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Horizontal gene transfer (HGT) plays a significant role in rapidly
propagating diverse traits throughout bacterial populations,
thereby accelerating natural evolution and leading to complex
community structures. Critical gene transfer rates underlying
these occurrences dictate the efficiency and speed of gene
spread; these rates are often highly specific to HGT mechanism
and environmental context, and have historically been
challenging to reliably quantify. In this review, we examine
recent works that leverage rigorous quantitative methods to
precisely measure these rates in a variety of settings beginning
with in vitro studies and advancing to in situ measurements; we
emphasize contexts where quantification across multiple
scales of complexity has led to fundamental biological insights.
Finally, we highlight the applications of these measurements
and suggest potential methodological advances to improve our
understanding.
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Introduction

The discovery of horizontal gene transfer (HGT) in the
early 20th century was a milestone for classic microbiol-
ogy. By the 1950s, the three main mechanisms of HGT -
conjugation, transformation, and transduction — had been
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identified [1-3] (Figure 2), though other less common
mechanisms have since been described. In each case,
mobile genetic elements (MGEs) are taken up by recipi-
ent cells that enjoy the benefits and suffer the costs of
associated gene maintenance and expression. These
MGEs take diverse forms including plasmids, integra-
tive conjugative elements, insertion sequences, trans-
posable elements, and gene cassettes/integrons [4].
Moreover, MGEs encode diverse cargo including meta-
bolic traits [5,6], virulence factors [7,8], and antibiotic
resistance genes [9,10]. In turn, the prevalence of par-
ticular MGEs, and the population-level advantages
derived thereof, are highly dependent on their associ-
ated transfer rates. These rates are often modulated by
specific cellular systems and factors, including gene
content, donor and recipient strain/species, cell physiol-
ogy, and environmental conditions [11,12°]. Here, we
highlight recent studies that utilize emergent quantita-
tive techniques to measure these transfer rates in
increasingly complex biological contexts: iz vitro, in vivo,
and 7z situ. We emphasize computational and systems
biology approaches and briefly discuss the limitations
associated with each scale of measurement. Finally, we
discuss tangible applications of such insights and poten-
tial strategies to fill current knowledge gaps, with an
emphasis on microbial risk assessment, an exciting
example with public health applications. Overall, we
demonstrate that although each context has unique
drawbacks and strengths, all are invaluable in under-
standing HGT; ultimately, their combination generates
fundamental, actionable insights.

Quantifying HGT rates under different levels of
complexity

MGE transfer rates are universal to all scales and mecha-
nisms of HG'T; nonetheless, each is subject to different
biophysical constraints. For example, conjugal plasmid
transfer rates (conjugation efficiencies) are highly depen-
dent on donor cell physiology, whereas recipient cell
competency is crucial to transformation efficiency. Given
the range of potentially interdependent HG'T' rate-mod-
ulating factors, a detailed understanding requires com-
plementary insights across multiple levels of complexity.
Below, we highlight key works that quantify gene transfer
rates across these contexts; whether iz vitro, in vivo, or in
situ, each scale of investigation seeks to balance tradeoffs
between parallel objectives of quantitative precision and
biological relevance (Figure 1).
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Quantification scales of HGT.

The three experimental scales at which to measure HGT are shown from left to right, with increasing biological complexity: in vitro, in vivo, and in
situ and metascale quantification. The definition of each is shown at the top, and the top advantages and disadvantages of each experimental

design are shown below.

In vitro quantification of HGT

By in vitro, we specifically refer to laboratory experi-
ments under highly controlled conditions. These
approaches rely on quantitative experimental techni-
ques including microfluidics [13], gPCR [14], and flow
cytometry [15,16], amongst others, to isolate and

quantify the biophysical transfer process [17°]. Despite
being inherently simplified reflections of natural HGT,
they are ideal environments to measure specific rates and
isolate modulating factors. For example, Perez-Mendosa
and de la Cruz used a novel luminescence assay, wherein
visible light emitted as a result of plasmid transfer was
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Figure 2

Quantifying horizontal gene transfer in complex systems Moralez et al.

