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Disentangling local and global climate drivers in the
population dynamics of mosquito-borne infections

Bernard Cazelles'?, Kévin Cazelles®*, Huaiyu Tian®, Mario Chavez®*, Mercedes Pascua

Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose
population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider
varies across studies, from local factors such as temperature to remote drivers such as the El Nino-Southern
Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations
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between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of
almost 200 time series of dengue and malaria around the globe at different geographical scales shows a system-
atic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear sepa-
ration of time scales of action enhances detection of climate drivers and indicates those best suited for building

early-warning systems.

INTRODUCTION

Despite continuous control efforts, mosquito-borne diseases, such
as malaria, dengue fever, chikungunya, Zika, West Nile fever, and
Ross River fever, still pose serious public health threats (I1). The
number of dengue cases reported to World Health Organization in-
creased about eightfold over the past two decades, from 505,430
cases in 2000 to 5.2 million in 2019 (2). Although malaria mortality
decreased by 60% globally from 2000 to 2015 (3), 241 million
annual cases were still reported in 2020 worldwide and resulted in
an estimated 627,000 deaths (4). Mosquito-borne infections contin-
ue to greatly affect life in endemic countries with the persistence of
established diseases and the emergence of new ones, substantially
reducing population life span (5) and imposing considerable socio-
economic costs (6-7).

Complex dynamic relationships between humans, their popula-
tion-wide immune landscape, socioeconomic factors, pathogen an-
tigenic diversity, and environmental effects on vectors, all influence
outbreaks of mosquito-borne infections (8-10). Despite this com-
plexity, there is a consensus that climate factors, temperature, hu-
midity and rainfall, and their variability are important
determinants of mosquito-borne epidemics (11-14). Rainfall is re-
quired to establish suitable mosquito habitats for the production of
larvae, adequate levels of humidity enable high activity and survival
of adult mosquitoes, and temperature affects multiple stages of the
mosquito life cycle, biting rates, and pathogen development within
the vector, all influencing transmission rates. Thus, climate change
is expected to alter the transmission dynamics of these diseases, not
only by modifying mean incidence but also by increasing spatial
and temporal variability and by allowing invasion by mosquitos
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of previously unexposed areas with rising temperatures (15-17).
Changing patterns can involve not only a general upward trend in
incidence but also higher amplitude of outbreaks over time and can
be affected by decadal variability in ways that remain poorly under-
stood (18).

In climate-driven population dynamics, multiple time scales are
unavoidably at play. The population dynamics of mosquito-borne
diseases in regions of recurrent epidemics typically exhibit strong
seasonality, as expected from the influence of climate variables on
pathogen replication, vector ecology, and human societies. Despite
the dominance of seasonality, numerous studies have also highlight-
ed a substantial influence of climate variability, in particular by the
El Nino-Southern Oscillation (ENSO) (19). The semiregular El
Nifo climate cycle centered in the tropical Pacific Ocean drives
multiannual climate variability in many parts of the world; it is
both influenced by, and influences itself, the global climate. There
is evidence, for example, of a relationship between El Nifno events
and the timing of Ross River virus epidemics in Australia (20), as
well as the size of dengue, chikungunya, and malaria outbreaks in
several countries (21-28). For dengue, this association can be
complex and has been documented as mainly transient (23). The
exceptionally high temperatures associated with the 2015-2016 El
Nifio have been implicated in creating conditions conducive to
emergence of the Zika virus (29). Recent evidence on an EI Nifio
influence has been reported for malaria transmission in Hainan,
an inland province of Southern China (30).

It is therefore key to understand the effects of climate at different
time scales on epidemic patterns of mosquito-borne diseases. In
particular, a recurrent open question concerns the link between in-
direct effects of global climate drivers and the more direct influence
of local factors that mediate their regional action and underlie sea-
sonality. Often studies on climate and infectious diseases including
vector-borne ones have focused exclusively on one of these two
components of climate forcing, but see (23, 27, 31, 32). Some
studies have emphasized global drivers as a means to capture
through one dominant regional influence the potential myriad
pathways that may connect their effect on transmission intensity
(22, 28, 33-35). Others have addressed, instead, the local climate
modulation of transmission to identify more direct causal pathways
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(36—-39), with interannual variability seen potentially, at least in
part, as independent from global drivers.

