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Abstract

Decision-focused learning is an emerging paradigm specifically aimed at improving the
data-driven learning of input parameters to optimization models. The main idea is to learn
predictive models that result in the best decisions rather than focusing on minimizing the
parameter estimation error. Virtually all existing works on decision-focused learning only
consider the case where the unknown model parameters merely affect the objective
function. In this work, extend the framework to also consider unknown parameters in the
constraints, where feasibility becomes a major concern. We address the problem by
leveraging recently developed methods in data-driven inverse optimization, specifically
applying a penalty-based block coordinate descent algorithm to solve the resulting large-
scale bilevel optimization problem. The results from our computational case study
demonstrate the effectiveness of the proposed approach and highlight its benefits
compared with the conventional predict-then-optimize approach, which treats the
prediction and optimization steps separately.
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1. Introduction

In traditional data-driven optimization, we often follow a two-step predict-then-optimize
approach, i.e. we first predict the unknown model parameters from data with external
features and then solve the optimization problem with those predicted inputs. Here, the
learning step focuses on minimizing the parameter estimation error; however, this does
not necessarily lead to the best decisions (evaluated with the true parameter values) in the
optimization step. In contrast, decision-focused learning (Wilder et al., 2019), also known
as smart predict-then-optimize (Elmachtoub and Grigas, 2022), integrates the two steps
to explicitly account for the quality of the optimization solution in the learning of the
model parameters (i.e. minimize the decision error).

Existing works on decision-focused learning, many of which are based on deep learning
with differentiable optimization layers (Amos and Kolter, 2017), have shown that
significantly improved solutions can be achieved compared to the traditional predict-then-
optimize approach. However, virtually all of them consider the case where the unknown
model parameters only affect the objective function, which simplifies the problem
considerably since feasibility is not a concern. Yet in many applications, we also need to
use data to predict parameters in the constraints; the treatment of this case is in theory
possible but difficult using existing methods. In this work, we address this problem by
leveraging methods that we recently developed for data-driven inverse optimization
(Gupta and Zhang, 2022a), which provide a natural way of incorporating constraints with
unknown parameters.
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The goal of inverse optimization is to infer an unknown optimization model from
decisions that are assumed to be optimal solutions to that optimization problem (Chan et
al., 2021). While early works primarily addressed the deterministic setting in which
observations are assumed to be exactly optimal solutions of the optimization model, more
recent contributions focus on the case with multiple noisy observations (Aswani et al.,
2018; Chan et al., 2019; Gupta and Zhang, 2022b). Decision-focused learning can be
viewed as a data-driven inverse optimization problem by treating the predictive model for
the input parameters as the unknown part of the overall optimization model.

In the remainder of this paper, we first present the mathematical formulation of the
decision-focused learning problem where we explicitly incorporate constraints that
ensure feasibility of the optimal solutions obtained from the model with the estimated
input parameters. To solve the resulting large-scale bilevel optimization problem, we
apply our recently proposed penalty-based block coordinate descent algorithm. In a
computational case study, we demonstrate the effectiveness of the proposed approach and
highlight its benefits compared with the conventional predict-then-optimize approach.

2. Mathematical formulation

We assume that the optimization problem to be solved can be generally formulated in the
following compact form:

minimize f(x,u)

subjectto g(x,u) <0, M

where x € R™ are the decision variables, and the model parameters are denoted by u. In
this work, we assume that problem (1) is convex, with f and g being differentiable and
convex in x. The model parameters u (or a subset of them) change with some external
features r and are not exactly known; hence, they need to be estimated from data. The
goal is to construct a predictive model u = m(r) given a set of N data points, where each
data point i corresponds to a feature-output pair (73, i;). Given a new r, problem (1) will
then be solved using the predicted values u = m(r).

2.1. Conventional predict-then-optimize approach

In the conventional two-step process, the prediction of the model parameters is carried
out independent from the later optimization. To obtain a predictive model m, one
typically solves an empirical risk minimization problem of the following form:

minimize %Z £(u;, m(r,)), ()
iel
where I = {1, ..., N} denotes the set of data points, and the loss function ¢ is some
measure of the difference between the true output #; and the prediction m(#;). The
underlying assumption is that if we minimize the difference between the true and
predicted parameter values, this will also lead to optimal solutions to problem (1) that are
the closest possible to the solutions we would obtain if we knew the true parameter values.

