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Abstract

Stochastic programming (SP) is a well-studied framework for modeling optimization
problems under uncertainty. However, despite the significant advancements in solving
large SP models, they are not widely used in industrial practice, often because SP
solutions are difficult to understand and hence not trusted by the user. Unlike deter-
ministic optimization models, SP models generally involve recourse variables that
can take different values for different scenarios (i.e. uncertainty realizations), which
makes interpreting their solutions a challenge when large numbers of scenarios and
recourse variables are considered. In this work, we propose scenario and recourse
reduction methods that can help enhance the explainability of SP solutions. Focusing
on two-stage linear SP, the goal is to build reduced models, with much smaller sets
of scenarios and recourse variables, that are easier to analyze yet still capture the key
features of the original problems. Specifically, we explicitly search for reduced mod-
els that generate the same or close to the same first-stage decisions as the original SP
models. The efficacy of the proposed methods is demonstrated in computational case
studies involving problems of industrial relevance and size.

Keywords Stochastic programming - Explainability - Scenario reduction - Recourse
reduction

1 Introduction

Stochastic programming (SP) (Birge and Louveaux 2011) is a powerful tool for
modeling optimization problems under uncertainty. The last few decades have seen
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tremendous advancement in terms of improving the tractability of large-scale SP mod-
els as well as identifying new applications that can be modeled using the SP paradigm.
However, despite the progress made, SP is scarcely used in industrial practice. One
of the main reasons for this is the inherent difficulty in understanding SP solutions.
In SP, the uncertainty is commonly represented by a set of discrete scenarios, and it
may require a large number of scenarios to approximate the underlying probability
distribution with a high level of accuracy. In addition, SP models may involve recourse
decisions that vary based on the chosen scenarios, which makes it challenging for the
user to see the relationships between the different decisions and their impact on the
objective function. With an ever-increasing emphasis on accounting for uncertainty
in decision making, we believe that a structured explainability paradigm is needed to
complement the existing SP methodology that can enhance its applicability to real-
world problems.

The idea of improving the interpretability of SP solutions is inspired by a similar
line of research in the field of machine learning (ML), popularly termed explainable
artificial intelligence (XAI). Modern ML models, such as deep neural networks, can
exhibit immense predictive power but tend to be complex and opaque; hence, they
are also often referred to as black-box models. However, in many applications, the
interpretability of the suggested predictions is as important as the predictions them-
selves; thus, the need to develop interpretable models or post hoc methodologies
that can explain the outputs of ML models has recently gained significant attention.
Post hoc XAI methods can be model-specific or model-agnostic. One example of
a model-specific approach is the TreeSHAP method (Lundberg and Lee 2017) that
is particularly designed for tree-based models like random forests (Breiman 2001).
Model-agnostic explainability methods include local interpretable model-agnostic
explanations (LIME) (Ribeiro et al. 2016) and counterfactual explanations (Wachter
et al. 2017). Many XAI approaches utilize surrogate or simplified, more interpretable
models to explain the output predictions. For a general overview of existing XAl tech-
niques, we refer the reader to some of the many recent perspectives and reviews on
this topic (Rudin 2019; Arrieta et al. 2020; Belle and Papantonis 2021).

Compared to most ML models, optimization models generally have a higher degree
of interpretability as they consist of constraints that are typically derived explicitly from
physical laws or logical expressions. However, although the model formulation may be
easily interpretable, the process (or algorithm) of obtaining the optimal solution often
is not. In fact, for all practical purposes, an optimization algorithm can be viewed
as a black box. Especially in large-scale optimization involving many interacting
variables and parameters, the complexity can be overwhelming and therefore limit the
user’s ability to understand why the provided solution is optimal. Existing sensitivity
analysis methods can help better understand the solution by quantifying the impact of
model parameters on the objective function (Ward and Wendell 1990); however, this
inherently local analysis often fails to provide satisfactory explanations in complex
problems. Recently, Bertsimas and Stellato (2021) proposed a method for interpreting
the optimal solution to an optimization problem via classification trees trained on
different model instances. But for the most part, the interpretability of optimization
models is very much an open research topic. With regard to SP, researchers have
developed metrics such as the value of stochastic solution (Birge and Louveaux 2011)
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and the expected value of perfect information to quantify the quality of an SP solution
relative to a deterministic one. However, they do not offer any physical intuition
or reasoning behind the choice of solution. To the best of our knowledge, so far,
no systematic approach has been developed that specifically aims to improve the
explainability of SP solutions.

In this work, we present an initial attempt in developing structured methods that
aid the process of understanding SP solutions. We consider a general two-stage linear
stochastic program of the following form:

minimizey y,,. ys c'x+ Z psq;ys (SP)
seS
subjectto Ax <b
Tyx + Wiy <hg Vs eS8
x>0
vy >0 VseS,

where x and y denote the first- and second-stage variables, respectively. While the first-
stage cost vector ¢ and constraint parameters A and b are assumed to be known, the
second-stage costs g and constraint parameters 7, W, and h are generally considered
to be uncertain. The uncertainty is represented by a set of discrete scenarios S, with
each scenario s given by the corresponding possible realization of the uncertainty
(gs, Ty, Wy, hy) and the probability p,. While the first-stage decisions are made before
the realization of the uncertainty, the second-stage decisions, also called recourse
decisions, can be made after the true values of the uncertain parameters are revealed.
To model this sequential decision-making process, the formulation incorporates a
separate ys for each scenario s such that the recourse decisions can vary across the
scenarios. The objective is to minimize the total expected cost.

