






combines it together with the message, which arrives at time

19 into an output message set, which is sent to the fusion task.

Then, the fusion task sends the message to the actuator task

at time 26, and the actuator task finishes its execution at time

28. Note that the messages arriving at time 7 and 13 will be

discarded and not included in any output message sets.

In this example, the passing latency of the message arriving

at time 19 caused by the synchronizer is the time difference

between its arrival at time 19 and the publishing of the output

message set at time 24, i.e., 24− 19 = 5. The corresponding

end-to-end delay is the duration from the start time of sensor

task 1 at time 18 to the completion of the actuator task at

time 28, i.e., 28−18 = 10, which includes the passing latency

from time 19 to 24. The reaction latency is the time duration

from the arrival of the message at time 1 to the publishing of

the output message set at time 24, i.e., 24 − 1 = 23, which

includes the passing latency and the extra latency caused by

the discarded messages. And the corresponding end-to-end

reaction time is the time duration from the occurrence of event

B at time 0 to the completion of the actuator task at time 28,

i.e., 28 − 0 = 28, which includes the reaction latency from

time 1 to 24.

It is worth mentioning that the reaction latency of the syn-

chronizer is defined regarding the arrival time of the last non-

discarded message but not the occurrence time of the external

event, which seems problematic. For example, if an external

event A occurs at time 10, then the end-to-end reaction time

regarding this event should be 28 − 10 = 18. However, by

our definition, the reaction latency of the synchronizer is

24−1 = 23, which is larger than the end-to-end reaction time

28−10 = 18. This is actually not a problem as our interest is

to analyze the worst-case end-to-end reaction time no matter

when the event actually occurs. The worst-case scenario is

that the external event happens right after the sampling time

of the last non-discarded message (event B in Fig. 2-(b)).

Therefore, the worst-case time gap between the occurrence of

event B and the generation of the first output message group

containing the information of event B (24−0 in this example)

equals the sum of two parts (1) the difference between the

timestamp of the last non-discarded message and its arrival

time to the synchronizer (1 − 0 in this example) and (2) the

reaction latency (24 − 1 in this example). The former can

be bounded using existing response time analysis techniques,

while analyzing the latter is the goal of this paper. In summary,

we define the reaction latency of the synchronizer assuming

the worst-case scenario, i.e., the external event occurs right

after the sampling time of the last non-discarded message. In

this way, the definition of the reaction latency is simple yet

sufficient to serve the purpose of bounding the worst-case end-

to-end reaction time.

III. ROS MESSAGE SYNCHRONIZATION POLICY

There are two synchronization policies in ROS, i.e., the

Exact Time policy [28] and the Approximate Time policy [29].

The Exact Time policy only combines messages from different

input channels with exactly the same timestamp into an output

set and discards any messages without an exact match. As a

result, any output message set published under the Exact Time

policy will have a time disparity of 0. However, in reality, it

is too restrictive to require data from different sensors to have

exactly the same timestamp, so the Exact Time policy is rarely

used in practice. Consequently, we focus on the Approximate

Time policy in this paper, which is used to combine messages

under a certain tolerance of time disparity. Please note that

the model and results of this paper apply to both ROS 1

(the first generation of ROS) and ROS 2. More specifically,

the Approximate Time policy is the same for all ROS 1 C++

versions since Diamondback and ROS 2 C++ versions until

the latest Rolling, which was also stated in [3]. For the sake

of brevity, we use the term “ROS” in this paper to include both

ROS 1 and ROS 2. Throughout the remainder of this paper,

we will use the term “policy” or “synchronization policy”

interchangeably to represent the Approximate Time policy. In

this paper, we adopt the abstract model presented in [3], but

to keep our paper self-contained, we will provide a detailed

explanation of this model in its entirety. We first define some

concepts, followed by the abstract policy model.

We use S = {m1, ...,mN} to denote a regular set contain-

ing N messages, each of which comes from a different queue.

