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Abstract—Multi-sensor data fusion is crucial for modern au-
tonomous systems to accurately perceive their surrounding en-
vironments and make intelligent decisions. However, as different
sensor sources may have significant time disparity, it is necessary
to synchronize their data before sending them to the fusion
algorithm, in order to control such differences and get meaningful
fusion results. This paper discusses the message synchronization
policy in ROS, a popular framework for robotic systems. The
ROS message synchronization policy has proven to be highly
effective in reducing the time disparity, but it introduces a certain
level of latency. Therefore, to use it for real-time systems, it is
essential to establish an upper bound for the worst-case latency
that may occur. Specifically, we analyze two key latency metrics of
the ROS message synchronization policy, the passing latency and
reaction latency, which are needed to analyze the end-to-end delay
and reaction time on the system level. We conduct experiments
under different settings to evaluate the precision of our proposed
latency upper bounds against the maximum observed latency in
real execution.

I. INTRODUCTION

Multi-sensor data fusion plays a crucial role in the oper-
ation of modern autonomous systems, including autonomous
vehicles, robots, and drones. By using this technology, these
systems are empowered to perceive and interpret their sur-
rounding physical environment accurately. This capability en-
ables them to make intelligent decisions and execute complex
tasks with precision and reliability. However, in practice, the
sensor data obtained from different sources may not have
perfectly aligned sampling time, and they may experience
varying delays before reaching the fusion algorithm [1], [2].
Consequently, the input data from these diverse sensor sources
can exhibit significant time disparity, which indicates the time
difference between their actual sampling instances [3]. If the
time disparity is substantial, the fusion results may lose their
usefulness or even become completely meaningless. Therefore,
it is important to synchronize the data from different sensor
sources before transmitting them to the fusion algorithm to
manage the time disparity.

In this paper, we examine the message synchronization pol-
icy in ROS (Robotic Operating System) [4]-[6], a widely used
software framework for developing robotic systems. With its
extensive adoption by countless developers, ROS has powered
a diverse range of robots and autonomous systems. Recent
research [3], [7] has demonstrated excellent performance of

ROS’s message synchronization policy in terms of minimizing
time disparity and outperforms its competitors, such as the one
employed by Apollo Cyber RT [8]. Especially, The message
synchronization policy used in ROS-based applications, such
as Autoware [9], has proven effective and could be adopted in
other systems.

While the ROS message synchronization policy effectively
mitigates time disparity, it introduces a trade-off in the form
of latency. This latency arises from the temporary buffering
of messages until they can be grouped with others that share
similar sampling times, which is the key to reducing the overall
time disparity. The incurred latency plays a significant role in
affecting the timing behavior of ROS applications. To ensure
the applicability of the ROS message synchronization policy
in real-time systems, it is crucial to quantify the extent of this
latency and, more importantly, establish a safe upper bound
for its worst-case scenario. However, the challenge lies in
the absence of a definitive solution for bounding the worst-
case latency resulting from the ROS message synchronization
policy. Addressing this issue is the goal of this paper.

In this study, we examine two types of latency metrics
associated with the ROS message synchronization policy,
namely, the passing latency and the reaction latency. The
passing latency refers to the time gap between the time when a
message arrives and when it leaves the message synchronizer.
This metric is useful in determining the end-to-end delay for
sensor data going through the processing pipeline. Reaction
latency, on the other hand, considers both the passing latency
of a message and the time delay resulting from discarded
messages preceding it. This metric is crucial in calculating
another important system-level real-time performance metric,
i.e., end-to-end reaction time [10]-[14]. Section II will provide
a detailed explanation of the passing and reaction latency and
how they relate to end-to-end delay and reaction time.

We conduct experiments under different settings, including
the different number of channels, the varied data sampling
periods, and the random delay time experienced by messages
before arriving at the synchronization policy, to evaluate the
precision of our proposed latency upper bounds against the
maximum observed latency in real execution.
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Fig. 1: A system example with a message synchronizer.

II. PROBLEM DEFINITION
A. System Model

The ROS message synchronizer, called synchronizer for
short, is a software component to synchronize messages from
different sensor sources before sending them to the data fusion
component (as shown in Fig. 1). The synchronizer has N
input channels and 1 output channel. Each input channel of
the synchronizer has a buffer queue @); to temporally store
messages arrived at this channel. We assume that each queue
Q; is sufficiently long. This assumption does not pose any
limitation to our study since there is a known upper bound of
the size of each queue in ROS message synchronizer, by which
we can easily set a proper queue size to meet this assumption
[3]. For simplicity of presentation, we also use (); to refer to
the i-th input channel of the Message Synchronizer, when it is
unambiguous from the context. The synchronizer selects one
message from each input channel and combines them into an
output message set according to some policy, which is released
to the output channel. We will introduce the policy used by
the ROS message synchronizer in Section III.

We use m¥ to represent the k-th message currently in queue
Q. Also, we use m?"! to denote the p(i)-th message among
all the messages coming from the i-th input channel. It is worth
noting that the difference between the notations m* and m/"
is that m” only represents the message that currently in Q;,
while m? ) denotes the message currently in @); or the one
that has already been discarded from (;, which considers the
total number of messages from the ¢-th input channel. For
simplicity, sometimes we also use m; to represent a message
in ); when there is no need to specify which message it is
exactly. Bach message m/ has two key timing characteristics:

o 7(mF), the timestamp of m¥, which is the time point

when the sensor data carried by m” was sampled.

. a(mf), the arrival time of mf, which is the time point

when the m¥ arrives at the synchronizer.

In general, 7(m?¥) is smaller than o (m?¥), since a message may

experience some delay before arriving at the synchronizer due
to, e.g., processing or transmission. We also assume that the

I'p can be a function whose specific form is not important in our context,
as we do not require the specification of which message mf(l) is.

2A message may pass through several processing tasks (callbacks in ROS)
before reaching the synchronizer. In reality, a callback “consumes” an input
message and “produces” an output message that inherits the timestamp of
the input message. To simplify our abstract model and focus on the problem
under study, we omit details about callbacks consuming input messages and
producing output messages, and instead consider that the initial message goes
through all processing tasks and eventually reaches the synchronizer.

messages in each channel arrive at the synchronizer in the
same order as their timestamps.

We do not assume to know the exact 7(m¥) and a(m¥) of
each message m¥. Instead, we assume to know the following
timing parameters for messages in each channel Q);:

o The minimum and maximum time difference between the

timestamps of two consecutive messages in @);, denoted
by TP and T)V. We have Vk:

TE < r(mf™) —r(mf) <1V

o The minimum and maximum delay experienced by each
message in Q;, denoted by DB and D}V. We have Vk:

DP < a(mf) —7(mf) <D}

The value of T2 and T}V are decided by the corresponding
sensor’s sampling rate. In some cases, the sensor data are
sampled in a strictly periodic manner, which is a special case
of our model where T2 = TV. However, in reality, sensor
data sampling is typically not perfectly periodic and can suffer
from jitters due to numerous reasons such as software and
hardware limitations [15]. Therefore, in this work, we presume
the general case in which T2 and T}V may be different.

