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To Michel Duflo, with admiration.

ABSTRACT. We review old and new results concerning the DS functor and associ-
ated varieties for Lie superalgebras. These notions were introduced in the unpub-
lished manuscript [DS] by Michel Duflo and the third author. This paper includes
the results and proofs of the original manuscript, as well as a survey of more recent
results.
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The DS functor was introduced by Michel Duflo and the third author approxi-
mately 20 years ago, but the original manuscript [DS| was never published. Since
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then much progress has been made in the study of the DS functor. This paper in-
cludes the results of the original manuscript, as well as a survey of more recent results
obtained by different authors.

The DS functor has a large and growing list of applications throughout the lit-
erature. It was used in [S2] to prove the Kac-Wakimoto conjecture (see Section 7);
in [IRS] to describe the supercharacter ring for p(n) (see Section 8); in [HPS] to
study important sl(co)-modules (see Section 9); in [ES2] to give a formula for the
superdimension of p(n)-modules; in [HsW] to give a new proof of the superdimension
formula for GL(m|n)-modules; in [Hs] to obtain reductive envelopes of certain super-
groups; in [BKN2| to compute complexity of certain modules over gl(m|n); in [CH]
to classify the indecomposable summands of tensor powers of the standard represen-
tation of OSP(m|2n); and in [EHS]| to construct universal tensor categories. The DS
functor has been applied to study Deligne categories in numerous papers (see e.g.,
[CH, EhSt2, EHS, ES1]).

The associated variety of a module over a Lie superalgebra g = gog @ g is a subva-
riety of the cone X C g; of self-commuting odd elements. The cone X was studied
in [Grl, Gr2, Gr3|, where geometric properties of X were used to obtain important
results about the cohomology of Lie superalgebras.

Now if x € X and M is a g-module, then 2%(M) = 0 and hence we can take the
cohomology M, = Kerxzy//Imxy. The assignment M +— M, defines the Duflo-
Serganova functor DS, : mod(g) — mod(g,), where g, = Ker adz/Im ad x is a Lie
algebra. It is easy to see that this functor is symmetric monoidal. This obvious but
remarkable fact does not have an analogue in the theory of Harish-Chandra modules
or in the theory of restricted Lie algebras.

For the basic classical Lie superalgebras, DS,(L) has been computed for ev-
ery simple finite-dimensional module L. These computations show that DS, (L) is
semisimple and “pure” in the following sense: for every simple g,-module L’ one has
[DS.(L): L']-[DS,(L) : IIL'] = 0. It would be interesting to find a conceptual proof
of these facts, see Section 12 for details.

The associated variety Xj; for a g-module M is the closure in X of the subset
consisting of all elements x € X for which M, is nonzero. The associated variety
for a module over a Lie superalgebra can be seen as an analogue of the associ-
ated varieties for Harish-Chandra modules, if we think about a Lie superalgebra
g = go ® g1 as a symmetric pair. Associated varieties for Harish-Chandra modules
have many interesting applications in the classical representation theory (see, for ex-
ample, [V, KO, NOT]). While the associated variety in the theory of Harish-Chandra
modules is trivial if a module is finite-dimensional, finite-dimensional modules over
Lie superalgebras have interesting associated varieties. Some applications of these
associated varieties are given in Sections 7 and 11.

On the other hand, the associated variety for a module over a Lie superalgebra
is also an analogue of the rank variety for restricted Lie algebras in positive char-
acteristic, see [FP]. For example, in many cases these associated varieties for Lie
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superalgebras detect projectivity in the category of finite-dimensional g-modules.
This is proven in Section 10 of the present paper; the original proof in the preprint
[DS] had a mistake.

In the category of finite-dimensional g-modules, associated varieties are closely
related to blocks and central characters, see Theorem 6.3 and Theorem 6.4. In the
original preprint [DS], Theorem 6.4 was proven for gl(m|n), now it is known for all
basic classical superalgebras ([S2, M]). It also seems that associated varieties can
be used to study category O for Kac-Moody superalgebras. Some results in this
direction are obtained in [CS] and [GS].

Finally, let us mention that in contrast with restricted Lie algebras, [FP], the
cohomological support varieties defined and studied in [BKN1] and [BKN2] are quite
different from the varieties studied in this paper. This may indicate existence of a
third definition which interpolates these two constructions.

1.1. Acknowledgments. M.G. was supported by ISF Grant 1957/21. C.H. was
supported by ISF Grant 1221/17. V.S. was supported by NSF Grant 2001191. A.S.
was supported by ISF Grant 711/18 and NSF-BSF Grant 2019694.

We would like to thank Kevin Coulembier, Inna Entova-Aizenbud, Thorsten Hei-
dersdorf, Vladimir Hinich, Victor Kac, Victor Ostrik, Ivan Penkov, Julia Pevtsova,
Shifra Reif, and Ilya Zakharevich for helpful comments and suggestions. Needless
to say, this paper would not have been possible without the original contribution of
Michel Duflo.

1.2. Notation. Throughout this paper (and in particular in Sections 4-9 and 12),
we will primarily focus on the following important list of Lie superalgebras, which by
slight abuse of terminology we will refer to as classical Lie superalgebras:

(1.1) sl(m|n), m #n, gl(m|n), osp (m|2n), D (2|1;a), F(4), G(3), p(n), q(n).

Note that each superalgebra appearing in this list has a “cousin” that is a classical Lie
superalgebra in the sense of [K1]. Additionally, by basic classical Lie superalgebra,
we will mean a superalgebra from the above list, excluding p(n) and q(n). We will
sometimes refer to the superalgebras D(2|1;a), G(3) and F'(4) as “exceptional” and
to other superalgebras from our list as “non-exceptional”.

1.2.1. List of notation. We present below a table of the commonly used notation in
the article:

e mod(g) the category of g-modules.

e Fin(g) the category of finite-dimensional g-modules.

e F(g) the category of finite-dimensional g-modules semisimple over gg.

e p a parity function on weights.

e mod| (g) the category of g-modules with generalized central character x of
order r.

e mod,(g) category of g-modules admitting generalized central character x.
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e Res] the restriction functor from g-modules to ¢-modules.

e Indg the induction functor.

e X the self-commuting cone of g.

o X, the set of rank k elements in X.

o Oy the structure sheaf on X.

e O the differential on Ox ® M in Section 11.

X the associated variety of M.

DS, the Duflo-Serganova functor determined by = € X.

DS" the Duflo-Serganova functor determined by a rank r element.

N : Z2(g) — Z(g.) the induced map on center.

o, the involution of g, for classical Lie superalgebras (3.1).

2 (C) the Grothendieck group of a full abelian subcategory C of mod(g).

M, the image of a module M in . (C).

#_(C) the reduced Grothendieck group (quotient by M,, = —(IIM),,).

[M] the image of a module M in J#_(C).

1 (C) the character group (quotient by M, = (ILM),,).

sch M the supercharacter of M.

ds, the map induced by the functor DS, on reduced Grothendieck groups.

ds" the map ds, for a rank r element x.

Gy the simply connected, connected Lie group corresponding to gg.

A the roots of g with respect to a Cartan subalgebra of gg.

W the Weyl group.

p the Weyl vector.

L(\) = Ly(A) is the irreducible g-module of highest weight A with respect to

a chosen Borel subalgebra.

atyp x, atyp A the degree of atypicality of x, A resp.

e [M : L] the multiplicity of a simple module L in a finite-length module M.

e [M : L],on the non-graded multiplicity of a simple module L in M, meaning
the number of times both L and IIL appear.

e R the super Weyl denominator.

e i(\) a virtual Kac module.

2. DEFINITIONS AND BASIC PROPERTIES

Our ground field is C, and by Y we denote the Zariski closure of a subset Y of an
affine space. By II we denote the change of parity functor in the category of vector
superspaces.

Throughout this paper we assume that the Lie superalgebra g = go & g, is finite
dimensional. Let Gy denote a simply-connected connected algebraic group with Lie
algebra go. We will write Fin(g) for the category of finite-dimensional g-modules, and
F(g) for the full subcategory of Fin(g) consisting of modules which are semisimple
over go. The category F(g) will be the main object of study after Section 2.
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2.1. The associated variety X,;. Let
X={rem|lr,a]=0}.

It is clear that X is a Gy-invariant Zariski closed cone in g;.

Let M be a g-module. For every x € X, the corresponding element x,; € End¢ (M)
satisfies 23, = 0. Set

M, = Kerxy /xM
and define
Xy i={x e X | M, #0}.
We call X, the associated variety of M.
Lemma 2.1. If M is a finite-dimensional (g, Go)-module, then X is Zariski closed
Go-invariant subvariety.
Proof. For a finite-dimensional M,
X\ Xy = {z € X | rank xpy = dim My = dim M, }.

Hence X, is Zariski closed. Now M is a Ggo-module. For each g € Gg and z € M
one has

which implies the lemma. O
2.2. The Lie superalgebra g,. For z € X, we define

gx = gm/[‘ragL
where g* := Kerad, and [z, g] := Im ad,.
The next lemma follows from the definitions.

Lemma 2.2. Let g be a finite-dimensional Lie superalgebra and x € X.
(1) Then [x,g| is an ideal in g*, and hence g, has the natural structure of a Lie

superalgebra.
(2) If M is a g-module, then M, is a g,-module.

Now we observe that for each x € X, the correspondence M — M, is functorial.
Let mod(g) (respectively, mod(g,)) denote the category of all g-modules (respectively,
g.-modules).

Definition 2.3. The Duflo-Serganova functor DS, : mod(g) — mod(g,) is defined
by DS,(M) := M,.

The functor DS, has many nice properties. The following lemma shows that D.S,
is a symmetric monoidal tensor functor.

Lemma 2.4. Let g be a finite-dimensional Lie superalgebra, let x € X, and let M, N
be g.-modules.

(1) We have a canonical isomorphism (M ® N), ~ M, ® N, of g,-modules.
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(2) For any g-module M we have a canonical isomorphism (M*), — (M,)* of
g.-modules.

Hence, DS, : mod(g) — mod(g,) is a symmetric monoidal tensor functor.

Proof. For (1), we have the natural morphism of g,-modules M, ® N, — (M ® N),.
We have to check that this is an isomorphism. This follows from the fact that over
the (0|1)-dimensional superalgebra Cz, we have M = M, ® F, N = N, @ F’ for some
free Cx-modules F' and F’, and we have

(M@N)=M, N, ®(FON®MQ®F'),

where F® N ® M ® F’ is a free Cz-module.

For (2), we have a natural map (M*), — (M,)* given by ¢ — ¢|kers, using the
fact that ¢(imz) = 0. In the other direction: given ¢ : M, — C, write ¢ for the lift
of ¢ to Kerx and choose a splitting M = Kerx & V. Then ¢ = ¢ & 0 is annihilated
by x, and this defines a morphism (M,)* — (M*), inverse to our previous map. O

The next lemma shows that the functor DS, preserves the superdimension of a
finite-dimensional module M, where the superdimension of M = My & M; is given
by sdim M := dim My — dim M;.

Lemma 2.5. For any finite-dimensional g-module M and x € X, sdim M = sdim M,,.
Proof. Let II(N) stand for the superspace isomorphic to N with switched parity.

Since M/ Ker x; is isomorphic to II (xM), we have
sdim M = sdim(Ker z,;) — sdim (zM) = sdim (Ker zp;/zM) = sdim M,..
0

In fact, Lemma 2.5 has a natural generalization, as we will see in the next section.

2.3. Reduced Grothendieck groups and ds,. Let C be a full abelian subcategory
of mod(g) such that:

(x) IIM is an object of C whenever M is.

We define the Grothendieck group 2 (C) in the usual way as the quotient of the free
Z-module with basis Mg,, for each object M in C, with relations M,, = M, + Mg,
for every short exact sequence 0 — M' — M — M"” — 0 in C.

The reduced Grothendieck group #_(C) of the category C is the quotient £ (C) by
the relation M, = —(IIM),, for all objects M € C. We define the character group
H1(C) to be the quotient of # (C) by My, = (IIM),,.. Write (—)g for the extension
of scalars from Z to Q. Then by the Chinese Remainder Theorem we have

(2.1) H (C)g = A-(C)o x H1(C)o-

If C is closed under ®, then its tensor structure provides £ (C) with a ring structure
such that #_(C) and . (C) are quotient rings, and (2.1) becomes an isomorphism
of rings.
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Remark 2.6. Since we work integrally, observe that if M is any module in C with
M = 1IM, its image in #_ (C) will be 2-torsion (although it need not be 0).

It was first noticed in [HR] that the functor D.S, induces a homomorphism, denoted
ds,, on the reduced Grothendieck groups of the corresponding categories. The most
general statement below is due to Hinich.

Lemma 2.7. [Hinich] If
0+NSME L0

is an exact sequence of g-modules, then there exists an exact sequence
0O—-F—>N,—>M,— L, —1IE—0

for some g,-module E.

Proof. Set E be the kernel of the induced map v : N, — M, and E’ be the quotient
L./p(M,). Then we have the exact sequence

0—FE—N,—> M, — L, —~FE —0.
The odd map ¥ ~'zp~t: L, — N, induces an isomorphism £’ — IIE. O
Lemma 2.4 and Lemma 2.7 imply the following.

Corollary 2.8. The functor DS, is a middle exact tensor functor and satisfies
DS, (IIM) =1IDS,.(M).

Corollary 2.9. Let C, (resp. C.) be full abelian subcategories of mod(g) (resp.
mod(g,)) satisfying (*). Suppose that DS,(M) lies in C,, whenever C lies in C. Then
the functor DS, : C — C, induces a homomorphism on the corresponding reduced
Grothendieck groups

ds, : H(C) = H_(Cy).

We now focus in particular on the case when C = Fin(g). Then Lemma 2.7 in
particular implies that the following diagram commutes:

(2.2) H_(Fin(g)) — #_(Fin(g"))

dsz T

H(Fin(g.))

where the horizontal arrow is induced by the restriction functor Resgz, and the up

arrow is induced by Resgi, where g* — g, is the canonical surjection.

Remark 2.10. The map ds, : #_(Fin(g)) — #_(Fin(g,)) is a ring homomorphism
compatible with *. This follows from the fact that Fin(g) and Fin(g,) are tensor
categories, since DS, is a tensor functor that preserves the duality.
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2.4. ds, as restriction. For a module M, we write [M] for its image in the reduced
Grothendieck ring.

Lemma 2.11. Suppose that we have a splitting g, C g* so that g* = g, X [z, g].
Then for a finite-dimensional g-module M we have

ds.[M] = [Resy M].

Proof. This follows immediately by applying the restriction JZ_ (Fin(g*)) — #_(Fin(g,))
to the equality [DS,M] = [Resj. M] coming from Lemma 2.7. O

Lemma 2.12. Let z,y € X such that [z,y] = 0, and suppose that we have splittings
gy :gy X [y7g]7 g$+y :gm-i-y X [x+y7g]7
Furthermore suppose that under these splittings, x € g, and

(gy)m = Qzyy X [ﬁ’gyy

Then we have
ASypy = dsy o dsy : H_(g) = H_(Gr+y)

Proof. This follows immediately from Lemma 2.11 and the corresponding statement
for restriction. 0J

Lemma 2.13. Suppose that x,y € X and that there exists g € Gy such that gxr = y.
Then we have a commutative diagram

A (Fin(g)) =5 - (Fin(g.))

dsy l

A~ (Fin(gy))

where the downward arrow is an isomorphism and is induced by the action of g. In
particular:
ker (dsz| - (Fin(e)) = ker (dsy|o (Fin))

Proof. We have a commutative diagram

Fin(g) 2% Fin(g,)

N

Fin(g,)

where the downward arrow is induced by the action of g, and is an equivalence.
Passing to the reduced Grothendieck ring completes the argument. O
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2.5. Supermultiplicity. Let g be a finite-dimensional Lie superalgebra, and let a
be any subalgebra of g. We will view

a, :=a”/([g,z] Na)
as a subalgebra of g,.

In addition to preserving superdimension, the DS functor also preserves the su-
permultiplicity of g*-modules, when this notion is well-defined. We continue to work
just with finite-dimensional modules. The multiplicity of a simple module L in a
finite-length module M, denoted [M : L], is the number of factors in the Jordan—
Holder series of M which are isomorphic to N. If M is a finite-dimensional module

and L is a finite-dimensional simple module, then we can define the supermultiplicity
of L in M to be:

M :L]—[M:1L] if L% 1IL
[M : L] mod 2 if L =TIL.

The following lemma is immediate.

(2.3) smult(M; L) := {

Lemma 2.14. Let L be simple, finite-dimensional g-module. Then smult(—; L)
defines a homomorphism

. 7 ifL#IL
A~ (Fin(g)) = { Z, if L>IIL
The following proposition is from [G3].

Proposition 2.15. Let M be in Fin(g), and let L be a simple finite-dimensional
g”“-module. Then one has

smult(Resg. M; L) = smult(DS,(M); L),
where DS, (M) is viewed as a g”-module.

Proof. This follows immediately from (2.2). O

Remark 2.16. In many cases g, can be viewed as a subalgebra of g in a way that
g” = g. X [z,g], and in these cases, the above formula also holds for each simple
g,-module L. In particular, the claim holds if g is a classical Lie superalgebra (see
Proposition 4.5).

Proposition 2.17. We have the following commutative diagram
H_(Fin(g)) —— #_(Fin(a"))
stw resﬁ%T
A (Fin(ge)) — H-(Fin(as))

where the horizontal arrows are induced by the corresponding restriction functors
and resys is induced by the functor Resg: for the canonical surjection a® — a,.
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Proof. The restriction functors give the commutative diagram

Fin(g®) — Fin(a®)

]

Fin(g,) — Fin(ay)
which allows us to rewrite the original diagram in the form

H_(Fin(g)) —— A (Fin(a®))

N

H_(Fin(gs)) — A~ (Fin(g"))

where all arrows except ds, are induced by the restriction functors. By (2.2), the
above diagram is commutative. 0

Example 2.18. Suppose g is a classical Lie superalgebra in the sense of [K1], and
let a := b be a Cartan subalgebra of go. Restriction induces a map J#_(Fin(g)) —
J_(Fin(h)) which we write as [IN] — sch N, where sch N denotes the supercharacter
of N (see (7.1)). If b, is a Cartan subalgebra of (g,)o, then the composed map
ds, : H_(Fin(g)) — H#_(Fin(h,)) is given by [N] — sch DS, (N). If we fix an
embedding b, — b, then Proposition 2.17 gives the Hoyt—Reif formula [HR]

(2.4) sch DS, (N) = (sch N)|y, .