Here, we propose that the effects of local and global climatic var-
iables on the population dynamics of mosquito-borne infectious
diseases can be clearly disentangled and jointly analyzed with an
extension of wavelet analysis. We specifically apply partial wavelet
coherence (PWC) to determine the nonstationary statistical associ-
ation between disease incidence and a given climatic variable while
controlling for the effects of another. Partial correlation and partial
rank correlation are commonly used in Biology in other settings
(40), and partial correlation has been extended to partial autocorre-
lation function for the analysis of time series (41). With the notion
of partial correlation recently extended to wavelet coherence (WC)
(42, 43), we reanalyze a large number of time series for malaria and
dengue, two dominant mosquito-borne disease threats around the
globe (17). We specifically consider 197 published time series of in-
cidence (or cases) together with the corresponding local and global
climate variables (table S1) for different countries of South Asia,
Central and South America, and sub-Saharan Africa. These analyses
are also performed at different geographical scales for some coun-
tries or regions. Provided that there is sufficient seasonal variability
in the disease time series and/or the chosen global climatic variable
is adequate, we are always able to conclude that the seasonal and
multiannual (2 to 4 years) modes of disease dynamics are signifi-
cantly associated with local and global climate variables, respective-
ly, with the latter typically exhibiting a more discontinuous pattern.
This clear separation of the characteristic temporal scales of action
shows that the interannual variability of disease incidence is driven
indirectly, although the effect of these remote covariates can, in
some cases, be traced to local ones. Local pathways mediating
global climate effects are likely to be complex, involving multiple
local variables, as they are not typically completely captured by con-
sidering a single climate factor. The separation can enhance the
identification of the timing and intensity of these interannual
effects, which are clearly present in nearly all the disease time
series of this large ensemble. Conversely and expectedly, seasonality
is the clear result of local climate conditions. These results highlight
the importance of considering an adequate set of local and regional
climate variables for both a more complete understanding of the
population dynamics of mosquito-borne diseases and the incorpo-
ration of the most relevant variables in early-warning systems.

RESULTS

For the 197 dengue and malaria time series of incidence (or cases),
we first describe the relative importance of seasonal and multian-
nual variability in the dynamics. We focus first on dengue in Thai-
land at different spatial scales: the whole country, political regions,
and the geographical zones used by the Public Health Department
and provinces (see fig. S1 and table S2). Figures S2 to $4 display both
the time series and their wavelet power spectrum (see Methods),
showing that the seasonal component is always dominant at the
larger geographical scales. The percentage of the variance due to
this seasonal mode (1 year) is typically higher than that of the multi-
annual components (2 to 3 years or 3 to 4 years) (table S3). There are
some exceptions at the province scale, mainly in Southern Thailand
(table S3). Results show that the multiannual component is always
present, largely in a discontinuous pattern that depends on the geo-
graphical scale (figs. S2 to S4).

Cazelles et al., Sci. Adv. 9, eadf7202 (2023) 27 September 2023

Having established the almost universal presence of these two
temporal scales of variation, we proceed to examine their associa-
tion with different climatic variables, local ones such as tempera-
ture, rainfall, and humidity, and global ones such as ENSO
indices (table S1). Wavelet analysis allows nonstationarity, a charac-
teristic property of these epidemiological time series (23, 25, 36). To
quantify the relationship between disease dynamics and climate
forcing, we specifically used WC and PWC, an extension of the clas-
sical WC. PWC allows the identification of nonstationary statistical
associations between two time series, while controlling for the
effects of other specified variables (see Methods). We explain in
Methods the choice of climate variables in the results we present
below, given the large number of possible combinations of local-
global covariate pairs.

