is not unique to high through-

put techniques. For example, although several studies

demonstrated that antibiotics may increase conjugation

efficiency (e.g. rate of plasmid transfer), Lopatkin et al.
used selective agar plating to show that when the growth

of donors and recipients were examined, antibiotics did

not increase conjugation efficiencies for ten representa-

tive antibiotics and nine plasmids [13]. Importantly, they

estimated the transfer rate as a bimolecular kinetic

process, minimizing the impact of selection dynamics

and other confounding variables. The experimenters

further determined that conjugation dynamics are

impacted by diverse antibiotic-mediated selection,

wherein different drug treatments can favor bacteria

containing a resistance plasmid, thereby altering overall

population structure post-conjugation.
www.sciencedirect.com 
Because of their controlled nature, in vitro experiments

are also amenable to mathematical modeling, which can

grant insight into both gene transfer rates and resulting

dynamics [20]. For example, Cooper et al. [21] observed

that Acinetobacter baylyi predation increased HGT via

transformation due to the release of DNA; they used a

mathematical model to determine conditions favoring

HGT, which suggested that predation may serve as a

microbial adaptation strategy. Computational modeling

studies can also lead to counterintuitive insights not

immediately evident from in vitro work: Van Dijk et al.
[22��] used an in silico model of in vitro conjugation to

show that although HGT is metabolically costly, suffi-

ciently rapid transfer can maintain minimally beneficial

genes within a population. Complementing this work,

Prensky et al. devised a novel method to quantify the

transient metabolic burden imposed by a conjugative

plasmid [23]; computational modeling of this phenome-

non revealed that accounting for the time window imme-

diately following conjugation was critical to accurately

describe long-term population dynamics. These results

are highly relevant to clinical settings, where León-Sam-

pedro utilized mechanistic modeling to describe the
Current Opinion in Microbiology 2021, 62:103–109
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interplay between inter-patient and intra-patient antibi-

otic resistance dissemination [24]. Collectively, in addi-

tion to isolating specific transfer processes, these studies

illustrate that biophysical insights must be combined with

environmental and growth contexts to provide a com-

plete, informative biological picture.

In vivo quantification of HGT

In contrast to their in vitro counterparts, in vivo
approaches trade a degree of controllability to incorporate

the complexity inherent in natural systems. Often, in vivo
works utilize engineered/well-characterized strains in

native environmental matrices (including animal models

[25,26�] and biofilms [27,28], amongst others) and/or

naturally representative bacterial communities [27,29]

thereby potentially confirming in vitro results. For exam-

ple, Ohlsen et al. [30] quantified gene transfer using filter

mating on sewage agar plates and in liquid sewage to show

that antibiotics do not increase plasmid conjugation rates

in raw sewage. These and other [31] results confirm

Lopatkin’s in vitro findings and more strongly inform

our understanding of HGT-mediated antibiotic selection

dynamics in increasingly natural environments.

In many in vivo systems, direct transfer rate quantification

is prohibitively complex; in these cases, proxy measures

can be used to derive underlying rate parameters. For

example, a series of compelling studies utilized engi-

neered derivatives of the RP4 plasmid [27,29,32,33] to

seed traceable plasmids into native bacterial communi-

ties; although kinetic transfer rates could not be reliably

measured, modeling population dynamics elucidated the

relative permissiveness (transconjugants generated per

potential recipient) of diverse recipient strains. This is

a common theme in in vivo studies: the use of multiple

strains and species in mixed populations is a powerful

approach to observe dynamics in an environment more

closely resembling nature [34].

The use of increasingly complex strains, populations, and

environments also enables in vivo studies to interrogate

naturally occurring mechanisms and environmental fac-

tors that modulate, and in some cases, inhibit, the transfer

of genes. For example, Domenech et al. demonstrated

that chemical competence-blockers significantly inhib-

ited the transformation efficiency of pathogenic strains,

without affecting host growth or antibiotic efficacy, within

a mouse infection model [35]; these results were consis-

tent with in vitro experiments, and could eventually be

used to mitigate resistance spread. Moreover, Nordgard

et al. [36] showed that the transformation efficiencies of A.
baylyi were reduced 2–6 orders of magnitude in the mouse

gastrointestinal tract. In another setting, Lécuyer et al.
[28] demonstrated that transfer rates of the integrative

conjugative element ICEBs1 between Bacillus subtilis
strains were significantly elevated in biofilm communi-

ties. These results further highlight that in vivo HGT
Current Opinion in Microbiology 2021, 62:103–109 
transfer rates must be interpreted in conjunction with

complementary in vitro studies to build a definitive

understanding of specific host–microbe–environmental

relationships.

In situ and metascale quantification of HGT

In the pursuit of quantitative insights, in vitro and in vivo
studies necessarily admit varying degrees of abstraction,

chief among them their relatively brief timespan of

interest; population-level impacts of HGT manifest far

beyond the immediate implications of gene transfer. To

that end, in situ and metascale studies of HGT emphasize

how MGE dissemination can affect bacterial population

structure and phylogeny on evolutionary timescales. For

example, multiple studies have directly connected both

bacterial transduction and conjugation to increased com-

munity diversity; these works demonstrate that elevated

gene transfer rates increase the likelihood of pathogenic-

ity [37] and serve as a potential offensive mechanism

against the human immune system [38]. Critically, these

studies exemplify complex outcomes that can potentially

be predicted with relatively simple rate parameters.