2.6. Properties of associated varieties. Here we list a few basic properties of
associated varieties for a finite-dimensional Lie superalgebra g. Let U(g) denote the
universal enveloping algebra of g.

We have the following.

Lemma 2.19. Let g be a finite-dimensional Lie superalgebra.

(1) If M = U (9) Qu(gy) M' for some go-module M', then X = {0};

(2) If M = C is trivial, then X = X;

(3) For any g-modules M and N, one has Xyen = Xy U Xy;

(4) For any g-modules M and N, one has Xyen = Xy N Xy;

(5) For any g-module M, Xy« = Xp;
Proof. (2) and (3) follow directly from the definition, while (4) and (5) follow from
Lemma 2.4.

To prove (1), let z € X and = # 0. Let {v;},.; be a basis of M" and z1,..., 2,
be a basis of g; such that x = x;. Then by the PBW Theorem for Lie superalgebras,
the elements x; x;, ... z;, @ v; for all 1 <i4; <y <--- <4 <m, j € J form a basis
of M. The action of

x = x1 in this basis is easy to write, and it is clear that Ker x = xM is spanned by
the vectors z1x;, ... 75, ® v;. O
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The following lemma is the premise of Section 10, where the relationship between
projectivity of module and its associated variety will be studied more in depth.

Lemma 2.20. Suppose that g, is reductive (i.e., g is quasireductive). If M is pro-
jective in F(g) then we have X = {0}.

Proof. This follows from (1) of Lemma 2.19 using that M will be a direct summand
of Indg Resy M. O

Remark 2.21. There is a natural action of Gy x G,, on the associated variety X of
g, where the one-dimensional torus G,, acts by scaling.

For A € G,,, it is easy to check we have an equality of functors DS,, = DS,. For
g € Gy, the functors DSy, and DS, are isomorphic, in a suitable sense, when we
restrict to finite-dimensional modules.

3. THE UNIVERSAL ENVELOPING ALGEBRA AND CENTRAL CHARACTERS

In this section, g denotes a finite-dimensional Lie superalgebra. Let Z(g) (respec-
tively, Z(g.) denote the center of the universal enveloping algebra U(g) (respectively,

U(gz))-
For each central character y : Z(g) — C, we denote by mod] (g) the full subcat-

egory of mod(g) consisting of the modules that are annihilated by (z — x(z))" for
every z € Z(g). We set

mod, (g) = | mody(g),
r=1

and we say that a g-module M admits central character y if M lies in mod, (g). By
Dixmier’s generalization of Schur’s Lemma (see [Dix]), each simple module lies in
modi(g) for a suitable central character x.

Symmetrization gives an isomorphism U(g) ~ S(g) as adg-modules. Then since
M — M, is a tensor functor we have

U(9)e ~ U(8a)-

Observe that ad,(U(g)) is an ideal in U(g)*!= and consider the canonical homo-
morphism of algebras 7 : U(g)*¥* — U(g,). Then we have a homomorphism

Z(g) = U(g)™" = U(g.)
and since Z(g,) = U(g,)*¥ we have a well defined homomorphism

e 2(8) = Z(8a)-

The dual map of central characters
(3.1) 1, Hom (Z (g,),C) — Hom (Z(g),C)

is very important due to the following statement.
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Proposition 3.1. Take M € mod;(g).
(1) If n, is surjective, then DS, (M) lies in mod(,« -1, (8)-
(2) For each simple subquotient L' of DS,(M) there exists X' € (n%)~'(x) such
that L' € mod,,(g,). In particular, DS,(M) =0 if x & Im(n}).

Proof. View M as a Z(g)-module. Note that DS, (M) can be viewed as a subquotient
of this module. Take z € Ker x and set z, := 7,(z). Since M € mod](g) one has
2"M =0, so 22 DS, (M) = 0. This gives (i). For (ii) take x’ : Z(g,) — C such that
Ker 'L’ = 0. Then (z, — x'(2.))L = 0, so x'(z,) = 0. Hence n,(Keryx) C Ker
which implies 7,.(x’) = x as required. O

Corollary 3.2. If M admits a central character x and M, has a subquotient admit-
ting a central character , then x = n*(().

Using Proposition 2.15, we obtain the following interesting corollary.

Corollary 3.3. Assume that g, can be embedded into g (i.e., g° = g, X [x,g]). If
M € mod,(g) and L' € mod,/(g.) is a simple g,-module such that [Res] M : L'] < oo
and [Resj M : TI(L')] < oo, then

[Resy, M : L' = [Resg, M : (L] if X' & (05~ Hx).

3.1. The involutions o, for classical Lie superalgebras. The maps 7, for clas-
sical Lie superalgebras were described in [G3] using the results of [Serl], [K2], [Ser2].
There is a nice uniform description of the image, which requires us to introduce an
involution o, on g,. We note that for p(n) the center is always trivial, however we
will introduce an involution o, for later use.

e For g = gl(m|n), 0sp(2m+1|2n), q(n), p(n) or G(3), we declare the involution
o, on g, to be trivial, i.e., o, = Id.

e For g = D(2|1;a) and x # 0, one has g, = Cz, and we set 0, = —Id.

e For g = F'(4) and = # 0, one has g, = sl3, and o, is induced by the involution
of the Dynkin diagram of sl;.

e For g = osp(2m|2n) one has g, = osp(2(m — s)|2(n — s)); we set o, = Id if
m—s =0, and if m — s > 0, 0, is induced by the involution of one of the
Dynkin diagrams of g,.

Remark 3.4. Let us give another description of the involution o,. Consider an embed-
ding x € sl(1|1) C g as in the proof of Theorem 5.11. Let K denote the normalizer
of s[(1|/1). Then K has a normal subgroup with the Lie superalgebra g,. The im-
age of the natural homomorphism K — Aut g, is disconnected if g = osp(2m|2n),
m—s >0, D(2,1;a) or Fy. In these cases, the image is a semidirect product of the
adjoint group of g, and Z,. The involution o, is a generator of Zs.

Proposition 3.5. For g a classical Lie superalgebra, x € X, and involution o, on
g. as above, we have

n:(2(9)) = 2(9.)7
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Remark 3.6. Although we don’t give a proof of Proposition 3.5, it can be used to
give another proof of Theorem 6.12, using Proposition 3.7 below.

In the following lemma g is general, but with the obvious view toward the cases of
interest above.

Proposition 3.7. Assume that Imn, = Z(g,)°", where o, is an involutive automor-
phism of g,. For any x € Imn} we have

(1) the set (n)~(x) is of the form {x', o.(X")};

(2) if 0x(X') # X', then DSz(mod,(g)) € mod, (g.) ® mod,, ()(ga);
(3) if 04(x’) = X', then DS,(mod, (g)) € mod?,(g.).

Proof. We set

m:=Kery, [:= Z(gm)n$(m)7 A= Z(gm)/l
and denote by v the canonical map Z(g,) — A. The algebra A inherits the action of
o, and A7 = Z(g,)7" /n.(m) = C,s0 A = CBA_, where A_ := {a € A| 0,(a) = —a}.

The central characters in (n%)~!(x) correspond to the maximal ideals of A: for
each " € (n*)7'(x) the ideal Ker " is a maximal ideal of Z(g,); this ideal contains
I and ¥ (Ker x”) is a maximal ideal in A. For each N € mod)lc(g) one has mN = 0,
so IDS,(N) = 0. Hence DS,(N) has a structure of an A-module.

If A = Ca with a*> = 1, then A has two maximal ideals C(1 + a) (one has
l—a=o0(1+a)). Taking m’ := ¢~ (C(1+4a)) we get (n5) " (x) = {X', 0.(X')}, where
Ker x' =m’. One has DS,(N) = N, ® N’ , where N} = {v € DS,(N)| (a£1)v = 0}.
Therefore m'N/. = 0 and o(m')N" = 0, so DS,(N) lies in mod,,(g,) + mod},z(x,)(gx).

Consider the case when A_ # Ca with a®> = 1. For any a;,as € A_ one has
aray € A% = C. If ajay = 1 for some ay,as € A_, then for each a € A_ one
has asa € C, so a = ajasa € Cay that is A_ # Caq, a contradiction. Therefore
ajay = 0 for all ay,ay € A_, so (A_)?> = 0 and A_ is the unique maximal ideal in
A. Then (n)~'(x) = X’ where Ker y’ = ¢ '(A_). Since (A_)?DS,(N) = 0 we have
DS, (mod, hi*(g)) C mod3 (g.). O

4. DESCRIPTION OF g, FOR CLASSICAL LIE SUPERALGEBRAS g

In this section, we describe g, and realize g, as a subalgebra of g for classical Lie
superalgebras.

4.1. Iso-sets and defect. Now we assume that gg is a reductive Lie algebra and g,
is a semisimple gop-module. Such Lie superalgebras are called quasireductive.

For a quasireductive Lie superalgebra g, we may choose a Cartan subalgebra t C gg
and obtain roots A C t*\ {0} by considering its adjoint action on g. We have subsets
A; C A for i =0, 1 consisting of roots which are either even or odd. In particular we
have a root decomposition

g= h D @ Ja-

aEA
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where b denotes the centralizer of t in g. We write each a € g; (for i = 0,1) in the
form

a= Z aq, where a, € g \ {0}, supp(a) C A; U{0}.

a€supp(a)

We say that A C A; is an iso-set if the elements of A are linearly independent
and if for each o, 5 € A; N (AU (—A)) one has a + 5 € Ay. We call the maximal
cardinality of an iso-set the defect of g. We let & denote the set of iso-sets in Aj.
The Weyl group W of go acts on S in the obvious way. Put S = {A € S | |A| = k},

4.2. Basic classical Lie superalgebras. Suppose g is a basic classical Lie super-
algebra (see 1.2). If g # gl(m|n), then g is a simple Kac-Moody superalgebra (see
[K1, H]). The Lie superalgebra gl(m|n) has as an ideal sl(m|n), and when m # n,
sl(m|n) is simple and gl (m|n) = sl(m|n) @ C. The Lie superalgebra gl(n|n) has a
unique simple subquotient psl(n|n) := sl(n|n)/span{Id}.

We fix a Cartan subalgebra h C g. Then b coincides with a Cartan subalgebra t
of go, and each root space g, is one dimensional. In this case, the parity of a € A is
by definition the parity of the root space g,.

A finite-dimensional Kac—-Moody superalgebra has a nondegenerate symmetric in-
variant bilinear form (-,-). This form is not necessarily positive definite, and some
roots can be isotropic. For a non-isotropic root 3, we denote by 3V the element of t
such that o (8Y) = 2B - For an isotropic root 3, set Y € t to be the element of t

B.8)
corresponding to [ under the isomorphism t — t* induced by the form.

Remark 4.1. The notion of defect was originally introduced in [KW] for Kac—-Moody
superalgebras. Finite-dimensional Kac—Moody superalgebras are quasireductive, and
in this case, the notion of iso-set corresponds to the well-known notion of isotropic
set: a set of mutually orthogonal linearly independent isotropic roots in A;. One can
see that the defect of g in these cases is equal to the dimension of maximal isotropic
subspace in spang A.

For finite-dimensional Kac-Moody Lie superalgebras the defect has the following
geometric interpretation: it is given by the dimension of the geometric quotient of
g1 by Go. In fact in these cases, S(g;)“° is a polynomial algebra, and the number of
generators is given by the defect. For g = q(n),p(n), S(g1)% is again a polynomial
algebra, except the number of generators for q(n) is n while the number of generators
of p(n)is [5].

In [BKNI1], a cohomological definition of support varieties was given using the
relative Ext functor. There, they define the defect of a g to be the dimension of
EXt.]_-(g) ((C, C) = S(gl)GO.

4.3. The Lie superalgebras p(n) and q(n).
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4.3.1. p(n). The periplectic Lie superalgebra p(n) and the queer Lie superalgebra
q(n) are quasireductive Lie superalgebras and can be realized as subalgebras of
gl(n|n).
With respect to a suitable basis, the periplectic Lie superalgebra g = p(n) consists
of block matrices of the form
A B
(et=r)

where B is symmetric, C' is skew-symmetric, and t := by is the diagonal Cartan
subalgebra of gg = gl(n). Then g has a Z-grading g = g' ®g°®g~! such that g° = go,
g1 = g'®g!, and corresponding sets of roots Ag = A(g?) = {e;—¢; | 1 <i#j <n},
Algh)y ={-(i+¢e) |1 <i<j<n}and Alg') ={ei+¢e |1 <i<j<n}
Imposing the additional condition that tr A = 0 defines the Lie superalgebra sp(n),
which is simple when n > 3; however, sp(n) does not admit a nondegenerate (even
or odd) invariant bilinear form.

4.3.2. q(n). With respect to an appropriate basis of C"", the queer Lie superalgebra
g = q(n) consists of block matrices of the form

o o (412)

such that t := by is the diagonal Cartan subalgebra of go = gl(n). The set of roots
for q(n) is A = {£(e; —¢;) | 1 <i < j < n}, and each root @ € A is both even
and odd since dim(g,)o = dim(g,); = 1. Imposing the additional condition tr B = 0
defines the Lie superalgebra sq(n), and since Id € sq(n) we can also define the Lie
superalgebra psq(n) := sq(n)/(Id), which is simple for n > 3.

4.4. Table of defects. The defect of a classical Lie superalgebra is given in the
following table.

g Defect

gl (mn) min{m,n}

sl(mln), m#n| min{m,n}

osp (m|2n) min{|m/2],n}

p(n) n

q(n) [n/2]
D (2|1;q) 1

F(4) 1

G(3) 1
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4.5. Description and realization of g, in g. Suppose g is classical Lie superal-
gebra. Let A ={f,...,0} € S be non-empty, and take x = x, + --- + x5, where
each x5, € gg, is nonzero. If g = p(n), let s denote the number of roots 8 € A of the
form 2¢;. Note that by Section 5.1, all elements of X are G-conjugate to an element
of this form.

The following table describes g,.

g Yo
gl (m|n) gl(m —kln —k)
sl(mn), m#n| sl(m—kln—k)
osp (m|2n) osp (m — 2k|2n — 2k)

p(n) p(n—(2k —s))

q(n) q(n — 2k)
D(2|1;a) C

F(4) s[(3)

G(3) s(2)

Note that in the last three rows the defect of g is 1, so k = 1.
The functor DS, reduces the defect of g by a non-negative integer which is called
the rank of x, that is, rkx := def g — def g,.

Definition 4.2. Let g be one of the Lie superalgebras listed in the above table, and
let x € X. Then the rank of x is as follows:

if x =0, then rkx = 0;

if x # 0 and g is an exceptional Lie superalgebra, then rtkx = k = 1;

if g is not exceptional and g # p(n), then rkx = k;

if g =p(n), then rkz = 2k — s.

Remark 4.3. Note that if g # p(n) then rkx = k, the size of S.

Remark 4.4. For gl(m|n), sl(m|n) and p(n), we observe that rkz is given by the
rank of z as a linear operator acting on the standard representation. For osp(m/|2n)
and q(n), we have that rkx is half the rank of z as linear operator in the standard
representation.

Let g be a classical Lie superalgebra with g # p(n), and let € X. We now explain
how to realize g, as a subalgebra of g, in such a way that g* = g, x [z, g]. For p(n) we
will also have such an embedding, but the construction is more ad-hoc, so we state
it separately.

Thus we assume g # p(n), and as above, we let A = {f1,...,0c} € S and = =
xg, +- - -+ xp, for some nonzero xs, € (gg,)1. Let y = yz, +- - - +ypg, for some nonzero
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ys, € (9-p;)1, and set hg, = [x5,,ys,], h = [z,y]. Clearly, h = hg, +--- + hg,, and
h,z,y generate an sl (1]1)-subalgebra in g. We choose the yz, such that h is generic,
meaning that it satisfies

kerad), = kerady, N---Nkerhg,.

We may decompose g with respect to the adjoint action of h giving g = @©,g",
where g* = {g € g | [h, g] = u(h)g} . In particular, g° = Ker ady, and this is in fact a
decomposition of s[(1]1)-modules.

For each 3; € A, set b, = [(9s.)1, (9-5,)1]. Set
(4.2) At =Kerp/ n---NKer 3’ Cbh*.

Define

ba:=bs @ - Dhg, bi:=Kerfin---NKerfy, A,:=A"N(A\(AU-A)).

We have the following.

Proposition 4.5. Suppose g # p(n) is a classical Lie superalgebra, and let A € S
with corresponding x € X. Then g, is isomorphic to the root subalgebra generated
by {8a}aca, and a splitting of b, = b%/ba of b4, and this splitting b, will define a
Cartan subalgebra of g,. If we identify g, with its image in g we have g* = g, X [z, g].

Proof. First, note that there is an isomorphism

g. = (0" Ng”)/(g° N[z, 9]).
We observe that
gomgx:hj@ @ Yo, gom[x>g]:bA@gﬁl®"'®gﬁk'
aceALN(A\-A)

The above equalities follow from the representation theory of sl(1|1). Now it is clear
that one can choose b, in such a way that g, = (h, © Baca,fa) is a subalgebra of
g. 0

Separately, we have:

Proposition 4.6. Let g = p(n) and choose v € X of rank r arising from a subset A €
S. Then A lies in the span of €;, ..., €; for a unique set of indices I = {iy,...,i,} C
[n] :={1,...,n}. Write p(n—r) for the root subalgebra corresponding to the weights
¢; for i € [n]\ I. Then we have a natural isomorphism g, = p(n —r), and g° =

p(n—r) x [z,g].
Proof. Straightforward check. O

Remark 4.7. Propositions 4.5 and 4.6 have the following useful application: if t acts
diagonally on N and Q(N) = {v € t*| N, # 0}, then for = as in the propositions one
has

(4.3) QUDS(N)) C (2UDS(N)))l.
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Remark 4.8. By Theorem 5.1 and Proposition 5.2, if g is classical then all Gy-orbits
on X contain an element z arising from an iso set A € §. Thus Propositions 4.5 and
4.6 imply that our table in Section 4.5 is accurate.

5. GEOMETRY OF X FOR CLASSICAL LIE SUPERALGEBRAS

In this section, we study the Gg-orbits on X, and for g # p(n), we prove an
important bijection between the Gg-orbits on X and the W-orbits on §. We also
describe the orbits in the p(n) case. Next, we study the stabilizer and normalizer
of x in Gy. Finally, we give a dimension formula for the Ggy-orbits on X for basic
classical Lie superalgebras.