2.2. Decision-focused learning

In decision-focused learning, we integrate the prediction and optimization steps to
construct a predictive model that directly takes the quality of the resulting optimization
solution into account. We do so by solving the following problem:
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1
minimize NZ f(®;,1;) (3a)
jectto %, € arg min(f(%,u): g (¥ =m()} Vi (3b)
subjectto X; € argmin{f(¥,u):g(¥,u) < 0,u=m(r;)} Viel
%
9g(x,u) <0 Viel, (o)

where per constraints (3b), £; is an optimal solution to problem (1) with u = m(#;). The
objective is to minimize the true cost averaged over the training set /, i.e. it considers the
cost of X; evaluated at the true parameter values u; for each i € I. Importantly, constraints
(3c¢) ensure feasibility of each X; given u;. These last set of constraints are omitted in
virtually all existing works on decision-focused learning since they consider the case in
which only the objective function f depends on u such that feasibility is not an issue.

3. Solution approach

The decision-focused learning problem (3) is a bilevel optimization problem with |I|
convex optimization problems in its lower-level. We reformulate (3) into a single-level
problem by replacing the lower-level problems with their KK T conditions. This results in
a nonconvex nonlinear optimization problem which generally lacks regularization. To
address the convergence difficulties of standard nonlinear solvers on this problem, we
consider a penalty reformulation and apply an efficient block coordinate descent (BCD)
algorithm. We do not provide more details about our solution algorithm here but refer the
reader to Gupta and Zhang (2022a) for more details. We end this section by highlighting
the fact that our approach is restricted to the case where problem (1) is a strictly convex
problem and satisfies Slater’s condition.

4. Case study

In this section, we apply the proposed decision-focused learning approach to a (single-
period) production planning problem for a small interconnected process network. This
network, as depicted in Figure 1, consists of 5 materials and 3 processes. The goal is to
determine the optimal quantities of raw materials to purchase and the amounts of products
to manufacture to satisfy a given demands. This problem can be formulated as follows:

minimize z = ZmeM(ZpE? prz? + meT%i) (4a)
subject to (4)
gmin < qf, + Z HpmYp — Z HymYp + Wi = din
PEPM PEPm

g™ VmewMm
0w, <wp® VmeM (4c)
0<y,<y™ Vpe?P, (4d)

where Mand P are the sets of materials and processes, respectively. Further, the set 7,
consists of the processes that can produce material m, and the set P, contains the
processes that consume m. The amount of a reference material produced by process p is
denoted by y, and we use wy, to specify the amount of material m purchased from the
market. The conversion factor i), determines the amount of a material m produced or
consumed by process p for one unit of the reference material. Constraints (4b) restrict the
inventory levels while accounting for product demand represented by d,,, (4c) limit the
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amount of a material that can be acquired from the market, and (4d) set the capacities of
processes. The objective is to minimize the total production and material purchasing cost.

4
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Figure 1 Process network for the production planning problem (4). The minimum and maximum
allowed inventory values are 0 and 200, respectively, for all materials. For all processes, the values
of yp' is set to 400.

For this case study, we consider a scenario where the conversion factors vary based on
some observable external feature r. For the sake of simplicity, we assume that the change
in most of the conversion factors is negligible; only p;3 and pss deviate significantly
enough from their nominal values to affect optimal production decisions. Our goal is to
build predictive models for these two uncertain parameters using a data set containing
observed (ry, t13) and (13, Uss) values.

4.1. Synthetic data generation

We now describe the process used to generate the training data set for the case study. We
start by assigning models (5a) and (5b) to the uncertain parameters. These are the
underlying true models which are assumed to be unknown. To obtain the training data,
we sample |/| values of the features r; and r, from the uniform distributions U(0.1, 0.45)
and U(—2, 1), respectively. Following that, we evaluate the models for p;3 and us5 at
each of the sampled feature values to complete the training data set.