For Thailand, the WC of dengue incidence with local climatic
variables, average temperature (Fig. 1A), or rainfall (fig. S5A)
shows a significant statistical association not only for the seasonal
mode but also for the 2- to 3-year mode or the 3- to 4-year mode
that appears transiently at the end of the 80s, between 1997 and
2005, and the end of the 2000s. WC between incidence and
indices of ENSO, whether oceanic Nifio index (ONI) (Fig. 1A) or
southern oscillation index (SOI) (fig. S5A), reveals significant asso-
ciation not only for the multiannual modes but also, to some extent,
for the seasonal mode in a discontinuous way. In contrast, the use of
PW(C greatly reduces the complexity of these results by showing the
respective effects of each driver at a given scale. The seasonal vari-
ability appears only significantly associated with local climatic var-
iables, whether mean temperature or rainfall (Fig. 1A and fig. S5A).
The multiannual modes observed in WC are no longer significant
for the local climatic variables but are now exclusively significant for
the global ones (Fig. 1A and fig. S5A). We have illustrated, in these
figure panels, specific pairs of local and global variables to empha-
size that the result of the separation of time scales of action holds for
different choices of local climate factors and for different indices of
the same global climate driver of interannual climate variability.
This is because local climate factors are at least partially correlated,
especially at the seasonal scale, and so are the global indices of a
climate phenomenon such as ENSO.

These results also generalize to other dengue datasets in South
Asia (Fig. 1) and in Central and South America (Fig. 2) and for dif-
ferent spatial scales. Figure 1 shows the results of WC and PWC for
the Binh Thuan province (Vietnam), the city of Phnom Penh (Cam-
bodia), the city of Singapore, one province of Sri Lanka, and Bhopal
City (Central India). Note that, for the Colombo province in Sri
Lanka, the seasonal mode is for 6 months due to two rainy
seasons each year and that, similarly for Bhopal City in India, the
12- and 6-month modes are important. For Central or South
America, Fig. 2 shows the results for San Juan (Puerto Rico), two
cities of Venezuela, two regions of Peru, and the city of Rio de
Janeiro (Brazil). In all cases, the results of PWC highlight that
local climate variables are significantly associated with the seasonal
mode in dengue dynamics and that the global climate variables are
associated with the multiannual modes.

The results obtained for dengue also apply to epidemic malaria.
Figure 3 shows results from South Asia. Figure 3 (A to C) displays
the results for a rural district, the district of Kutch, and two cities of
the semi-arid state of Gujarat in India with different climatic con-
ditions, inland Ahmedabad and coastal and more humid Surat. For
similar results in other locations of low transmission, fig. S6 applies
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Fig. 1. WC and PWC between dengue in South Asia and local climate or global climate variable. Each line represents the results of a location. The first column is the
WC between incidence and a local climatic variable. The second column is the PWC between incidence and a local climatic variable controlled by a global climatic
variable. The third and fourth columns are WC and PWC, respectively, but for global climatic variables. For the coherence, the colors are coded from white (no coherence)
to yellow (low coherence) and to dark red (high coherence). The dotted-dashed blue lines show the 95 and 90% significance levels computed on the basis of boot-
strapped series that used a Markov model (62). For all the graphs the thin black line is the cone of influence delimiting regions with possible edge effect. (A) Whole
Thailand* for mean temperature and ONI. (B) Binh Thuan province (Vietnam) for relative humidity and MEI. (C) Phnom Penh for rainfall and SOI. (D) Singapore for mean
daily minimum temperature and ONI. (E) Sri Lanka for maximum rainfall and ONI. (F) Bhopal City (Central India) for maximum temperature and MEL. *For dengue in
Thailand, we used have reported cases for dengue fever, dengue hemorragic fever, and dengue shock syndrome. Then, we have added these cases before calculating
incidence for each geographical area.
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Fig. 2. WC and PWC between dengue and local climate or global climate in Central and South Americas. The description of the different columns is as in Fig. 1 (see
that caption for details). (A) San Juan (Puerto Rico) for mean temperature and the Caribbean Index. (B) Aragua (Venezuela) for rainfall and ONI. (C) Carabobo (Venezuela)
for relative humidity and SOI. (D) Peru (jungle region) for minimum temperature and SOI. (E) Peru (coastal region) for maximum temperature and MEI. (F) Rio de Janeiro

(Brazil) for maximum mean temperature and tropical southern Atlantic index (TSA).

the method to time series for highland malaria in East Africa,
Kenya, and Ethiopia. For a broader range of malaria transmission
intensities, Fig. 3 (D to F) shows results for two provinces of
China, the Anhui province and the Hainan island. Malaria is re-
emerging in the Anhui Province after a temporary low level of en-
demicity. Incidence has substantially increased in the north since
2000, while transmission intensity has remained at a relatively low
level in the middle and south. The Hainan island used to exhibit
endemic malaria, but incidence has declined since 2006 because

Cazelles et al., Sci. Adv. 9, eadf7202 (2023) 27 September 2023

of successful control efforts. Again, PWC allows a clear separation
and localization in the frequency domain of the effects of local and
global climatic variables. The seasonal component is associated with
local climatic variables, and the multiannual modes exhibit a non-
negligible effect of ENSO that could not have been clearly deduced
from the WC.