The complexity of a two-stage SP and hence the difficulty of interpreting its solu-
tion increases with the numbers of scenarios and recourse variables, even when the
corresponding deterministic problem is relatively easy to comprehend. However, we
often observe that large SP problems can be approximated using a much smaller set of
scenarios. Also, in many instances, we may only need a small subset of recourse vari-
ables to achieve the minimum expected cost. While we do not know those subsets of
scenarios and recourse variables a priori, we have the opportunity to identify them after
obtaining the optimal solution, which could allow us to create a significantly reduced,
much more interpretable model. Following this idea, we propose two explainability
methods that aim to reduce the complexity and hence enhance the explainability of
an SP solution: (i) Scenario clustering and reduction based on similarity in the opti-
mal recourse decisions, which reduces the number of scenarios and helps identify the
features of the uncertainty that are the most relevant for the optimal SP solution. (ii)
Recourse reduction, which identifies a set of principal recourse variables required to
achieve the same optimal first-stage decisions while reaching the same or close to the
same optimal value as the original SP model.

The literature that is most closely related to our work is the one on scenario reduction
for SP (Dupacova et al. 2003). Existing scenario reduction techniques apply moment
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matching (Hgyland and Wallace 2001; Zhang and He 2022; Bounitsis et al. 2022),
transportation metrics such as Wasserstein and Sinkhorn distances (Li and Floudas
2014; Kammammettu and Li 2023), clustering (Latorre et al. 2007; Beraldi and Bruni
2014; Feng and Ryan 2013; Keutchayan et al. 2021; Medina-Gonzalez et al. 2020),
or optimization-based methods (Hewitt et al. 2022; Bertsimas and Mundru 2022).
Often, a combination of these concepts is used to achieve a reduced scenario set of
desired cardinality and properties that closely resemble the distribution governing the
original set of scenarios. Here, the main goal is to reduce the computational com-
plexity of the SP problem; as such, it serves a different purpose than our proposed
scenario reduction method aimed at enhancing explainability. For the same reason,
the traditional scenario reduction is performed prior to solving the SP problem, while
our method is a post hoc procedure. Similarly, limiting the choice of recourse vari-
ables is another common strategy for reducing the computational complexity of an SP
problem. For example, multistage SP models are often approximated using two-stage
formulations (Balasubramanian and Grossmann 2004; Patriksson et al. 2015), where
all recourse variables beyond the second stage are considered second-stage variables.
In the extreme case, one can also consider all recourse variables to be first-stage (i.e.
here-and-now) decisions, which leads to a static SP problem. Same as the traditional
scenario reduction, this kind of recourse reduction is performed a priori and typically
done in a heuristic fashion. In contrast, our proposed recourse reduction method is
applied after obtaining the SP solution and follows a more rigorous approach.

The remainder of this paper is organized as follows. In Sect.2, we present the
proposed scenario clustering and reduction methods, followed by the development of
the proposed recourse reduction approach in Sect.3. To demonstrate the efficacy of
the proposed methods, we conduct three computational case studies with applications
relevant for the industrial gas industry. The results from these case studies are presented
in Sect. 4. Finally, we close with some concluding remarks in Sect.5.

2 Scenario clustering and reduction

The basic premise for the proposed methods is that we have already solved (SP) and
obtained an optimal solution (x*, y*) with the corresponding optimal objective func-
tion value z*. Naturally, one would now investigate this SP solution to check its validity
and better understand why this particular solution is optimal. To aid this process, we
develop scenario and recourse reduction methods to obtain a less complex SP model
that can be more easily analyzed as well as to gain insights into the relationships
between the uncertainty and the optimal decisions.

To reduce the number of scenarios, we follow the two-step procedure shown in
Fig. 1. Given the full set of scenarios, we first apply k-means clustering to obtain
clusters where the scenarios from the same cluster exhibit similar recourse decisions.
Then, given these scenario clusters, we solve a scenario reduction problem to obtain
a representative scenario for each cluster. This leads to a reduced SP model that only
considers the chosen representative scenarios, and we construct it such that it has the
same or close to the same optimal first-stage solution as the original SP model. The
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Fig. 1 Using k-means clustering, the full set of scenarios is first partitioned into k clusters based on the
recourse decisions. Then, one representative scenario is selected from each cluster by solving the proposed
scenario reduction problem

details of the scenario clustering and reduction methods are provided in the following
subsections.

2.1 Recourse-based scenario clustering

The proposed scenario clustering serves two main purposes: obtaining scenario clus-
ters to be used in the subsequent scenario reduction step and, equally important,
revealing relationships between features of the uncertain parameters and the optimal
decisions. Traditional scenario clustering methods (Beraldi and Bruni 2014) assign
scenarios with similar uncertainty realizations (i.e. uncertain parameter values) to
the same cluster; we call this realization-based scenario clustering. The underlying
assumption is that similar realizations lead to similar optimal decisions. However,
closeness in uncertain parameter values may not necessarily result in closeness in
decisions; rather it could be some other feature in the data that is a better predictor
of the optimal decisions, but we do not know that feature a priori. In our case, we
have the advantage that we already know the optimal recourse decisions y*; hence,
we can directly use that information to cluster the scenarios. We call this recourse-
based scenario clustering, which can help the user identify the features in the uncertain
parameters that best explain the optimal recourse decisions.

To perform the proposed recourse-based scenario clustering, we apply a standard
k-means algorithm where given the full scenario set S and a desired number of clusters
k, we aim to assign scenarios that exhibit the most similar recourse decisions to the

same cluster. We obtain k sets c_)f disjoint scenarios S = {5’1, e, Sk} with 5} cS
fori=1,...,kand § = UleSi by solving the following optimization problem:
k
minimize DO lyr (SCy)
i=1 sES_i

1
subjectto w; = E Zy;‘ Vi=1,...,k,

i =
XES,'
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where y; are the optimal recourse decisions for scenario s and y; denotes the mean for
scenario cluster i. Note that for the conventional realization-based scenario clustering,
we would replace y; in (SCy) with (gy, Ty, Wy, hy).