DB and D}V refer to the processing and transmission delays
experienced by a message before it reaches the synchronizer.
For instance, a message is processed by a processing task (such
as a callback in ROS) before it arrives at the synchronizer,
then DZ-B (DZW ) represents the best-case (worst-case) response
time of this processing task plus the best-case (worst-case)
transmission delay, i.e., the time between the completion of
this task and the arrival of the corresponding message at
the synchronizer. Response time analysis for real-time tasks
is well-studied in existing real-time scheduling theory. There
are many mature techniques to bound the best/worst-case
response times under many different settings, including those
based on the ROS executor and its variance [16]-[24]. And,
transmission delay can also be theoretically analyzed [25]—[27]
or pragmatically measured. Therefore, in this paper, we will
not further explore how to estimate D? and D}V in various
system settings but focus on the new challenge we face in this
work, i.e., analyzing the latency incurred by the synchronizer
given known DZ and D}V estimations.

B. Passing Latency and Reaction Latency

We aim to analyze two types of latency metrics for the
synchronizer, the passing latency and the reaction latency.

Definition 1 (Passing Latency). If a message m/ @) is selected
into an output message set published at time t;, the passing

latency of mf@) is defined as ty — a(mf(i))_

In the synchronizer, not all received messages can be
selected into the output message sets. Before a message is
selected into an output message set, there is a possibility of
discarding certain messages.

Definition 2 (Reaction Latency). If a message m/ @ s

selected into an output message set published at time 1y, and



p(

m; )-e (z € NT) is the last message before mf(i) that was

selected into an output messa%'_e set, the reaction latency of
mf(z) is defined as ty — a(m? D,

The worst-case passing latency of a message channel is the
maximum passing latency of among messages in this channel
that are selected into output message sets. Similarly, the worst-
case reaction latency of a message channel is the maximum
reaction latency among all messages in this channel that are
selected into output message sets.

Briefly speaking, the difference between passing latency
and reaction latency is that the reaction latency includes
both the passing latency and the extra latency caused by the
discarded messages. As a special case, if no messages have
been discarded in a channel, then the passing latency and
reaction latency are identical for messages in this channel.

The passing latency is useful to track the end-to-end delay
for the information carried by a message to traverse the entire
processing system. For example, suppose a message is selected
into an output message set by the synchronizer, which is
further sent to the downstream fusion task and eventually
generates a control signal to the actuator. By tracking the
end-to-end delay for the message leading to each control
signal, we can assess the staleness of status information relied
upon by the control signal. This information is crucial for
designing proper measures to compensate for this staleness
when generating the control command.

The reaction latency is useful to calculate the end-fo-end
reaction time of the system regarding a sensor source. Loosely
speaking, the reaction time of a processing pipeline is the
time for it to react to an external event. The reaction latency
associated with the synchronizer is caused by discarding
messages and waiting for messages from separate channels
to synchronize. For example, suppose a system consisting of
two sensors for data sampling. Suppose one of these sensors
experiences an extended sampling period. In that case, the
synchronizer will have to wait for the messages from this
sensor to arrive, despite already having received messages
from the other sensor. This metric is essential for measuring
a system’s reaction time to external events. We will use the
following example to illustrate the passing latency and reaction
latency, as well their relationships with the end-to-end delay
and reaction time.

C. An Illustrative Example

We use Fig. 2 to illustrate the passing and reaction latency,
as well as their relationship with the end-to-end delay and end-
to-end reaction time. Fig. 2-(a) depicts a system comprising
two tasks for sampling sensor data, a synchronizer, a data
fusion task, and an actuator task. For ease of presentation, we
suppose that each task, including the synchronizer, is executed
on a dedicated processor without any interference, and there
is no communication delay between any two tasks. Suppose
that T8 = TV = 6 and TP = TJV = 20. Moreover, we
set the worst-case execution time of sensor task 1, sensor
task 2, data fusion task, and actuator task as 1, 4, 2, and 2,
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Fig. 2: Illustration of the passing and reaction latency. (a) A
system includes two sensor data sampling tasks, a synchro-
nizer, a data fusion task, and an actuator task. (b) An execution
sequence example illustrating the relationship between the
passing latency (and reaction latency) we focus on and the
end-to-end delay (and the end-to-end reaction time). The
dark upward arrows indicate the arrivals of messages sampled
before the occurrence of event B that occurs right after time
0, and the red upward arrows denote the arrivals of messages
that identify event B.

respectively. And the time required for the synchronizer to
choose an output message set is negligible and has been set
to 0. Accordingly, Fig. 2-(b) illustrates the execution sequence
of the system shown in Fig. 2. Upon completion of execution
of sensor task 1 or 2, the corresponding message is sent to the
synchronizer. Fig. 2-(b), the synchronizer is represented by
two channels to demonstrate the received messages from the
sensor task 1 and 2. Once an output message set is selected,
the synchronizer sends the message set (which comprises two
messages, each from one of the channels) to the fusion task.

At time 1, a message sent by sensor task 1 arrives at the
synchronizer. At time 4, the synchronizer receives a message
sent by sensor task 2, and it combines this message with
the one from channel 1 as an output message set, which is
sent to the fusion task at time 4. After processing, the fusion
task sends the message to the actuator task, which completes
execution at time 8. Right after time 0, an external event B
occurs, which is first captured by sensor 1 at time 6. And
then, three messages, which were published by sensor task
1 identifying event B, arrive at the synchronizer at time 7,
13, and 19, respectively. As no new messages are received
from channel 2, these three messages are buffered, awaiting
messages from channel 2. At time 24, a new message sent
by sensor task 2 arrives. At the same time, the synchronizer



combines it together with the message, which arrives at time
19 into an output message set, which is sent to the fusion task.
Then, the fusion task sends the message to the actuator task
at time 26, and the actuator task finishes its execution at time
28. Note that the messages arriving at time 7 and 13 will be
discarded and not included in any output message sets.

In this example, the passing latency of the message arriving
at time 19 caused by the synchronizer is the time difference
between its arrival at time 19 and the publishing of the output
message set at time 24, i.e., 24 — 19 = 5. The corresponding
end-to-end delay is the duration from the start time of sensor
task 1 at time 18 to the completion of the actuator task at
time 28, i.e., 28 — 18 = 10, which includes the passing latency
from time 19 to 24. The reaction latency is the time duration
from the arrival of the message at time 1 to the publishing of
the output message set at time 24, i.e., 24 — 1 = 23, which
includes the passing latency and the extra latency caused by
the discarded messages. And the corresponding end-to-end
reaction time is the time duration from the occurrence of event
B at time O to the completion of the actuator task at time 28,
ie., 28 — 0 = 28, which includes the reaction latency from
time 1 to 24.