5.1. Gg-orbits on X.

Theorem 5.1. Suppose g is a basic classical Lie superalgebra or g = q(n). Then there
are finitely many Gy-orbits on X, and these orbits are in one-to-one correspondence
with W-orbits in § via the map

defined by
A= {Bh“'aﬁk} I—}G(]ZE,

where x = xg, + - - - + x, for some nonzero xg, € gg,.

Proof. To see that ® (A) does not depend on a choice of x5, note that since /1, ..., B
are linearly independent, for any other choice

t' = Yy = Yewg,
there is h € b such that ¢; = €% and therefore

' = exp (ady) (x).
If B=w(A) for some w € W, then clearly ® (B) and ® (A) belong to the same orbit.
Therefore ® induces the map ® : S/W — X/Gy. We check case by case that ® is
injective and surjective.

If g is sl (m|n) or gl(n|n), g has a natural Z grading g = g' ® g° ® g~! such that
go = g% g1 = gt ®g'. The orbits of W on S are enumerated by the pairs of
numbers (p, q), where p = |[ANA (g')|, ¢ =|ANA(g™")|. The orbits of Gy on X are
enumerated by the same pairs of numbers (p, ¢) in the following way. If © = 2+ + 2™,
where 2% € gV then p = rank (z+), ¢ = rank (7). We can see by the construction
of ®, that ® maps (p, ¢)-orbit on S to the (p, q)-orbit on X.

Let g = osp(m|2n). If m = 2l 4+ 1 or m = 2] with | > n, then the W-orbits on
S are in one-to-one correspondence with {0,1,2,... ,min(/,n)}. Namely, A and B
are on the same orbit if they have the same number of elements. As it was shown

in [Gr2], X can be identified with the set of all linear maps z : C™ — C?", such
that Im x is an isotropic subspace in C?"* and Im z* is an isotropic subspace in C™.



20 MARIA GORELIK, CRYSTAL HOYT, VERA SERGANOVA, ALEXANDER SHERMAN

Furthermore, z,y € X belong to the same Gg-orbit iff rank () = rank (y). One can
see that rank ® (A) = |A|.

Now let g = osp (2l|2n) where [ <n. If A,B € S and |A| = |B| <, then A and B
are on the same W-orbit. In the same way if rank () = rank (y) < [, then x and y
are on the same Gy-orbit. However, the set of all x € g; of maximal rank splits into
two orbits, since the Grassmannian of maximal isotropic subspaces in C* has two
connected components. In the same way S; splits into two W-orbits. Hence in this
case again ® is a bijection.

If g is one of exceptional Lie superalgebras D (2|1;a), G(3) or F'(4), then the direct
calculation shows that X has two Gy-orbits: {0} and the orbit of a highest vector in
g1- The set S also consists of two W-orbits: @ and the set of all isotropic roots in A.

Finally, let g = gq(n). Then g is isomorphic to the subalgebra of gl(n|n) consisting
of block matrices of the form T4 p in (4.1) and X = {Ty s | B> = 0}. So Gy is
isomorphic to GL(n) and acts by conjugation on B. Thus the Gg-orbits correspond

to Jordan forms. If for r = 0,1,...,[5], we set S, := {Ba_1_2i}iZg and fix an element
z, € S, with supp(z,) = S, (2o := 0), then the elements x¢, z1, . .. ,n) form a set of
representatives for Gg-orbits in X. O

Theorem 5.1 does not hold for p(n); however, we have the following lemma, whose
proof is an exercise in linear algebra which we omit.

Proposition 5.2. For g = p(n), the Gy-orbits on X are indexed by a pair or non-
negative integers (r, s) such that r + 2s < n. An explicit representative of the orbit
labeled by (r,s) is given by

T = Tg¢ + -+ Tae, + Tepi1—€rin +oeet T—erios_1—€rtas)

Remark 5.3. Note that for a finite-dimensional Kac-Moody superalgebra g the rep-
resentation of Gy in gy is symplectic and multiplicity free (see [Kn]). The cone X is
the preimage of 0 under the moment map g; — gj.

5.2. The stabilizer and normalizer of x in G,.

Lemma 5.4. Let g be a basic classical Lie superalgebra. Let x € X. The stabilizer
G of x in Gy is connected. Furthermore, Gf is a semidirect product of a reductive
group K and the normal unipotents subgroup U with Lie algebras (g,)o and [z, g1],
respectively.

Proof. The second assertion follows from Proposition 4.5. To check the connectedness
we use the explicit construction of orbits given in the proof of Theorem 5.1.

Let g = gl(m|n). Then Gy = GL(m) x GL(n), consider the parabolic subgroups
P, C GL(m) which stabilizes the flag Imat C Kerz™ and P, C GL(n) which
stabilizes the flag Imax~ C Kerxzt. The Levi subgroup of K; of P; is isomorphic
to GL(p) x GL(q) x GL(m — k) and the Levi subgroup of Ky of P, is isomorphic
to GL(p) X GL(q) x GL(n — k). Let K ~ K; X K is the subgroup isomorphic to
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GL(p) x GL(q) x GL(m — k) x GL(n — k) where GL(p) and GL(q) are embedded
diagonally. Then Gf = K x U, where U is the unipotent normal subgroup of P; x P.

Let g = osp(m|2n). Then Gy = SO(m)x SP(2n), consider the parabolic subgroups
P, C SO(m) which stabilizes Imz* and P, C SP(n) which stabilizes Imz. The
Levi subgroup of K; of P; is isomorphic to GL(k) x SO(m — 2k) and the Levi
subgroup of Ky of P, is isomorphic to GL(k) x SP(2n — 2k). Let K ~ K; x Kj is
the subgroup isomorphic to GL(k) x SO(m — 2k) x SP(2n — 2k) where GL(k) is
embedded diagonally. Then Gfj = K x U, where U is the unipotent normal subgroup
of P1 X PQ.

In all exceptional cases x is a highest weight vector in g; and G§ is a subgroup of
codimension 1 in the parabolic subgroup P C G, the latter is the stabilizer of Cx in
the projectivization of g;. O

Remark 5.5. Tt follows from above proof that there exists a parabolic subgroup P C
Gy such that G§ is a subgroup of P and the maximal normal unipotent subgroup of
G is equal to that of P.

Remark 5.6. For the q(n) it remains true that Gf is connected; this follows from a
result of Springer and Steinberg, [[SpSt], Chapter IV, 1.7].

We write N for the normalizer of z in Gj.
Corollary 5.7. For g basic classical and for g = q(n), N§ is connected.

Proof. We have an exact sequence

87

1 =Gy — Ny =G, =1,

where G,, is the one-dimensional torus and «(g) = (¢ - x)/x, where g - x is the action
of g on z. By a case-by-case check, the map « is always surjective and split. We may
now use Lemma 5.4. 0J

Remark 5.8. For A € C*, we have an equality of functors DS, = DS),. It follows
that Nj acts naturally on the functor DS,. We have shown that

NE = GZ x Gy,

For g basic classical or q(n), we have shown G¥ is connected, and thus its symmetries
are encompassed in (g,)o. It follows that the only additional symmetries we obtain
in this fashion are from the extra action of G,,.

Remark 5.9. We note that for the g = p(n), Lemma 5.4 and Corollary 5.7 are not
true for all choices of x. Issues arise due to the orthogonal group being disconnected
and the lack of a splitting for « in general.
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5.3. Dimension of the Gjy-orbits on X. Throughout the rest of Section 5, we
assume that g is a basic classical Lie superalgebra. We recall the notation & : § —
X /Gy introduced in (5.1).

Using the explicit description of Gy-orbits on X and the description of root systems,
which can be found in [K1], one can check the following statements case by case. We
omit this computation here.

Lemma 5.10. Let A,B€ S.

(1) If « € A is a linear combination of roots from A, then a € AU —A;
(2) If |A| < |B|, then there exists w € W such that w (A) C BU —B;
(3) @ (A) lies in the closure of ® (B) iff w (A) C B for some w € W.

Recall the definition of A+ from (4.2). In the basic classical case, AL is the set of
all weights orthogonal to A with respect to the standard form on h*.

Theorem 5.11. Let A € S. Then dim® (A) = % + |A].

Proof. Let A = {p1,...,0k}, * = xp, + -+ + x5, for some choice of xp, € gg,,
Y="Ys + 1 Ys for some Ys; € 8-p;- Let h = [m,y], h’,Bi = [a:ﬂi?yﬁi]' Clearly,
h = hg, +---+hg, and h, z,y generate an sl (1]1)-subalgebra in g. As a module over
this subalgebra g has a decomposition

g = ®ug”,
where
g ={gegllhg]=nh)g}.
Note that
dim [g, z] = Zdim lg", x|,
p

and from the description of irreducible sl (1|1)-modules for p # 0

dim g
dim [g¥, z| = 1r1219 .

On the other hand, for p # 0, sdim g#* = 0 and therefore

dim g* = 2dim gf.
Observe that for a generic choice of x5, € gs,, 9o C ¢° iff (o, ;) = 0 for all ¢ < k.
Indeed, for generic choice of zg, the condition « (h) = 0 implies a (hg,) = 0 for all i,
and therefore (o, 8;) = 0 for all i. Hence
@,u;éoglf = @aeAl\Aiga
and
> dim gt z] =) dimgl = |A\AY].

p#0 p#0
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To calculate dim [g"; z] note that

go = b D Daeanatba-

We claim that

[g()’ LL’] = @§=1Chﬁi ©® @legﬂw
hence dim [g°, z] = 2k. Indeed, if (o, ;) = 0, # £; then o + 3; ¢ A. Therefore
[2,84] = 0 for any « € AN At a # —f;. Furthermore, [z,9_5] = Chg, and
[z,h] = &% ,gs5,. Thus, we obtain
(5.2) dim [g, 2] = |A]\AT| + 2k.
Now the statement will follow from the lemma.
Lemma 5.12. sdim [g, z] = 0.

Proof. Define an odd skew-symmetric form w on g by

w (ya Z) = (x7 [y> Z]) .
Obviously the kernel of w coincides with the centralizer g*. Thus, w induces a non-
degenerate odd skew-symmetric form on the quotient g/g*. Hence sdimg/g* = 0.

But [g, 2] 2 1 (g/g"), which implies the lemma. O
Now Lemma 5.12 implies dim [go, z] = 1 dim[g,z]. Since dim Goz = dim [go, 7],
Theorem 5.11 follows from (5.2). O

Theorem 5.11 has the following corollaries.
Corollary 5.13. If |A| = |B|, then dim ® (A) = dim @ (B).
Proof. Follows from Theorem 5.1 and Lemma 5.10 (2). O]

Corollary 5.14. Let d be the defect of g. Then the irreducible components of X
are in bijection with W-orbits on S; := {A € § | |A| = d}. If all odd roots of g are

dim g3 _ [Aq]

isotropic, then the dimension of each component is equal to 5

Proof. As follows from Theorem 5.1 and Lemma 5.10 (3), each irreducible component
is the closure of ® (A) for a maximal A € S. By Lemma 5.10 (2) |A| = d. Hence the
first statement. Theorem 5.11 immediately implies the statement about dimension.

O

Corollary 5.15. If all odd roots of g are isotropic, then the codimension of ® (A) in

X equals M%AL‘ —|A].

Proof. The codimension of ® (A) in X equals dim X —dim ® (A). Using Theorem 5.11

and Corollary 5.14 we obtain

—|AN\AY
2

|A; N AL
2

codim @ (A) = 2] — 4] = —14].
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Recall that g, = g%/ [z, g] and M, is a g,-module, see Lemma 2.2.

Lemma 5.16. Let m* denote the orthogonal complement to m with respect to the
invariant form on g. Then [z, g]" = g”.

Proof. Let u € g*, v € [z, g]. Then v = [z, 2] and
[u, [z, 2] = (=1)"" [z, [u, =]] € [, ]

Now the statement follows from the identity

(u7 [I,Z]) = ([U,ZE] ,Z) .

6. CENTRAL CHARACTERS AND ATYPICALITY FOR CLASSICAL g # p(n)

Throughout this section, g denotes a basic classical Lie superalgebra or g = q(n).
We define the notion of atypicality for a central character, and see how it is affected
by the DS functor. Furthermore, we describe the support variety of an irreducible
module in terms of its degree of atypicality.

6.1. The Weyl group and Weyl vector. Let us fix a Borel subalgebra b C g by
choosing a decomposition A = AT U A~. Note that in general this choice is not
unique but our consideration will not depend on it. Later we will use different Borel
subalgebras in some proofs. Set

1 1
,025206—520[

acAf acAf
Define the shifted action of W on h* by
w-A=w(A+p)—p.

Note that for g = q(n), p = 0, so there is no shift in the W-action.

For g basic classical, recall that in Section 4.2 we defined for each a@ € A a coroot
a¥ € t = ho. In this section, for g = q(n) we will denote by a" a non-zero element
of [(ga)1, (§_a)1]. Notice that in the basic classical cases we have wa” = (wa)Y for
every w € W (under the non-shifted action); for g = q(n) we impose this condition
on the set of a”. We say that an iso-set A C A; is orthogonal to p if u(a") = 0 for
each o € A, and we write A C pt and p € AL. Note that this is compatible with
our definition of A in (4.2).
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6.2. Central characters. Recall that Z(g) denotes the center of the universal en-
veloping algebra U (g). For A\ € t* and chosen, fixed Borel subalgebra b, we denote
by M () the Verma module of highest A and by L(A) the unique irreducible quotient
of M(X). We say that A\ € t* is dominant if L(\) is finite-dimensional. One can see
that any z € Z(g) acts as a scalar x, (z) on M(\) and L()). Therefore A € t* defines
a central character x, : Z(g) — C. We emphasize that x, depends also on the choice
of Borel subalgebra. For a central character y, let

t={nvet|x.=x}
For every A € t* set

Sy = {AeS|Ac ()\—I—p)l}.
Lemma 6.1. Let x = x, A € S\ be maximal. Then
t = U w - (A +span A).

X
weWw

Proof. This easily follows from the description of Z(g) formulated in [K2] and proven
in [G1, Serl]. O

We call A regular if there is a unique maximal A € S,. For every x there exists a
regular A € t].

6.3. Degree of atypicality. For a central character x set

Lemma 6.2. There exists a number k such that S, = ;. Si-

Proof. It follows easily from Lemma 6.1 that S, is W-invariant. Furthermore, if
A e S, and A’ is obtained from A by multiplication of some roots in A by —1, then
A" € S,. Hence the statement follows from Lemma 5.10 (1) and (2), which also holds
for q(n). O

The number k is called the degree of atypicality of x. It is clear that the degree
of atypicality of y is not bigger than the defect of g. The degree of atypicality of a
weight A is by definition the degree of atypicality of y,. If £ = 0, then yx is called
typical. We say a module is typical if it lies in € mod,(g).

X typical

Let X = ® (Si), X denote the closure of Xj,. Lemma 5.10 (3) implies that
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Theorem 6.3. Let g be a basic classical Lie superalgebra or q(n), and let M be a
g-module which admits central character x, with degree of atypicality of x equal to
k. Then we have X,; C X.

The proof of Theorem 6.3 will be given in Section 6.4.

Theorem 6.4. Let g be a basic classical Lie superalgebra. For any integral dominant
A € t* with degree of atypicality k, X = Xj.

This theorem is proven in [S2] for the Lie superalgebras osp(m|2n) and gl(m|n).
For exceptional Lie superalgebras it is a consequence of results in [M].

Remark 6.5. Theorem 6.4 is easy for typical A since in this case L(\) is projective.

Remark 6.6. Theorem 6.4 fails for g = q(n); indeed if we consider the irreducible
q(3)-module L = psq(3), we have X = {0}. However L has atypicality 1.

6.4. Proof of Theorem 6.3. We assume that g is as in Theorem 6.3. Recall that
up to conjugacy, we may present x € Xy as x = x1 + - - - + x; where z; is a non-zero
element of (gg,)1 for an odd root B;. Here A = {f,..., B} will be an iso-set. We
begin with a lemma.

Lemma 6.7. For suitable choices of Borel subalgebras b C g and b, C g,, for each
N € & there exists A\ € t* such that

o\, =N;

e atyp A = atyp N + k;

o [DS.(Lg(N): Ly, (N)] = 1.
In particular, n*(x) = x and thus atyp xnx = atypn*(xx) — k.

Proof. We can always choose a Borel subalgebra b C g such that 5,..., 5, are
simple roots. Note that in this case (p,3;) = 0 for all i = 1,... k. Further recall
from Proposition 4.5 that we may realize g, in g such that b, will be a subalgebra of
b, and t, := (h,)o will lie in ker By N --- N ker . Moreover, g, will admit a natural
Borel subalgebra b, C b containing b,.

Let A € t* be a weight such that A|, = X and A(8) = 0 for all i. For q(n) we
strengthen our assumption on A: we further require that (A, €;,) = (A, €;,) = 0, where
Bi = €i; — €y, for all 7.

Now to prove our statement with this choice of A, we observe that a nonzero highest
weight vector vy € Lg(\)y satisfies zvy = 0 and vy ¢ xLg(N). The former statement
is obvious because it is a highest weight vector. For the latter statement, we show
that Lg(A)x—p, = 0 for all 4, which clearly is sufficient. In the basic classical case
this follows from the fact that (A, ;) = 0 and f; is simple. In the q(n) case, the
statement follows from the representation theory of the q(2)-subalgebra associated
to each simple root f3;, again using that the 3; are simple.

Now to finish the proof of Lemma 6.7, we observe that n*(y,) = x» by Proposi-
tion 3.1, and that atyp N = atyp A — k. O
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Lemma 6.7 implies Theorem 6.3 and the following.

Theorem 6.8. Let M be a g-module that admits a central character with degree
of atypicality k, and x € Xy. Then M, is a typical module. In particular, if M is
semisimple over go and M, is finite dimensional, then M, semi-simple over g,.

Proof. We only need to prove the last assertion. For this we use that (g,)o is reductive,
so it acts semisimply on M, if and only if its centre does. But its centre lies in the
even part of any Cartan subalgebra, whose action is induced by the action of the
Cartan subalgebra of g on M. Thus the condition that gy acts semisimply on M,
along with the typicality of M, ensures the semisimplicity of M,.