2.2 Scenario reduction

Given k scenario clusters {5‘ Tovnns Sk}, we now want to find a representative scenario
for each cluster such that the difference between the optimal first-stage solution to the
resulting reduced SP problem, denoted by X, and the one to the original SP problem,
x*, is minimized. Ideally, we have X = x* as we would like to use the reduced model
to explain the original solution, including elucidating why it is optimal.

The scenario reduction problem can be formulated as the following bilevel program:

minimize I — x| (SRy)

v,X,y

subject to (¥,y) € argmin ¢ Tx +
j 5 e Z pi Y4 vs

i=1 seS;

subjectto  Ax <b

5

v =1 v, =0
Tsx + Wiy < hy V[S;O] VseS

ys 20
x>0
D=1 Vi=1,... .k
SeS;
v e {0, 1}!51,

where the incorporation of the lower-level problem ensures that x is optimal for
the reduced SP model. The binary variable v; equals 1 if scenario s is selected to
be the representative scenario for the cluster it belongs to. The disjunctions in the
lower-level problem indicate the selection of constraints and costs corresponding to
the representative scenarios. The scenarios that are not selected, i.e. scenarios for
which vs equals 0, have their constraints relaxed and corresponding cost set to 0
(by setting y; = 0). The disjunctions can be reformulated into mixed-integer linear
constraints using standard reformulation techniques (Trespalacios and Grossmann
2014). Lastly, p; denotes the cumulative probability of cluster i,i.e. p; = ) _ S Ps
leen a feasible v, the corresponding reduced SP model is (SP) with S replaced by
={s €S : vy = 1} and p, replaced by p; = p; where s € S;.

Remark 1 Note that even when the optimal first-stage decisions of the original and
reduced SP models are the same, their optimal values may not. Normally, this does
not hinder the interpretation of the solution to the reduced model. However, one should
still check the difference in the optimal values since too large of a discrepancy may
indicate an inadequate number of scenarios or weighting of the different scenarios in
the reduced model.
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3 Recourse reduction

The goal of recourse reduction is to obtain an SP formulation that has a significantly
smaller set of recourse variables but still leads to the same optimal first-stage decisions
x* and the same or almost the same optimal value z* as the original SP problem. The
reduced set of recourse variables, which we refer to as the principal recourse vari-
ables, are chosen from the original set of recourse variables; the remaining variables
are treated as first-stage variables in the reduced SP model. The principal recourse
variables represent the decisions that benefit the most from the flexibility to change in
the second stage depending on the realization of the uncertainty; as such, identifying
those decisions immediately provides a valuable explanation of the SP solution. A
smaller set of recourse decisions simplifies the analysis of the solution in general, and
it also eases the implementation of the solution as the user has fewer decisions to make
after observing the realizaed uncertainty.

3.1 Bilevel formulation

To formulate the recourse reduction problem, we introduce the set of indices of original
recourse variables R and the binary variable v, that equals 1 if y, is chosen to be a
recourse variable in the reduced SP problem. Given a selected set of recourse variables,
encoded in the vector of binaries v, we can formulate the resulting reduced SP model
as follows:

minimize z (RRSP(v))

2,X,Y

subjectto (z,x,y) € F(v)
with the feasible region

z=clx+ 3 psg) v

seS
Ax <b
Fv) = (Z’x’y)::sigWsysfhs Vs eS8 ’
Vs = 0 Vses
Vrs = Yrs+1 < Mv, VreR,s € S\{IS|}
Yrs = Yrs+1 = —Muv, YreR,s € S\{|S]}

where all constraints from the full problem (SP) are considered as well as the cost
function in the form of the first equation. In addition, the last two sets of constraints
with the big-M parameter M represent non-anticipativity constraints that are enforced
for each y, for which v, = 0. One can see that if v, = 0, y,s has to take the same
value across all scenarios, which effectively renders y, a first-stage variable. If v, = 1,
however, y, remains a recourse variable as the value of y,; can vary across different
scenarios.
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Given a desired number of recourse variables k, the recourse reduction problem
can then be formulated as the following bilevel program:

A

Zx = min_  Z (RRg)
V,Z,X,y
subjectto (Z,x,y) € argmin_ , {z: (z,x,y) € F(v)} )
i=x* (2
S0 =k 3)
reR
v e {0, 1}1RI, (4)

where we minimize the optimal value of the reduced SP problem Z such that it is as

close as possible to z*, the optimal value of (SP). The reduced SP model is embedded as
alower-level problem in constraint (1) that ensures that (z, X, y) is the optimal solution
to (RRSP(v)). Equation (2) enforces that X equals x*, the optimal first-stage decisions
from solving (SP). Equation (3) sets the number of selected recourse variables to k.
Since (RRSP(v)) is a restriction of (SP), z*, the optimal value of (SP), is a lower bound
for zx. Clearly, as we increase the number of recourse variables k, Z; will decrease
such that Zg > 21 > --- > Zj»r| = z*. Hence, we can solve (RRy) for different k’s and
choose a solution for which Zj is sufficiently close to z*.

Remark 2 Equation (2) is an important constraint from an explainability standpoint. It
ensures that x*, the first-stage decisions that the user will implement, are also optimal
for the reduced problem even if z; # z*. This allows the user to use the reduced
SP solution to investigate the relationship between first- and second-stage decisions
and better understand why x™* is optimal. However, Eq. (2) is also what makes (RRy)
particularly difficult to solve, and (RRj) may be infeasible for small k’s due to this
constraint.

