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Abstract 
Decision-focused learning is an emerging paradigm specifically aimed at improving the 
data-driven learning of input parameters to optimization models. The main idea is to learn 
predictive models that result in the best decisions rather than focusing on minimizing the 
parameter estimation error. Virtually all existing works on decision-focused learning only 
consider the case where the unknown model parameters merely affect the objective 
function. In this work, extend the framework to also consider unknown parameters in the 
constraints, where feasibility becomes a major concern. We address the problem by 
leveraging recently developed methods in data-driven inverse optimization, specifically 
applying a penalty-based block coordinate descent algorithm to solve the resulting large-
scale bilevel optimization problem. The results from our computational case study 
demonstrate the effectiveness of the proposed approach and highlight its benefits 
compared with the conventional predict-then-optimize approach, which treats the 
prediction and optimization steps separately. 

Keywords: Decision-focused learning, inverse optimization, constraint learning. 

1. Introduction 
In traditional data-driven optimization, we often follow a two-step predict-then-optimize 
approach, i.e. we first predict the unknown model parameters from data with external 
features and then solve the optimization problem with those predicted inputs. Here, the 
learning step focuses on minimizing the parameter estimation error; however, this does 
not necessarily lead to the best decisions (evaluated with the true parameter values) in the 
optimization step. In contrast, decision-focused learning (Wilder et al., 2019), also known 
as smart predict-then-optimize (Elmachtoub and Grigas, 2022), integrates the two steps 
to explicitly account for the quality of the optimization solution in the learning of the 
model parameters (i.e. minimize the decision error). 

Existing works on decision-focused learning, many of which are based on deep learning 
with differentiable optimization layers (Amos and Kolter, 2017), have shown that 
significantly improved solutions can be achieved compared to the traditional predict-then-
optimize approach. However, virtually all of them consider the case where the unknown 
model parameters only affect the objective function, which simplifies the problem 
considerably since feasibility is not a concern. Yet in many applications, we also need to 
use data to predict parameters in the constraints; the treatment of this case is in theory 
possible but difficult using existing methods. In this work, we address this problem by 
leveraging methods that we recently developed for data-driven inverse optimization 
(Gupta and Zhang, 2022a), which provide a natural way of incorporating constraints with 
unknown parameters. 
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The goal of inverse optimization is to infer an unknown optimization model from 
decisions that are assumed to be optimal solutions to that optimization problem (Chan et 
al., 2021). While early works primarily addressed the deterministic setting in which 
observations are assumed to be exactly optimal solutions of the optimization model, more 
recent contributions focus on the case with multiple noisy observations (Aswani et al., 
2018; Chan et al., 2019; Gupta and Zhang, 2022b). Decision-focused learning can be 
viewed as a data-driven inverse optimization problem by treating the predictive model for 
the input parameters as the unknown part of the overall optimization model. 
In the remainder of this paper, we first present the mathematical formulation of the 
decision-focused learning problem where we explicitly incorporate constraints that 
ensure feasibility of the optimal solutions obtained from the model with the estimated 
input parameters. To solve the resulting large-scale bilevel optimization problem, we 
apply our recently proposed penalty-based block coordinate descent algorithm. In a 
computational case study, we demonstrate the effectiveness of the proposed approach and 
highlight its benefits compared with the conventional predict-then-optimize approach. 

2. Mathematical formulation 
We assume that the optimization problem to be solved can be generally formulated in the 
following compact form: 

minimize    𝑓𝑓(𝑥𝑥,𝑢𝑢) 
subject to   𝑔𝑔(𝑥𝑥,𝑢𝑢) ≤ 0, (1) 

where 𝑥𝑥 ∈ ℝ𝑛𝑛 are the decision variables, and the model parameters are denoted by 𝑢𝑢. In 
this work, we assume that problem (1) is convex, with 𝑓𝑓 and 𝑔𝑔 being differentiable and 
convex in 𝑥𝑥. The model parameters 𝑢𝑢 (or a subset of them) change with some external 
features 𝑟𝑟 and are not exactly known; hence, they need to be estimated from data. The 
goal is to construct a predictive model 𝑢𝑢 = 𝑚𝑚(𝑟𝑟) given a set of 𝑁𝑁 data points, where each 
data point 𝑖𝑖 corresponds to a feature-output pair (𝑟̅𝑟𝑖𝑖 ,𝑢𝑢�𝑖𝑖). Given a new 𝑟𝑟, problem (1) will 
then be solved using the predicted values 𝑢𝑢 = 𝑚𝑚(𝑟𝑟). 