It is worth mentioning that the reaction latency of the syn-
chronizer is defined regarding the arrival time of the last non-
discarded message but not the occurrence time of the external
event, which seems problematic. For example, if an external
event A occurs at time 10, then the end-to-end reaction time
regarding this event should be 28 — 10 = 18. However, by
our definition, the reaction latency of the synchronizer is
24 —1 = 23, which is larger than the end-to-end reaction time
28 — 10 = 18. This is actually not a problem as our interest is
to analyze the worst-case end-to-end reaction time no matter
when the event actually occurs. The worst-case scenario is
that the external event happens right after the sampling time
of the last non-discarded message (event B in Fig. 2-(b)).
Therefore, the worst-case time gap between the occurrence of
event B and the generation of the first output message group
containing the information of event B (24 —0 in this example)
equals the sum of two parts (1) the difference between the
timestamp of the last non-discarded message and its arrival
time to the synchronizer (1 — 0 in this example) and (2) the
reaction latency (24 — 1 in this example). The former can
be bounded using existing response time analysis techniques,
while analyzing the latter is the goal of this paper. In summary,
we define the reaction latency of the synchronizer assuming
the worst-case scenario, i.e., the external event occurs right
after the sampling time of the last non-discarded message. In
this way, the definition of the reaction latency is simple yet
sufficient to serve the purpose of bounding the worst-case end-
to-end reaction time.

III. ROS MESSAGE SYNCHRONIZATION POLICY

There are two synchronization policies in ROS, i.e., the
Exact Time policy [28] and the Approximate Time policy [29].
The Exact Time policy only combines messages from different
input channels with exactly the same timestamp into an output

set and discards any messages without an exact match. As a
result, any output message set published under the Exact Time
policy will have a time disparity of 0. However, in reality, it
is too restrictive to require data from different sensors to have
exactly the same timestamp, so the Exact Time policy is rarely
used in practice. Consequently, we focus on the Approximate
Time policy in this paper, which is used to combine messages
under a certain tolerance of time disparity. Please note that
the model and results of this paper apply to both ROS 1
(the first generation of ROS) and ROS 2. More specifically,
the Approximate Time policy is the same for all ROS 1 C++
versions since Diamondback and ROS 2 C++ versions until
the latest Rolling, which was also stated in [3]. For the sake
of brevity, we use the term “ROS” in this paper to include both
ROS 1 and ROS 2. Throughout the remainder of this paper,
we will use the term “policy” or “synchronization policy”
interchangeably to represent the Approximate Time policy. In
this paper, we adopt the abstract model presented in [3], but
to keep our paper self-contained, we will provide a detailed
explanation of this model in its entirety. We first define some
concepts, followed by the abstract policy model.

We use S = {my,...,mx} to denote a regular set contain-
ing N messages, each of which comes from a different queue.
The time disparity of a regular set is defined as:

Definition 3 (Time Disparity). Let S = {my,...,my} be a
regular set. The time disparity of S, denoted by A(S), is the
maximum difference between the timestamps of the messages
in S, ie.,

A(8) = max{r(mi)} — min{r(m;)}

Each queue @Q; stores not only messages that are already
arrived (called arrived messages), but also an artificial pre-
dicted message at the end of ;. The timestamp of a predicted
message is set based on the timestamp of the latest arrived
message in QQ; and TP It is important to note that the selection
procedure of the output message set is not solely based on the
arrived messages but also considers the predicted messages,
which can provide auxiliary information for the selection
procedure. Nevertheless, a predicted message is never included
in output message sets. Suppose there are currently k messages

{m},...,mF} in Q;, m¥ must be a predicted message and
mi, .., mf‘l are all arrived messages. The timestamp of m?
is set to be

r(mk) = r(m ) + T

i %

When the system starts at time 0, a predicted message with
timestamp O was initially put into each queue. Note that
sometime a queue may only have a predicted message but
no arrived message.

Definition 4 (Pivot). Let S' = {mf{,...,m\}, where each
m} is the arrived message with the earliest timestamp in Q.
The pivot mp is the one with the largest timestamp among all
elements in S*. If several messages in S' all have the latest
timestamp, the message with the maximum queue number is
the pivot.



The queue to which the pivot belongs is denoted as the
pivot queue, while the remaining queues are denoted as the
non-pivot queues. We use A to denote all the regular sets
corresponding to the pivot mp. Note that the regular sets in
A consist of messages currently in queues (either arrived or
predicted) and must include mp. The selected set has the
smallest time disparity among all regular sets in A.

Definition 5 (Selected Set). Let mp be a pivot and A be the
corresponding set of the regular sets that include myp. The
selected set is the set that has the smallest time disparity
among all elements in A. If multiple elements in A all have
the smallest time disparity, the selected set S = {my,...,mn}
must satisfy the following condition: there does not exist
another regular set 8" = {m/,...,my} in A s.t. (i) A(S") =
A(S) and (ii) Im; € S : 7(m}) < 7(m;).

A selected set can include both arrived messages and pre-
dicted messages. We call a selected set containing only arrived
messages a published set (denoted as STUB). The messages in
a published set are called published messages. If the selected
set contains any predicted messages, the synchronizer must
wait for them to arrive. Intuitively, the predicted message(s)
can be used to combine a regular set with a smaller time
disparity compared with the current selected set. However,
in the case of TV > TPZ, a message may arrive with a
larger timestamp than predicted. If the difference between
the actual and predicted timestamp is significant, the message
cannot be included in a selected set as expected. Therefore,
the synchronizer can waste some time waiting for messages
to arrive, further contributing to passing latency or reaction
latency. The insight here is that if the predicted timestamp is
too large (e.g., the difference between the predicted timestamp
and the timestamp of the pivot exceeds the worst-case time
disparity of the published set), the synchronizer does not need
to wait for the predicted message, thereby to avoid wasting
time. We will explain more about the above insights as well as
the aspects relevant to the passing latency and reaction latency
with an illustrative example in Section III-B.

A. Synchronization Policy

When a new message m,; arrives, the synchronizer will in-
voke Algorithm 1. First, the last message (must be a predicted
message) is discarded from ); (Line 1). Then, m; is put into
the end of ;, which then is followed by a new predicted
message with timestamp 7 (m;)+T (Line 2-3). After that, the
pivot is set (Line 5) once there is at least one arrived message
in each queue. And a selected set can only be obtained (Line
7) if all predicted messages have timestamps greater than
7(mp). If the selected set only contains arrived messages,
it will be published and all published messages should be
discarded from the queues. Additionally, the messages earlier
than the published messages will also be discarded from the
queues, which are not included in any published sets (Line
8-11). Otherwise, if a selected set contains one or several
predicted messages, Algorithm 1 exits immediately to wait
for the predicted message(s) to arrive.