Remark 3 The user has the flexibility to include additional constraints on the variables
v in (RRg). By doing so, one could, for example, enforce that only prespecified groups
of variables rather than individual variables can be selected to be recourse variables
in the reduced SP model. This provides a way to incorporate knowledge about the
physics of the given problem to further enhance the interpretability of the reduced
model.

3.2 Lower-bounding problem

The bilevel recourse reduction problem (RRj) can be difficult to solve, especially
when the original SP problem is large. In the following, we formulate a single-level
lower-bounding problem, which is significantly more computationally efficient, and
simple conditions under which it has the same optimal solution as (RRy).
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Proposition 1 Consider the following problem:

7 = min z (LBPy)

- V,2,X,y
subjectto (z, x,y) € F(v)
>
reR
ve (o, 1}

which is a (single-level) mixed-integer linear program. Its optimal solution provides
a lower bound to (RRy), i.e. z, < Z.

Proof The following formulation is a relaxation of (RRy) simply obtained by removing
Eq. (2) from (RRy):

Zk = min_ %
V,2,X,y
subjectto (z,X,y) € argmin_ , {z:(z,x,y) € F(v)}
Z v =k
reR
v e {0, 1}1RI.

Since itis arelaxation of (RRy), we have Z; < Zx.Inthis bilevel program, no constraints
are imposed in the upper level on variables in the lower level. In addition, the upper-
level objective function is the optimal value of the lower-level problem. Hence, it can
be further reformulated into:

Zx = min  min{z: (z,x,y) € F(v)}
v X,y

subject to Z v =k
reR
ve {0, HIR

which, after merging the two minimizations, leads to (LBPy). Thus, we have z, =
2k < Zk- o

In our computational experiments, we have observed that often, for sufficiently large
k’s, (RRy) and (LBPy) have the same solutions with regard to the choice of recourse
variables. Sometimes this can be immediately verified, as stated in the following
corollary.

Corollary 1 Let (v, z;, x, y) be the optimal solution to (LBPy). If v is also optimal
for (RRy) and the reduced SP problem (RRSP(v)) with v = v has a unique optimal
solution, then x = x* and z; = Z.
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Proof If v is optimal for (RRg), then x* is an optimal solution to (RRSP(v)) due to
constraints (1) and (2). If x* is the unique optimal solution to (RRSP(v)), then x = x*
and z, = Zx since (LBPy) reduces to (RRSP(v)) for v = v. O

The uniqueness condition from Corollary 1 does not always hold. However, in the
general case, we can solve another problem to check if a v that is optimal for (LBP)
is also optimal for (RRy).

Proposition 2 Let (v, 2, x, y) be the optimal solution to (LBPy). Solve the following
verification problem:

Zx = min z (VPy)
7,X,y

subjectto (z,x,y) € F(v)

x =x*

If zk = z,, then v is also optimal for (RRy) and k= Z;, = Zk- Otherwise, Zj > z;.

Proof The purpose of solving (VPy) is to check whether the first-stage decisions x*
are also optimal for (RRSP(v)). This is true if zx = z;. In that case, v is feasible in
(RRy) and the resulting objective function value of (RRy) is zz, which must also be
the optimal value of (RRy) since z, < Zk (from Proposition 1) and 7 = z,. Hence,
we have Z; = Z;, = Zk. Furthermore, since (VPy) is a restriction of (LBPy), we have
Zk = i, and if x* is not optimal for (RRSP(v)), zx > z;. O

Given Propositions 1 and 2, we could, instead of solving (RRy), solve (LBPy) for
different k’s and check if each solution is also optimal for (RRy) by solving (VPy),
which is linear program (LP). We may start with k = 0 and keep increasing k until we
obtain a reduced set of recourse variables for which z; = z « = Zkand 2y is sufficiently
close to z*. Note that using this heuristic approach, we may terminate at a k that is
larger than the one we would obtain from solving (RRy). However, it can be very
effective in cases where directly solving (RRy) is computationally intractable.

4 Case studies

In this section, we present three case studies that demonstrate how the proposed sce-
nario and recourse reduction techniques can aid in explaining SP solutions. First, we
consider an illustrative supply chain planning problem where, despite the simplicity
of the supply chain network, the solution to the original SP problem is difficult to
analyze due to the large number of scenarios; here, we demonstrate the use of scenario
reduction and the interpretation of the solution to the reduced model. The second case
study addresses an electricity procurement scheduling problem, where we show how
scenario clustering and reduction can be applied to obtain insights into the features of
the uncertain parameters that affect the decisions the most. Finally, in the third case
study, we use a larger instance of the supply chain planning problem to demonstrate
the effectiveness of the proposed recourse reduction approach in reducing the com-
plexity of the SP model. All problems were modeled using JuMP v1.1.1 (Dunning
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et al. 2017) in Julia v1.6.1 (Bezanson et al. 2017) and solved using Gurobi v9.5.2
(Gurobi Optimization, LLC 2021). Bilevel problems specifically were modeled using
BilevelJuMP v0.5.1 in Julia. K-means clustering was performed using Lloyd’s algo-
rithm (Lloyd 1982) with multiple random initializations, which does not guarantee
global optimality but has proven to be effective in our case studies.