O

Recall, from the notation of Section 4.5, the isomorphism b, ~ b4 /b, and set t, :=
(b:)o. Then this isomorphism induces a canonical isomorphism of dual spaces t ~
At /span A. Consider the natural projection ps : At — t5. It follows immediately
from Lemma 6.1 that pa(A\) = pa(v) implies x» = x,. Proposition 3.1 and Lemma 6.7
imply the following

Corollary 6.9. If A € A+ then x\ = 1*(Xpa(n)-

6.5. The preimage of *. Now we will compute the preimage (n*)~!(y) for any ¥,
showing in particular it is always finite of size one or two. Our description will use
the involutions o, described in Section 3.1.

Define following subgroup of the Weyl group W:

Wy={weW|w(A) c AU-A}.

It is clear that At and h4 are Wy-stable. Hence W, acts in the natural way on
b, and b. By W, we denote the Weyl group of g, viewed as a subalgebra of g.
Obviously, W, C Wj4.

Lemma 6.10. Fix A € S;. Let x = x\ be a central character of atypicality degree
k where \ € At is some regular weight. Then
- (Wa-pa(M)]
07) 0] = [
5. - Pa(N)]
Proof. Lemma 6.1 implies the following equality
(h;)reg N AJ_ - WA A+ Span A.
The condition that n*(xp.n) = 1" (Xpaw)) for A, v € (b} )rey is equivalent to pa(v) €
Wy, - pa(X). Hence the statement. O
Lemma 6.11. Consider the action homomorphism a : W4 — Aut(t,). Let k = rkz.
If o, =id (i.e., g = gl(m|n),q(n), 0sp(2m + 1|2n), G(3), or osp(2m|2n) with k = m)
then a(Wy) = a(Wy,). If 0, # Id (i.e., g = osp(2m|2n) with k < m, D(2|1;a) or
F(4)), then [a(Wa4) : a(Wy,)] = 2, and we have
G(WA) - a’(Wga:) U O-iva’(WGx)
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where by abuse of notation we also write o, for the involution induced on t by o,.

Proof. If osp(2m + 1|2n) or G(3), then g, = osp(2m + 1 — 2k|2n — 2k) or sly, respec-
tively. In both cases the automorphism group of the root system A(g,) coincides with
the Weyl group W,,. Since a(W,4) C Aut A(g,), the statement follows. Similarly in
the case g = 0sp(2m|2n) and k = m, g, = sp(2(n —m)) and Aut A(g,) = W,,.

For g = gl(mn), g. = gl(m — k|n — k), we get

WA = Sk X Smfk X Snfka Wg Smfk X Snfk

and kera = S}.
For g = q(n), g. = q(n — 2k) and we get
WA — S;C X Sn—2k7 Wgw = On—2k
and kera = S§.

If g = osp(2m|2n), with £ < m, D(2|1;a) or F(4), then g, = osp((2m — 2k)|(2n —
2k)), 0(2) or sl3. Then by direct computation Aut A(g,)/W,, = (o,), where for
g = D(2|1;a) we set Aut A(g,) = {Id}. Further, by direct computation

a(Wy) = Aut A(g,).
0J

Theorem 6.12. If g # osp (21|2n), F(4) or D(2|1;a), then n* is injective. If g =
osp (21|2n), F(4), or D (2|1;a), then a preimage of n* has at most two elements.

Proof. In the case when rk(z) = |A| = k equals the atypicality degree of x, we have
(n*)~(x) has at most two elements by Lemma 6.10 and Lemma 6.11. If k is less than
the atypicality degree of x, then consider the embedding A C B with | B| equal to the
degree of atypicality. Let 2 = x +y with y = > 5. p\ 4 @5. Then we have (g.), = g..
The composed map

o2+ Hom (Z (g:) ,C) = Hom (Z(gs). ) " Hom (Z(g).C).
Since the statement holds for 1} and for n; ,, it holds for n*. O]

7. SUPERDIMENSIONS AND SUPERCHARACTERS FOR BASIC CLASSICAL LIE
SUPERALGEBRAS

In this section, g denotes a basic classical Lie superalgebra. We explore connec-
tions between the superdimension and supercharacter of a g-module M and of the
corresponding associated variety Xjy.

7.1. Superdimensions. Recall that sdim M := dim M, — dim M;, and that by
Lemma 2.5, sdim M = sdim M,.. So we have the following.

Lemma 7.1. If X, # X, then sdim M = 0. In particular, if a finite-dimensional
module M admits a central character whose degree of atypicality is less than the
defect of g, then sdim M = 0.
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Remark 7.2. In fact, Serganova proved a stronger statement, namely the Kac—Wakimoto
conjecture: a simple finite-dimensional module over a basic classical Lie superalge-
bra has nonzero superdimension if and only if it has maximal degree of atypicality
(i.e., equal to the defect of g). For a proof, see [S2]. A version of the Kac-Wakimoto
conjecture for periplectic Lie superalgebras p(n) was proven in [ES3]. Meanwhile, for
q(n) it is known that sdim L = 0 for all nontrivial finite-dimensional simple mod-
ules L, see [Che].

7.2. Supercharacters. For a finite-dimensional g-module M with weight decompo-
sition M = @ ,ep- M*, the supercharacter of M is defined to be

(7.1) sch M = Z (sdim M*")e*.
neb*
The supercharacter sch M is a W-invariant analytic function on b, so we will also

write it as schys (h), for h € h. Then schy, (h) = str(e), and the Taylor series for
schyr at h =0 1is

schyy (h) = Z pi (h),

where p; (h) is a homogeneous polynomial of degree i on h. The order of schy; at zero
is by definition the minimal ¢ such that p; #Z 0.

Theorem 7.3. Assume that all odd roots of g are isotropic. Let M be a finite-
dimensional g-module, s be the codimension of X,; in X. The order of schy, at
zero is not less than s. Moreover, the polynomial ps (h) in Taylor series for schy; is
determined uniquely up to proportionality.

Proof. The proof is based on the following lemma, the proof of this lemma is similar
to the proof of Lemma 2.5 (6). We leave it to the reader.

Lemma 7.4. Let x € X, h € by and [h,z] = 0. Then Kerx and xM are h-invariant

and stryrel =stry; e’

Now we proceed to the proof of the Theorem 7.3. If X, contains an irreducible
component of X, the statement is trivial since s = 0. Otherwise there exists k smaller
than the defect of g such that

Xy C Uses, |A|§k(I> (A) .
Let A= {pi,....0ks1} €S, v = w3 + -+ xp,,, for some nonzero xg, € gg,. Then

M, = {0}. If h € b satisfies 1 (h) = --+ = Bry1 (h) = 0, then [h,z] = 0. Hence by
Lemma 7.4 stryse® =stry,, e = 0. This we have proved the following property
(7.2) schy (hy) =0forall A€ S, |A|=k+ 1.

Let p; be the first nonzero polynomial in the Taylor series for sch,; at zero. Then p;
also satisfies (7.2). Let B = {a1,...,a;} € S and p; be the restriction of p; to hg. If
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p; # 0, then degree of p; is 7. Since p; (bﬁu@) =0 for any o # +o;, a € B, then o
divides p;. That gives the estimate on 7. Indeed, 7 is not less than the number of all
possible a, i.e., % —|B|. By Corollary 5.15 the latter number is the codimension
s of X in X. Hence 7 > s.

To prove the second assertion we need to show that if two homogeneous W-invariant
polynomials p and ¢ of degree s satisfy (7.2), then p = ¢q for some ¢ € C. After

restriction to b
p= aHae(AmeL)\iB% q= bHae(AijL)\iBO‘

for some constants a and b. Therefore there exists f = p — c¢q such that f (f)ﬁ) =0.
Thus, f satisfies (7.2) for k instead of k4 1. Then deg f > s, which implies f = 0. O

8. REDUCED (GROTHENDIECK RINGS AND ds,

We retain the notation of Section 2. In this section we discuss the homomorphism
ds, : H_(g) — H#_(g.), for classical Lie superalgebras g, where J#_(g) and #_(g,)
stand for the reduced Grothendieck rings of F(g) and F(g,), respectively. The study
of ds, was initiated by Hoyt and Reif in [HR] for the basic classical Lie superalge-
bras. We consider g, as a subalgebra of g using the splitting g* = g, X [z,g] as in
Propositions 4.5 and 4.6.

8.1. Subcategories of F(g) and the DS functor. Before discussing ds,, we de-
scribe certain subcategories of F(g) and their relation to the DS functor. Let g
be one of basic classical superalgebras and Az denote the abelian subgroup of t*
consisting of weights of M € F(g). For any subset A C Az we denote by F(g)
the full subcategory of F(g) consisting of modules with weights in A.

Let G be an algebraic supergroup with Lie superalgebra g. Then G is determined
by the lattice Ag C Az(g) and the category F(G) of finite-dimensional representations
of G is equivalent to FA¢(g).

If z € gy is a self-commuting element and G” is the centralizer of x in G then the
Lie algebra of G is the kernel of ad,. We denote by GG, the quotient of G* such that
LieG, = g,. It is clear that DS, induces the functor F(G) — F(G,).

We denote by G the particular supergroup for every basic classical superalgebra:

(1) If g = gl(m|n) we set G := GL(m[n), Ag == > _Ze;+ Y L.
i=1 =1
(2) If g = sl(mln) we set G == SL(mln), A = A N b
(3) If g = osp(2m|2n) or osp(2m—+1|2n) we set G := SOSP(2m|2n) (respectively,
SOSP(2m +1|2n)), Ag = 31", Ze; + ), Z6;.
(4) If g = p(n) we set G := P(n), Ag ==Y, Ze;.
(5) If g = q(n) we set G := Q(n), Ag :==> | Ze;.
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(6) If g is an exceptional Lie algebra of type G(3) and F(4) then G is the adjoint
group with Ag being the root lattice. One has Azg = Ag for G(3) and
Arg)/Ac = Zy for F(4), see [M].

(7) For g = D(2,1,a) we consider the algebraic group G with Ag := Azy).

Next we set Ay := A in all cases when g = [g, g]. In the remaining cases we set

Agl(m|n) = AGL(m|n) + Cstr  where str:=¢e; 4+ ---+ &, + 01 + -+ - + Iy,
Ap(m) = AP(m) + Cstr, where str:=c1 + -+ + &,
AQ(m) = AQ(m) + Z%r, where str:=¢; +--- 4+ &,,,.

8.1.1. Consider the case when g is non-exceptional. Take x # 0 as in Prop. 4.5. Let
Ay = Ar@ \ Ag. Then we have a decomposition

Flo) = F(8) © F(ga).
Every module M € Fs(g) is projective and hence DS, (M) = 0. Furthermore, DS,
induces the functor F4¢(g) — FAc=(g).

In the cases when [g, g] # g we can be more precise. Namely, when g, # 0, DS,
restricts to the functor:

fAGJrcstr (g> N JT-'AGz +cstr (gm)>

where ¢ € C for gl(m|n) and p(n), ¢ = 0,3 for g(m). To see this for gl(m|n)
and p(n) we just note that every M € FAGTSY can be obtained from M, € F(G) by
tensoring with one dimensional character in x. € (g/[g, g])* and therefore it is suffices
to compute DS, in the case ¢ = 0 and then use DS,(M ® x.) = DS,(M) ® x.. The
case of q(n) is straightforward.

8.1.2. Exceptional algebras. Take x # 0. All such x are conjugate by the adjoint
action of Gy.

For D(2,1,a), G, = C*. Therefore DS, : F(D(2,1,a) — F(C*). By [Germoni] for
g = D(2,1,a) with a ¢ Q all atypical modules in F(g) have zero central character.
Using the filtration of projective modules obtained by Germoni, one can show (see
[G4]) that DS, (L) is a trivial C*-module for any simple atypical g-module L and
therefore for any g-module. In other words the image of DS, lies in the category of
vector superspaces equipped with the trivial action of C*.

Combining the description of dominant weights (see [M]) and (4.3) we obtain the
following results for G(3) (with g, = sly) and F'(4) (with g, = sl3) :

DS.(F(G(3))) € F(PSL(2))  DS.(F(F(4))) C F(PSL(3))

where F(G) denotes the category of finite-dimensional representations of the algebraic
group G. In fact, from [G3] and [M] we obtain that

DS, (F(F(4)) C F(G7)
where G” is a non-connected algebraic group fitting into a non-split exact sequence
(8.1) 1 — PSL(3) = G = Zy — 1,
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compare to Remark 3.4.

8.2. Properties of ds,. We now begin the discussion of ds, with general remarks
which are valid for classical Lie superalgebras g satisfying h = t, i.e., classical g #
q(n). (The case of general g is considered in [GSS]). As already noted, by Section 4.5,
we have splittings g* = g, X [z, g]. Further we have t = t, @ t', where t, C g, is a
Cartan subalgebra.

In these cases the ring #_(g) is spanned by the images of the simple finite-
dimensional modules. Since these modules are highest weight modules, the map
[N] = [Resy N] gives an embedding of %" (g) — #_(h) and we identify .#”(g) with
this ring. The image is called the ring of supercharacters, since [Resy N] = sch N.
By Lemma 2.11

sdim DSy (N),y = Z sdim N,.
MEL :plig =p'
for each N € F(g) and p’ € tf. Thus ds, written for the supercharacter rings takes
the form

(8.2) ds, (Z m,,e”) = Zm,,e”"l‘.

vet* vet*

coincides with the restriction of the map f — f|,. Using the representation theory
of sl(1|1) it is easy to see that if x can be embedded into an sl(1|1)-triple z,y, a
with o € t, then for

(8.3) ds, (Z m,,e”) = Z m, el

vet* vettw(aV)=0
These formulas appeared in [HR]; for q(n) a similar formula is given in [GSS].

8.2.1. Now consider the case with g from the list (1.2). By Lemma 2.11 one has
ds, = ds, if g, = g, as embedded subalgebras. For x of rank r we denote the map
ds, : H (g) — # (g,) by ds". By Lemma 2.12 one has ds’ = ds' ods' o ... 0 ds!
if DSY(DS*...(g)) = DS'(g). By Lemma 2.13 we have kerds, = kerds, if x,y are
conjugated by an inner automorphism. Note that rkax = rky implies the existence
of 2’ € X such that g, = g, and x, 2" are conjugated by an inner automorphism.
Hence the ideal ker ds” C .#_(g) does not depend on the choice of = of rank r.

8.3. The ring .#_(g). For g # p(n),q(n), Sergeev and Veselov interpreted the su-
percharacter ring as a ring of functions admitting certain supersymmetry conditions,
see [SerV]. For example, the supercharacter ring for the category FZ(gl(m|n)) can
be realized as

~ Sm X Sn
j:{fEZ[;L‘lﬂ,...,xﬂ yfl,...,yﬂ} 8

m n

flei=y:=¢ is independent of t} ,

and in this case, if ko = 1, then ds, (f) = f|;,=, (see [HR]). The supercharacter
ring for p(n) was described in [IRS] using an inductive argument with the help of ds?.
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Using a similar method Reif described the ring 7, (q,,) in [R]. Note that for q(n) the
supercharacter of a finite-dimensional nontrivial simple q(n)-module is always zero
[Che].

8.4. The image of ds,. Let g be one of the superalgebras from the list (1.1). The
categories FA¢(g) = F(G) were introduced in Section 8.1. Let o, € Aut(g,) be
the involution introduced in Section 3.1. Note that o, = Id except for the cases
D(2,1,a), F(4) and osp(2m|2n) with rkz < m. We also denote by o, the induced
involution of the ring #_ (g.).

Theorem 8.1. Take x # 0. For non-exceptional g from the list (1.1), one has

ds; (H_(F(G))) = H_(F(Ga))™.
For g = D(2,1,a) with a € Q, G(3) and F'(4) one has

dsy (A-(F(G))) = H-(F(G,)™
where G, = C*, PSL(2), PSL(3) for respectively. For g = D(2,1,a) with a ¢ Q one
has ds, (H_(F(G))) = Z.

Recall that F(g) is equivalent to F(G) for g = G(3) and D(2,1,a). We have
A (g.)" for gl(m|n), osp(m|n), p(n), F'(4)
ds.(A_(g)) = { H(F(G,))7  for q(n).

Note that for g = F'(4) the categories F(G’,)?* and F(G’)) are equivalent, see (8.1).
For g # q(n),p(n) the statement was established in [HR] and for p(n) with z € g~!
the assertion was proven in [IRS]; the proofs are based on the evaluation (8.3) (in
these case x can be embedded in an sl(1|1)-triple); for q(n) the assertion is proven

in [GSS]. For p(n) with z of rank 1 we prove the assertion in Corollary 12.25; since
ds" = ds' o...ods', this implies the assertion for general .

Remark 8.2. For a precise description of ds,(#_(F(g))) when g = D(2,1;a) with
a € Q, see Section 12.6.1.

Remark 8.3. For q(n)-case ds,(#_(F(g))) = H#_(F(G))?", but it can be easily seen
that if M € F(g) then DS, M need not have the structure of a G-module.

8.5. The kernel of ds,.

8.5.1. Notation. Take g # p(n),q(n). For a fixed choice of negative roots A~ = A; U
A7, we denote the super Weyl denominator by R = g—?, where Ry = [[,.c Az (1—e%)
and Ry = [],ea- (1 —€®). For A € " set

E(\) =R Z (_1)l(w)+p(w(p)—p) e O+o)p,
weW

where [ (w) denotes the length of w as a product of simple reflections with respect
to a set of simple roots for go. Let P*(go) be the set of dominant weights of g.
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For g = gl(mn), 0sp(2|2n) with the distinguished choice of simple roots, k (A) is the
iupercharacter of a Kac module K (\) = Indg ogt Lao (A) when A € P¥(go) , and we
ave:

k(A) =sch L, () J] (1 —e%).

a€AT

However in Type II, k ()\) is a virtual supercharacter.

For p(n) we set K(\) = Indﬁo@gl Ly, (M); then K(\) is a “thin” Kac module. For
A € P*(go) the expression k(\) :=sch K()) is given by the above formulas. Finally
we need one more virtual supercharacter for p(n) given by

K'(\) := k() sch S*TI(C")*

Here C™ denotes the standard representation of gl(n). In coordinates €y, ..., €,, this
is given explicitly by

Let piso i= 35 Za€A+ a.

150

Theorem 8.4. Let ker; C kery C ... be the kernels for ds™ : #_(g) — #_(g.).

(1) For g # p(n),q(n),gl(1|1) the set {k(\)| A € P*(go) + piso} form a basis kery.

(2) For p(n) withn > 1 the set {k'(\)|A € P™(go)} form a basis of ker;.