The time disparity of a regular set is defined as:

Definition 3 (Time Disparity). Let S = {m1, ...,mN} be a

regular set. The time disparity of S, denoted by ∆(S), is the

maximum difference between the timestamps of the messages

in S, i.e.,

∆(S) = max
mi∈S

{τ(mi)} − min
mj∈S

{τ(mj)}

Each queue Qi stores not only messages that are already

arrived (called arrived messages), but also an artificial pre-

dicted message at the end of Qi. The timestamp of a predicted

message is set based on the timestamp of the latest arrived

message in Qi and TB
i . It is important to note that the selection

procedure of the output message set is not solely based on the

arrived messages but also considers the predicted messages,

which can provide auxiliary information for the selection

procedure. Nevertheless, a predicted message is never included

in output message sets. Suppose there are currently k messages

{m1
i , ...,m

k
i } in Qi, mk

i must be a predicted message and

m1
i , ...,m

k−1
i are all arrived messages. The timestamp of mk

i

is set to be

τ(mk
i ) = τ(mk−1

i ) + TB
i

When the system starts at time 0, a predicted message with

timestamp 0 was initially put into each queue. Note that

sometime a queue may only have a predicted message but

no arrived message.

Definition 4 (Pivot). Let S1 = {m1
1, ...,m

1
N}, where each

m1
i is the arrived message with the earliest timestamp in Qi.

The pivot mP is the one with the largest timestamp among all

elements in S1. If several messages in S1 all have the latest

timestamp, the message with the maximum queue number is

the pivot.



The queue to which the pivot belongs is denoted as the

pivot queue, while the remaining queues are denoted as the

non-pivot queues. We use Λ to denote all the regular sets

corresponding to the pivot mP. Note that the regular sets in

Λ consist of messages currently in queues (either arrived or

predicted) and must include mP. The selected set has the

smallest time disparity among all regular sets in Λ.

Definition 5 (Selected Set). Let mP be a pivot and Λ be the

corresponding set of the regular sets that include mP. The

selected set is the set that has the smallest time disparity

among all elements in Λ. If multiple elements in Λ all have

the smallest time disparity, the selected set S = {m1, ...,mN}
must satisfy the following condition: there does not exist

another regular set S′ = {m′

1, ...,m
′

N} in Λ s.t. (i) ∆(S′) =
∆(S) and (ii) ∃mi ∈ S : τ(m′

i) < τ(mi).

A selected set can include both arrived messages and pre-

dicted messages. We call a selected set containing only arrived

messages a published set (denoted as SPUB). The messages in

a published set are called published messages. If the selected

set contains any predicted messages, the synchronizer must

wait for them to arrive. Intuitively, the predicted message(s)

can be used to combine a regular set with a smaller time

disparity compared with the current selected set. However,

in the case of TW
i > TB

i , a message may arrive with a

larger timestamp than predicted. If the difference between

the actual and predicted timestamp is significant, the message

cannot be included in a selected set as expected. Therefore,

the synchronizer can waste some time waiting for messages

to arrive, further contributing to passing latency or reaction

latency. The insight here is that if the predicted timestamp is

too large (e.g., the difference between the predicted timestamp

and the timestamp of the pivot exceeds the worst-case time

disparity of the published set), the synchronizer does not need

to wait for the predicted message, thereby to avoid wasting

time. We will explain more about the above insights as well as

the aspects relevant to the passing latency and reaction latency

with an illustrative example in Section III-B.

A. Synchronization Policy

When a new message mi arrives, the synchronizer will in-

voke Algorithm 1. First, the last message (must be a predicted

message) is discarded from Qi (Line 1). Then, mi is put into

the end of Qi, which then is followed by a new predicted

message with timestamp τ(mi)+TB
i (Line 2-3). After that, the

pivot is set (Line 5) once there is at least one arrived message

in each queue. And a selected set can only be obtained (Line

7) if all predicted messages have timestamps greater than

τ(mP). If the selected set only contains arrived messages,

it will be published and all published messages should be

discarded from the queues. Additionally, the messages earlier

than the published messages will also be discarded from the

queues, which are not included in any published sets (Line

8-11). Otherwise, if a selected set contains one or several

predicted messages, Algorithm 1 exits immediately to wait

for the predicted message(s) to arrive.