Bacterial HGT occurs primarily by three main mechanisms, namely conjugation, transformation, and transduction,
although less common modes of HGT have been described in the literature. These mechanisms differ chiefly in the source
of, and method by which, a particular MGE is delivered to the recipient cell. Despite these differences, methods used to
quantify HGT rely on cell-level assays, and are thus generally applicable regardless of the mechanism.

Conjugation

O

During  conjugation, MGEs are
transferred from a donor to a recipient
via direct contact through a bridge-like
connection known as the mating pair
formation. MGE transfer is initiated
when one strand of DNA is nicked and
unwound. A copy of this strand is then
generated and transferred to the
recipient, where the complementary
strand is synthesized. Upon transfer, the
recipient is considered a transconjugant.

Transformation

During transformation, MGEs are taken
up by bacterial cells from their
surrounding environment through the
cell membrane. In order for
transformation to occur, the recipient
cell must first be in a state of
competency. A cell's competency is
determined by expression levels of
specific genes that typically govern
transformation-specific processes, and
often depends on environmental cues.

Transduction

®

Transduction refers to the transfer of
MGEs packaged into a viral vector from
a donor cell, and delivered to a
recipient cell. While viruses are the
main vehicle of transduction, resident
bacteriophages may take up MGE(s)
from the host cell and incorporate them
into their capsid, referred to as a
defective prophages, which may then
go on to infect another bacterial cell,
effectively transferring the MGE.

105

Current Opinion in Microbiology

Mechanisms of horizontal gene transfer.

directly proportional to the conjugation efficiency, in
order to quantify the transfer rate of nearly 24 000
Escherichia coli mutants [18], each harboring a distinct
genetic modification; results indicated specific recipient
strain characteristics that impacted conjugation effi-
ciency. In these and other cases [19], rapid phenotyping
facilitated a broad exploration of relevant genetic space.
In vitro quantitative rigor is not unique to high through-
put techniques. For example, although several studies
demonstrated that antibiotics may increase conjugation
efficiency (e.g. rate of plasmid transfer), Lopatkin ¢z a/.
used selective agar plating to show that when the growth
of donors and recipients were examined, antibiotics did
not increase conjugation efficiencies for ten representa-
tive antibiotics and nine plasmids [13]. Importantly, they
estimated the transfer rate as a bimolecular kinetic
process, minimizing the impact of selection dynamics
and other confounding variables. The experimenters
further determined that conjugation dynamics are
impacted by diverse antibiotic-mediated selection,
wherein different drug treatments can favor bacteria
containing a resistance plasmid, thereby altering overall
population structure post-conjugation.

Because of their controlled nature, 7z vitro experiments
are also amenable to mathematical modeling, which can
grant insight into both gene transfer rates and resulting
dynamics [20]. For example, Cooper e a/. [21] observed
that Acinetobacter baylyi predation increased HGT via
transformation due to the release of DNA; they used a
mathematical model to determine conditions favoring
HGT, which suggested that predation may serve as a
microbial adaptation strategy. Computational modeling
studies can also lead to counterintuitive insights not
immediately evident from iz vitro work: Van Dijk ez al.
[22°°] used an iz silico model of in vitro conjugation to
show that although HG'T' is metabolically costly, suffi-
ciently rapid transfer can maintain minimally beneficial
genes within a population. Complementing this work,
Prensky ez al. devised a novel method to quantify the
transient metabolic burden imposed by a conjugative
plasmid [23]; computational modeling of this phenome-
non revealed that accounting for the time window imme-
diately following conjugation was critical to accurately
describe long-term population dynamics. These results
are highly relevant to clinical settings, where Leén-Sam-
pedro utilized mechanistic modeling to describe the
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interplay between inter-patient and intra-patient antibi-
otic resistance dissemination [24]. Collectively, in addi-
tion to isolating specific transfer processes, these studies
illustrate that biophysical insights must be combined with
environmental and growth contexts to provide a com-
plete, informative biological picture.