(3) For p(n) with n > 2 the supercharacters of the thin Kac modules form a basis
of kers.

Hoyt and Reif proved (i) in [HR], and (iii) was proven in [IRS]. We will give a
proof of (ii) in Section 8.5.3 below.

8.5.2. Remarks.

e The rings # (gl(1]1)), #_(p(1)) are the group rings of C* and ds' acts by
ds*(c) = be.p.

e The kernel of ds' for g = q(n) is computed in [GSS]. The result is in terms
of an explicit basis of £~ (Q(n)).

8.5.3. Proof of (ii). Retain the notation of Section 8.1. Clearly, K_(\ + cstr) =
K_()\) ® x¢, where x. is a one-dimensional p,-module corresponding to cstr. Using
Section 8.1, we can reduce the statement to F2¢(g).

We utilize methods of [HR]. Let hy,...,h, be the standard basis of t (which is
dual to e1,...,e, € t*). Take z € gy, and identify g, with the “natural copy” of
p(n—1) in p(n); in this case t, is spanned by hy, ..., h,—1. Take f € #_(P(n)) such
that ds'(f) = 0.
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Identify t; with the span of €1, ...,¢,_1 and write
F=Y me" => fo. where fiy =" mu e, ™"
et aeC

By (8.2) ds'(f) = 0 is equivalent to Y, ¢ Mytqe, = 0 for each i’ € .

Therefore ) My iae, = 0 means that f,, is divisible by 1 — e™*». Hence f is
divisible by 1 —e™*".

Recall that ker ds! C kerds?, so ds*(f) = 0. Using the above argument for x €
Oc,_1+c,- We obtain that f is divisible by 1 — e™*»—17¢n,

The restriction Resy, gives an embedding of the supercharacter ring of p(n) to the
supercharacter ring of p(n)y = gl,. In particular, f is W-invariant and thus f is
divisible by the element

n

R=]Ja—e) J] 1-e

i=1 aEA_4

Since R’ is W-invariant one has f = R'f’ where f’ is a W-invariant element in
Zle",v € t*]. The ring Z[e”, v € t*]" is the character ring of gl,,, so f’ can be written
as f' = > mjsch Ly (v;). This gives f = > . m;R'sch Ly (v;) = >, m;k(v;) as
required.

Finally, one can use a standard highest weight argument to show that the k()\) are
linearly independent.

8.5.4. Remark. Take n > 0. One has Ag/ZA = Zy. Writing Ag = ZA + (g1 + ZA)

we have
F(P(n)) = Fo(g) ® Fi(g), where Fy(g) := F*2(g), Fi(g) := FLAT1(g).

Thus we have
H(F(P(n)) = H_(Fo(g)) ® #-(Fi(g))

If f e X (F(Pn) = (Fo(g)) has ds'(f) = 0, then the above argument will
imply that f is divisible by (1 — e?**) and (1 — e®-1%). Applying W-invariance of
f, we learn that it is the subspace of J#_(F(P(n)) spanned by the supercharacters
ki (M), i.e., the supercharacters of thick Kac modules Imdﬁ@g,1 Ly, (N).

However thick Kac modules do not span the kernel of ds'; for instance when n = 2,
we have

ds'([L(e1)] = [Cots] + [Csur]) = 0.

However one can show (using evaluation arguments) that [L(e1)] — [Cgr] + [C_gyy] 18
not in the span of supercharacters of thick Kac modules.
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9. THE DS FUNCTOR AND sl(0c0)-MODULES

In this section, we discuss a connection between the DS functor and sl(co)-modules
arising from gl(m|n)-representation theory, which was discovered and studied by the
Hoyt, Penkov and Serganova in [HPS]. We will recall some basic facts for sl(co),
and refer the reader to the book “Classical Lie algebras at infinity” by Penkov and
Hoyt for an in-depth treatment of the Lie algebra sl(co) and other locally finite Lie
algebras [PHJ.

In the pioneering paper [B], Brundan showed that the complexification of the
Grothendieck group for the categories F(GL(m|n)) and the integral BGG category
OTZWL inherit a natural sl(co)-module structure from the action of translation functors
E;, F;. This action and general categorification methods were used by Brundan, Losev
and Webster in [BLW] to develop Kazhdan-Lusztig theory for gl(m|n).

Now since the DS functor commutes with translation functors, the induced ho-
momorphism ds of reduced Grothendieck groups is, in fact, a homomorphism of
s[(00)-modules [HPS]. This homomorphism ds was used in [HPS]| to help obtain a
description of the sl(co)-module structure of the reduced Grothendieck groups for
both of the categories 7 and O, of integral gl(m|n)-modules.

9.1. The Lie algebra sl(oc). The Lie algebra gl(co) can be defined by taking
countable-dimensional vector spaces V, V., with bases {vi}icz, {v]}jez, and letting
gl(00) = V ® V, with bracket (extended linearly) given by

[v; @ V5, v @ vf] = (vg, V) v @ v — (g, V] )uy, @ V],

where (-,-) : V.® V, — C is the nondegenerate pairing defined by (v;, v}) = d;;.

We can identify gl(co) with the space of infinite matrices (a;;); ;, Which have only
finitely many nonzero entries, using the correspondence v; ® vj + Ejj, where Ej; is
the matrix with 1 in the 7, j-position and zeros elsewhere. Under this identification,
(-,-) is the trace map on gl(c0), and the kernel of (-,-) is the Lie algebra sl (co). The
center of gl(co) is trivial, and the following exact sequence does not split:

0 — sl(co0) — gl(co) - C — 0.

The Lie algebra sl (c0) is generated by the elements e; := E; ;11, fi := Ei11,; fori € Z.
We can realize sl(00) as a direct limit of finite-dimensional Lie algebras ling sl (n),
that is, sl(co) is isomorphic to a union |J,.,__sl(n), of nested Lie algebras

sl(2) Csl(3) C---Csl(n) Csl(n+1)C---.

The Lie algebra obtained from this union is independent, up to isomorphism, of the
choice of the inclusions sl(n) < sl(n + 1).
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9.2. Modules over sl(co). The modules V,V, are the defining representations of
sl(00), and for p, ¢ > 0, the tensor modules VP @V P p g € Z>( are not semisimple.
Schur-Weyl duality for sl(co) implies that the module V¥ @ V&7 decomposes as

VPV = B (SA(V)®8.(V.) ® (YA®Y,),

[Al=p,||=q

where Yy and Y, are irreducible S,- and S;-modules, Sy denotes the Schur functor
corresponding to the Young diagram A, and |A| is the size of A.

The sl(co)-modules Sx(V) ® S,(V.) are indecomposable, and their socle filtra-
tion was described by Penkov and Styrkas in [PStyr]|. We recall that the socle of
a module M, denoted soc M, is the largest semisimple submodule of M, and that
the socle filtration of M is defined inductively by soc® M := soc M and soc' M :=
p; H(soc(M/(soci=t M))), where p; : M — M/(soc’"' M) is the natural projection.
We denote the layers of the socle filtration by §56¢'M := soc’ M/soct"' M. From
[[PStyr], Theorem 2.3] we have that the layers of Sx(V) ® S, (V.) are

s (SA(V)®@Su(VL) = P Ny N VI

Ty
X! |y|=k

where N f\‘,ﬁ are the standard Littlewood-Richardson coefficients. In particular, the
indecomposable module Sy (V) ® S,(V.) has a simple socle, denoted by V**. For
example, the layers of A™V ® A"V, are given by 50¢'(A™V ®@A"V,) & Vm=i) " (n-i)"
where | indicates the conjugate Young diagram.

An sl(oo)-module is called a tensor module if it is isomorphic to a submodule
of a finite direct sum of modules of the form V% @ V% for p; q; € Z>¢. The
category of tensor modules Ty is by definition the full subcategory of s[(c0)-mod
consisting of tensor modules [DPS]. The modules V? @ V&1 p q € Z>, are injective
in Ty(). Moreover, every indecomposable injective object of Ty is isomorphic to
an indecomposable direct summand of V¥ @ V&1 for some p, ¢ € Zx(, which means,
it is isomorphic to Sx(V) ® S,,(V.) for some A, p [DPS].

9.3. Representation theory of gl(m|n). Let O,,, denote the category of Z,-
graded modules over gl(m|n) which when restricted to gl(m|n)o, belong to the BGG
category Ogi(min), (see [Mu], Section 8.2.3). This category depends only on a choice
of Borel subalgebra for gl(m|n)o, and not for gl(m|n). We denote by Oanm the Serre
subcategory of O, consisting of modules with integral weights. Any simple object
in (’)?n‘n is isomorphic to L(\) for some integral weight A (for a fixed Borel subalgebra
of gl(m|n)). The objects of the category O%”n have finite length. We denote by ffl'n
the Serre subcategory of OTZWL consisting of finite-dimensional modules. Each simple
object of Fﬁ‘n is isomorphic to L()) for some dominant integral weight A.
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We define the translation functors E;, F; on the category Orzn|n as follows. Let
X;,Y; be a pair of Zy-homogeneous dual bases of gl(m|n) with respect to the gl(m|n)-
invariant form str(XY'). For a pair of gl (m|n)-modules V, W, we define the Casimir
operator € € Endgimm)(V ® W) on homogeneous vectors by setting

Qv @w) = Z(_l)p(Xj)(p(v)H)va ® Yjw,

j
where p(-) denotes the parity function. Let U, U* be the defining gl (m|n)-modules.
Then for every M € Orznm, we let E;(M) (respectively, F;(M)) be the generalized
eigenspace of Q in M ® U* (respectively, M ® U) with eigenvalue i. Then, as it
follows from [BLW], the functor - ® U* (respectively, - ® U) decomposes into the
direct sum of functors ®;czE; () (respectively, ®;czF;(+)). Moreover, the functors E;
and F; are adjoint functors on O%qn-

9.4. Grothendieck groups and the sl(co)-modules K., Jjn. We let K,
(respectively, J,,n) denote the complexification of the reduced Grothendieck group
of O%ﬂn (respectively, of fflln), that is,

Kjn i= %C(O}an) ®z C, o = Ji/,(]'—flm) ®z C.

We will denote by e;, f; the linear operators that the translation functors E;, F; induce
on K,,,, and J,,,),,. Brundan showed in [B] that if we identify e;, f; with the Chevalley
generators F;; 1, i1, of sl(c0), then we obtain an sl(co)-module structure on J,,,,
and Km|n.

Let T, C K,y denote the subspace generated by the classes [M ()] of all
Verma modules M(X) for A € ®. Let furthermore W,,,, C J,,, denote the sub-
space generated by the classes [K()\)] of all Kac modules K (\) for A € ®*. Then
W.,.n and T, are sl (00)-modules under the action defined above, and W &
A"V @ A"V, and T,,,, = V" @ V2" [B]. The modules T,,, and W,,,, are in-
jective in the category Tgyo), and W, is an indecomposable summand of T,,.
Now let P, ,, := H_(Ppjn) @z C (respectively, Qujn := H_(Qmjn) ®z C), where Py,
(respectively, Q) is the semisimple subcategory of O%ﬂn (respectively, of Ffl'n)
consisting of projective modules. Then we have socK,,, = socT,,,, = P,,, and
socJyn =s0c Wy, = Q, [HPS, CS]. Consequently, Ty, (respectively, W) is
the maximal submodule of K,,,, (respectively, of J,,},) lying in the category Te(s0)
and in particular, K,, ,, and J,,,, are not objects of Ty(). A new category Tyi(so) 2 Of
sl(00)-modules was introduced in [HPS] (wherein it is denoted Ty;) for which K, ,,
and J,,, are injective objects.

9.5. The DS functor on OTann. Let X be the associated variety for gl(m|n), and let

r € Xy = & (Sk). By [[HPS], Proposition 33], the restriction of the functor DS, to
Opjn 1s a well-defined functor to O,,_jn—k, and it follows that the further restriction
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to O%ﬂn gives a well-defined functor

DSI . O%ﬂn — O7Zn—k|n—k'

Moreover, by [[HPS], Lemma 32] we have the following.

Proposition 9.1 (Hoyt-Penkov—Serganova). The functor DS, : O%ﬂn — O%%k‘nfk
commutes with translation functors.

This leads to the following result [[HPS]|, Proposition 36].

Proposition 9.2 (Hoyt-Penkov-Serganova). The map ds, : Ky — Kp_gjn—s is a
homomorphism of sl(co)-modules, and so is its restriction dsg : Jpn — Jm—kjn—k-

The map ds, : Iy — Jm—kn—r depends only on k = [S| and not on z, so we will
simply denote it by ds when k = 1. (Note that this does not hold for K,,,.)
The next proposition follows from Theorem 8.4 (1).

Proposition 9.3 (Hoyt-Penkov—Serganova). The kernel of ds : J min — Jm—1jn—1 18
Kerds = W, .
The following result is from [[HPS], Proposition 43].
Proposition 9.4 (Hoyt-Penkov-Serganova). Fix a nonzero x € gs,.,, and denote
by ds;; : Kppn — Kin_1jn—1 the sl(co)-module homomorphism ds,. We have
ﬂ Ker dsi,j = Tm|n
1]
9.6. The socle filtration.
Here is a description of the sl(co)-module J,,,, [[HPS], Corollary 29].

Theorem 9.5 (Hoyt-Penkov-Serganova). The module J,,, is an injective hull of
the simple module Q,,,,, and the socle filtration of J,,,, has layers

ST T, (V(miﬁ(ni)lf(”l) _

For a proof of the following theorem, see [[HPS], Theorem 24].

Theorem 9.6 (Hoyt-Penkov-Serganova). The sl(co)-module K,,,, is an injective
hull in the category Ts(oo),2 of the semisimple module P,,,,. Furthermore, there is an
isomorphism

1%

Kon= P *e(0meY,

[A[=m,|u|=n

where Yy and Y, are irreducible modules over S, and S, respectively, and IM js an
injective hull of the simple module VM in Tsi(o0),2- The layers of the socle filtration

of K, are given by

I

@ (mk]:)\,y,)@(dlm Yy dimYy)
|A|=m,|pl|=n

soc” K.n
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SOcFIMH @ @ A m X!
soc'1 - N‘Ylﬁz)\'N“/l,"h,lL'V :

A v+ va =k

where

10. PROJECTIVITY CRITERIA FOR QUASIREDUCTIVE LIE SUPERALGEBRAS

In this section, we assume that g is a quasireductive Lie superalgebra, that is,
go is reductive and acts semisimply on g;. We discuss to what to what extent the
associated varieties for Lie superalgebras can be used to detect projectivity in the
category of finite-dimensional g-modules.

10.1. Projectivity and the associated variety. Let F(g) be the category of finite-
dimensional g-modules which are semisimple over go. The latter condition is auto-
matic if gy is semisimple. The category F(g) has enough projective modules and
injective modules. By duality, every injective object is projective and vice versa.
Moreover, every indecomposable projective module is a direct summand of Indg . L
for some simple gop-module L. We say that a subalgebra £ C g is a quasireductive
subalgebra if €, is reductive and g is a semisimple £y-module.
The following fact is useful.

Proposition 10.1. Let £ be a quasireductive subalgebra of g. If P is projective in
F(g) then Res; P is projective in F(¢).

Proof. 1f P is projective then it is a direct summand of the induced module Ind§ N for
some semisimple go-module N. Furthermore, we have an isomorphism of go-modules:
Ind} N~ N ® S*(g1)

and an isomorphism of £;-modules
g1 =6 @ (g1/81).
By Frobenius reciprocity the homomorphism of £;-modules
N ® S*(g1/%1) — Indg, N
induces an isomorphism
Indg, (N ® S*(g1/8)) ~ Rese IndS, N.

We obtain that Res; P is a direct summand of some module induced from a semisimple
to-module. Therefore P is projective in F(¥). O

We can now give another proof of Lemma 2.20.

Theorem 10.2. Suppose g is quasireductive. If M € F(g) is projective, then X, =
{0}.

Proof. Let € X be nonzero, and consider the subalgebra ¢ = k(z) generated by x.
Since ¢ is quasireductive, Resy M is projective over £, which implies that M, = 0. [
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10.2. Criteria for type I Lie superalgebras. In this section we prove that for
certain quasireductive Lie superalgebras the converse of Theorem 10.2 holds. We
start with the following.

Lemma 10.3. Let g be quasireductive and [g1,¢1] = 0. If Xy = {0} then M is
projective in F(g).

Proof. Since U(g; ) is isomorphic to the exterior algebra A(g;) we have that X, = {0}
implies that M is free over U(gy), see [AB]. Then an embedding of go-modules
M /g1 M — M induces an isomorphism Ind§ (M/gi1M) ~ M. Therefore M is projec-
tive. O

Theorem 10.4. Assume that g, is reductive and there exists an element h in the
center of gy such that ad; acts diagonally on g, with nonzero real eigenvalues. If
Xy = {0} then M is projective in F(g).

Proof. Write down g = g, @ go ® g_, where g, (respectively, g_) denote the span
of adj-eigenvectors with positive (respectively, negative) eigenvalues. Since gi are
purely odd subalgebras, they are commutative, hence p, := goP g, and p_ := gobg_
are subalgebras satisfying the condition of Lemma 10.3. In particular, if X, = {0},
then M is projective in F(p+). For a go-module L set K*(L) := Ind§, L. We claim
that there exists a finite filtration

O=MyC M C---C M,

such that M;/M; 1 ~ K~ (L;). Indeed, let L; be h-eigenspace with maximal eigen-
value. Then g, L; = 0 and we have an embedding K~ (L;) C M. The quotient
M/K~(Ly) is again free over U(g+) and projective in F(py). Hence we can finish
the proof by induction on dimension of M. Similarly M* has a finite filtration with
quotients isomorphic to K*(N;). Therefore M @ M* has a filtration with quotients
isomorphic to K*(L;) ® K~ (N;) ~ Indj (L; ® N;). In other words M ® M* has
a filtration by projective modules. Therefore M ® M* is projective in F(g). Then
M @ M* ® M is also projective. In any symmetric monoidal rigid category M is a
direct summand of M ® M* ® M. Therefore M is projective. 0

Corollary 10.5. Theorem 10.4 holds for gl(m|n), sl(m|n), m # n, osp(2|2n) and
p(n).

Remark 10.6. Let g = s[(1|1). Then it is easy to construct a g-module M such that
Xy =0 and M is not projective. Recall that g; has a basis {z,y} and gy = Cz with
[z,y] = 2, [2,7] = [2,9] = 0. Then X = Cx UCy. Let M = C''| z acts trivially on

M, and both z and y act via the same matrix 1). Clearly M is not projective.