Algorithm 1: Synchronization Policy

Input: the newly arrived message mi

1 discard the last message in Qi;

2 put mi to the end of Qi;

3 generate a predicted message with timestamp

τ(mi) + TB
i and put it to the end of Qi ;

4 while each queue has at least one arrived message do

5 mP ← the current pivot (Definition 4);

6 if all predicted messages’ timestamps > τ(mP)
then

7 S ← the selected set (Definition 5) ;

8 if all messages in S are arrived messages then

9 publish S;

10 for each mj ∈ S do

11 discard mj and all messages before mj

in the corresponding Qj ;

12 else

13 return;

14 else

15 return;

16 return;

We assume that the time required by Algorithm 1 to identify

a selected set is negligible, i.e., it is considered to be 0. This

assumption is made to simplify our analysis and to focus

solely on the latency caused by waiting for messages to arrive

and also the discarded messages. Furthermore, we use ∆ to

represent the upper bound of time disparity for any published

set, which is equal to the RHS of (12) in [3].

B. An Illustrative Example

We use Fig. 3 to illustrate Algorithm 1. The x-axis repre-

sents the timestamp and the messages’ arrival time is not ex-

plicitly depicted in the figure. The downward arrows represent

the messages buffered in the queues. TB
1 = 3, TB

2 = 5, TB
3 = 10

and TW
1 = TW

2 = TW
3 = +∞.

At some time point, a message with timestamp 0 arrives in

Q3 and is set as the pivot as shown in Fig. 3-(a). The message

set {m1
1,m

1
2,m

1
3} in Fig. 3-(a) is the first published set and

the corresponding published messages will be discarded from

the queues. Then, a message with timestamp 10 arrives at Q3,

which is set as the new pivot as shown in Fig. 3-(b). Please

note that the indexes of messages are automatically updated in

Algorithm 1 after discarding messages. For example, from Fig.

2-(a) to Fig. 2-(b), the notation of the message with timestamp

of 3 in Q1 is updated from m2
1 to m1

1 after m1
1 with timestamp

0 is discarded.

The regular set {m3
1,m

2
2,m

1
3} in Fig. 3-(b) has the min-

imum time disparity, so it is the selected set. However, it

cannot be published since m2
2 is a predicted message. So the

synchronizer will wait for m2
2 to arrive. At some later point,

m4
1 and m2

2 arrive successively as illustrated in Fig. 3-(c). Then

the selected set {m3
1,m

2
2,m

1
3} in Fig. 3-(c) will be published







B. The Second Upper Bound for Passing Latency

Below, we derive the second upper bound for the passing

latency by dividing the published set SPUB into three cases3:

• Case 1: all published messages in SPUB from non-pivot

queues have timestamp later than τ(mP).
• Case 2: all published messages in SPUB from non-pivot

queues have timestamp earlier than τ(mP).
• Case 3: some published messages in SPUB have times-

tamp earlier than τ(mP), while others’ timestamp is later

than τ(mP).

We begin by demonstrating that in Case 1, the term M
in inequality (1) can be simplified to only account for the

delay element DW
j , without the need to consider the minimal

timestamp difference element TW
j .

Lemma 5. Let SPUB be any arbitrary published set and mP ∈
SPUB be the pivot. If SPUB falls into Case 1, the passing

latency experienced by m
ρ(i)
i ∈ SPUB is upper-bounded by

U1
p = ∆+M1 −DB

i , where M1 = max
j∈[1,N ]

{

DW
j

}

(2)

Proof. The published message in each non-pivot queue must

be the first message with a timestamp later than τ(mP). When

the latest arrived message mL ∈ SPUB arrives, a selected set

can be obtained from Line 7 in Algorithm 1. This selected

set does not contain any predicted messages and must be the

published set SPUB. So we have tf = α(mL). Since both

mL and mP are included in SPUB, we can have τ(mL) ≤

τ(mP) +∆. In the worst-case, m
ρ(i)
i can be mP. So, we have

tf − α(m
ρ(i)
i ) = α(mL)− α(m

ρ(i)
i )

≤ (τ(mL) +DW
l )− (τ(m

ρ(i)
i ) +DB

i )

≤ τ(mL)− τ(mP) +DW
l −DB

i

≤ ∆+DW
l −DB

i ≤ ∆+M1 −DB
i

The lemma is proved.