The collected ensemble of datasets allows us to examine more
systematically the effect of geographical scale. For the different
countries and vector-borne diseases, our findings remain valid at
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Fig. 3. WC and PWC between malaria and local climate or global climate in Asia. The description of the different columns is as in Fig. 1 (see that caption for details).
(A) Kutch district (Gujarat state, India), incidence of P. falciparum, for rainfall and dipole mode index (DMI). (B) Surat (Gujarat state, India) for relative humidity and SOI. (C)
Ahmedabad (Guijarat state, India) for minimum temperature and MEI. (D) Hainan province (Plasmodium vivax) for rainfall and ONI. (E) Hainan province (P. falciparum) for
maximum temperature and MEI. (F) Anhui (whole province) for mean temperature and Nino34.

multiple geographical scales and appear therefore largely insensitive
to the degree of aggregation of the time series analyzed. Figure S5
illustrates this finding for dengue in Thailand by considering the
whole country, political regions, and the capital of Bangkok.
Figure S7 shows results for representative geographical zones, and
figs. S8 and S9 show results for representative provinces and for
both temperature and rainfall, respectively. Figure S10 illustrates
results for dengue in selected provinces of Southern Vietnam, and
fig. S11 illustrates those of some cities in Brazil. Concerning Brazil,

Cazelles et al., Sci. Adv. 9, eadf7202 (2023) 27 September 2023

results include the Metropolitan Region of Recife, the major metro-
politan area of Northeast Brazil in the state of Pernambuco (fig.
S11A), different municipalities of this metropolitan area (fig. S11,
B and C), and a number of Brazilian state capitals (fig. S11, D to
F). Last, fig. S12 shows results for malaria in some districts of the
Anhui province (China), compared to the whole province and illus-
trating the same and distinct choice of covariates’ pairs. Again,
PWC successfully disentangles the effect of different climatic vari-
ables at different time scales, and it does so for a range of local
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climate variables and for various ENSO indices, as well as for other
global climatic indices from the Atlantic and Indian Oceans where
appropriate. The finding that the separation of time scales of action
for local and global climate covariates is valid for different geo-
graphical scales and that for a range of climatic variables under-
scores the effectiveness of PWC.

To summarize results across analyses, we can examine the
change in the ratio of mean coherence for the seasonal and multi-
annual modes as we go from results for WC to those for PWC.
Figure 4 shows that PWC enables a considerable increase in the co-
herence for both local climatic variables for the seasonal mode and
global climatic variables for the multiannual mode. Figure S13
shows similar changes than Fig. 4 for the coherence ratios of figs.
S5 to S12.

DISCUSSION

We have reanalyzed 197 time series for two major climate-sensitive
infectious diseases transmitted by mosquito vectors, malaria and
dengue, from regions with recurrent seasonal epidemics in different
countries of South Asia, Central and South America, and sub-
Saharan Africa, together with their corresponding local and
global climatic drivers at different geographical scales. The applica-
tion of PWC proves to be effective to disentangle the respective
effects of different climate drivers acting at different time scales
on transmission dynamics, from local variables such as temperature
and precipitation to global ones such as ENSO.

Our results add to the growing body of evidence indicating that
both local and global climate variables notably affect the transmis-
sion dynamics of mosquito-borne disease (16). They go further and
show that these effects are consistently time scale dependent (23).
We achieve a consistent separation of the temporal scales of
action, with local climate variables largely associated with seasonal-
ity and global ones to multiannual modes (2 to 4 years) in a more
discontinuous interaction. In particular, the multiannual cycles
modulating the annual size of seasonal epidemics are completely
accounted for by a global climate variable provided one controls

A B

— Local
R [p—

Global

Seasonal/multiannual coherence ratio
(logy transformed)

7| o Fig. 2A

| o Fig. 1A
A Fig. 1B X Fig. 1D v Fig. 1F

Fig. 1C © Fig. 1E

Fig. 2C © Fig. 2E
A Fig. 2B X Fig.2D v Fig. 2F

for the local seasonal factor. The effect of global drivers and its
time localization is also better identified in this way. As a result, a
substantial role of a global climate driver is identified in almost all
the two hundred time series analyzed, with, in few cases, quite dis-
continuous areas of significance, for example, in Southern Thai-
land. Seasonality, as expected, is conversely mostly associated with
local climate factors. These findings are general, as they are obtained
for different geographical scales and a wide range of local and global
climate variables.