In vivo quantification of HGT

In contrast to their iz vitro counterparts, iz vivo
approaches trade a degree of controllability to incorporate
the complexity inherent in natural systems. Often, iz vivo
works utilize engineered/well-characterized strains in
native environmental matrices (including animal models
[25,26°] and biofilms [27,28], amongst others) and/or
naturally representative bacterial communities [27,29]
thereby potentially confirming 7z vitro results. For exam-
ple, Ohlsen e7 a/. [30] quantified gene transfer using filter
mating on sewage agar plates and in liquid sewage to show
that antibiotics do not increase plasmid conjugation rates
in raw sewage. These and other [31] results confirm
Lopatkin’s /z vitro findings and more strongly inform
our understanding of HG'T-mediated antibiotic selection
dynamics in increasingly natural environments.

In many 7z vivo systems, direct transfer rate quantification
is prohibitively complex; in these cases, proxy measures
can be used to derive underlying rate parameters. For
example, a series of compelling studies utilized engi-
neered derivatives of the RP4 plasmid [27,29,32,33] to
seed traceable plasmids into native bacterial communi-
ties; although kinetic transfer rates could not be reliably
measured, modeling population dynamics elucidated the
relative permissiveness (transconjugants generated per
potential recipient) of diverse recipient strains. This is
a common theme in /z vivo studies: the use of multiple
strains and species in mixed populations is a powerful
approach to observe dynamics in an environment more
closely resembling nature [34].

The use of increasingly complex strains, populations, and
environments also enables 7z vivo studies to interrogate
naturally occurring mechanisms and environmental fac-
tors that modulate, and in some cases, inhibit, the transfer
of genes. For example, Domenech ¢z @/. demonstrated
that chemical competence-blockers significantly inhib-
ited the transformation efficiency of pathogenic strains,
without affecting host growth or antibiotic efficacy, within
a mouse infection model [35]; these results were consis-
tent with 7z vitro experiments, and could eventually be
used to mitigate resistance spread. Moreover, Nordgard
et al. [36] showed that the transformation efficiencies of A.
baylyi were reduced 2—-6 orders of magnitude in the mouse
gastrointestinal tract. In another setting, L.écuyer e a/.
[28] demonstrated that transfer rates of the integrative
conjugative element ICEBs1 between Bacillus subtilis
strains were significantly elevated in biofilm communi-
ties. These results further highlight that iz vive HG'T

transfer rates must be interpreted in conjunction with
complementary iz vitro studies to build a definitive
understanding of specific host-microbe—environmental
relationships.

In situ and metascale quantification of HGT

In the pursuit of quantitative insights, iz vitro and in vivo
studies necessarily admit varying degrees of abstraction,
chief among them their relatively brief timespan of
interest; population-level impacts of HGT' manifest far
beyond the immediate implications of gene transfer. To
that end, 77 situ and metascale studies of HG'T emphasize
how MGE dissemination can affect bacterial population
structure and phylogeny on evolutionary timescales. For
example, multiple studies have directly connected both
bacterial transduction and conjugation to increased com-
munity diversity; these works demonstrate that elevated
gene transfer rates increase the likelihood of pathogenic-
ity [37] and serve as a potential offensive mechanism
against the human immune system [38]. Critically, these
studies exemplify complex outcomes that can potentially
be predicted with relatively simple rate parameters.
These successes notwithstanding, the direct quantifica-
tion of specific biophysical transfer rates remains chal-
lenging in 7z situ settings; to that end, bioinformatic
approaches use phylogenetic reconstructions to estimate
evolutionary rates (e.g. over longer periods of time) as a
function of recombination events [39] and dispersal of
MGEs [40]; these indirect methods are particularly criti-
cal in environments wherein unknown/unpredictable
commingled populations interact [41]. Current research
focused on wastewater treatment plants (WW'TP) repre-
sents a prime example of 7z situ analysis in HG'T contexts.
Indeed, debate remains regarding the extent of HGT,
including host ranges, rates, and the environmental fac-
tors that control them. While Munk ez a/. [42] pointed to
evidence from two Danish WW'T'Ps that the prevalence
of HG'T in WW'T'Ps is likely comparable to soil, exami-
nation of three WW'TPs in Hong Kong by Yin ez a/. [43]
suggested that the potential for HGT was much higher
than in soil. In attempting to overcome the limitations of
specific experimental settings, metagenomic sequencing
is a powerful tool for the exploration of the gene content
of microbial communities, without @ priori selection of
target genes or hosts, and is a promising approach towards
untangling such questions. For example, Dai ¢z a/. [44]
applied nanopore sequencing to demonstrate that the
relative abundance of plasmid-associated ARGs was sig-
nificantly lower in activated sludge environments com-
pared to the upstream influent sewage. Additional studies
(e.g. through MetaCompare [45] and NanoARG) have
synthesized ARG annotations across various MGEs to
develop empirical ‘resistome risk’ scores; these metrics, in
concert with bioinformatic approaches for example, the
least-common-ancestor neural network approach applied
in PlasFlow [46], can predict taxonomic host range and