The key insight learned from Lemma 5 is that in Case

1, the latest arrived message is precisely the last one that

Algorithm 1 should wait for, leading to the published set

being obtained at the time tf = α(mL). In this case, the

algorithm only needs to wait for all published messages

included in the published set to arrive. However, in Case

2 or Case 3, there is a possibility that Algorithm 1 may

need to wait for additional messages to arrive, even if the

latest arrived message mL has already been arrived (i.e., all

published messages have already arrived). More specifically,

certain predicted messages have the potential to be included

a selected set with a smaller time disparity. If these messages

arrive with the predicted timestamps, the time disparity of the

published set could be reduced. However, it is possible that

they may arrive with timestamps that are later than predicted,

3We emit the cases that the timestamp of a predicted message exactly
equals τ(mP) to simplify the presentation of the following proofs. This does
not compromise the generality of our analysis, since we can add (or subtract)
an infinitesimal value to (or from) its timestamp to fit our analysis.

thus disqualifying them from being included in a selected

set, thereby prolonging the passing latency. In this case, the

publishing time tf > α(mL) must hold. For example, in Fig.

3-(d), m3
1 is a predicted message with a timestamp of 21. The

selected set is {m3
1,m

2
2,m

1
3}. Suppose that m2

2 and m3
2 arrive

at Q2, and then m3
1 arrives with a timestamp of 31, as shown in

Fig. 3-(e). Therefore, the published set will be {m2
1,m

2
2,m

1
3},

and we have tf = α(m3
1) > α(mL) = α(m2

2). Actually, if

TB
1 ≥ 4, Algorithm 1 would not wait for m3

1 to arrive.

In both Case 2 and Case 3, the challenge is to identify and

exclude those predicted messages that will not be waited for

(after mL arrives), so that we can reduce the pessimism in

the analysis of passing latency. Below, we first introduce how

to do this by adding constraints on the minimal timestamp

difference TB
j in Lemmas 7 and 8 for Case 2 and Case 3.

Then we analyze how to incorporate these constraints into the

termM for Case 2 (in Lemma 9) and Case 3 (in Lemma 10).

Lemma 6. Let mP be any pivot, and S be a selected set

corresponding to mP. If mj ∈ S is a predicted message in Qj

(j ∈ [1, N ]), then it satisfies:

• τ(mj) > τ(mP), and

• ∄m′

j: τ(mP) < τ(m′

j) < τ(mj).

Proof. By line 6 of Algorithm 1, S can only be obtained when

all predicted messages have timestamps later than τ(mP). mj

is a predicted message so τ(mj) > τ(mP) must hold. We

can assume that there exist m′

j in Qj such that τ(mP) <

τ(m′

j) < τ(mj). Therefore, m′

j must be an arrived message

and τ(m′

j) − τ(mP) < τ(mj) − τ(mP). We can construct a

regular set S′ with all messages in S, replacing only mj with

m′

j . Then, we have ∆(S′) ≤ ∆(S), which contradicts the fact

that S is a selected set. The lemma is proved.

In the following, we analyze the constraints on TB
j under

the context that for any pivot mP, the corresponding published

set SPUB falls into Case 2 or Case 3, mL ∈ SPUB is the latest

arrived message, and S is a selected set obtained by Algorithm

1 not earlier than α(mL).

Lemma 7. If m
ρ(j)
j ∈ S be a predicted message in Qj (j ∈

[1, N ]). Then, TB
j ≤ 2∆.

Proof. We prove this by contradiction, assuming TB
j > 2∆.