Algorithm 1: Synchronization Policy

Input: the newly arrived message m;
1 discard the last message in @);;
2 put m; to the end of @Q;;
3 generate a predicted message with timestamp
7(m;) + TP and put it to the end of Q; ;
4 while each queue has at least one arrived message do

5 mp < the current pivot (Definition 4);
6 if all predicted messages’ timestamps > T(mp)
then

S <« the selected set (Definition 5) ;
8 if all messages in S are arrived messages then
9 publish S;

10 for each m; € S do

11 discard m; and all messages before m;
in the corresponding @Q;;

12 else

13 L return;

14 else

15 L return;

16 return;

We assume that the time required by Algorithm 1 to identify
a selected set is negligible, i.e., it is considered to be 0. This
assumption is made to simplify our analysis and to focus
solely on the latency caused by waiting for messages to arrive
and also the discarded messages. Furthermore, we use A to
represent the upper bound of time disparity for any published
set, which is equal to the RHS of (12) in [3].

B. An Illustrative Example

We use Fig. 3 to illustrate Algorithm 1. The x-axis repre-
sents the timestamp and the messages’ arrival time is not ex-
plicitly depicted in the figure. The downward arrows represent
the messages buffered in the queues. TP= 3, T.P= 5, TP= 10
and T)V = TV = TWV = +cc.

At some time point, a message with timestamp 0 arrives in
@3 and is set as the pivot as shown in Fig. 3-(a). The message
set {m},mi,mi} in Fig. 3-(a) is the first published set and
the corresponding published messages will be discarded from
the queues. Then, a message with timestamp 10 arrives at Qs,
which is set as the new pivot as shown in Fig. 3-(b). Please
note that the indexes of messages are automatically updated in
Algorithm 1 after discarding messages. For example, from Fig.
2-(a) to Fig. 2-(b), the notation of the message with timestamp
of 3 in Q1 is updated from m? to m] after m} with timestamp
0 is discarded.

The regular set {m3, m3, mi} in Fig. 3-(b) has the min-
imum time disparity, so it is the selected set. However, it
cannot be published since m3 is a predicted message. So the
synchronizer will wait for m3 to arrive. At some later point,
m{ and m3 arrive successively as illustrated in Fig. 3-(c). Then
the selected set {m3, m3, mi} in Fig. 3-(c) will be published
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Fig. 3: An example illustrating the synchronization policy, where the x-axis represents the timestamp not the elapsed time.

Each selected set is contained in the red dotted box.

since it only contains arrived messages. Furthermore, in Fig.
3-(c), it can be observed that m$ arrived in Q; quite some
time ago; however, it still had to wait for the arrival of both
m3 and mi, resulting in a passing latency for m$ until it
could be published. Meanwhile, the messages mi and m? in
(21 are not included in any published set, leading to an extra
latency, which is part of the reaction latency for m$ until it is
published.

At some point, the queue status is shown in Fig. 3-(d), and
m3 is the pivot. The regular set {m3, m3, mi} in Fig. 3-(d)
is the selected set with two predicted messages m3 and m3,
so the synchronizer will wait for them to arrive. However, m?
arrives with a timestamp 31, which is larger than predicted
(i.e., 21 in this case) as shown in Fig. 3-(e). The regular set
{m2,m3,mi} in Fig. 3-(e) is the selected set, so it will be
published. In this case, m$ arrives with a timestamp larger than
predicted and is not included in the selected set, which further
increases the passing latency and reaction latency (we will
further discuss this in Section IV) for the published message
m? in Fig. 3-(e).

IV. PASSING LATENCY UPPER BOUND ANALYSIS

In this section, we present the derivation of the upper bound
of the passing latency for a published message m” @ in Q;
(i € [1, N]), which is included in a published set SPUB.

A. Passing Latency Analysis

According to Definition 1, we should upper bound the
publishing time t; for the published set SPUB,

Lemma 1. Ler SPUB pe the published set published at time
ty. ty must be the arrival time of a message.

Proof. Once a new message from any channel arrives, the
synchronizer will invoke Algorithm 1. Recall that we assume
the time for Algorithm 1 to find a published set is 0. Hence, the
publishing time of a published set must be equal to the arrival
time of the message that triggers the execution of Algorithm
1. The lemma is proved. O

Definition 6 (Latest Arrived Message). Ler STUB be the
published set. The latest arrived message my € SPUB s the

one with the latest arrival time among all messages in STUB,
i.e., Ym € SPUB: a(my) > a(m). Without loss of generality,
let my, come from @Q; (I € [1, N]).

Intuitively, the Algorithm 1 is expected to publish a pub-
lished set upon the arrival of the latest arrived message.
However, this is not always the case due to the utilization of
predicted messages. Predicted messages can offer additional
information during the selection process, thereby affecting the
final publishing time of the published set. The insight is that
the greater the difference between T2 and T}V, the longer
the potential waiting time for the predicted message to arrive
until the publishing time. Therefore, when a predicted message
arrives with a later timestamp than predicted, it is possible that
Algorithm 1 would not obtain a better selected set as expected.
Consequently, the predicted message can further increase the
passing latency.

Below, we first prove that the publishing time of a published
set can be later than the arrival of the latest arrived message.

Lemma 2. Let SPUB pe the published set returned by Al-
gorithm 1 at time ty, and my, € SPUB 1o the latest arrived
message. Then, t; > a(my,) must hold.

Proof. We prove this by contradiction, assuming ¢y < a(my,).
According to Lemma 1, ¢y must be the arrival time of a
message m € SYUB ie., t; = a(m). Hence, a(m) < a(my)
and m,, has not yet been received at time t;. Therefore, it is
not possible to publish SPUB at ¢ ¢. This contradicts the fact
that SPUB is published at ¢;. So, t; > a(my) must hold.

O

Lemma 2 provides a lower bound for ¢;. In the case of
ty > a(my), a message arrives at ¢y and then the published
set is published. However, this message is not included in this
published set. To upper-bound the publishing time ¢, we first
introduce the earliest stable time, which indicates the earliest
time that each non-pivot queue contains at least one arrived
message with a timestamp larger than the pivot.

Definition 7 (Earliest Stable Time). Ler SYUB be the pub-
lished set and myp be the corresponding pivot. The earliest
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Fig. 4: Illustration of the earliest stable time.

stable time t* is the earliest time at which each non-pivot
queue contains at least one arrived message with a timestamp
larger than T(mp).

If the pivot myp arrives after all those messages with
timestamp greater than T(mp), the earliest stable time is
t* = a(mp).

According to the definition of ¢*, it must be the arrival time
of a message arriving at the queue. Let m} denote the message
arriving in Q. (e € [1,N]) at time t*, i.e., a(m}) = t*. As
an example, in Fig. 4, suppose a(m3) > a(m3) > a(mi),
the earliest stable time is t* = a(m3). If a(m}) > a(m3)
and a(m}) > a(m?), the earliest stable time would be t* =
a(mg).

Following lemma proves that the worst-case publishing time
ty can not be later than the earliest stable time ¢*.

Lemma 3. For the published set SPUB, let myp be the pivot,
ty be the publishing time, and t* be the earliest stable time,
then ty < t* must hold.