4.1 Supply chain planning with large number of demand scenarios

Consider a set of production plants that manufacture a certain product for which there
are multiple customers with uncertain demands. In this problem, we assume that the
production decisions at the plants need to be made before the demand uncertainty
realizes; hence, these are our first-stage decisions. Once we know the demand, we
can decide how much to transport from each plant to each customer and how much
product we need to purchase externally to meet any shortfall in demand satisfaction;
hence, these are our recourse decisions. This setting is, for example, typical for the
industrial gas industry where production planning decisions are commonly made on
a monthly basis while distribution decisions are made on a daily or weekly basis once
the order book is finalized for that time period. This supply chain planning problem
can be formulated as the following two-stage linear SP problem:

minimize Zcixi + Z Ds Z [éjﬁjs + Zqzjyl‘js] 5)

XY,y

ieZ seS  jeJ ieZ

subjectto x; < C/"™ VieZ 6)
Y vis+ViszEjs VieT.ses @
i€l
Zyijsfxi Viel,seS (8)
jeg
x>0 Viel 9
Vijs=0 Viel jeJ,seS (10)
5i5=0 VjeJ,ses, (11)

where Z, 7, and S are the sets of plants, customers, and scenarios, respectively. The
production quantity at plant i is denoted by x;. The amount of product supplied from
plant i to customer j in scenario s is captured by y;;s. The amount of product that
must be procured externally to meet the demand deficit at customer j in scenario s is
denoted by y;s. The unit production cost at plant i, unit transportation cost between
plant i and customer j, and unit procurement cost at customer j are represented by
coefficients ¢;, g;j, and g, respectively. The demand for customer j in scenario s is
&js. The probability of scenario s is denoted by p;. Constraints (6) limit the production
at each plant i by the quantity C["**. Constraints (7) ensure that the demand is satisfied
at each customer, and constraints (8) ensure the product distribution from each plant
does not exceed the production. Constraints (9)-(11) enforce the non-negativity on the
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Fig.2 A network of two plants A 3
and three customers denoted by

blue and orange nodes,

respectively. Edge lengths are

proportional to the

corresponding transportation

costs

decision variables. The objective function (5) represents the expected overall cost of
operating the supply chain network.

In this case study, we consider a network of two plants (A and B) and three customers
(1,2, and 3), as shown in Fig. 2. The unit production costs at Plants A and B are $100
and $150, respectively, and maximum production amount at each plant, C"**, is set to
38 units. The unit purchase cost at each customer is set to $500. The unit transportation
costs are as follows: $90 for A— 1, $67.5 for A—2, $90 for A— 3, $67.5 for B—1,
$30 for B—2, and $67.5 for B— 3. We consider 50 equally probable demand scenarios
where the demand for each customer is sampled from ¢/ (0, 35).

With 50 scenarios, the solution to the SP model is difficult to interpret despite the
rather simple network. Hence, we employ the proposed scenario reduction strategy
to obtain a simplified model that is easier to analyze. Setting k = 5, the recourse-
based scenario clustering results in the five scenario clusters shown in Fig. 3. Here, we
depict each scenario in the space of the three recourse variables y41, y42, and y43. For
comparison purposes, we also performed conventional realization-based clustering
and found that the resulting assignment has a within-cluster sum of squares in the
recourse space, i.e. Zf: 12 e S, i - w;)?, that is about 51% greater than the one
obtained from recourse-based clustering. This clearly indicates that scenarios that are
similar in their uncertainty realizations may not lead to the same optimal recourse
decisions.

With the five scenario clusters, we solve scenario reduction problem and obtain the
following five representative scenarios: Scenarios 4, 9, 14,33, and 47 with probabilities
0.32,0.24, 0.24, 0.12, and 0.08, respectively. The optimal first-stage decisions of the
resulting reduced SP model are the same as the ones obtained from the original model
with the full set of scenarios, namely 38 and 27 units of production from Plants A and
B, respectively. Additionally, the optimal value of the reduced model differs from the
one of the original model by less than 2%.
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Y2

¥

Fig.3 Illustrating clusters obtained from recourse-based clustering for k = 5

We analyze the reduced model’s solution as a means of understanding the original
model’s solution. Figure 4 shows the optimal decisions for all five scenarios of the
reduced model. Here, the sizes of the plant and customer nodes represent the production
amounts and product demands, respectively. The thickness of the edge between a plant
and a customer indicates the amount of product transported. We can now make the
following observations and draw some useful insights that help explain the SP solution:

1. We see that Plant A is at its production capacity while Plant B is not. This prompts
us to compare the costs to serve each customer, which consist of both production
and transportation costs, from Plants A and B. Although, compared to Plant B,
Plant A is located farther away from all customers, we find that the cost to serve
any of the given customers is lower for Plant A due to its considerably lower
production cost. This explains why the optimal solution suggests producing at
Plant A as much as possible and use Plant B only to meet the demand that Plant
A cannot.

2. Infour out of the five scenarios, the capacities at both plants are sufficient to satisfy
the demands of all customers, implying no external purchase is required in those
scenarios. However, in Scenario 14, additional product is purchased externally,
indicating that Plant B’s production amount is not simply set to meet the largest
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1 +4.0 1 1

Fig.4 Illustrating the first- and second-stage decisions obtained from solving the reduced model with five
representative scenarios — 4 (top left), 9 (top right), 14 (bottom left), 33 (bottom center), and 47 (bottom
right). The sizes of the plant and customer nodes correspond to the production amounts and product demands,
respectively. The edge thickness corresponds to the amount transported between a plant and a customer.
The quantity in red font (“+x”’) next to a customer node corresponds to the product purchased externally

demand among the five scenarios. This begs the question why it is optimal to
produce this amount at Plant B.