By Lemma 6, m
ρ(j)−1
j is an arrived message satisfying:

τ(m
ρ(j)−1
j ) ≤ τ(mP) (3)

Since SPUB falls into Case 2 or Case 3, the published message

(it must be an arrived message) m
ρ(j)−x
j ∈ SPUB (x ∈ N+)

must satisfy:

τ(mP)−∆ ≤ τ(m
ρ(j)−x
j ) ≤ τ(m

ρ(j)−1
j ) (4)

The predicted message m
ρ(j)
j has a timestamp τ(m

ρ(j)
j ) =

τ(m
ρ(j)−1
j ) + TB

j . Combining it with (4) and (3), we have

τ(m
ρ(j)
j )− τ(mP) > ∆. Therefore, any regular set containing

m
ρ(j)
j and mP will have a time disparity greater than ∆. Since



S is obtained not earlier than α(mL), there must exist a regular

set that contains only arrived messages (which actually is the

published set for mP) and it has a time disparity less than ∆.

So, the synchronizer will not wait for m
ρ(j)
j to arrive in any

case, i.e., m
ρ(j)
j can not be included in the selected set S,

which contradicts the prerequisite m
ρ(j)
j ∈ S. Therefore, our

assumption is incorrect and TB
j ≤ 2∆ must hold.

Lemma 7 states that in both Case 2 and Case 3, the selected

set obtained not earlier than α(mL) for a given pivot can

only include the predicted messages from the non-pivot queue

Qj that satisfies the condition TB
j ≤ 2∆. These predicted

messages will be waited to arrive until the publishing time. It

is noted that the above condition is necessary but not sufficient.

Lemma 8. If m
ρ(j)
j ∈ S be a predicted message in Qj (j ∈

[1, N ]) and ∆ ≤ TB
j ≤ 2∆, τ(m

ρ(j)−1
j ) must satisfy4:

τ(m
ρ(j)−1
j ) ≤ τ(mP) + ∆− TB

j (5)

Proof. Since the predicted message m
ρ(j)
j is included in S,

τ(m
ρ(j)
j )− τ(mP) must not be large than ∆, i.e., τ(m

ρ(j)
j ) ≤

τ(mP) + ∆. Since τ(m
ρ(j)
j ) ≥ τ(m

ρ(j)−1
j ) + TB

j , we have

τ(m
ρ(j)−1
j ) ≤ τ(mP) + ∆− TB

j . Proved.

Lemma 8 reveals that for any pivot, when ∆ ≤ TB
j ≤ 2∆,

the predicted messages in Qj can be included into a selected

set and then be waited for arrival before the selected set for

this pivot can be published, but only if the condition specified

in Eq. (5) is satisfied.

To derive the upper bound for Case 2 and Case 3, we first

introduce some auxiliary notations. For any pivot mP, the time

disparity of its published set is upper-bounded by ∆. We define

two sets for the queue index j:

φ1 =
{

j|j ∈ [1, N ] ∧ 0 < TB
j < ∆

}

φ2 =
{

j|j ∈ [1, N ] ∧∆ ≤ TB
j ≤ 2∆

}

Lemma 9. Let SPUB be any arbitrary published set and mP ∈
SPUB be the pivot. If SPUB falls into Case 2, the passing

latency experienced by m
ρ(i)
i ∈ SPUB is upper-bounded by

U2
p = ∆+M2 −DB

i (6)

where

M2 = max
{

M1
2,M

2
2

}

M1
2 = max

j∈φ1

{

TW
j +DW

j

}

M2
2 = max

j∈φ2

{

∆− TB
j + TW

j +DW
j

}

Proof. Suppose that before publishing SPUB, m
ρ(j)
j (j ∈

[1, N ]) be the first message, that arrives in Qj , with a times-

tamp of τ(m
ρ(j)
j ) > τ(mP). By Lemma 7, the synchronizer

4Of course, there exists a minimal limit as well, i.e., τ(m
ρ(j)−1
j

) >

τ(mP)−∆. However, our focus here lies on the maximum limit.

waits for m
ρ(j)
j to arrive only if TB

j ≤ 2∆. When j ∈ φ2, by

Lemma 8, the message m
ρ(j)−1
j has a maximum timestamp

value of τ(m
ρ(j)−1
j ) = τ(mP) + ∆ − TB

j . Therefore, the

timestamp of m
ρ(j)
j (when it arrives) must satisfy

τ(m
ρ(j)
j ) ≤ τ(mP) + ∆− TB

j + TW
j (7)

When j ∈ φ1, the message m
ρ(j)−1
j has a timestamp not later

than τ(mP). In the worst case, we have

τ(m
ρ(j)
j ) ≤ τ(mP) + TW

j (8)