Proof. We prove this by contradiction, assuming ¢y > t*. By
the definition of ¢t*, the while-condition in Line 4 and the if-
condition in Line 6 in Algorithm 1 are both true. At time
t*, there must exist a selected set S returned from Line 7
of Algorithm 1. Since SPUB g not published at t*, S must
not be SPUB_ Since each non-pivot queue at least contains
an arrived message with a timestamp later than 7(msp), the
predicted message in each queue must be “further away” from
myp than this arrived message. Therefore, S does not contain
any predicted message and it must be a published set. As the
same arrived message cannot be included in two published
sets, mp is not in .S. Hence, for the pivot queue, S includes
a message after mp (note that mp is the message with the
earliest timestamp in the pivot queue). After S is published, all
messages before the published message in S are discarded, and
in particular, mp is discarded, which contradicts that mp is in
SPUB \which is published after £*. Therefore, the assumption is
incorrect. STUB ig published no later than t*,i.e., 2y <t*. [

Lemma 4. Ler SPUB pe any arbitrary published set, and
mp € SPUB be the pivor. If mp is the message arrives at t*,
then 7(m?) < 7(mp) + TV holds.

Proof. By the definition of ¢*, m} can be the first arrived
message in (). with timestamp larger than 7(mp) or m;
is exactly mp. If m} is mp, the lemma is obviously true.
Otherwise, the last message before m? in Q. has the maximum
timestamp value equal to 7(myp) (since m? is the first message

with a timestamp later than 7(mp)). Hence, we must have
7(mz) < 7(mp) + T). The lemma can be proved. O

Recall that we use A to denote the upper bound of time
disparity for any published set, which is equal to the RHS of
(12) in [3], i.e.,

1
~ >,

n—1 largest

Theorem 1 (Passing Latency Upper Bound 1). Let SPUB pe
any arbitrary published set. The passing latency experienced
by mp(l) SPUB upper-bounded by

A+ M— DB where M = max {TW D;/V} (D

JE[LN

Proof. By (1), Lemma 3, and Lemma 4, we have

ty —am™) < t* —amfY) = a(m?) -

< (r(mz)+ DY) — (r(m{"”) + DF)

= (7(mp) — 7(m)) + (r(m?) — 7(mp)) + DY — DF
< A+ (1Y +DY)-DP < A+ M- DP

The theorem is proved. O

The above upper bound in Theorem 1 could be pessimistic.
The pessimism mainly comes from the term M in inequality
(1). The insight here is that not all predicted messages with
timestamps later than 7(mp) will be waited to arrive. First,
by Lemma 3, we know that the published set SPUB must be
published no later than ¢*. In other words, before publishing
SPUB ' the synchronizer will only wait at least one predicted
message with a timestamp later than 7(mp) to arrive in each
queue. The above analysis considers the worst-case publishing
time, in which case at least one predicted message with a
timestamp later than 7(mp) should arrive in each queue.
According to the generation of the predicted message, we
know that the timestamp of a predicted message in (; is
generated based on the minimum timestamp difference TJB .
When TJB is too large, the difference between the timestamp
of the pivot and the predicted message would exceed A. In this
case, Algorithm 1 should not wait for this predicted message
to arrive, since for the pivot mp any selected set including this
predicted message must have a time disparity larger than A
(note that the time disparity of the published set for any pivot
mp is at most A).

According to these observations, it is possible to add certain
constraints on the term M in terms of TJB to mitigate the
degree of pessimism, which allows us to enhance the accuracy
of the computation for the upper bound on the passing latency.
The following section will explain more clearly with an
example and introduce a more optimistic upper bound for the
passing latency.



B. The Second Upper Bound for Passing Latency

Below, we derive the second upper bound for the passing
latency by dividing the published set STUB into three cases’:

o Case 1: all published messages in S*UB from non-pivot
queues have timestamp later than 7(mp).

« Case 2: all published messages in SPUB from non-pivot
queues have timestamp earlier than 7(ms).

o Case 3: some published messages in SPUB have times-
tamp earlier than 7(mp), while others’ timestamp is later
than 7(mp).

We begin by demonstrating that in Case 1, the term M
in inequality (1) can be simplified to only account for the
delay element D}/V, without the need to consider the minimal
timestamp difference element T]-W.

Lemma 5. Let SYUB pe any arbitrary published set and my €
SPUB pe the pivor. If SPU_B falls into Case 1, the passing
latency experienced by m/ () ¢ GPUB g upper-bounded by

K3

U; =A+M; - DZB, where M; = max {D;/V} 2)

JE,N]

Proof. The published message in each non-pivot queue must
be the first message with a timestamp later than 7(mp). When
the latest arrived message my, € SPUB arrives, a selected set
can be obtained from Line 7 in Algorithm 1. This selected
set does not contain any predicted messages and must be the
published set SPUB. So we have t; = a(my). Since both
my, and mp are included in SPUB, we can have T(my) <
7(mp) + A. In the worst-case, m/ @) can be mp. So, we have

ty —a(mf?) = a(my) — a(mf?)

< (r(m) + DY) = (r(mf') + DF)

< 7(my) — 7(mp) + DlW — DZB

< A+D/Y -DE < A+ M, -DP
The lemma is proved. O

The key insight learned from Lemma 5 is that in Case
1, the latest arrived message is precisely the last one that
Algorithm 1 should wait for, leading to the published set
being obtained at the time ¢; = a(my). In this case, the
algorithm only needs to wait for all published messages
included in the published set to arrive. However, in Case
2 or Case 3, there is a possibility that Algorithm 1 may
need to wait for additional messages to arrive, even if the
latest arrived message m;, has already been arrived (i.e., all
published messages have already arrived). More specifically,
certain predicted messages have the potential to be included
a selected set with a smaller time disparity. If these messages
arrive with the predicted timestamps, the time disparity of the
published set could be reduced. However, it is possible that
they may arrive with timestamps that are later than predicted,

3We emit the cases that the timestamp of a predicted message exactly
equals 7(mp) to simplify the presentation of the following proofs. This does
not compromise the generality of our analysis, since we can add (or subtract)
an infinitesimal value to (or from) its timestamp to fit our analysis.

thus disqualifying them from being included in a selected
set, thereby prolonging the passing latency. In this case, the
publishing time ¢; > a(my,) must hold. For example, in Fig.
3-(d), m$ is a predicted message with a timestamp of 21. The
selected set is {m3, m3, m}}. Suppose that m3 and m3 arrive
at (2, and then mi{’ arrives with a timestamp of 31, as shown in
Fig. 3-(e). Therefore, the published set will be {m?, m3, mi},
and we have t; = a(m?) > a(my) = a(m3). Actually, if
TP > 4, Algorithm 1 would not wait for m3 to arrive.

In both Case 2 and Case 3, the challenge is to identify and
exclude those predicted messages that will not be waited for
(after m,, arrives), so that we can reduce the pessimism in
the analysis of passing latency. Below, we first introduce how
to do this by adding constraints on the minimal timestamp
difference T].B in Lemmas 7 and 8 for Case 2 and Case 3.
Then we analyze how to incorporate these constraints into the
term M for Case 2 (in Lemma 9) and Case 3 (in Lemma 10).