2.1. Conventional predict-then-optimize approach 

In the conventional two-step process, the prediction of the model parameters is carried 
out independent from the later optimization. To obtain a predictive model 𝑚𝑚, one 
typically solves an empirical risk minimization problem of the following form: 

minimize   
1
𝑁𝑁
�ℓ(𝑢𝑢�𝑖𝑖 ,𝑚𝑚(𝑟̅𝑟𝑖𝑖))
𝑖𝑖∈𝐼𝐼

, (2) 

where 𝐼𝐼 = {1, … ,𝑁𝑁} denotes the set of data points, and the loss function ℓ is some 
measure of the difference between the true output 𝑢𝑢�𝑖𝑖 and the prediction 𝑚𝑚(𝑟̅𝑟𝑖𝑖). The 
underlying assumption is that if we minimize the difference between the true and 
predicted parameter values, this will also lead to optimal solutions to problem (1) that are 
the closest possible to the solutions we would obtain if we knew the true parameter values. 

2.2.  Decision-focused learning 

In decision-focused learning, we integrate the prediction and optimization steps to 
construct a predictive model that directly takes the quality of the resulting optimization 
solution into account. We do so by solving the following problem: 
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minimize    
1
𝑁𝑁
�𝑓𝑓(𝑥𝑥�𝑖𝑖 ,𝑢𝑢�𝑖𝑖)
𝑖𝑖∈𝐼𝐼

 

subject to   𝑥𝑥�𝑖𝑖 ∈ arg min
𝑥𝑥�

{𝑓𝑓(𝑥𝑥�,𝑢𝑢):𝑔𝑔(𝑥𝑥�,𝑢𝑢) ≤ 0,𝑢𝑢 = 𝑚𝑚(𝑟̅𝑟𝑖𝑖)}     ∀ 𝑖𝑖 ∈ 𝐼𝐼 

                      𝑔𝑔(𝑥𝑥�𝑖𝑖 ,𝑢𝑢�𝑖𝑖) ≤ 0     ∀ 𝑖𝑖 ∈ 𝐼𝐼, 

(3a) 

(3b) 

(3c) 

where per constraints (3b), 𝑥𝑥�𝑖𝑖 is an optimal solution to problem (1) with 𝑢𝑢 = 𝑚𝑚(𝑟̅𝑟𝑖𝑖). The 
objective is to minimize the true cost averaged over the training set 𝐼𝐼, i.e. it considers the 
cost of 𝑥𝑥�𝑖𝑖 evaluated at the true parameter values 𝑢𝑢�𝑖𝑖 for each 𝑖𝑖 ∈ 𝐼𝐼. Importantly, constraints 
(3c) ensure feasibility of each 𝑥𝑥�𝑖𝑖 given 𝑢𝑢�𝑖𝑖. These last set of constraints are omitted in 
virtually all existing works on decision-focused learning since they consider the case in 
which only the objective function 𝑓𝑓 depends on 𝑢𝑢 such that feasibility is not an issue. 

3. Solution approach 
The decision-focused learning problem (3) is a bilevel optimization problem with |𝐼𝐼| 
convex optimization problems in its lower-level. We reformulate (3) into a single-level 
problem by replacing the lower-level problems with their KKT conditions. This results in 
a nonconvex nonlinear optimization problem which generally lacks regularization. To 
address the convergence difficulties of standard nonlinear solvers on this problem, we 
consider a penalty reformulation and apply an efficient block coordinate descent (BCD) 
algorithm. We do not provide more details about our solution algorithm here but refer the 
reader to Gupta and Zhang (2022a) for more details. We end this section by highlighting 
the fact that our approach is restricted to the case where problem (1) is a strictly convex 
problem and satisfies Slater’s condition. 

4. Case study 
In this section, we apply the proposed decision-focused learning approach to a (single-
period) production planning problem for a small interconnected process network. This 
network, as depicted in Figure 1, consists of 5 materials and 3 processes. The goal is to 
determine the optimal quantities of raw materials to purchase and the amounts of products 
to manufacture to satisfy a given demands. This problem can be formulated as follows: 

minimize 𝑧𝑧 =  ∑ �∑ 𝑐𝑐𝑝𝑝𝑦𝑦𝑝𝑝2 + 𝑓𝑓𝑚𝑚𝑤𝑤𝑚𝑚2𝑝𝑝∈𝒫𝒫 �𝑚𝑚∈ℳ   (4a) 

subject to 
𝑞𝑞𝑚𝑚min ≤ qm0 + � � 𝜇𝜇𝑝𝑝𝑝𝑝𝑦𝑦𝑝𝑝

𝑝𝑝∈𝒫𝒫�𝑚𝑚

− � 𝜇𝜇𝑝𝑝𝑝𝑝𝑦𝑦𝑝𝑝
𝑝𝑝∈𝒫𝒫�𝑚𝑚

+ 𝑤𝑤𝑚𝑚 − 𝑑𝑑𝑚𝑚� 

≤ 𝑞𝑞𝑚𝑚max  ∀ 𝑚𝑚 ∈ℳ 

(4b) 