Suppose m
ρ(h)
h (h ∈ φ1 ∪ φ2) be the first message with a

timestamp larger than τ(mP) in Qh, and let it be the last one

to arrive among all such messages in the queues. Based on

Eqs. (7) and (8), we can derive

tf − α(m
ρ(i)
i ) ≤ α(m

ρ(h)
h )− α(m

ρ(i)
i )

≤ (τ(m
ρ(h)
h ) +DW

h )− (τ(m
ρ(i)
i ) +DB

i )

= (τ(mP)− τ(m
ρ(i)
i )) + (τ(m

ρ(h)
h )− τ(mP)) +DW

h −DB
i

≤ ∆+max
{

M1
2,M

2
2

}

−DB
i

Proved.

Lemma 10. Let SPUB be any arbitrary published set and

mP ∈ SPUB be the pivot. If SPUB falls into Case 3, the

passing latency experienced by m
ρ(i)
i ∈ SPUB is upper-

bounded by

U2
p = ∆+M2 −DB

i

Proof. Let m
ρ(j)
j (j ∈ [1, N ]) be the first message that arrives

in Qj before publishing SPUB and τ(m
ρ(j)
j ) > τ(mP). Let

τ(mP) + σ (0 < σ < ∆) be the timestamp of the published

message that has the latest timestamp among all messages in

SPUB. By Lemma 7, TB
j ≤ 2∆ must hold. Similarly, we

have τ(m
ρ(j)
j ) ≤ τ(mP) + ∆ − TB

j + TW
j if j ∈ φ2. And

we have τ(m
ρ(j)
j ) ≤ τ(mP) + TW

j if j ∈ φ1. Suppose m
ρ(h)
h

(h ∈ φ1 ∪ φ2) is the first message with a timestamp larger

than τ(mP) in Qh, and let it be the last one to arrive among

all such messages in the queues. We have

tf − α(m
ρ(i)
i ) ≤ α(m

ρ(h)
h )− α(m

ρ(i)
i )

≤ (τ(m
ρ(h)
h ) +DW

h )− (τ(m
ρ(i)
i ) +DB

i )

= (τ(mP) + σ − τ(m
ρ(i)
i )) + (τ(m

ρ(h)
h )− τ(mP)− σ

+DW
h )−DB

i

≤ ∆+max
{

M1
2 − σ,M2

2 − σ
}

−DB
i

< ∆+M2 −DB
i

In conclusion, the lemma is proved.

Theorem 2 (Passing Latency Upper Bound 2). Let SPUB be

any arbitrary published set. The passing latency experienced

by m
ρ(i)
i ∈ SPUB is upper-bounded by

Up = max
{

U1
p ,U

2
p

}

(9)







reach the same evaluation conclusion for all other channels.

To further demonstrate this, we also illustrate the results of all

six channels in Fig. 6-(b) as an example, where we use the

same setting as Fig. 6-(a), except that the number of channels

was kept constant at 6. In Fig. 6-(c), the messages are no

longer generated periodically, but with timestamp separation

randomly distributed between TB
i and TW

i , and the ratio

between TW
i and TB

i varies as indicated by the x-axis. In

Fig. 6-(d), we use the same setting as in Fig. 6-(a), but set

the number of channels to 6 and change the range of delay

experienced by each message as shown by the x-axis.

For the reaction latency evaluation, we use the same setting

in Fig. 7-(a), (b), (c) and (d) as Fig. 6-(a), (b), (c) and (d),

respectively. Again, we only illustrate the results (values of

Upper Bound and Observed) for the first channel in Fig. 7-

(a) (as well as in Fig. 7-(c) and (d)). And an example with the

results of all six channels is illustrated in Fig. 7-(b).