0
0 0
Note that the s[(1]1)-module M is not the restriction of a gl(1]1)-module.
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10.3. Semisimple support varieties. Because g, is reductive, we have a well-
defined notion of semisimple elements in gg, so the following definition makes sense.

Definition 10.7. We set
97’ = {x € g1 : [z, 2] is semisimple}.
Remark 10.8. Clearly we have X C gf°. Further gj* is G-stable, just like X. However

g37° is no longer closed in g, so its structure as a variety is much more complicated.

Let x € gi* and write h = [z, z]. Then for M in F(g), if we consider M", the fixed
points of h on M, it is z-stable and further x defines a square-zero endomorphism on
it. Thus we may define

M, = (ker z|pm)/(Im x| ppm).
This defines a functor which we continue to call DS, the Duflo-Serganova functor for
the element z. Note that the Duflo-Serganova functor as we defined it in Section 2
comes from the case when h = 0.

Remark 10.9. It is easy to check that Lemma 2.2 and Lemma 2.4 hold for this
generalization of the DS functor.

The following space was considered in [ES4].
Definition 10.10. Let M be in F(g) and define the semisimple support of M to be
X3 = {z € g M, #0}

Again we have that X737 C gi° is Gy-stable; however as is hinted in Remark 10.8,
the geometric structure of X3; can be quite complicated.

We note that semisimple support varieties share many of the same properties as
support varieties; in particular, all properties from Lemma 2.19 continue to hold. In
particular, we can use an analogous proof as in Theorem 10.2 to show that:

Proposition 10.11. Let P be projective in F(g). Then X3 = {0}.
We make the following conjecture:

Conjecture 10.12. Let g be quasireductive and suppose that M is in F(g) with
X35 ={0}. Then M is projective.
A proof of this conjecture is currently forthcoming.

Example 10.13. Consider the example given in Remark 10.6. For g = sl(1]|1) we
have g5* = g1. Clearly for the module M considered there, X35 = {c(x —y) : ¢ € C}.

11. LOCALIZATION OF THE DS FUNCTOR

In this section, we associate to every finite-dimensional g-module a vector bundle
on X with a square-zero O x-module endomorphism, which interpolates the actions of
the elements of X. We relate the cohomology of this operator to the support variety
of M, and apply it to a cohomology computation for gl(m|n).
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11.1. Localization. Let g be a finite-dimensional Lie superalgebra, and let M be a g-
module. Let Ox denote the structure sheaf of X. Then Ox®M is the sheaf of sections
of the trivial vector bundle with fiber isomorphic to M. Let 0 : Ox @ M — Ox ® M
be the map defined by
Op () = zp ()

for any z € X, ¢ € Ox ® M. Clearly 9> = 0 and the cohomology M of 9 is a
quasi-coherent sheaf on X. If M is finite-dimensional, then M is coherent.

For any = € X denote by O, the local ring at z, by Z, the maximal ideal. Let M,
be the cohomology of 9 : O, @ M — O, ® M and M, := /\;lx/Ix./\;lx The evaluation
map j, : O, ® M — M satisfies j, 0 9 = x o j,. Hence we have the maps

Jz : Ker0 = Kerzx, j, : Imd — M.

The embedding M — O, ® M ensures the surjectivity of the latter map. Thus, j,
induces the map j,: M, — M,, and Im j, = M,.

Remark 11.1. Tt is easy to see that M, is a (g, )o-module and j, is a homomorphism
of (g)o-modules.

Lemma 11.2. Let M be a finite-dimensional g-module.

(1) The support of M is contained in X ;.
(2) The map j, is surjective for a generic point x € X. In particular, if X); = X,
then supp M = X.

Proof. First, we will show that for any x € X\ X}, there exists a neighborhood U of
x such that M (U) = 0. Indeed, there exists h, € End¢(M) such that x o h, + hy o
x = idy. Therefore in some neighborhood U of = there exists an O(U)-morphism
h:OU)®@M — O(U)® M such that 9 o h + h o 0 is invertible and h(z) = h,.
Hence the cohomology of 0 : O (U) ® M — O (U) ® M are trivial. In other words,
M (U) = 0. Thus, x does not belong to the support of M and we have obtained that
supp M C Xyy.

To prove (2) let € X be a non-singular point such that dim M, is minimal. Let
m € Kerxy,. Then there exists some neighborhood U of z and ¢ € O (U) ® M such
that dp = 0 and ¢ () = m. By definition ¢ € M, and j, () = m. O
Corollary 11.3. Let x € X be a generic point, then in some neighborhood U of x,
the sheaf My, coincides with the sheaf of sections of a vector bundle with fiber M,,.

Let Xy # X. Then M is the extension by zero of the sheaf Mx,, and My,
locally is the sheaf of sections of a vector bundle with fiber j,(M,) for a generic
x € Xy. Note that j,(M,) C M,, but usually this is a strict embedding, as one can
see from the following example.

Example 11.4. Let g = gl(1]1) and M be the standard g-module. Then

X:{(S g) Iuvzo}.
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Therefore X, = {0}, but a simple computation shows that M = 0, and in particular,
the support of M is empty.

For z € X, let Gf denote the stabilizer of x in Gy. The following statement
illustrates a geometric meaning of (g,);.

Proposition 11.5. Let x € X. Then the Go-vector bundle G X gz (8. )1 is canonically
isomorphic to the normal bundle to Gox in X.

Proof. First, we compute the tangent space T, X. The condition
[z +ey,z+eyl =0 mod €

is equivalent to y € Ker ad,. Therefore T, X = (Ker ad,);. On the other hand, the
tangent space T, (Goz) to the orbit is canonically isomorphic to [go, z] = (Im ad,);.
Hence the normal space to Gox in X at the point z is isomorphic to (g,);. Using
G-action we obtain
Neoe X = Go Xgz (g2)1-
O

11.2. A special G-invariant subset for basic classical Lie superalgebras. For
this subsection, let g be a basic classical Lie superalgebra.
Let x € X}, and
Yo :={y € (92); [ [y 9] = 0}.
Then

(11.1) r+Y, CX
The following is a consequence of Theorem 5.1 and Lemma 5.10.

Corollary 11.6. Let x € X and denote by X' C X the union of all Go-orbits O
such that x € O. Then X' = Gy(x +Y5),

Lemma 11.7. Let x € X. There exists a subgroup () C G satisfying the following
properties

(1) Gg™'NQ = {1} for any y € Y,,

(2) Q(G}) is Zariski dense in Gy.

Proof. First, we check the statement for classical g. We denote by V' the defining
representation of g. Then for some subspace V' C V we have a decomposition
V=xV'&V,®d V' and we may assume that V', xV’ are isotropic subspaces and
orthogonal to V, in the orthosymplectic case. We set

Q:={g9€Go|glw=idy, g(V) CW DV, gly, =idy, mod V'}.

Now let g be exceptional and x # 0. Then Gf is a subgroup of codimension 1 in
some parabolic P with maximal normal unipotent subgroup U. We set ) = C* x U~
where U~ is the opposite (complementary) to U and C* be a one-parameter subgroup
in the maximal torus of GGy which acts by freely on C*z. 0J
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Lemma 11.8. Let N := M, and N, denote the fiber at 0 of the sheaf N' on Y,.
Then there exists an injective morphism Ny — M.

Proof. The action map @ X (x +Y,) — X defines an isomorphism a : U — Q X Y,
for some Zariski dense open U C G’. Denote by p the composition of a with the
projection. Then p* : N' — M(U) is injective and hence induces an injection of
fibers. O

Lemma 11.9. Let x € X and K is the algebraic subgroup of G with the Lie algebra
(9z)o. For every 2’ € X' we have Gox' N (x +Y,) = K(x +y) for some y € Y,. Thus
we have a bijection between Gy-orbits in X' and K-orbits in Y.

Proof. Let v = ) ., 2o and &' = {B € S | A C B}. Then Gy-orbits in X are in
bijection with §’'/W and K-orbits in Y, are in bijection with Sy, /W, , where S;, and
W,, are analogues of S and W for g,. The map &' — §,, defined by B — B\A
induces the bijection &'/W — S, /W,,. Hence the statement. O

11.3. Application to cohomology of finite-dimensional gl (m|n)-modules. For
the rest of this section g = gl (m|n). Recall the grading g = g' ®g°®g~! and observe
that the abelian subalgebra g' is an irreducible component of X. We can identify g*
with Homc(C™, C™). Then
gi = Xk Ng' = {p € Home(C",C™) |tk = k},

g}, is a single Gg-orbit.

Let M be a g-module. The restriction M” of M to g! is given by the cohomology

8:091®M—>(’)gl ® M,

where 0 is the same as for the sheaf M. The complex of global section equipped with
the standard grading
e P OM == (g M = M —0

is nothing else but the Koszul complex computing the cohomology H*(g', M). These
cohomology groups are important since they are used in the Kazhdan—Lusztig theory
for F(GL(m|n)), [S1], [B]. The sheaf M" can be considered as the localization of
H*(g', M) in the sense of Beilinson—Bernstein. It is clear that

(11.2) supp M" € Xy N gt

Lemma 11.10. If M admits a typical central character, then supp M" = {0} and
the fiber of M" at 0 equals H°(g*, M).

Proof. Follows from the fact that M is a free U(g')-module and Koszul duality be-
tween U(g') and S(g'). O

Theorem 11.11. Let M be an irreducible finite-dimensional g-module with atypi-
cality degree k. Then supp M" = X, N g’
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Proof. The inclusion supp M" C X N g! follows from Theorem 6.4 and (11.2).
To prove the equality consider x € g}. The fiber M”" # 0 by Lemma 11.10 and
Lemma 11.8. 0J

Consider the Hilbert—Poincare series
Hy(t) == dim H'(g", M)t'.
i=1
The Hilbert—Serre Theorem and Theorem 11.11 imply

Corollary 11.12. Let M be an irreducible finite-dimensional g-module with atypi-
cality degree k. Then

_ q(t)
Hy(t) = (1 — ¢)k(mtn—k)
for some polynomial ¢(t).
Proof. The degree in the denominator equals dim g = k(m +n — k). O

12. AcTION OF DS, ON SIMPLE MODULES

In this section we discuss what is known about the action of DS, on simple modules
for classical Lie superalgebras. Serganova originally conjectured that these functors
are semisimple when g is basic classical, meaning that they takes semisimple modules
to semisimple modules. Following the work of [HsW] and [GH1] this is now a theorem.
For p(n) these functors are known not to be semisimple, while for q(n) this remains
an open question. However by the work of [ES2], the composition factors of DS, (L)
for a simple module L are known in some cases for p(n). The case of q(n) will be
considered in forthcoming work.

12.1. General results. We begin with a general statement. Recall that if N is a
g-module and L is a simple g-module, we write [V : L],,, for the ungraded Jordan-
Holder multiplicity of L in N, meaning for the number of times both L and IIL
appear as Jordan-Holder factors of N.

The following result is a compilation of results from [HsW], [GH1], [M], and [ES2].

Theorem 12.1. Let g be one of the Lie superalgebras gl(m|n), osp(m|2n),p(n), or a
simple exceptional Lie superalgebra. Let L be a simple g-module, x a rank one odd
root vector (see Definition 4.2), and L' a simple g,-module.
(1) If g # p(n), then DS, (L) is a semisimple g,-module.
(2) We have [DS,(L) : L'|non < 2; if g = gl(m|n), p(n) then DS, (L) is multiplicity
free.
(3) (Purity) If g is basic classical (g # p(n)) then we have

(DS, (L) : L'|[DS,(L) : TIL] = 0.
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(4) For g = gl(m|n), 0sp(m|2n), and p(n), the composition factors of DS, (L) are
determined by removing maximal arcs from the arc diagram associated to L
(see the subsections below for explanations on the arc diagrams for each case).

Remark 12.2. In (2) of Theorem 12.1 the multiplicity bound states that [DS,L :
L')pon < 1 when g is of type I, i.e., when it has a Z-grading (i.e., gl(m|n), 0sp(2|2n),
or p(n)).

The proof of these bounds (and the rest of the results above) are still case-
dependent; general proofs are unknown but would be of great interest.

Remark 12.3. There is an elegant explanation of the purity property, i.e., part (3) of
Theorem 12.1, which is explained by Gorelik in [G4].

Namely, for g basic classical there exists a semisimple subcategory C(g) of the
category of finite-dimensional modules such that for any simple module L of g, exactly
one of L or IIL lies in C(g). These semisimple subcategories can be chosen so that if L
lies in C(g) then DS, L lies in C(g,.), which of course implies part (3) of Theorem 12.1.

Further, it is possible to choose these semisimple subcategories so that when g is
reductive (i.e., g = go or g = 0sp(1|2n)), C(g) contains all simple modules of positive
superdimension. Using this and the fact that the DS functor preserves superdimen-
sion, one can obtain combinatorial formulas given by a sum of non-negative numbers
for the superdimension of any simple module. This was done in [HsW] for gl(m|n).
For p(n) the superdimension was computed in [ES2].

Before explaining part (4) of Theorem 12.1 and beginning the discussion of arc
diagrams, we state a result from which we compute the value of any D.S functor for
g = gl(m|n), 0sp(m|2n) on any simple module.

Let z, € X be a rank r element of the associated variety of g. Write DS for the
functor obtained by applying D.S, for a rank one vector x.

Theorem 12.4. Let g = gl(m|n) or osp(m|2n). For a simple g-module L we have
an isomorphism of DS, (g) = DS*(DS'(--- DS'(g) - - - ))-modules:

DS, (L) = DSYDS'(---DS*(L)---)).

We will now discuss arc diagrams and part (4) of Theorem 12.1, after which we
will explain the case of the exceptional superalgebras.

Remark 12.5. As we will see, the calculus of arc diagrams below will explain how
to compute DS! on simple modules with integral weights. By Section 8.1, this is
enough to compute DS on all of F(g).

12.2. An overview of arc diagrams. We now begin the explanation of part (4)
of Theorem 12.1, which will consume the rest of this section. For the classical series
gl(m|n),osp(m|2n), and p(n), there is a remarkable thread which links the com-
putations of the composition factors of DS, L for a simple module L, namely arc
diagrams. (Note that for p(n) the diagrams used in [ES2] were called cap diagrams;



48 MARIA GORELIK, CRYSTAL HOYT, VERA SERGANOVA, ALEXANDER SHERMAN

we have changed the name for the sake of consistency.) These arc diagrams are de-
fined individually for each superalgebra and provide a combinatorial tool to study
this question.

We summarize the situation as follows. For each of the four Lie superalgebras
listed above, we explain a procedure which associates to each simple module L an
arc diagram, which consists of symbols lying on (half)-integer points on the real line,
along with arcs which connect them. These arcs sometimes are nested within one
another, giving rise to the notion of maximal arcs, those which do not lie beneath
another arc. Then, as is stated in Theorem 12.1, the composition factors of DS, L are
given by the simple modules whose associated arc diagram is obtained by removing
one maximal arc from the arc diagram of L. As will be seen, the procedure for
defining arc diagrams is different for each superalgebra.

The idea of using arc diagrams to study the representations of Lie superalgebras
goes back to the work of Brundan and Stroppel, where they realized the category
Rep GL(m|n) as a certain diagram algebra of Khovanov type ([BS1],[BS2], [BS3],
and [BS4]). Their arc diagrams are, notation aside, in essence the same as what will
define for gl(m|n) below.

For the orthosymplectic supergroup, Gruson and Serganova used arc diagrams
for ‘tailess’ dominant weights in [GrS2]. More recently, Ehrig and Stroppel have
done similar work on realizing Rep OSp(m|2n) as a certain diagram algebra, (see
[EhSt1] and [EhSt2]). Their diagram algebra is related to type D Khovanov algebras;
however, their arc diagrams differ from those used in [GH1] to study the action of

DS, on simple modules. A dictionary to go between them is described in appendix
A of [GH1].

Remark 12.6. There is an interesting link between arc diagrams and the computations
of character formulas for gl(m|n) and osp(m|2n) (see [GH2]) as well as for q(n) (see
[SuZh]). A similar connection is expected for p(n) as well.

We now begin our case by case explanations of arc diagrams. We will write A,
for the free Z-module with basis €,...,€y,,01,...,0, which will be used for g =
gl(m|n), osp(2m|2n), and osp(2m +1|2n). For these superalgebras we define a parity
homomorphism p : Ay = Zy = {0,1} by p(e;) = 0 and p(d;) = 1 for all 4,7, and
extending linearly. For g = p(n) we will use that lattice A,, which is the free Z-
module with basis €1,...,¢€,.

12.3. gl(m|n) case. The g = gl(m|n) case is due to [HsW], and we refer the reader
there for full details and more in-depth results.
We take the Borel subalgebra corresponding to the simple roots

61—62,...,6m—51,...,5n,1—6n.
Let
p=—€—23—-—(m—1)eu,+(m—1)01 + (m —2)ds + -+ -+ (Mm — n)d,.
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We identify A € A, with the (m|n)-tuple of integers
(al, Ce ,am]bl, ey bn)

where
)‘+p:a1€1+"'+am€m_6161_"’_bndn-

We write AT (gl(m|n)) for the set of dominant weights in A,,,, with respect to this
Borel. Then A is dominant if and only if a; > --- > a,, and by > --- > b,.

12.3.1. Weight and arc diagrams. Write I-(\) = {a1,...,an}and Is(X) = {b,...,b,}.
Then define the weight diagram associated to A to be the following labelling f) : Z —
{X, o, <, >}:

kel (N)NI(N);
k¢ I(A) U L (N);
k€ I(A)\ (I-(A) N 1< (N));
k€ L.(A)\ (I<(A) N L= (N);

The correspondence A — fy defines a bijection between A™ (gl(m|n)) and the labelings
of Z by the appropriate number of the symbols X, o, <, >.

a(k) =

V N o X

Remark 12.7. It is not hard to check that the atypicality of a dominant weight A is
equal to the number of symbols x in its weight diagram.

Given a weight diagram f) we associate an arc diagram as follows: connect an arc
between i < j if f(i) = x, f(j) = o, and for all k such that i < k < j with f\(k) = o,
k already lies on an arc.