The collection of datasets considered also spans a range of trans-
mission intensities, from low transmission rates manifested in inter-
mittent large epidemics (44) to higher values under more endemic
conditions with seasonally recurrent outbreaks. Examples of these
respective dynamics for dengue are found in a city such as Rio de
Janeiro (Brazil) versus the island of Puerto Rico in South America
and, more broadly, most of Thailand. Similarly, we have considered
low-transmission malaria regions at the edge of the distribution of
the disease, in highlands and desert fringes, where considerable in-
terannual variability is known to occur in the size of seasonal epi-
demics as the result climate forcing (15, 18) and regions in China
spanning broader ranges of transmission intensity, also affected
by transient intervention efforts (30). We have not pushed the anal-
yses to high-transmission malaria regions, such as those of West
Africa, of recurrent seasonal high (asymptomatic) prevalence due
to incomplete immunity and high antigenic diversity of the parasite
Plasmodium falciparum, as under weak year-to-year variation in
prevalence, the question of whether climate variability influences
these patterns is not warranted. The open question remains
however of whether climate forcing may manifest itself more
clearly as intervention efforts move the population dynamics of
the disease toward lower transmission intensities and more inter-
mittent epidemics (30).

Our findings imply that ignoring local climate drivers in analyses
of these vector-borne diseases will affect not only the understanding
of seasonal epidemics as expected but also that of the role of global
climate drivers. In the same way, it follows that a local factor such as
temperature cannot be the dominant or only factor driving the

Cc

—4— o Fig.3A  Fig.3C © Fig. 3E
A Fig. 38 x Fig.3D v Fig. 3F

=5 T ™ =5 T

WC WC

T =5 T T
WC

Fig. 4. Ratio of the average coherence computed for the seasonal mode (0.8 to 1.2 years) and for the multiannual mode (2 to 4 years). These average ratios have
been computed for WC or PWC, for both the local climate variables (solid lines) and the global climate variables (dashed lines) for the data used in Fig. 1 (A), Fig. 2 (B), and

Fig. 3 (C).
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multiannual components of disease dynamics independently from
global climate variability [as analyzed in (45)]. When controlling for
the effects of global climate cycles, we find that local climate vari-
ables (including temperature) are no longer associated with disease
incidence for the multiannual modes, whereas when controlling for
the effects of the seasonal variable, the association persists and is
even enhanced. There can be some interesting exceptions for spe-
cific frequency bands for which a local and a global variables can be
correlated and we cannot disentangle their respective effects on the
global variability. These exceptions can be identified by careful
comparison of the PWC results when controlling respectively for
the local and global variables, through the disappearance in both
spectra of significant coherence bands for the same frequencies.
This situation can be seen for malaria with rainfall and a given
global index in Kenya (fig. S6, A and D) for the 1.7- to 2.2-
year band.

It also follows that a more systematic consideration of what is
known in climate science on the sensitivity of different regions to
forcing by global climate variability and, on the predictability of
this response, should be extremely valuable to epidemiology. Path-
ways mediating these effects regionally and locally should be of in-
terest, although our results indicate that these pathways typically
involve multiple climate variables and cannot be completely
reduced to a single one.

Because our approach is based on wavelet analysis, it is well
suited for nonstationary conditions, and it allows us to address
large variations in disease dynamic as those observed for malaria
in China (30) and in sub-Saharan Africa (35, 36). Nevertheless,
our approach necessitates certain requirements of the disease
data. These concern the length of the time series of interest and
its seasonality. Our method requires the presence of a certain recur-
rence of the seasonal component, even if for only a part of the ob-
servations. Seasonality is a common feature, however, across most of
the geographical areas where these diseases persist from year to year.
Concerning time series length, requirements are the same as those
for the application of Fourier analysis and strongly depend on the
observation time step. They are defined for example in Cazelles et al.
(46) as a minimum of 30 to 40 data points with significant periodic
components smaller than 20 to 25% of the series length. Caution
should apply to interpretation of results for the slow time scales
close to decadal when the length of the disease record spans one
or at most two such long cycles.