From the experiment results in Fig. 6-(a) to (d), we can

see that our upper bounds for the passing latency (Theorem

1 and 2) have good precision. As depicted in Fig. 6-(c), as

the ratio between TW
i and TB

i increases, particularly at ratios

of 1.6 and 1.8), the difference between Upper Bound 1 and

Upper Bound 2 becomes negligible. The reason is that as the

ratio increases, it exacerbates the difference between TB
i and

TW
i . Since ∆ is calculated based on TW

i , TB
i > ∆ can always

hold, and the constraints introduced in the second upper bound

for the passing latency become invalid. From the experiment

results (Fig. 7-(a) to (d)), we can know that our upper bound

for the reaction latency (Theorem 3) has a certain level of

pessimism. Further analysis and refinement may be necessary

to assess the upper bound accurately.

Based on the experiment results, we can observe that the

synchronization policy can produce considerable latency. As

illustrated in Fig. 6-(a), (c), and (d), the passing latency

increases as the number of channels, the ratio between TW
i

and TB
i , or the range of delay experienced by each message

before arriving at the synchronizer becomes larger, in terms of

Upper Bound 1, Upper Bound 2 and Observed. As shown

in Fig. 6-(b), the passing latency is almost the same across

different channels, in terms of Upper Bound 1, Upper Bound

2 and Observed. For the reaction latency, we can reach the

same conclusion based on Fig. 7-(a) to (d).

VII. RELATED WORK

Data fusion algorithms are commonly developed with the

assumption that data from multiple sensors are perfectly

aligned, although this is rarely the case in reality. To address

this issue, various techniques have been proposed to compen-

sate for the temporal inconsistency of input data [30]–[33],

which only work when the temporal inconsistency falls within

a certain range. Message synchronization before data fusion

is a crucial component that warrants careful consideration

and attention. Previous studies [2], [34]–[36] have focused on

precisely timestamping sensor data in the context of multi-

sensor data fusion. In this paper, we assume that sensor data

has already been associated with valid timestamps in the same

coordinate system using these existing techniques. Our focus is

on the problem that arises after timestamping, i.e., the latency

caused when managing the sensor data flows in the computing

system based on these timestamps.

In recent years, some work has been conducted on formal

real-time performance analysis of ROS2, such as exploring

response time analysis by modeling execution of ROS2 ap-

plications as processing chains or a DAG [16], [17], [20],

[22], [24] executing on the ROS2 default scheduler, i.e.,

the executor. [18], [21], [23], [24] proposed to address the

limitations of the default scheduling strategy of ROS2 by

enhancing or redesigning the executor. In [19], the authors

propose an automatic latency manager that applies existing

real-time scheduling theory to latency control of critical call-

back chains in ROS2 applications. [14] proposed an end-to-end

timing analysis for cause-effect chains in ROS2, considering

the maximum end-to-end reaction time and maximum data age

metrics. However, all of the research mentioned above focuses

solely on the executor component in ROS2 only for the end-

to-end latency (response time) analysis without considering

the Message Synchronizer. [37] proposed a synchronization

system implemented in a node to harmonize communication

between nodes, which works similarly to the message syn-

chronization policy in ROS. Recent work [3], [7] modeled the

message synchronization policy in ROS and formally analyzed

the worst-case time disparity of the output message set as

well as the important properties of the policy. However, their

analysis only focuses on the time disparity metric and neglects

to consider the latency caused by the policy, which is closely

tied to end-to-end latency and is a critical factor in the reaction

time of the system as a whole.

Previous research on real-time scheduling and analysis has

investigated various real-time performance metrics, including

response time [38], [39], tardiness [40] and data freshness

[10]–[13], [41]. However, these analysis techniques cannot

be directly applied to ROS systems. Furthermore, analyzing

latency associated with the message synchronization policy in

ROS remains an open research question.

VIII. CONCLUSION

In this paper, we explore two types of latency metrics asso-

ciated with the ROS message synchronization policy, i.e., the

passing latency and the reaction latency, and formally analyze

the upper bounds for both latency. We conduct experiments

under different settings, including the different number of

channels, the varied data sampling periods, and the random

delay time experienced by messages before arriving at the syn-

chronization policy, to evaluate the precision of our proposed

latency upper bounds against the maximal observed latency in

real execution. In the future, we plan to improve the design and

implementation of the ROS message synchronization policy,

considering both the time disparity and latency aspects, with

the ultimate goal of achieving better real-time performance in

ROS systems.
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