Example 12.8. For g = gl(n|n), the trivial weight A = 0 has the following weight
diagram:

H/_/

n

The arc diagram is given by

YA

Clearly DS,C = C, and from the diagram we also see that when removing the only
maximal arc we obtain the arc diagram of the trivial module for gl(n — 1|n — 1).
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Example 12.9. For gl(6|7) consider the weight
/\:361+3€2+263+64+65—252—253—254—3(55—3(56—667

Its weight diagram looks as follows:

ey
A\

)
)

Its arc diagram is given by:

A\

12.3.2. dex and simple modules. For A € A*(gl(m|n)), in order to properly specify
the parity of L(\) we need to briefly explain the equivalences of blocks for gl(m|n).
Namely, every block of atypicality k for gl(m|n) is equivalent to the principal block
of gl(k|k).

This equivalence defines a correspondence on simple modules, and thus on domi-
nant weights, which we denote by A — X, and it works as follows.

In the weight diagram of A, move all core symbols (i.e. >, <) to the right of the
symbols x by simply swapping adjacent symbols one at a time. This pictorial pro-
cedure corresponds to applying translation functors between different blocks of the
same atypicality. After moving all core symbols to the right, we simply remove them
from the diagram, leaving us with a diagram only with the symbols x, and thus it
will correspond to a dominant weight A in the principal block of gl(k|k).

For example, for the simple module of Example 12.9, the atypicality is 5 and the
weight diagram of X is given by

any rany
A\ A\

Remark 12.10. The equivalence of categories here described commutes with the appli-
cation of DS, and thus it in fact suffices to understand how DS acts on the principal
block of gl(k|k), although we will explain the general case for gl(m|n). However for
osp(m|2n) we will use this principal and thus only explain in full how DS acts on
the principal blocks of certain superalgebras.

Definition 12.11. For A € A (gl(m|n)), we define

dex A == p(\).

Then we set L(\) to be the simple module of highest weight A\ such that the parity
of the highest weight vector is dex A.
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Example 12.12. Consider an integer multiple of the Berezinian weight of gl(n|n),
that is, for k € Z,

AN=kler £t en— 01— —8).

Its weight diagram is a translation of the weight diagram of the trivial module. We

have dex(\) = kn mod 2.
Example 12.13. For A as in Example 12.9, we have dex A = 1.
Theorem 12.14 ([HsW]). For A € A*(gl(m|n)), we have

DS,L(\) = @ umL(x)
where \; are the weights which correspond to the arc diagrams obtained by removing
a single maximal arc from the arc diagram of \, and n; = dex A — dex ;.

Remark 12.15. For gl(m|n) there are two conjugacy classes of rank one odd root
vectors, but as is explained in [HsW] the action of the corresponding Duflo-Serganova
functors on simple modules is the same up to isomorphism.

Example 12.16. For gl(6|7) consider the weight introduced in Example 12.9. We
recall its arc diagram is given by:

ROV VAR

A\ A\ N4 T

To apply DS, to L(A\) we remove the maximal arcs from the diagram to obtain two
new arc diagrams:

which corresponds to the weight A\ = 3€; + 3€ex + 25 + €4 + €5 — 207 — 205 — 203 —

304 — 305 — 40, which has dex \; = 0.

A\ A\ A\

L)

A\

)
o)
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which corresponds to the weight Ay = 3€;+3€2+2€3—€5+01 —205 — 203 — 304 — 305 — 606,
which has dex Ay = 0 Thus we have

DS,L(\) = L(\) & L(\s).

12.4. osp(m|2n) case. For a full explanation of the osp case with many examples,
see [GH1]. Below we closely follow the treatment given in [G4].

We have the following equivalences of categories that are obtained via a functor
which respects the action of DS.

e A block of atypicality k for osp(2m+ 1|2n) is equivalent to the principal block
for osp(2k + 1|2k).
e For osp(2m|2n) with m,n > 0, a block of atypicality k is equivalent to the
principal block of either osp(2k|2k) or osp(2k + 2|2k).
In this way we obtain that every block for osp(m|2n) is equivalent to the principal
block of osp(2k + t|2k) for some k and some ¢ = 0,1, or 2, and so it suffices to
understand how DS, acts on modules in these blocks. We will deal with these three
cases individually, and refer to them according to the value of ¢.

Remark 12.17. There are a number of parallels between the principal blocks of
0sp(2k+1|2k) and osp(2k+2|2k). In particular in [GH1] they find an explicit bijection
T between simple modules such that it respects the action of the D.S functor, meaning
we have an equality of multiplicity numbers [DS,(7(L)) : 7(L)] = [DS.L : L].

It is important open question whether there is an equivalence of categories between
these principal blocks, and in particular if there is one which commutes with the DS
functor.

12.4.1. The weight lattice of osp(2k + t|2k) is given by Apiqr. We fix triangular
decompositions corresponding to the “mixed” bases:

€1 — 01,01 —€2,...,E — Ok, Ok for 05p(2k+1|2k‘)
Y= 01 — £1,€1 — (52, ey Ef—1 — 5k,5k +e, for 05p(2kﬁ|2/€)
&1 — 51, 51 —€9,...,&k — (Sk,dk + Ek+1 for 05]3(2]{ + 2’2]6’)
1 k
We have p =0 for t = 0,2 aﬂd0252(5i—€i) for t = 1.

=1
Set £ = 0 fort = 0,1 and ¢/ = 1 for t = 2. Then a dominant weight A for
05]3(2]{3 + t|2k}) lives in Ak_;,_g‘k.

12.4.2. Highest weights in the principal block. For X € Ay we set
a; == —(A|d;)

. Write A%(osp(2k + t|2k)) for the dominant weights of osp(2k + t|2k) which lie in
the principal block. By [GrS], A € A%osp(2k + t|2k)) if and only if ay, ..., a; are
non-negative integers with a;,.1 > a; or a; = a;;1 = 0, and
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Zf:ll a;(g; + 6;) + ap (0 + Eex) for t=0
Atp= Zle ai(g; + 0;) for t=2

Sl + (e +6) + 30+ €es) + 300 (0 —ei) for t=1
for £ € {£1}. Fort =1wehave 1 <s<k+1landas=as1=...=a, =0if

s <k (for s =k+1wehave \+p= 31 (a; + 1)(e; +5,)).

12.4.3. Weight diagrams. Take A\ € A°(osp(2k + t|2k)) and define a; for i = 1,...,k
as above. We assign to A a weight diagram f), which is a number line with one or
several symbols drawn at each position with non-negative integral coordinate:

e we put the sign x at each position with the coordinate a;;
e for t = 2 we add > at the zero position;
e we add the “empty symbol” o to all empty positions.

For t # 2 a weight A € A°(osp(2k+t|2k)) is not uniquely determined by the weight
diagram constructed by the above procedure. Therefore, for t = 0 with a; # 0 and
for t = 1 with s < k, we write the sign of £ before the diagram (+ if £ =1 and — if

E=-1).
Notice that each position with a nonzero coordinate contains either x or o. For
t = 0,1 the zero position is occupied either by o or by several symbols x; we write

this as x® for ¢ > 0. Similarly, for ¢ = 2 the zero position is occupied by S with
1> 0.

Remark 12.18. The weight diagrams we have defined are essentially the same as those
defined in [GrS], except that when ¢t = 1 we shift by —1/2.

12.4.4. FExamples. The weight diagram of 0 is

<k o

where the three small es together are an ellipsis, indicating the diagram continues
with os. We omit these in future diagrams. For ¢ = 0,

for t =1, and

for t = 2; one has
The diagram

+ xteoo—

corresponds to 0sp(2k + 1]2k)-weight A = €.
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The diagram
+ —o X<

corresponds to the osp(4]4)-weight A = X+ p = (g2 + d2) + 2(g1 + d1).
The empty diagram correspond to 0sp(0]0) = osp(1|0) = 0; the diagram > corre-
sponds to the weight 0 for osp(2|0) = C.

12.4.5. The definition of weight diagrams defines a one to one correspondence between
dominant weights for osp(2k + t|2k) and (sometime signed) weight diagrams with n
x symbols and one symbol > if ¢ = 2, satisfying certain conditions.

For t = 0 (respectively, t = 1) a diagram f, in has a sign if and only if f,(0) = o
(respectively, f\(0) # o).

12.4.6. Arc diagrams. We associate an arc diagram to each weight diagram con-
structed according to the following steps:

(1) For 0 < i < j with fy(i) = x and f\(j) = o, connect an arc from i to j if for
all k with i < k < j and fy(k), k already lies on an arc.

(2) If there is at least one x at 0, order them from top to bottom. If ¢ = 0,1 then
draw a single arc from the bottom x to the nearest position with o. If ¢t = 2,
draw two arcs emanating from the bottom x to the two nearest positions
with o not already lying on an arc. Then for any ¢, for each x at 0 above the
bottom one (and working from bottom to top), draw two arcs from the x to
the two nearest positions o not already on an arc.

In what follows we refer to the arcs (either one or two) which lie on a single
X as just an arc. For example, consider the arc diagram associated to the weight
A = 9¢; + 8¢y + 4deg + €4 + 851 + Ty + 303 for osp(11]10); in this case A + p =
(8+1/2)(e1401) + (T+1/2)(e2+02) + (3+1/2) (€34 03) +1/2(ea + 4) + 1/2(05 — €5):

AN

There are two maximal arcs in the above diagram: one which consists of the two arcs
emanating from the top x at 0. If we remove this top arc we obtain the diagram
corresponding to the weight \; = 9¢; + 8¢5 + 4e3 + €4 + 861 + 7d9 + 303 for 0sp(9]8):

+w

The other maximal arc is the one emanating from the x lying at 7. If we remove it,
we obtain the diagram corresponding to the weight Ay = 9¢; + 45 + €3 + 861 + 355 of
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+M

12.4.7. dex and simple modules. Given a dominant weight A, we define
k

M =" ai — £(k — tail(\))

=1

0sp(9(8):

where tail(\) denotes the number of symbols x at 0 when ¢ = 1 (we omit the definition
for other cases since we do not need it). The we define

dex A := ||A]| mod 2.

We will write L()) for the simple module of highest weight A\, where the parity of
the highest weight vector is given by dex(\).

Theorem 12.19 (Gorelik—Heidersdorf, [GH1] Theorem 8.2).

(i) Let A € A%(osp(2k+t|2k))) and v € A°(osp(2k+t—2|2k—2). Then [DS,L(\) :
L(v)]non # 0 if and only if the arc diagram of v can be obtained from the arc
diagram of A by removing a maximal arc. If t # 1, then the sign of v and
A (if relevant) need not agree, while if t = 1 then if v has sign it must agree
with the sign of \.

(ii) Let e denote the number of free positions (i.e., those with o and not attached
to any arc) to the left of the maximal arc removed to obtain v. Fort = 1,2

we have:
(1]0) e=0;
[DS.(L(N) : L(v)] =< (2]|0) e> 0 and even;
(0]2) e odd.

For t = 0 we have

pszon s 2wl = { G <o

Remark 12.20. For every m,n with m > 0, The Lie superalgebra osp(2m|2n) admits
an involution ¢ which comes from a reflection of its Kac-Dynkin diagram. This
involution is the same as the involution o, defined in Section 3.1.

In [GH1] it is proven via a general argument that for a simple 0sp(2m|2n)-module
L, we have DS,(L°) = DS, L, and (DS, L)’ = DS, L, where o, is the corresponding
involution for osp(2m — 2|2n — 2).

It would be interesting to know if these isomorphisms hold for all finite-dimensional
0sp(2m|2n)-modules.

We now give an example of the above theorem for each case t = 0,1, 2:
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Example 12.21. For t = 1, consider the weight A = 9¢14+8¢ea+4e3+€4+801 + 72 +203.
We have dex A = 0, and we looked at the weight diagram already in Section 12.4.6.
By Theorem 12.19 we have

DS,L(A\) = L(A\;) @ TIL(\y)®2.
Note for A\; we have e = 0 and Ay, e = 1, hence the parities are as shown.

Example 12.22. For ¢ = 0 consider the weight A = 6(0; + €;) + 2(02 + €2) + (03 — €3)
for 0sp(6/6), which has dex A = 1 and arc diagram:

VAN

There are two maximal arcs. Removing the arc starting at position one gives the arc
diagram associated to A" = 6(&; + €;) + 2(J2 + €) with e = 1:

+ oo > ooXn

Removing the maximal arc starting at position 6 gives the arc diagrams associated
to Ay = 2(6; + €1) + (02 £ &) with e = 2:

+ —@%@9—@—9—%
Thus we have that

DS,L(\) = IIL(A\) @ IL(AT) ® L(A}) @ L(Ay).

Example 12.23. In the t = 2 case consider the weight A = 8(e; + 1) + 5(ea + d2) +
8(e3 + d3) for 0sp(6/4) with dex A = 0 and arc diagram:

EONNNVNINVN

There are three maximal arcs. If we remove the one emanating from 0, we obtain
the arc diagram associated to the weight A\; = 8(e; +61) + 5(€e2 + d2) 4+ 2(e3 + d3) with

e=0:
BRIV WV NPNIVA N

If we remove the maximal arc emanating from 5 we obtain the arc diagram associated
to the weight Ay = 8(e1 + 1) + 2(ea + d2) with e = 0:

M
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Finally if we remove the arc emanating from 8 we obtain the arc diagram associated
to the weight Ay = 5(¢; + 1) + 2(€g + 02) with e = 1:

It follows that we have

DS,L(A) = L(\) & L(Ag) ® [TL(Ag)%2.

12.5. p(n) case. We refer to [ES2] for a full explanation of the p(n) case with exam-
ples.
We write A,, for the Z-module spanned by €1,...,¢,. We fix the following simple
roots for p(n):
te€, — €,-1,€p—1 — €p_9, ..., Ex — €71.
Write AT (p(n)) for the set of dominant integral weights with respect to the corre-
sponding Borel subalgebra. Let

p=¢és+2e+-+(n—1e,.

For A\ € A*™ we write
A+ p=aie+ -+ ay€,.
Then the dominance condition is precisely that a; < -+ < a,.
Given A € AT (p(n)) we write L(\) for the irreducible representation corresponding
to A such that the highest weight vector is even.

12.5.1. Weight and arc diagrams. To A € A*(p(n)) we define the associated weight
diagram fy : Z — {o,e} by fi(a;) = e and fy(n) = o if n # a; for all i.

Now we define an arc diagram associated to A according to the same approach as
for gl(m|n), except we work from left to right now, i.e., from negative to positive
integers. More explicitly, we draw an arc connecting ¢ and j if f\(i) = o, fo(j) =
and all £ with i < k < j already lie on an arc.

Theorem 12.24 (Entova-Aizenbud-Serganova [ES2]). Let A € AT (p(n)) and p €
At(p(n —1)). Then II°L(u) appears as a factor of DS, L(\) for some z if and only
if the arc diagram of j can be obtained from the arc diagram of A\ by removing a
maximal arc. In this case, z is equal to the number of arcs to the right of the one
removed. Further, DS, L(\) is multiplicity-free.

We can now give the proof of Theorem 8.1 for p(n).
Corollary 12.25. The map ds' : & (p(n)) — #_(p(n — 1)) is surjective.

Proof. In particular DS, L is multiplicity-free for a simple g-module L, and the factors
are obtained by removing maximal arcs. So let L’ be a simple g,-module, with arc
diagram f’. Let f; be the arc diagram obtained by adding a symbol e to the first free
space to the right of all symbols e of f/. Then this new symbol will give a maximal
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arc in f1. If we write Ly for the irreducible representation corresponding to f;, then
in #_(p(n)) we will have a multiplicity-free sum

dsa[Li] = £[L']+ ) +[L"].

L//

By switching the parity of L, we can assume the sign in front of [L’] is positive. Now
we can induct on the length of the furthest most right string of symbols e in the arc
diagram, for which all L”s will have a longer length than L, giving surjectivity. [

Example 12.26 (The following example is taken from [ES2]). Let n = 9, and con-
sider the dominant weight A = €3 + 3¢4 + 3¢5 + b€ + S8e7 + 8eg + 8eg. We draw the
associated arc diagram below:

We see that there are 4 maximal arcs in the diagram, thus DS, L(\) has 4 simple
factors IIL(A1), L(X2), L(A3), and L(\g). They are listed with their arc diagrams
below, along with the corresponding value of z: A\; = 2ey + 4e3 + 4e4 + Tes + e +
9e7 4+ 9eg, 2 =T

)\2 = 463 +4€4+7E5+9€6+9€7+968, Z = 61
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A3 = €3+ 3€4 + Tes + 9eg + 9er + ey, 2 = 4:

)\4:€3+3€4+3€5+6€6+867+868,Z:Oi

AN/

12.6. Exceptional cases. We now explain the case of the exceptional Lie superal-
gebras G(3), F'(4), or D(2|1;a). These all have defect one, and their atypical blocks
have one of the following extension graphs:

A% o L Lo L
D : Lt L? L3 L*
LO

Specifically, A% will be the extension graph for certain blocks of F'(4) and for
blocks of D(2|1;a) when a € Q. On the other hand D, will be the extension graph
for all blocks of G(3), along with certain blocks of F'(4) and D(2|1;a).

Remark 12.27. Note that it is clear that the above extension graphs are bipartite.
Extension graphs are in fact always bipartite for basic classical Lie superalgebras, as
was hinted in Remark 12.3 and is shown in [G4].

The following lemma is determined from the full relations on the extension graphs
for each block, which are described in [Ger] and [M].

Lemma 12.28. Let P(L") be the projective indecomposable cover of a simple, non-
projective module L over an exceptional Lie superalgebra. Then the radical and socle
filtrations of P(L") coincide, with socle and cosocle isomorphic to L, and middle layer

isomorphic to
D
JEA)(3)
where Adj(j) denotes the vertices adjacent to i in the extension graph containing L.

Using the above lemma, we get the following.
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Proposition 12.29. Let B be an atypical block for an exceptional Lie superalgebra
g, and let x € g, be non-zero such that [z,x] = 0. Suppose that for some simple
module L in B, L, is pure. Then L, is pure for all simples L in B. Further we have
the following isomorphisms of g,-modules:

Ext(B) = AY: L ~1'LY

Ext(B) = Dy : L0 Ll LT HL2)®* fori > 2.
By Ext(B) we denote the extension graph of B.
Proof. For any simple module L in B we have a short exact sequence
0— M — P(L") = L' =0,

where P(L") denotes the projective cover of L' and M is its radical. By Lemma 2.7
and that P(L"), = 0, we find that M, = ITIL.. On the other hand by Lemma 12.28,
we have the short exact sequence

0— L' — M — @ L’ =0
JEA)(7)

Suppose that L’ is pure, so that Hom(L%, M,) = 0. Then we obtain by Lemma 2.7
the short exact sequence (using that M, = TIL!):

0— 1L, —» € L) - 1L, -0
jEAdj (i)

Using connectedness of the extension graph, purity of L’ for any j easily follows,
along with the formulas in the case of each type of block. OJ

In order to complete the description of the DS functor for exceptional Lie super-
algebras, we need to compute the value of the DS functor on one module in every
atypical block, and in particular check that it is pure so that Proposition 12.29 will
apply.