In addition, it is well known that wavelet spectra and associated
analyses are less reliable close to the boundaries of the time series.
Thus, we would not expect to apply these methods to a recently
emerged infectious disease for which only a few seasons are avail-
able. Another approach would be more suitable at that stage for ex-
amining nonstationary correlations with climate variables that are
local in time and occur at different temporal scales (47).

To adequately anticipate future mosquito-borne disease out-
breaks, we also need to gain a better understanding of how global
climate interacts with other exogenous or endogenous drivers.
Global oscillations might have not only different effects on local
climate but also indirect effects on the ecology of the vector and
the behavior of hosts (48). Multiple conditions can interact in
complex ways and modulate epidemic size, including those
related to climate, the ecology of mosquitoes, the immune status
of hosts, and the strain variation of pathogens, e.g., (33, 49). The
effects of ENSO on local climate may indirectly influence both

Cazelles et al., Sci. Adv. 9, eadf7202 (2023) 27 September 2023

the ecology of the vector and the immunity of the host population
(33, 45). Immunity provides negative feedbacks whereby increases
in transmission due to favorable current and seasonal climatic con-
ditions can impede the spread of the disease through its protective
effects (33, 45). Additional factors potentially influencing the pop-
ulation dynamics of mosquito-borne disease include the evolution
of the pathogen (50), as well as control efforts, urbanization, and
other socioeconomic conditions (51-53). Despite this complexity,
identification of local and global climatic drivers remains a funda-
mental step.

Our results indeed suggest that process-based and statistical
models for the population dynamics of these major vector-borne
diseases should incorporate both local and global climatic variables.
An interesting possibility would be to decompose the observed dy-
namics into different periodic components (with wavelet decompo-
sition) and to model each periodic component with the suitable
exogenous variables. Then, the overall simulated epidemic dynam-
ics would be numerically obtained by summing the reconstructed
periodic components. For more mechanistic dynamical models
written as extensions of SIR (susceptible-infected-recovered) equa-
tions and coupled human-mosquito models, consideration of a
single local variable should be generally insufficient to properly
capture interannual variability, although exceptions can be
identified.

Longer trends due to climate change are expected to alter pat-
terns of seasonal and interannual. Variability and act on the popu-
lation dynamics of vector-borne infections, especially at the
boundaries of their geographical distribution. Rising temperatures
are indeed enabling the expansion of mosquito vectors of arbovirus-
es to previously unexposed areas (17, 54, 55) and have been shown
to influence epidemic size in highland malaria, where human pop-
ulations had been protected by the cooling effect of elevation, e.g.,
(15, 18). Changing patterns in highlands involve not only a general
upward trend in incidence from the 1970s to the 1990s but also pro-
nounced increases in the amplitude of outbreaks over these decades.
More recent decreases in the size of epidemics at the turn of the 21st
century have also been associated with decadal variation in the
climate of Ethiopia related to the transient slowdown in global
warming. This decadal change in temperatures would have facilitat-
ed control efforts at a temporal scale of climate forcing that is not
typically investigated in vector-borne infections of other parts of the
world (18). Time series analyses based on wavelets are well suited for
investigating these changing patterns of variability, and long-term
surveillance efforts are invaluable to decipher the interplay of mul-
tiple time scales of climate forcing on infectious disease. Although
control efforts can decouple climate and health patterns, it is still
pertinent to document when this occurs and to understand the
effect of control in the context of climate variability. For climate-
sensitive diseases, including vector-borne and water-borne ones,
we cannot expect to evaluate the effect of control separately from
periods of drought, warmer than average seasons, and other anom-
alous conditions affecting levels of transmission. In addition,
control efforts may be reactive intensifying as the result of an in-
creased perception of disease risk, creating an unavoidable link to
climate variability in previous seasons (56).