1 5a
Hy3(ry) = T (sin(20mry) + 71y) + 2 (5a)

H3s() = 2+ — (G = D)7y (ry + 2)%) (5b)

In order to estimate predictive models m, and m, with the proposed approach, we assume
a hypothesis class consisting of cubic polynomials. We solve problem (3) using our BCD
algorithm with training data sets of four different sizes: 10, 25, 50, and 100. The quality
of the resulting model estimates is evaluated through a test data set of 100 unseen data
points, which is generated using the same parameter generation scheme as the training
data set. A model is considered good if the produced fi values result in production
decisions that are not only close to the true optimal decisions but also feasible for the true
model (i.e., problem (4) with the true u values).

In addition to the decision-focused approach, we also estimate cubic models for m; and
m, using the traditional two-stage predict-then-optimize approach. Specifically, we use
least squares regression to fit a cubic polynomial to the observed data. This estimated
model is then used to solve problem (4) for the points in the test data set.

4.2. Results and discussion

Here we compare the performance of the models estimated using the decision-focused
and two-stage approaches. Figure 2 compares the plots of the true ¢ models with their
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estimates obtained using the two approaches. In all cases, we find that the decision-
focused approach constructs an underestimator function for the training data points. This
happens because in problem (4), an optimal solution will always be such that inventories
of all materials are close to or at their minimum values. If the estimated [ values are such
that production gets overestimated, then there is a high probability that the inventory will
fall below its permissible value when the process is actually run with a lower conversion
value, resulting in an infeasible operation. Therefore, decision-focused learning obtains
an underestimate of u to avoid violating the lower bound on the inventory constraint.
From Figure 2, we find that as we provide more training data, the proposed approach
finds better underestimators. With 50 data points, it is able to find almost perfect
underestimators for both p parameters.
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Figure 2 True u models compared with their approximations estimated using the decision-focused
and two-stage learning approaches

In contrast, the goal of the two-stage approach is to build the best approximation of the
function itself using the provided data. The estimated model tries to closely mimic the
behavior of the actual function to the extent that the assumed hypothesis class allows.
This difference in approach leads to differences in performance, as seen in Table 1. The
"feasible fraction" column indicates the fraction of the points in the test data set for which
the estimated p models produced a feasible decision. The data in this column shows that
the decision-focused approach significantly outperforms the two-stage approach.
Moreover, one can see that for the decision-focused case, the better the estimated function
underestimates the true function, the higher the fraction of the feasible points. Here since
the two-stage approach does not focus on yielding underestimators, the fraction of
feasible decisions is very low.

For the test data points that yield feasible decisions, Table 1 also compares the distance
of those decisions from the true optimal solutions. While the decision-focused learning
generates feasible solutions with a high degree of confidence, these solutions are slightly
more different from the true optimal solutions compared to the two-stage approach.
However, as can be seen from the last column in the table, which compares the optimality
gap of the decisions generated by the two approaches, the mean optimality gap of the
decision-focused approach is still less than 10% (compared to ~5% in the two-stage case).
This suggests that the decision-focused approach produces high quality decisions while
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almost guaranteeing their feasibility.

feasible fraction mean Iy -y @lly mean Iw(w)-w@ll1 mean lz(w-z(@)|
Iyl llw(lly z(u)
I
l | decision two- decision- two- decision- two- decision- two-
-focused  stage focused stage focused stage focused stage
10 0.54 0.21 0.04 0.02 0.09 0.06 0.08 0.04
25 0.7 0.32 0.04 0.02 0.11 0.06 0.08 0.05
50 0.9 0.25 0.03 0.03 0.13 0.07 0.07 0.06
100 0.91 0.27 0.03 0.02 0.12 0.06 0.07 0.04

Table 1. A comparison of the performance of the models estimated using the decision-focused
and two-stage approaches

5. Conclusions

In this work, we extended the decision-focused learning framework to include cases
where the unknown parameters are in the constraints. We used an inverse optimization
approach in which the problem is formulated as a bilevel program. Our approach allows
inclusion of constraints that, with a high degree of confidence, ensure that the estimated
model produces decisions that remain feasible for the true model. We illustrated our
approach by applying it on a production planning problem with unknown process
parameters. Our results show that the models obtained using decision-focused learning
produce feasible decisions at a significantly higher rate compared to traditional two-stage
learning without substantially sacrificing the optimality of these decisions.
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