 0 ≤ 𝑤𝑤𝑚𝑚 ≤ 𝑤𝑤𝑚𝑚max ∀ 𝑚𝑚 ∈ ℳ  (4c) 

 0 ≤ 𝑦𝑦𝑝𝑝 ≤ 𝑦𝑦𝑝𝑝max ∀ 𝑝𝑝 ∈ 𝒫𝒫,   (4d) 

where ℳand 𝒫𝒫 are the sets of materials and processes, respectively. Further, the set 𝒫𝒫�𝑚𝑚 
consists of the processes that can produce material 𝑚𝑚, and the set 𝒫𝒫�𝑚𝑚 contains the 
processes that consume 𝑚𝑚. The amount of a reference material produced by process 𝑝𝑝 is 
denoted by 𝑦𝑦𝑝𝑝 and we use 𝑤𝑤𝑚𝑚 to specify the amount of material 𝑚𝑚 purchased from the 
market. The conversion factor 𝜇𝜇𝑝𝑝𝑝𝑝 determines the amount of a material 𝑚𝑚 produced or 
consumed by process 𝑝𝑝 for one unit of the reference material. Constraints (4b) restrict the 
inventory levels while accounting for product demand represented by 𝑑𝑑𝑚𝑚, (4c) limit the 
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amount of a material that can be acquired from the market, and (4d) set the capacities of 
processes. The objective is to minimize the total production and material purchasing cost. 

 
Figure 1 Process network for the production planning problem (4). The minimum and maximum 
allowed inventory values are 0 and 200, respectively, for all materials. For all processes, the values 
of 𝑦𝑦𝑝𝑝max is set to 400. 

For this case study, we consider a scenario where the conversion factors vary based on 
some observable external feature 𝑟𝑟. For the sake of simplicity, we assume that the change 
in most of the conversion factors is negligible; only 𝜇𝜇13 and 𝜇𝜇35 deviate significantly 
enough from their nominal values to affect optimal production decisions. Our goal is to 
build predictive models for these two uncertain parameters using a data set containing 
observed (𝑟𝑟1, 𝜇𝜇13) and (𝑟𝑟2,𝜇𝜇35) values.

4.1. Synthetic data generation 
We now describe the process used to generate the training data set for the case study. We 
start by assigning models (5a) and (5b) to the uncertain parameters. These are the 
underlying true models which are assumed to be unknown. To obtain the training data, 
we sample |𝐼𝐼| values of the features 𝑟𝑟1 and 𝑟𝑟2 from the uniform distributions 𝕌𝕌(0.1, 0.45) 
and 𝕌𝕌(−2, 1), respectively. Following that, we evaluate the models for μ13 and 𝜇𝜇35 at 
each of the sampled feature values to complete the training data set.  

μ13(𝑟𝑟1) =   
1

10
 (sin(20𝜋𝜋𝑟𝑟1) + 7𝑟𝑟1) + 2 (5a) 

𝜇𝜇35(𝑟𝑟2) = 2 + 1
10
�(𝑟𝑟2 − 1) 𝑟𝑟2 (𝑟𝑟2 + 2)2�   (5b) 

In order to estimate predictive models 𝑚𝑚1 and 𝑚𝑚2 with the proposed approach, we assume 
a hypothesis class consisting of cubic polynomials. We solve problem (3) using our BCD 
algorithm with training data sets of four different sizes: 10, 25, 50, and 100. The quality 
of the resulting model estimates is evaluated through a test data set of 100 unseen data 
points, which is generated using the same parameter generation scheme as the training 
data set. A model is considered good if the produced 𝜇̂𝜇 values result in production 
decisions that are not only close to the true optimal decisions but also feasible for the true 
model (i.e., problem (4) with the true 𝜇𝜇 values). 