Lemma 6. Let mp be any pivot, and S be a selected set
corresponding to my. If m; € S is a predicted message in Q) ;
(j € [1, N]), then it satisfies:

o 7(mj) > 7(me), and

o Fml: T(mp) < T(Mf) < 7(my).

Proof. By line 6 of Algorithm 1, S can only be obtained when
all predicted messages have timestamps later than 7(my). m,
is a predicted message so 7(m;) > T(mp) must hold. We
can assume that there exist m/ in @ such that 7(mp) <
7(m’;) < 7(m;). Therefore, m/ must be an arrived message
and 7(mj) — 7(mp) < T(m;) — 7(Mp). We can construct a
regular set S’ with all messages in S, replacing only m; with
m’;. Then, we have A(S") < A(S), which contradicts the fact
that S is a selected set. The lemma is proved. O

In the following, we analyze the constraints on TJB under
the context that for any pivot mp, the corresponding published
set SPUB £3]ls into Case 2 or Case 3, m; € SPUB is the latest
arrived message, and S is a selected set obtained by Algorithm
1 not earlier than a(my,).

Lemma 7. Ifmf(j) € S be a predicted message in Q; (j €

[1, N]). Then, TjB < 2A.

Proof. We prove this by contradiction, assuming TJB > 2A.
p()—1

By Lemma 6, m; is an arrived message satisfying:

T(mjp-(j)fl) < 7(mp) 3)

Since SPUB falls into Case 2 or Case 3, the published message
(it must be an arrived message) mf(])_w e SPUB (1 ¢ NH)
must satisfy:

T(mp) — A < T(mf(j)fz) < T(mg-’(j)fl) 4
The predicted message mg(j ) has a timestamp T(m?u )y =

7(m?9~") + TP. Combining it with (4) and (3), we have

7(mf )y _ 7(myp) > A. Therefore, any regular set containing

mf ) and m, will have a time disparity greater than A. Since



S is obtained not earlier than «(my,), there must exist a regular
set that contains only arrived messages (which actually is the
published set for mp) and it has a time dls(panty less than A.
So, the synchronizer will not wait for m;™"’ to arrive in any

) can not be included in the selected set S,

which contradlcts the prerequisite mf e g, Therefore, our
assumption is incorrect and TJB < 2A must hold. O

case, 1e m

Lemma 7 states that in both Case 2 and Case 3, the selected
set obtained not earlier than «(m,) for a given pivot can
only include the predicted messages from the non-pivot queue
Q; that satisfies the condition T < 2A. These predicted
messages will be waited to arrive until the publishing time. It
is noted that the above condition is necessary but not sufficient.

Lemma 8. Ifmp(J) € S be a predicted message in Q; (j €

[1,N]) and A < TJB < 2A, T(mﬁ(j)_l) must satisfy*:
r(mI7 < 7(mp) + A - TP (5)

Proof. Since the predicted message mﬁ(j )
T(mgj(])) — 7(mp) must not be large than A, i.e., 7 <
7(me) + A. Since T(mg(”) > T(mjp.(”*l) + TP, we have

T(mg(j)_l) < 7(mp) + A — TjB. Proved. O

is included in S,
(mé’(J)) <

Lemma 8 reveals that for any pivot, when A < TJB < 2A,
the predicted messages in ; can be included into a selected
set and then be waited for arrival before the selected set for
this pivot can be published, but only if the condition specified
in Eq. (5) is satisfied.

To derive the upper bound for Case 2 and Case 3, we first
introduce some auxiliary notations. For any pivot mp, the time
disparity of its published set is upper-bounded by A. We define
two sets for the queue index j:

s B N
¢1={jli € 1,N]A0O< TP <A}

¢2 = {jlj € I, NJANA <TF <24}
Lemma 9. Let SPUB be any arbitrary published set and myp €

SPUB pe the pivot. If SPUB falls into Case 2, the passing
latency experienced by m/ () ¢ GPUB g upper-bounded by

U= A+ My — D} (6)
where
My = max { M}, M3}
1 W w
M, zﬁéaf{Tj +Dj"}
M3 =max {A-TF +T)" + D]}
JEP2

Proof. Suppose that before publishing SPUB, m;?(j ) (g €
[1, N]) be the ﬁrst message, that arrives in Q);, with a times-
tamp of T(m?(] )) > 7(mp). By Lemma 7, the synchronizer

40f course, there exists a minimal limit as well, i.e., T(m;?(”il) >

7(mp) — A. However, our focus here lies on the maximum limit.

waits for m’-’ @) to arrive only if TB < 2A. When j € ¢5, by
Lemma 8, the message mf =1 has a maximum timestamp
value of 7( f(J)_l) = 7(mp) + A — T. Therefore, the

timestamp of m/ (@) (when it arrives) must satisfy

T(mf(j)) <7(mp)+A— TJB + TjW @)
When j € ¢, the message m P has a timestamp not later
than 7(mp). In the worst case we have

T(mp-(j)) < 7(mp) + TW (8)

Suppose m (h € ¢1 U ¢2) be the first message with a
timestamp larger than 7(mp) in Qp, and let it be the last one
to arrive among all such messages in the queues. Based on
Egs. (7) and (8), we can derive

ty —amf™) < a(mh™) - a(mf®)

< (r(mf™) + DY) — (r(mf") + DF)

= (r(mp) — 7(mD)) + (r(mf") — 7(mp)) + DY — DP
< Z—&—max{Mz,Mz} - DB

Proved. O

Lemma 10. Ler SPYB be any arbitrary published set and
mp € SPUB be the pivor. If SPUB ‘{alls into Case 3, the
passing latency experienced by m! () ¢ GPUB upper-
bounded by

L{g =A+ My — DB

Proof. Let mé)(j) (j € [1, N]) be the first message that arrives
in Q; before publishing SPUB and T(mf(] )Y > 7(mp). Let
7(mp) + 0 (0 < 0 < A) be the timestamp of the published
message that has the latest timestamp among all messages in
SPUB, By Lemma 7, TJB < 2A must hold. Similarly, we
have T(m]p-(])) < 7(mp) + A — TjB + TJ.W if j € ¢2. And
we have T(mjp-(])) < 7(mp) + T}V if j € ¢1. Suppose mf"
(h € ¢1 U ¢9) is the first message with a timestamp larger
than 7(mp) in @y, and let it be the last one to arrive among
all such messages in the queues. We have

1 h )
ty —a(m?) < a(my™) — amf?)

< (r(mf™)+ D}Y) — (r(m{") + DF)
= (r(me) + 0 — 7(mf) + (r(mp™) = 7(mp) — 0
+ DY) - DP
< A+ max {M] — o, M3 —o} - DP
< A+ My—DP
In conclusion, the lemma is proved. O

Theorem 2 (Passing Latency Upper Bound 2). Let SYUB pe
any arbitrary published set. The passing latency experienced
by mp(z) e SPUB g upper-bounded by

U, = max {U, .U} 9)
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Fig. 5: Mlustration of the continuous published sets.

where UI} and LIZ? are defined in Egs. (2) and (6), respectively.