3. In Scenario 14, Customer 2’s demand exceeds Plant B’s production capacity;
thus, Plant A must pitch in to meet its demand despite being farther away. Also,
the overall demand in the network exceeds the combined capacities of Plants A
and B by 4 units, necessitating the external purchase of 4 units of the product
at Customer 1. This results in a significantly higher second-stage cost compared
to other scenarios, despite just slightly higher average demand per customer (see
Fig.5). Why do we not increase Plant B’s production amount by 4 units to satisfy
the demand of Customer 1 instead of purchasing the product externally, where
the latter is certainly more expensive? Recall that the production rates are first-
stage decisions; hence, the corresponding production costs incur independent of
the realization of the demand uncertainty. Transportation and purchase decisions
are recourse decisions and differ across the five scenarios, so do the corresponding
costs. In this case, since the 4 units of product purchase only occur in Scenario
14, which has a probability of 0.24, their contribution to the total expected cost
is $480. Increasing the capacity of Plant B by 4 units and transporting them to
Customer 1 in Scenario 14, on the other hand, would increase the total expected
cost by about $665. So it is less expensive to purchase those 4 units of product
externally.
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Fig. 5 Illustrating the chosen representative demand scenarios and the corresponding second-stage costs.
The size of the markers is proportional to the representative probabilities of corresponding scenarios

4. Why should we not further reduce Plant B’s production amount? Here, it helps to
look at the total demands in all five scenarios, which are 62, 65, 69, 64, and 65
units, respectively. This means that if we produce less than 27 units at Plant B (in
addition to the 38 units at Plant A), we will need to purchase additional product
externally in Scenarios 9, 14, and 47. These three scenarios have a combined
probability of 0.56; hence, purchasing one unit of product in these three scenarios
would contribute $280 to the total expected cost. This is in contrast to about $179
for producing that one unit at Plant B and transporting it to Customers 1, 2, and 3 in
Scenarios 9, 14, and 47, respectively, which explains why the optimal production
amount at Plant B is 27 units.

The above analysis precisely explains the optimal first-stage decisions of the SP
problem, which was relatively easy given the reduced set of scenarios. It would have
been much more difficult if we tried to do so using the original full set of 50 scenarios.

4.2 Electricity procurement scheduling under price uncertainty

Electricity procurement is an important consideration in power-intensive industries.
In operating such industrial plants, one typically needs to decide whether to purchase
electricity from power contracts or from spot markets (Fig. 6). Power contract prices
are relatively stable; however, the decision to purchase from them needs to be made
well ahead of time. On the other hand, spot electricity prices, in general, are highly
time-sensitive and uncertain (may be lower or higher than the power contract price)
and become known only shortly before the time of delivery. Hence, there is a trade-
off to be optimized in purchasing electricity from power contracts and spot markets,
which can be formulated as a two-stage SP problem. Here, we consider a simplified
version of the model proposed by Zhang et al. (2016):
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Fig. 6 Electricity can be purchased through the spot market or a contract. Contract prices are more stable
but require ordering well ahead of time, whereas spot prices are more volatile but allow for short-notice
purchases. We consider 40 price scenarios for the spot market over a 24-h scheduling horizon

mi)rcl’ilelvize Z cixp + Z Ds Z [m Vis + a,v,s] (12)

teT seS  teT
t
subjectto ™" < 0 4 Z(vﬂs —d) <i™ VireT,seS8 (13)
t'=1

Y (wy—d)=0 VseS§ (14)
teT
mugg <x;+ys VteT,seS (15)
x>0 VireT (16)
Vs, Vs >0, VieT,seS, (17)

where 7 and S denote the sets of time periods and spot price scenarios, respectively.
The probability of occurrence of a scenario s is denoted by p;. Electricity purchased
from the power contract in time period ¢ is denoted by x;, whereas electricity pur-
chased from the spot market and the production amount in time period ¢ and scenario
s are denoted by y;; and vy, respectively. Note that x are the first-stage decisions
while y and v constitute the recourse decisions. The unit cost of purchase from the
power contract, cost of purchase from the spot market, and cost of production are
represented by parameters c;, 7y, and a;, respectively. The product demand in time
period ¢ and the initial inventory are denoted by d; and i°, respectively. Constraints
(13) ensure that the inventory lies within the minimum (i™") and maximum (;™*)
permitted values at all times. Constraints (14) ensure the net production is at least as
much as the overall demand during the scheduling horizon. The (minimum) electricity
consumption in time period ¢ and scenario s is assumed to be linearly dependent on
the production amount defined by the coefficient m. The non-negativity bounds on the
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decision variables are enforced via constraints (16) and (17). The objective function
captures the goal of minimizing the overall expected cost of purchasing electricity and
production.

We consider a 24-h scheduling horizon with hourly time discretization, minimum
and maximum product inventory levels of 75 and 100 units, respectively, and an initial
inventory of 50 units. The product demand in each time period is sampled randomly
from U/ (28, 42). The contract and spot market electricity prices are shown in Fig. 6,
while the unit production cost is set to $3. We consider 40 equally probable scenarios
for the spot prices, and the coefficient, m, defining the linear relationship between
production and electricity consumption, is assumed to be 2.

4.2.1 Scenario clustering

We want to use this example to demonstrate that often, with just simple scenario
clustering, we can already gain valuable insights that help us explain the SP solution.
To show the advantage of the proposed recourse-based scenario clustering method
in this regard, we also compare the results with those obtained from conventional
realization-based clustering.

We start by setting the desired number of clusters, &, to 39. Since we have 40
scenarios, setting k = 39 returns 39 clusters where one of them consists of the two
most similar scenarios. We perform both realization- and recourse-based clustering
for which the two scenarios that are grouped into one cluster are shown in Fig. 7a and
Fig. 7b, respectively. The figures show the corresponding spot price profiles along with
the recourse decisions of purchasing electricity from the spot market and production.
We see that the two scenarios found via realization-based clustering (Scenarios 21 and
34) are very similar in their spot price profiles, yet the associated recourse decisions
differ significantly in time periods 2—6. In contrast, recourse-based clustering returns
two scenarios (Scenarios 9 and 34) whose spot price profiles look quite different;
however, they exhibit the exact same recourse decisions.