Current Opinion in Microbiology 2021, 62:103-109

www.sciencedirect.com



Quantifying horizontal gene transfer in complex systems Moralez et al. 107

therefore help identify hot spots for further study, includ-
ing direct 7z vitro and in vivo HG'T rate measurements.

Applications

Distilling the complexity of HGT, regardless of the
mechanism, environment, and component species, into
a defined set of transfer rates, is particularly advantageous
from a systems biology perspective. Although this goal
has yet to be realized, several aforementioned studies
have incorporated insights from multiple scales of com-
plexity to build phenomenological models applicable to
plant, animal, and human health, as well as environmental
intervention and risk assessment [47°°,48]. This latter
field, often termed microbial risk assessment (QMRA),
combines hazard identification, exposure assessment,
dose response analysis, and risk characterization to relate
pathogen occurrence in various exposure scenarios (e.g.
drinking water, food, or clinical environments) to a prob-
ability of infection, illness, and/or death. T'o date, QMRA
for antimicrobial resistance has been limited by difficul-
ties in predicting HGT impacts in both the environment
and human body [49]. To that end, Chandrasekaran ez a/.
[50] recently proposed a novel dose response model
incorporating HG'T effects; their results suggest that
HGT plays a potentially significant role when cell densi-
ties were ~10'" cells/mL, although these effects were
dependent on the conjugation efficiency, assumed to be
10~"" mL/cells-day. Similarly, Njage and Buys [51] mod-
ified exposure estimates derived for a population con-
suming lettuce contaminated with extended spectrum
beta-lactamase-resistant £. co/i, given conjugative AmpC
gene transfer frequencies developed from iz vitro experi-
mental data. Using a sensitivity analysis, the authors
identified the HGT conjugation frequency as one of
the influential variables in a probabilistic Monte Carlo
risk model. In combination, these assessments indicate a
need for (1) computational frameworks for integrating
HGTT rates into risk models as well as (2) information for
populating HG'T rate parameters as a function of relevant
sets of conditions. These and similar studies are exciting
emerging frontiers in microbiology.

Perspectives

Despite the many layers of complexity that inevitably
hamper rigorous HGT transfer rate measurements, these
parameters ultimately represent kinetic processes, as in
any enzymatic reaction. In reality, a myriad biological
components and processes modulate these rates (and
therefore their reliability and predictive power). Although
in vitro, in vivo, and iz situ approaches each present unique
(dis)advantages to disentangle these factors (Figure 1),
we are only recently beginning to appreciate the
untapped potential of applying all three in tandem.
Increasingly, the integration of diverse quantitative
metrics with sufficient informational context provides
opportunities for powerful frameworks including machine
learning/artificial intelligence (ML/AI); these approaches

are optimized to infer relationships between seemingly
disparate data and crystallize a predictive relationship
that often is impossible to ascertain from limited data
sets (e.g. individual studies). To generate relevant (and
interpretable) insights, the synthesis of multiple scales
and types of data (ranging from biochemical assays to
phylogenetic relationships) is critical; iz vitro, in vivo, and
in situ studies together provide complementary informa-
tion necessary to generate successful and applicable
results [52]. Furthermore, these frameworks potentially
enable longitudinal predictions of population dynamics 7z
situ, allowing researchers to directly design and test for
example, interventional strategies. Indeed, given the
rapid scaling and technical advances in genomic sequenc-
ing, we envision that future HG'T studies will close the
complexity loop. The studies will pair bioinformatic-
derived evolutionary insights with 7z vitro strain charac-
terization to estimate fundamental biophysical rates. By
combining results across data scales, these efforts will
yield relevant mechanistic insights that could then be
confidently translated to future clinical and environmen-
tal applications.
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