Proof. The published set SPUB must fall into one of the
three cases, i.e., Case 1, Case 2, or Case 3. The upper
bound of the passing latency can be obtained by choosing
the maximum upper bound among the three cases. Thus, we
reach the conclusion. O

V. REACTION LATENCY UPPER BOUND ANALYSIS

This section analyzes the upper bound of the reaction
latency for a published message m/ @) included in SPUB.

We say two messages m/'") and mp @+ that both are from
the same queue Q; (i € [1 N)) are continuous. Accordingly,
we present the definition of continuous published sets:

Definition 8 (Continuous Published Sets). Let S}) UB ynd
SPUB be any two different published sets. Without loss of
generality, suppose SPUB is outputted before SPUB SPUB
and SPUB are continuous iff: Hmp(z) € SPUB A mp(Z)H €

SPUB (i ¢ [1,N)), mf(z) and mz( h1 are continuous.

For example, as shown in Fig. 5, the first published set
is SPUB — f;ml md mi} and the second published set is
SPUB = {m},m3,m3}. SPUB and SPUB are continuous
since m} € SFUB and m32 € SYUB are continuous.

Below, we first drive an upper bound for the time interval
between the arrivals of two published messages that are in
the same queue and included in two continuous published sets
(Lemma 12). Then, we derive the upper bound for the reaction
latency in Theorem 3.

Lemma 11. Any two published sets SYUB and SYUB, which
are sequentially published by Algorithm 1, are continuous.

Proof. Suppose that Sg UB is published after Sf UB By Al-
gorithm 1 Line 10-11, when publishing SfUB, each message
m; € SPUB and all messages before m; will be discarded
from @);. After publishing SPUB  there must be no discarded
message after m; before publishing Sg UB (since no message
overflow occurs and messages can only be discarded by Line
10-11 of Algorithm 1). Then, a new pivot (it must be included
in SPUB) will be selected for SFUB among the arrived
messages, each of which must have the earliest timestamp in
the corresponding queue. And, each of these messages must
be continuous to the published message in the corresponding
queue, which is included in Sf UB_ Therefore, the new pivot
of Sg UB, which is one of these messages, must be continuous
to a published message included in S})UB. By Definition 8,
SPUB and SPUB must be continuous. O

Lemma 12. Let SPUB and SPUB be any two published sets
(SPUB is published immediately after SPUB) and mp(l) e

SPUB (1 € N*) and mp(Z € SPUB. The latency a(m p(i)) -
a(mf(l)fm) is upper-bounded by:

Ug=20+TY + DV — DB (10)
where
W . = max {TW}
J€E[L,N]

Proof. According to Lemma 11, SPUB and SPUB must be
continuous. Hence, there must exist two continuous messages
mfM~ ¢ SPUB and " ¢ GPUB (¢ [1, N]). Hence,
we have

Py <V < TV

max

T(mﬁ(h)) —7(m},

p(i)—=x

In the worst case, m; is the one with the earliest

timestamp among all messages in SfUB, and mf(i) is the
one with the latest timestamp among all messages in 55’ LS

Therefore, we can know 7(m?") — 7(m#"™) < A and

T(mi(h) H— T(mip(i)_x) < A. Combining the above inequal-
ities, we have
r(mf?) =7 (mfO7) < 2R+ T,
Then, we can derive
a(mf™) — a(mf)
< (r(mf") + D) — (r(m{""") + DP)
< 280+T) .+ DY —DP
The lemma is proved. O

Theorem 3 (Reaction Latency Up er Bound). Suppose that
SPUB s published at time t;, m ) e SPUB 4nd mf pli)—a
(x € NT) is the last message before m? ) that was selected
p()

into a published set. The reaction latency of a message m,
is upper-bounded by U, + Ug, where U,, and Ug are defined
in Egs. (9) and (10), respectively.

Proof. By Definition 2, the reaction latency of m/ @

{tf—a(m.p(z))}+{a(m/_’(’))_a(m;{)(i)—x)}

p(i)—

ty—a(m{V"") =

p(i )) p(i ))

where ¢y — a(m} ) and a(m; a(mf~") are upper-
bounded by U/, and U, respectively. The theorem is proved.
O

VI. EXPERIMENTS

We conducted a series of experiments to evaluate the preci-
sion of our latency analysis (Theorem 1, 2 and 3), including
both passing latency and reaction latency. All experiments
were conducted on a desktop computer with an Intel(R)
Core(TM) 17-10700 CPU running at 2.90GHz. The computer
was installed with ROS 2, specifically the Humble Hawksbill
version running on Ubuntu 20.04.4 LTS. The source code is
available at https:// github.com/ruoxianglee/latency_analysis.
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Fig. 6: Passing latency evaluation results.
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Fig. 7: Reaction latency evaluation results.

A. Experiment Setting

We perform experiments in real execution in ROS. To ensure
precise evaluation of the timing behavior of messages, we
propose a new timing data structure (as shown in Table I) for
message tracing. This structure can be directly integrated into
the pre-existing message types in ROS. It contains the message
timestamp, arrival time, and publishing time. The assignment
of the message timestamp occurs during the message genera-
tion process in the sensor data sampling task. The synchronizer
assigns the arrival time to each incoming message upon its
arrival and a publishing time to each message in the published
set once the set is selected and ready for output. Based on the
above timing information, we can trace messages received by
the synchronizer, thereby enabling us to observe and analyze
the passing latency and the reaction latency.

We run experiments to evaluate the latency experienced by
messages in the synchronizer using artificial input messages
generated by timers. The case-study system involves up to
9 timer callbacks, which can be configured, and a message
synchronizer. Each timer can be configured with minimal and
maximum timestamp difference (72 and T}V) for artificial
input message generation. Our objective is to observe the
passing latency and the reaction latency for the messages that
pass through the synchronizer. Therefore, to ensure accurate
results, we have designed the case-study system as simple as
possible, excluding other callbacks. Additionally, we employ
a dedicated single-threaded executor for each timer callback
and the synchronizer. With the above design, we can minimize
any potential interference among callbacks caused by the ROS
executor scheduling. In this system, we can configure the delay
time experienced by each message before it arrives at the
synchronizer, which helps us evaluate the performance of the
synchronizer under different settings.