In addition to the decision-focused approach, we also estimate cubic models for 𝑚𝑚1 and 
𝑚𝑚2 using the traditional two-stage predict-then-optimize approach. Specifically, we use 
least squares regression to fit a cubic polynomial to the observed data. This estimated 
model is then used to solve problem (4) for the points in the test data set. 
4.2.  Results and discussion 

Here we compare the performance of the models estimated using the decision-focused 
and two-stage approaches. Figure 2 compares the plots of the true 𝜇𝜇 models with their 
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estimates obtained using the two approaches. In all cases, we find that the decision-
focused approach constructs an underestimator function for the training data points. This 
happens because in problem (4), an optimal solution will always be such that inventories 
of all materials are close to or at their minimum values. If the estimated 𝜇̂𝜇 values are such 
that production gets overestimated, then there is a high probability that the inventory will 
fall below its permissible value when the process is actually run with a lower conversion 
value, resulting in an infeasible operation. Therefore, decision-focused learning obtains 
an underestimate of 𝜇𝜇 to avoid violating the lower bound on the inventory constraint. 
From Figure 2, we find that as we provide more training data, the proposed approach 
finds better underestimators. With 50 data points, it is able to find almost perfect 
underestimators for both μ parameters. 

 
Figure 2 True 𝜇𝜇 models compared with their approximations estimated using the decision-focused 
and two-stage learning approaches 

In contrast, the goal of the two-stage approach is to build the best approximation of the 
function itself using the provided data. The estimated model tries to closely mimic the 
behavior of the actual function to the extent that the assumed hypothesis class allows. 
This difference in approach leads to differences in performance, as seen in Table 1. The 
"feasible fraction" column indicates the fraction of the points in the test data set for which 
the estimated μ models produced a feasible decision. The data in this column shows that 
the decision-focused approach significantly outperforms the two-stage approach. 
Moreover, one can see that for the decision-focused case, the better the estimated function 
underestimates the true function, the higher the fraction of the feasible points. Here since 
the two-stage approach does not focus on yielding underestimators, the fraction of 
feasible decisions is very low. 
For the test data points that yield feasible decisions, Table 1 also compares the distance 
of those decisions from the true optimal solutions. While the decision-focused learning 
generates feasible solutions with a high degree of confidence, these solutions are slightly 
more different from the true optimal solutions compared to the two-stage approach. 
However, as can be seen from the last column in the table, which compares the optimality 
gap of the decisions generated by the two approaches, the mean optimality gap of the 
decision-focused approach is still less than 10% (compared to ~5% in the two-stage case). 
This suggests that the decision-focused approach produces high quality decisions while  
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almost guaranteeing their feasibility. 

Table 1. A comparison of the performance of the models estimated using the decision-focused 
and two-stage approaches 

5. Conclusions 
In this work, we extended the decision-focused learning framework to include cases 
where the unknown parameters are in the constraints. We used an inverse optimization 
approach in which the problem is formulated as a bilevel program. Our approach allows 
inclusion of constraints that, with a high degree of confidence, ensure that the estimated 
model produces decisions that remain feasible for the true model. We illustrated our 
approach by applying it on a production planning problem with unknown process 
parameters. Our results show that the models obtained using decision-focused learning 
produce feasible decisions at a significantly higher rate compared to traditional two-stage 
learning without substantially sacrificing the optimality of these decisions. 

Acknowledgements 
The authors gratefully acknowledge the financial support from the National Science 
Foundation under Grant #2044077. R.G. acknowledges financial support from a 
departmental fellowship sponsored by 3M and a Doctoral Dissertation Fellowship from 
the University of Minnesota. 

References 
Amos, B. and Kolter, J.Z., 2017. Optnet: Differentiable optimization as a layer in neural networks. 

Proceedings of the International Conference on Machine Learning, pp. 136-145. 
Aswani, A., Shen, Z.-J. M., and Siddiq, A., 2018. Inverse optimization with noisy data. Operations 

Research, 66(3), 870–892. 
Chan, T. C., Lee, T., and Terekhov, D., 2019. Inverse optimization: Closed-form solutions, 

geometry, and goodness of fit. Management Science, 65(3), 1115–1135. 
Chan, T.C., Mahmood, R., and Zhu, I.Y., 2021. Inverse optimization: Theory and applications. 

arXiv:2109.03920. 
Elmachtoub, A.N. and Grigas, P., 2022. Smart “predict, then optimize”. Management Science, 

68(1), pp. 9-26. 
Gupta, R. and Zhang, Q., 2022a. Efficient learning of decision-making models: A penalty block 

coordinate descent algorithm for data-driven inverse optimization. arXiv:2210.15393. 

|𝐼𝐼| 
feasible fraction mean ‖𝑦𝑦(𝜇𝜇)−𝑦𝑦(𝜇𝜇�)‖1

‖𝑦𝑦(𝜇𝜇)‖1
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