The above observation seems counter-intuitive at first, but after further investigation,
we arrive at an explanation with the following two key insights:

1. The spot price trend is a better predictor of the recourse decisions than the price
magnitude. The reason is that for a fixed product demand, once the electricity
purchase from the contract (first-stage decision) is finalized, we must purchase the
remaining required electricity from the spot market, regardless of its price, to meet
the product demand. Hence, the total amount of electricity purchased from the spot
market is the same in all scenarios, and it is merely the timing of the electricity
purchases that is optimized, which depends on how the spot price changes over
time. This explains why the recourse decisions in Scenarios 9 and 34 are the same
in time periods 1-12 as their price trends are the same despite the price values
being quite different (see Fig. 7b). In Scenarios 21 and 34, on the other hand, the
price profiles exhibit very similar magnitudes but often opposite trends in time
periods 2—-6 (see Fig. 7a); hence, the recourse decisions in those time periods are
very different.

2. The price trends in Scenarios 9 and 34 are not always the same in time periods 13—
24, yet the recourse decisions in those time periods are the same. A quick look at
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Fig.7 Illustrating two scenarios that get grouped together for the k = 39 case. Realization-based clustering
reveals that scenarios that are very similar in magnitude do not necessarily have to have the same recourse
decisions. In contrast, if there is a non-zero purchase from the spot market, then having a similar trend
seems to play a more prominent role in having the same decisions across two scenarios

the first-stage decisions, as shown in Fig. 7c, reveals that the electricity purchased
from the power contract in time periods 13-24 is enough to meet all electricity
demand in that time frame so that no purchase from the spot market is needed. As
a result, the trend in spot price in those time periods does not affect the recourse
decisions.

To quantify and strengthen our reasoning behind our conclusions, we calculate
the bivariate correlation coefficient, p, for every additional group of scenarios from
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Table 1 Positive correlation between scenarios grouped together by recourse-based clustering indicates
that similar price trends lead to similar decisions. Because trends are irrelevant during periods 13-24, p
for periods 1-12 provides a more accurate representation of the correlation between scenarios. Mean p, i.e.
the average of p between all possible pairs of scenarios, is reported for clusters with three scenarios. Every
new cluster of scenarios is represented in bold; the shown correlation coefficients correspond to that new
cluster

Clusters (k) Clustered scenarios Correlation coefficient (p)
1-24 hr 1-12 hr

39 (9,34) 0.13 0.82

38 (9,34), (26,35) 0.73 0.94

37 (9,34), (5,31,37) 0.86 0.82

36 (9,34), (5,31,37), (7,20) -0.42 0.36

35 (9,34), (5,31,37), (7,20), (23,30) 0.85 0.81

k = 39to k = 35, as shown in Table 1. Positive (similar trend) and negative (opposite
trend) correlations are indicated by p > 0 and p < 0, respectively. In periods 1-24,
for the most part, we see that the clustered scenarios are highly correlated, implying
they follow a similar trend. The only ambiguous case is the one of k = 36, where the
negative p for Scenarios 7 and 20 indicate a negative correlation despite being grouped
together for having similar decisions. However, as we reasoned earlier that trends are
immaterial in periods 13-24, it is more appropriate to calculate p only for periods 1-12
to avoid obtaining a misleading correlation. This correctly leads to p > 0, reiterating
our observation of scenarios with similar trends leading to similar decisions. Finally,
as shown in Fig. 8, this can also be observed in the grouped scenarios for cases k = 38
and k = 37.

4.2.2 Scenario reduction

To analyze the overall SP solution, we apply the proposed scenario reduction approach
to reduce the number of spot electricity price scenarios from 40 to 5. As depicted
in Fig.9, Scenarios 2, 6, 12, 28, and 30 are chosen as representative scenarios, with
respective probabilities of 0.175, 0.1, 0.225, 0.225, and 0.275. Figure 9 also shows that
the optimal purchase amounts from the power contract, i.e. the first-stage decisions,
are the same for the original and reduced models. In addition, we show, as examples,
the second-stage solutions, i.e. the spot market purchase and production scheduling
decisions, for Scenarios 6 and 30 in Fig. 10. Note that the subfigures on the right in
Fig. 10 depict the production amounts as positive values while product demands are
shown as negative numbers.

Now that we only have 5 scenarios to consider, we can more easily explain the
first-stage decisions. Particularly, in time periods 13—24, the expected unit spot price
lies in the range [$23.3/kWh, $34.3/kWh], which clearly exceeds the unit contract
price of $19.6/kWh, resulting in only electricity purchases from the contract in the
second half of the day. In contrast, in time periods 7-12, the expected unit spot price
lies in [$25.8/kWh, $33.5/kWh], which is lower than the contract price of $33.6/kWh,
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Fig.8 Tllustrating scenarios grouped together via recourse-based clustering and the corresponding recourse
decisions for cases k = 38 and k = 37. Again, we see very similar decisions, especially in time periods
where the scenarios have similar trends, even if the scenarios differ considerably in magnitude
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Fig.9 Representative scenarios and first-stage decisions for k = 5

making the spot market the preferred option for purchasing electricity in that time
frame, as can be seen in Fig. 10.

The situation in time periods 1-6 is more complicated as we purchase electricity
from both the contract and the spot market. Especially for the analysis here, it helps
to be able to focus on a small number of scenarios. For example, from Fig. 10b, we
can see that for Scenario 30, the spot electricity price is consistently higher than the
contract price in time periods 1-6, yet we still purchase from the spot market. This, of
course, can only be explained by realizing that the spot price in other scenarios, such
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Fig. 10 Second-stage solutions for two of the five representative scenarios

as Scenario 6 (see Fig. 10a), is significantly lower. As a result, to minimize the overall
expected cost, we should also purchase electricity from the contract in that time frame
in order to balance hedging against the risk of high-price scenarios like Scenario 30
and allowing flexibility to take advantage of low-price scenarios like Scenario 6.