TABLE I: Timing Data Structure
Type

builtin_interfaces/Time
builtin_interfaces/Time
builtin_interfaces/Time

Name
timestamp
arrival_time
publishing_time

Description
Data sampling time
Message arrival time
Message publishing time

B. Latency Evaluation

We evaluate both passing latency and reaction latency with
different settings, including the different number of input
channels (from 3 to 9, as currently the ROS Message Filter
supports up to 9 input channels), the ratio between TV and
TiB (chosen between 1 and 1.8), and different delay time
before messages arrive at the synchronizer (chosen between
0 and 40 ms). In each experiment (which is corresponding
to each x-value in Fig. 6 and 7), we record the worst-case
latency among 5000 observations. Each point (in Fig. 6 and
7) corresponds to 100 experiments. The value of each point is
determined by computing an average of the recorded worst-
case latencies of all these 100 experiments. We conducted mul-
tiple experiments for each point because only one experiment
with a specific setting is not representative. Therefore, different
experiments with different settings are performed to guarantee
the evaluation’s generality.
We compare the values of Upper Bound 1, Upper Bound 2
and Observed for the passing latency (Fig. 6-(a) to (d)), and
the values of Upper Bound and Observed for the reaction
latency (Fig. 7-(a) to (d)). These parameters are defined:
« Upper Bound 1: the first passing latency upper bound
calculated by Eq. (1) in Theorem 1.

« Upper Bound 2: the second passing latency upper bound
calculated by Eq. (9) in Theorem 2.

o Upper Bound: the reaction latency upper bound in
Theorem 3.

o Observed: the maximum observed passing latency or

reaction latency in real execution.

For the passing latency evaluation, Fig. 6-(a) shows the
experiment results under the different number of channels
(x-axis), where messages of each channel were generated
periodically (i.e., T2 = T}V with period randomly distributed
in [50,100] and delay randomly distributed in [1,40]. While
it is possible to show the values of Upper Bound 1, Upper
Bound 2, and Observed for all channels in each setting, we
only illustrate the results for the first channel in Fig. 6-(a)
(as well as in Fig. 6-(c) and (d)). However, we can certainly



reach the same evaluation conclusion for all other channels.
To further demonstrate this, we also illustrate the results of all
six channels in Fig. 6-(b) as an example, where we use the
same setting as Fig. 6-(a), except that the number of channels
was kept constant at 6. In Fig. 6-(c), the messages are no
longer generated periodically, but with timestamp separation
randomly distributed between 7% and T}, and the ratio
between T}V and TP varies as indicated by the x-axis. In
Fig. 6-(d), we use the same setting as in Fig. 6-(a), but set
the number of channels to 6 and change the range of delay
experienced by each message as shown by the x-axis.

For the reaction latency evaluation, we use the same setting
in Fig. 7-(a), (b), (c) and (d) as Fig. 6-(a), (b), (c) and (d),
respectively. Again, we only illustrate the results (values of
Upper Bound and Observed) for the first channel in Fig. 7-
(a) (as well as in Fig. 7-(c) and (d)). And an example with the
results of all six channels is illustrated in Fig. 7-(b).

From the experiment results in Fig. 6-(a) to (d), we can
see that our upper bounds for the passing latency (Theorem
1 and 2) have good precision. As depicted in Fig. 6-(c), as
the ratio between T}V and TP increases, particularly at ratios
of 1.6 and 1.8), the difference between Upper Bound 1 and
Upper Bound 2 becomes negligible. The reason is that as the
ratio increases, it exacerbates the difference between TZ-B and
T}V. Since A is calculated based on T}V, T” > A can always
hold, and the constraints introduced in the second upper bound
for the passing latency become invalid. From the experiment
results (Fig. 7-(a) to (d)), we can know that our upper bound
for the reaction latency (Theorem 3) has a certain level of
pessimism. Further analysis and refinement may be necessary
to assess the upper bound accurately.

Based on the experiment results, we can observe that the
synchronization policy can produce considerable latency. As
illustrated in Fig. 6-(a), (c), and (d), the passing latency
increases as the number of channels, the ratio between TiW
and TP, or the range of delay experienced by each message
before arriving at the synchronizer becomes larger, in terms of
Upper Bound 1, Upper Bound 2 and Observed. As shown
in Fig. 6-(b), the passing latency is almost the same across
different channels, in terms of Upper Bound 1, Upper Bound
2 and Observed. For the reaction latency, we can reach the
same conclusion based on Fig. 7-(a) to (d).

VII. RELATED WORK

Data fusion algorithms are commonly developed with the
assumption that data from multiple sensors are perfectly
aligned, although this is rarely the case in reality. To address
this issue, various techniques have been proposed to compen-
sate for the temporal inconsistency of input data [30]-[33],
which only work when the temporal inconsistency falls within
a certain range. Message synchronization before data fusion
is a crucial component that warrants careful consideration
and attention. Previous studies [2], [34]-[36] have focused on
precisely timestamping sensor data in the context of multi-
sensor data fusion. In this paper, we assume that sensor data
has already been associated with valid timestamps in the same

coordinate system using these existing techniques. Our focus is
on the problem that arises after timestamping, i.e., the latency
caused when managing the sensor data flows in the computing
system based on these timestamps.

In recent years, some work has been conducted on formal
real-time performance analysis of ROS2, such as exploring
response time analysis by modeling execution of ROS2 ap-
plications as processing chains or a DAG [16], [17], [20],
[22], [24] executing on the ROS2 default scheduler, i.e.,
the executor. [18], [21], [23], [24] proposed to address the
limitations of the default scheduling strategy of ROS2 by
enhancing or redesigning the executor. In [19], the authors
propose an automatic latency manager that applies existing
real-time scheduling theory to latency control of critical call-
back chains in ROS2 applications. [14] proposed an end-to-end
timing analysis for cause-effect chains in ROS2, considering
the maximum end-to-end reaction time and maximum data age
metrics. However, all of the research mentioned above focuses
solely on the executor component in ROS2 only for the end-
to-end latency (response time) analysis without considering
the Message Synchronizer. [37] proposed a synchronization
system implemented in a node to harmonize communication
between nodes, which works similarly to the message syn-
chronization policy in ROS. Recent work [3], [7] modeled the
message synchronization policy in ROS and formally analyzed
the worst-case time disparity of the output message set as
well as the important properties of the policy. However, their
analysis only focuses on the time disparity metric and neglects
to consider the latency caused by the policy, which is closely
tied to end-to-end latency and is a critical factor in the reaction
time of the system as a whole.

Previous research on real-time scheduling and analysis has
investigated various real-time performance metrics, including
response time [38], [39], tardiness [40] and data freshness
[10]-[13], [41]. However, these analysis techniques cannot
be directly applied to ROS systems. Furthermore, analyzing
latency associated with the message synchronization policy in
ROS remains an open research question.

VIII. CONCLUSION

In this paper, we explore two types of latency metrics asso-
ciated with the ROS message synchronization policy, i.e., the
passing latency and the reaction latency, and formally analyze
the upper bounds for both latency. We conduct experiments
under different settings, including the different number of
channels, the varied data sampling periods, and the random
delay time experienced by messages before arriving at the syn-
chronization policy, to evaluate the precision of our proposed
latency upper bounds against the maximal observed latency in
real execution. In the future, we plan to improve the design and
implementation of the ROS message synchronization policy,
considering both the time disparity and latency aspects, with
the ultimate goal of achieving better real-time performance in
ROS systems.
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