These successes notwithstanding, the direct quantifica-

tion of specific biophysical transfer rates remains chal-

lenging in in situ settings; to that end, bioinformatic

approaches use phylogenetic reconstructions to estimate

evolutionary rates (e.g. over longer periods of time) as a

function of recombination events [39] and dispersal of

MGEs [40]; these indirect methods are particularly criti-

cal in environments wherein unknown/unpredictable

commingled populations interact [41]. Current research

focused on wastewater treatment plants (WWTP) repre-

sents a prime example of in situ analysis in HGT contexts.

Indeed, debate remains regarding the extent of HGT,

including host ranges, rates, and the environmental fac-

tors that control them. While Munk et al. [42] pointed to

evidence from two Danish WWTPs that the prevalence

of HGT in WWTPs is likely comparable to soil, exami-

nation of three WWTPs in Hong Kong by Yin et al. [43]

suggested that the potential for HGT was much higher

than in soil. In attempting to overcome the limitations of

specific experimental settings, metagenomic sequencing

is a powerful tool for the exploration of the gene content

of microbial communities, without a priori selection of

target genes or hosts, and is a promising approach towards

untangling such questions. For example, Dai et al. [44]

applied nanopore sequencing to demonstrate that the

relative abundance of plasmid-associated ARGs was sig-

nificantly lower in activated sludge environments com-

pared to the upstream influent sewage. Additional studies

(e.g. through MetaCompare [45] and NanoARG) have

synthesized ARG annotations across various MGEs to

develop empirical ‘resistome risk’ scores; these metrics, in

concert with bioinformatic approaches for example, the

least-common-ancestor neural network approach applied

in PlasFlow [46], can predict taxonomic host range and
www.sciencedirect.com
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therefore help identify hot spots for further study, includ-

ing direct in vitro and in vivo HGT rate measurements.

Applications
Distilling the complexity of HGT, regardless of the

mechanism, environment, and component species, into

a defined set of transfer rates, is particularly advantageous

from a systems biology perspective. Although this goal

has yet to be realized, several aforementioned studies

have incorporated insights from multiple scales of com-

plexity to build phenomenological models applicable to

plant, animal, and human health, as well as environmental

intervention and risk assessment [47��,48]. This latter

field, often termed microbial risk assessment (QMRA),

combines hazard identification, exposure assessment,

dose response analysis, and risk characterization to relate

pathogen occurrence in various exposure scenarios (e.g.

drinking water, food, or clinical environments) to a prob-

ability of infection, illness, and/or death. To date, QMRA

for antimicrobial resistance has been limited by difficul-

ties in predicting HGT impacts in both the environment

and human body [49]. To that end, Chandrasekaran et al.
[50] recently proposed a novel dose response model

incorporating HGT effects; their results suggest that

HGT plays a potentially significant role when cell densi-

ties were �1010 cells/mL, although these effects were

dependent on the conjugation efficiency, assumed to be

10�11 mL/cells-day. Similarly, Njage and Buys [51] mod-

ified exposure estimates derived for a population con-

suming lettuce contaminated with extended spectrum

beta-lactamase-resistant E. coli, given conjugative AmpC

gene transfer frequencies developed from in vitro experi-

mental data. Using a sensitivity analysis, the authors

identified the HGT conjugation frequency as one of

the influential variables in a probabilistic Monte Carlo

risk model. In combination, these assessments indicate a

need for (1) computational frameworks for integrating

HGT rates into risk models as well as (2) information for

populating HGT rate parameters as a function of relevant

sets of conditions. These and similar studies are exciting

emerging frontiers in microbiology.

Perspectives
Despite the many layers of complexity that inevitably

hamper rigorous HGT transfer rate measurements, these

parameters ultimately represent kinetic processes, as in

any enzymatic reaction. In reality, a myriad biological

components and processes modulate these rates (and

therefore their reliability and predictive power). Although

in vitro, in vivo, and in situ approaches each present unique

(dis)advantages to disentangle these factors (Figure 1),

we are only recently beginning to appreciate the

untapped potential of applying all three in tandem.

Increasingly, the integration of diverse quantitative

metrics with sufficient informational context provides

opportunities for powerful frameworks including machine

learning/artificial intelligence (ML/AI); these approaches
www.sciencedirect.com 
are optimized to infer relationships between seemingly

disparate data and crystallize a predictive relationship

that often is impossible to ascertain from limited data

sets (e.g. individual studies). To generate relevant (and

interpretable) insights, the synthesis of multiple scales

and types of data (ranging from biochemical assays to

phylogenetic relationships) is critical; in vitro, in vivo, and

in situ studies together provide complementary informa-

tion necessary to generate successful and applicable

results [52]. Furthermore, these frameworks potentially

enable longitudinal predictions of population dynamics in
situ, allowing researchers to directly design and test for

example, interventional strategies. Indeed, given the

rapid scaling and technical advances in genomic sequenc-

ing, we envision that future HGT studies will close the

complexity loop. The studies will pair bioinformatic-

derived evolutionary insights with in vitro strain charac-

terization to estimate fundamental biophysical rates. By

combining results across data scales, these efforts will

yield relevant mechanistic insights that could then be

confidently translated to future clinical and environmen-

tal applications.
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