Thus let g be one of the Lie superalgebras D(2|1;a), G(3), F'(4). Let h be a Cartan
subalgebra of go. We denote by W the Weyl group of go and by (—|—) the symmetric
non-degenerate form on h* which is induced by a non-degenerate invariant form on
g.

Let ¥ be a base of g which contains an isotropic root 8. Fix a non-zero z € gg. Set
A, = (B-NA)\{B,—3}. By Proposition 4.5, g, can be identified with a subalgebra
of g generated by the root spaces g, with a € A, and a Cartan subalgebra b, C b.
If A, is not empty, then A, is the root system of the Lie superalgebra g, and one
can choose ¥, in A, such that AT(3,) = AT NA,. For g = D(2|1;a),G(3), F(4)
one has g, = C, sly, sl3 respectively.
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Lemma 12.30. Let L := L(\) be a finite-dimensional module and (\|) = 0. Set
L' := Ly, (\y,). One has

L for G(3)
DS, (L)=< L' for D(2|1;a), F(4) if L' = (L')*
L'e (L) for D(2|1;a), F(4)if L' 2 (L')*.

Proof. 1t is easy to see that [DS,(L) : L' = 1. Set X := A|s,. By Section 6.5,
DS, (L) is a typical module and each simple subquotient of DS, (L) is of the form
Ly, (v) with v € {XN,0(X)}, where 0 = Id for g = G(3), 0 = —Id for D(2|1;a),
and o is the Dynkin diagram automorphism of g, = sl3 in F'(4)-case. This gives the
first formula. For D(2|1;a), F'(4) one has Ly, (v)* = Ly, (0(v)); giving the second
formula. Finally in D(2|1;a), F'(4) the Weyl group contains —Id, so L = L* and thus
DS, (L) = DS,(L*) by Lemma 2.4, implying the third formula. O

We fix a triangular decomposition of go and denote by AJ the corresponding set
of positive roots. We consider all bases X for A which satisfy Al € AT (X). We say
that an isotropic root 3 is of the first type if B lies in a base ¥ with A C AT(%).

Take any base ¥ as above and denote by p the corresponding Weyl vector. It
is easy to see that a simple atypical module L = L(v) satisfies the assumptions of
Lemma 12.30 for some ¥’ and € ¥/ if and only if v + p is orthogonal to an isotropic
root of the first type.

Let B be an atypical block of g. We call the block containing the trivial module L(0)
a principal block. Clearly, DS,(L(0)) is the trivial g,-module, so Proposition 12.29
gives DS,(L) for each simple module L in By).

Combining Proposition 12.29 and Lemma 12.30, we see that in order to compute
DS, (L) for each simple L in B, it is enough to find L(v) € Irr(B) such that v + p is
orthogonal to an isotropic root of the first type. Below we will list such v for each
non-principal atypical block for D(2|1;a), F'(4) and G(3).

12.6.1. Case D(2|1;a). For g := D(2|1;a) one has g, = C. The atypical blocks were
described in [Ger|, Thm. 3.1.1.

The extension graph of the principal block By is D, so for a simple L in B, we
have DS, (L") = C for i = 0,1 and DS, (L") = II'"'(C)®? for i > 1 (where C stands
for the trivial even g,-module).

If a is irrational, the principal block is the only atypical block in F(g). Consider
the case when a is rational. Recall that h* has an orthogonal basis {e1, 2, €5} with

1+a 1 a

5 (52,52) = 57 (53,83) = 5

(e1,61) = —
One has
D(2]1;1) = 0sp(4)2), D(2|1;a) = D(2|1;—1 —a) = D(2|1;a’1)

so we can assume that 0 < a < 1 and write a = §, where p, q are relatively prime
positive integers.
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The atypical blocks are By for k& € N (the principal block is By). Consider the block
By, with k > 0. The extension graph of By is AZ. By [Ger], Thm. 3.1.1, the block B
contains a simple module L with the highest weight Ay satisfying (Aro + p|3) = 0
for

5 = €1+ &2 —€3.
Taking = € gg we can identify g, with Ch for h := e} — &} (where €7, 5, 5 is the dual
basis in h). By Lemma 12.30 we get

where Lg, (u) stands for the even one-dimensional g,-module with h acting by k(p+q).
By Proposition 12.29, DS, (L") 2 IT*(DS, (L)) for each L' € Irr(By) (for k > 0).

12.6.2. Case G(3). For g := G(3) the atypical blocks were described in (|Ger], The-
orem 4.1.1). The atypical blocks in F(g) are By, for k € N; the extension graphs are
Do,. The block By, contains a simple module with the highest weight Ay, satisfying
(Ao + p|B) = 0 for
5 = —& + (5

Taking ¥ := {6 — e1,69 — 0,0} and x € g we can identify g, with sl-triple corre-
sponding to the root a = ; + 2e5. One has Ay, = ka. Combining Lemma 12.30 and
Proposition 12.29 we get

DS, (L%) = DS,(LY) = Ly, (2k), DS,(LY) = I (L, (2k))%* for i > 1.

12.6.3. Case F(4). For g := F(4) we have g, = sl3. The integral weight lattice is
spanned by €1, &2, %(81 +ey+e3) and %(5; the parity is given by p(%) = 0 and p(g) = 1.
The atypical blocks are described in [M], Thm. 2.1. These blocks are parametrized
by the pairs (my, ms), where my,my € N, my > my, and m; — my is divisible by 3.
We denote the corresponding block by By, :m,)-
The extension graph of B is Du; the block B,y is principal. For ¢ > 0 the
block By;.; contains a simple module L(\) with

1
At p=(i+1)(er+e) = B, where fi = o(—e1 4+ —e5+9).

One has (A + p|f1) = 0. Take x € gg, and consider the base

1
1= {8y 5(51 +e9—e3—0);e3;61 — €2}
Then g, can be identified with sl3 corresponding to the set of simple roots {es +
3,61 — €3} and Lemma 12.30 gives
DS$(L(/\)) == L5[3 (z’wl + iWQ),

where wy, wy are the fundamental weights of sl3. By Proposition 12.29 we get for the
simple module L’ in Bi.iy:

DS, (L%) = DS (L") & Ly, (iw; +iws), DSy (L7) = T YLy, (iw; +iws))®? for j > 1.
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Consider a block By;,.;,) for i; # i5. The extension graph of this block is A and
this block contains a simple module L := L()\’) with

N+ p =iy +iggg + (i1 — ia)es.

In particular, (X + p|@s) = 0 for By := 2(—¢; + €2 + €5 + §). Taking = € gg, and

1
Yo = {fa; €2 — €3, —F1; 5(61 —ey—e3+90)}

we identify g, with sl3 corresponding to the set of simple roots {es — e3;¢1 + €3}.
Combining Lemma 12.30 and Proposition 12.29 we get

DS;E(L) = L5[3 (i1w1 + iQWQ) D L5[3 (7:2(,()1 -+ ilbUQ), DS:E(L1> = Hl(DSx(L»
for each L’ in the block B, .i,).-

REFERENCES

L. Avramov, R. O. Buchweitz, Support varieties and cohomology over complete inter-
sections, Invent. Math. 142(2), 285-318 (2000).

B. Boe, J. Kujawa, D. Nakano, Cohomology and support varieties for Lie superalgebras,
Trans. Amer. Math. Soc. 362(12), 6551-6590 (2010).

B. Boe, J. Kujawa, D. Nakano, Complezity for modules over the classical Lie superalgebra
gl(m|n), Compos. Math. 148(5), 1561-1592 (2012).

J. Brundan, Kazhdan-lusztig polynomials and character formulae for the Lie superalgebra
gl(m|n), J. Amer. Math. Soc. 16, 185-231 (2003).

J. Brundan, I. Losev, B. Webster, Tensor product categorifications and the super
Kazhdan—Lusztig conjecture, Int. Math. Res. Notices 20, 6329-641 (2017).

J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram
algebra I: cellularity, Mosc. Math. J. 11(4), 685-722 (2011).

J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram
algebra II: Koszulity, Transf. groups 15(1), 1-45 (2010).

J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram
algebra III: Category O, Repr. Theory 15, 170-243 (2011).

J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram
algebra IV: The general linear supergroup, J. Eur. Math. Soc. 14(2), 373-419 (2012)
S.J. Cheng, Supercharacters of queer Lie superalgebras, J. Math. Phys. 58, 061701
(2017).

J. Comes, T. Heidersdorf, Thick Ideals in Deligne’s category Rep(Os), J. Algebra 480,
237-265 (2017).

K. Coulembier, V. Serganova, Homological invariants in category O for the general linear
superalgebra, Trans. Amer. Math. Soc. 369, 7961-7997 (2017).

E. Dan-Cohen, 1. Penkov, V. Serganova, A Koszul category of representations of finitary
Lie algebras, Adv. in Math. 289, 250-278 (2016).

M. Duflo, V. Serganova, On associated variety for Lie superalgebras, arXiv:0507198
(2005).

J. Dixmier, Représentations irréductibles des algébres de Lie milpotentes (in French),
An. Acad. Brasil. Ci. 35(4), 91-519 (1963).

M. Ehrig, C. Stroppel, On the category of finite-dimensional representations of
OSP(r|2n): Part I, arXiv:1607.04034 (2016).



64

[EhSt2]
[EHS]

[ES1]
[ES2]
[ES3]
[ES4]
[FP]

[FiGa]

MARIA GORELIK, CRYSTAL HOYT, VERA SERGANOVA, ALEXANDER SHERMAN

M. Ehrig, C. Stroppel, Deligne categories and representations of OSp(r|2n), preprint.
I. Entova-Aizenbud, V. Hinich, V. Serganova, Deligne categories and the limit of cate-
gories Rep GL(m|n), IMRN 15, 4602-4666 (2020).

I. Entova-Aizenbud, V. Serganova, Deligne categories and the periplectic Lie superalge-
bra, to appear in Moscow Math. J., arXiv:1807.09478 (2018).

I Entova-Aizenbud, V. Serganova, Duflo-Serganova functor and superdimension formula
for the periplectic Lie superalgebra, arXiv:1910.02294 (2019).

I. Entova-Aizenbud, V. Serganova, Kac—Wakimoto conjecture for the periplectic Lie
superalgebra, to appear in J. Algebra and Applications, arXiv:1905.04712 (2019).

I. Entova-Aizenbud, V. Serganova, Jacobson-Morozov Lemma for Algebraic Supergroups,
to appear in Advances in Mathematics.

E. Friedlander, B. Parshall, Support varieties for restricted Lie algebras, Invent. Math.
86, 553-562 (1986).

R. Fioresi, F. Gavarini, Real forms of complex Lie superalgebras and supergroups,
arXiv:2003.10535 (2020).

J. Germoni, Indecomposable representations of 0sp(3|2), D(2,1; ) and G(3), Boletin de
la Academia Nacional de Ciencias, 2000, 65, pp. 147-163.

M. Gorelik, The Kac construction of the centre of U(g) for Lie superalgebras, J. Nonlinear
Math. Phys. 11(3) 325-349 (2004).

M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras.
In:  Highlights in Lie algebraic methods, Progress in Math. 295, 167-188
Birkhéuser/Springer, New York (2012).

M. Gorelik, Depths and cores in the light of DS-functors, arXiv:2010.05721 (2020).

M. Gorelik, Bipartite extension graphs and the Duflo—Serganova functor,
arXiv:2010.12817 (2020).

M. Gorelik, On Duflo—Serganova functor for the queer Lie superalgebras, arXiv.

M. Gorelik, T. Heidersdorf, Semisimplicity of the DS functor for the orthosymplectic
Lie superalgebra, arXiv: 2010.14975 (2020).

M. Gorelik, T. Heidersdorf, Gruson-Serganova character formulas and the Duflo—-
Serganova cohomology functor, arXiv:2104.12634 (2021).

M. Gorelik, V. Serganova, Integrable modules over affine superalgebras 5[(1|n), Commun.
Math. Phys. 364, 635-654 (2018).

M. Gorelik, V. Serganova, A. Sherman, On the reduced Grothendieck ring of a Lie
superalgebra, preprint.

N. Grantcharov, V. Serganova Extension quiver for Lie superalgebra ¢(3), SIGMA Sym-
metry Integrability Geom. Methods Appl. 16(141) (2020).

C. Gruson, Sur la cohomologie des super algébres de Lie étranges (in French), Transform.
Groups 5(1), 73-84 (2000).

C. Gruson, Sur l’idéal du cone autocommutant des super algébres de Lie basiques clas-
siques et étranges (in French), Ann. Inst. Fourier (Grenoble) 50(3), 807-831 (2000).

C. Gruson, Cohomologie des modules de dimension finie sur la super algébre de Lie
0sp(3,2) (in French), J. Algebra 259(2), 581-598 (2003).

C. Gruson, V. Serganova, Cohomology of generalized supergrassmannians and character
formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. 101(3), 852-892
(2010).

C. Gruson, V. Serganova, Bernstein-Gelfand-Gelfand reciprocity and indecomposable
projective modules for classical algebraic supergroups, Mosc. Math. J., 13, no. 2, pp.
281-313 (2013).



[Hs]

[HsW]

THE DUFLO-SERGANOVA FUNCTOR 65

T. Heidersdorf, On supergroups and their semisimplified representation categories, Al-
gebr. Represent. Theory Vol.22, Issue 4, (2019)

T. Heidersdorf, R. Weissauer, Cohomological tensor functor on representations of the
general linear supergroup, Memoirs of the American Mathematical Society 270(1320),
(2021).

C. Hoyt, Regular Kac—-Moody superalgebras and integrable highest weight modules, J.
Algebra 324(12), 3308-3354 (2010).

C. Hoyt, M. S. Im, S. Reif, Denominator identities for the periplectic Lie superalgebra,
J. Algebra, 567, 459-474 (2021).

C. Hoyt, S. Reif, The Duflo—Serganova functor and Grothendieck rings of Lie superal-
gebras, Algebra & Number Theory 12(9), 2167-2184 (2018).

C. Hoyt, I. Penkov, V. Serganova, Integrable sl(oco)-modules and Category O for gl(m|n),
J. Lond. Math. Soc. 99(2), 403-427 (2019).

M. S. Im, S. Reif, V. Serganova, Grothendieck rings of periplectic Lie superalgebras, to
appear in Math. Res. Lett., arXiv:1906.01948 (2019).

V. G. Kac, Lie superalgebras, Adv. Math. 26, 8-96 (1977).

V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions,
Proc. Natl. Acad. Sci. U.S.A. 81(2), 645-647 (1984).

V. G. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras
and number theory, Progress in Math. 123, 415-456 (1994).

S. Kato, H. Ochiai, The degrees of orbits of the multiplicity-free actions, Astérisque 273,
139-158 (2001).

F. Knop, Invariant functions on symplectic representations, J. Algebra 313, 223-251
(2007).

L. Martirosyan, The representation theory of the exceptional Lie superalgebras F(4) and
G(3), J. Algebra 419, 167-222 (2014).

I. M. Musson, Lie superalgebras and enveloping algebras, Graduate Studies in Mathe-
matics 131. Amer. Math. Soc., Providence, RI (2012).

K. Nishiyama, H. Ochiai, K. Taniguchi, Bernstein degree and associated cycles of Harish-
Chandra modules—Hermitian symmetric case, Astérisque 273, 13-80, (2001).

I. Penkov, Characters of typical irreducible finite-dimensional q(n)-modules, Funct. Anal.
Appl. 20, 30-37 (1986).

I. Penkov, C. Hoyt, Classical Lie algebras at infinity, Springer Monographs in Math.,
Springer International Publishing (2022).

I. Penkov, K. Styrkas, Tensor representations of classical locally finite Lie algebras, In:
Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Math. 288,
127-150 Birkh&user (2011).

S. Reif, Grothendieck rings of queer Lie superalgebras, arXiv:2107.02219 (2021).

V. Serganova, Kazhdan—Lusztig polynomials and character formula for the Lie superal-
gebra gl(m|n), Selecta Math. (N.S.) 2(4), 607-651 (1996).

V. Serganova, On the superdimension of an irreducible representation of a basic classical
Lie superalgebra. In: Supersymmetry in mathematics and physics, Lecture Notes in
Math. 2027, 253-273, Springer, Heidelberg (2011).

V. Serganova, A. Sherman, Volumes of supergrassmanians and splitting subgroups,
preprint.

A. N. Sergeev, The invariant polynomials on simple Lie superalgebras, Repr. Theory 3,
250-280 (1999).



66 MARIA GORELIK, CRYSTAL HOYT, VERA SERGANOVA, ALEXANDER SHERMAN

[Ser2] A. Sergeev, The centre of the enveloping algebra for Lie superalgebra Q(n,C), Lett.
Math. Phys. 7 (1983), no. 3, 177-179.

[SerV] A. N. Sergeev, A. P. Veselov, Grothendieck rings of basic classical Lie superalgebras,
Ann. Math, 173, 663-703 (2011).

[SpSt] T. A. Springer, R. Steinberg, Conjugacy classes. In: Seminar on Algebraic Groups and
Related Finite Groups, Lecture Notes in Math. 131, Springer, Berlin, Heidelberg (1970).

[SuZh] Y. Su, R.B. Zhang, Character and dimension formulae for queer Lie superalgebra, Com-
mun. Math. Phys. 333, 1465-1481 (2015).

V] D. Vogan, Jr., Associated varieties and unipotent representations, In: Barker W. H.,

Sally P.J. (eds.) Harmonic Analysis on Reductive Groups, Progress in Math. 101,
Birkh&user, Boston, MA (1991).

DEPT. OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL
Email address: maria.gorelik@weizmann.ac.il

DEPT. OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT GAN 52900, ISRAEL
Email address: math.crystal@gmail.com

DEPT. OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720, USA
Email address: serganov@math.berkeley.edu

DEPT. OF MATHEMATICS, BEN GURION UNIVERSITY, BEER-SHEVA 8410501, ISRAEL
Email address: xandersherm@gmail . com