4.3 Supply chain planning with large number of recourse decisions

In this third case study, we consider a larger instance of the supply chain planning
problem presented in Sect. 4.1, with 10 plants (A to J) and 15 customers. As shown in
Fig. 11, the resulting network has 165 recourse decisions (150 transportation decisions
plus 15 purchase decisions). The purchase cost at each customer node is set to $125
per unit of product, and the maximum production limit at each plant is set to 12 units.
Finally, we consider four demand scenarios with probabilities 0.05, 0.15, 0.30, and
0.50, and the demand for each customer is sampled from ¢/ (0, 12).

Solving the two-stage SP model corresponding to this large network results in
decisions that are difficult to reason because of the complex network structure, which
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Fig.11 Illustrating the original network consisting of 10 plants (A, B,...,J) and 15 customers. The production
cost at each plant and the procurement cost are shown on the right

leads to a large number of recourse decisions. To alleviate this difficulty, we employ the
recourse reduction method proposed in Sect. 3. Varying the desired number of recourse
decisions k from 0 to 30, we solve both the lower-bounding problem (LBP) and the
verification problem (VPy). The results are plotted in Fig. 12, which shows the optimal
values obtained from solving both problems as well as the optimal value of the original
SP problem as a reference. Looking at the optimal values for (LBPy), one can see that
with only 18 recourse variables, we can already achieve the same optimal value as the
original SP model. However, the solution to (VPy) has a higher optimal value, which
tells us that the selected 18 recourse variables do not yet result in the same optimal first-
stage decisions. As we further increase k, we find thatatk = 23, (LBPy) and (VPy) have
the same optimal value, indicating that this is also the optimal solution to the bilevel
program (RRy). As such, we can now account for these 23 recourse variables, treat
the remaining original recourse decisions as first-stage variables, and still ensure the
same total expected cost and production decisions as with all 165 recourse variables. In
the network depicted in Fig. 12, the 23 principal recourse decisions are highlighted in
green, i.e. green edges and customer nodes represent the transportation and purchase
decisions treated as recourse variables in the reduced model, respectively.

The solution to the reduced model with only the selected 23 recourse variables is
shown in Fig. 13. The sizes of the plant and customer nodes (Figs. 13b-13e) indicate the
production and demand at these nodes, respectively. The thickness of an edge between
a plant and a customer is proportional to the transportation amount. The following are
some key points regarding decisions made in the first stage: (i) As shown in Fig. 13a,
some transportation decisions (red edges) are now made before the uncertainty in
demand is realized. (ii) Plants A and F are chosen to not manufacture any product.
The high production costs, combined with their relatively isolated locations (higher
transportation costs), contribute to the decision to have no production at these plants.

The user may now be interested in learning how product distribution varies with
demand at a specific customer node and why the participating plants were selected.
Now that we have a sparser network to analyze, it is much easier to answer such
questions. We try to explain decisions involving Customer 8 as an example. In Scenario
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Fig. 12 On the left, optimal values obtained from solving the lower-bounding problem (LBPy) and the
verification problem (VPy) for varying k’s. On the right, a reduced network with only 14% (23 of 165) of
the original recourse variables; selected recourse decisions are shown in green

1, the demand at Customer 8 is satisfied by Plant D. Plant C, despite being closer to
Customer 8, is not chosen to meet its demand because it has only three units of
production (due to the high production cost), all of which are used to meet the demand
at Customer 3. In Scenario 2, we decide to buy 1 unit of product externally for Customer
8, which may be questionable due to the high purchase price. The reason for this is
that Plants C and H, two other potential candidates to satisfy Customer 8’s demand,
are using all of their capacity to meet the demands of other nearby customers. Next,
one might wonder why not externally purchase 1 unit of product for Customer 12 and
transfer the 1 unit of product saved at Plant B to Customer 8. However, because the
purchase price is the same for all customers, a more distant customer will always be
preferred if a non-zero purchase decision must be made. Similarly, we can examine
decisions involving any customer or plant of interest in any scenario. In summary,
the reduction in recourse decisions significantly simplifies the analysis and hence the
explainability of the SP solution.

5 Conclusion

In this work, we addressed the challenge of low interpretability of decisions output
by large SP models, which has for long hindered their use in real-world applications.
We developed systematic approaches that enhance the explainability of a given SP
solution by reducing the complexity of the model to an extent where it becomes easier
to visualize the decisions and infer the reasons for making these decisions. The pro-
posed techniques reduce the complexity of the problem along two dimensions — the
number of scenarios and the number of recourse variables. For scenario reduction, our
approach clusters scenarios based on the optimal recourse decisions and selects repre-
sentative scenarios for the scenario clusters such that the optimal first-stage decisions
of the resulting reduced SP model are close to the ones obtained from the original
larger SP model. In recourse reduction, we identify a small set of principal recourse
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Fig. 13 Illustrating solution obtained by solving the reduced SP model with the 23 principal recourse deci-
sions. Distribution or procurement decisions, which take the value zero, are omitted for brevity. Additionally,
the thickness of an edge corresponds to the amount transferred from a plant to a customer
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variables required to achieve the same optimal first-stage decisions while reaching the
same or close to the same optimal value as the original SP model. The efficacy of the
proposed explainability techniques was demonstrated in computational case studies
involving problems of industrial relevance, namely supply chain planning and elec-
tricity procurement scheduling. We showed how the significant complexity reduction
that could be obtained with minimally dissimilar solutions ultimately made it much
easier to explain the original SP solutions.
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