Besides vector-borne diseases, we expect this method to be rele-
vant to water-borne diarrheal diseases such as cholera for which
effects of climate variability have been documented (33, 57) and
even for respiratory infectious diseases of airborne transmission
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such as seasonal influenza, syncytial virus diseases, and now coro-
navirus disease 2019 (COVID-19) (58, 59). The purpose of the pro-
posed method is indeed to contribute to the better exploration of
which factors influence population dynamics when multiple time
scales of variability are present.

Ultimately, a better understanding of how climate influences the
population dynamics of infectious diseases at different time scales
and in relation to both local and global forcing is essential to eval-
uate and design control strategies. This understanding is also im-
portant to develop early-warning systems on the basis of efficient
environmental variables, and in so doing, to enable timely preven-
tive measures. A valuable starting point is provided by the time
series analysis proposed and demonstrated here, which reveals
climate-disease associations not only locally in time but also in a
way that separates drivers acting on different time scales.

METHODS
Accounting for nonstationarity is recognized as crucial to the anal-
ysis of time series in Epidemiology. For this purpose, time-frequen-
cy wavelet analysis has been a tool of choice to quantify different
periodic components locally in time for a given time series and to
examine transient associations with another time series (46, 60, 61).
Wavelet analysis is a generalization of windowed Fourier analysis
and has been described in detail in our previous papers with appli-
cations to both Ecology and Epidemiology (46, 61, 62).

The continuous wavelet transform of a time series x(t) with
respect to a chosen mother wavelet is performed as follows:

Wi(a,1) =—

! .Jiox(t).\y* (%) dt

7
where y(-) denotes the mother wavelet, a is the scale of the mother
wavelet, t is the time position, and the asterisk * denotes the complex
conjugate form. The Morlet wavelet is typically used as the mother
wavelet, and in this particular expression, the wavelet scale a is in-
versely proportional to the central frequency of the wavelet; thus, f~
1/a (46, 61). Then, the wavelet coefficient W,(a, T) represents the
contribution of the scale a or the period 1/f to the time series at
time position T.

By analogy with Fourier analysis, the wavelet power spectrum
can be computed as S.(f, T) = | W.(f, 7)||* to quantify the contribu-
tion of different periodic components to the variance along the
time axis.

Another interesting quantity is the average variance at each time
location, obtained by averaging the frequency components

R/l = 1\
)=ET ] T(G) wagora

g

Se(t

where 0)2c is the variance of the time series x(t), C, is a constant,
00 ||\ 2 ~
Cs = Jo M.df, and y(f) is the Fourier transform of y(f).

This quantity, S,(t), can also be filtered in a given frequency
band, f;-f, and averaged over a considered time period.

With the wavelet transforms at hand, the statistical relationship
between two nonstationary time series, x(¢f) and y(t), can
be analyzed with the “wavelet cross-spectrum” and the “WC." The
wavelet cross-spectrum is given by W, (f, 1) = Wi(f, 7). W, (f, 1),
and the WC is defined as the cross-spectrum normalized by the
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spectrum of each time series

(W, (F, )]
(W (o2 W (f, 1))

where () denotes a smoothing operator in both time domain and
frequency domain. The values of WC, ,(f, 1) are thus bounded by
0 < WC,,(f, 1) < 1. The WC is equal to 1 when the two time series
synchronously oscillate at the same frequency, and equal to 0 if x(¢)
and y(t) are independent.

When there is a link between variable A and variable B, we may
wonder whether it is due to another set of variables {C, D, ...} that
would act on both A and B. To remove the potential effects of {C, D,
...}, a common practice is to use partial correlations or partial rank
correlations. In the same vein, for controlling the dependence
between different signals when analyzing an association between
two time series, we use PWC. PWC computes the coherence
between two time series after controlling for the effect of other
time series. Different authors (42, 63) used an iterative PWC
method for computing the coherence between time series x,(t)
and x;,(t) while controlling for the common effect due to x.(t).
This iterative method is not appropriate, however, to analyze
series more than three times and gives results that need to be
smoothed before interpretation. Thus, in the study of Lara et al.
(43), we adapted the inverse PWC method from Fourier analysis
(64) to wavelet analysis. This method is based on the inversion of
the spectral matrix X(f,t) whose elements are the cross-wavelet spec-
trum for the i and j time series from the » time series analyzed

Wi (f,t) Wi(f,t) Wi (f, 1)
Wai(f, 1) Waul(f, 1) Wau(f, t)

WC,,(f,T) =

E(fv t) =

Wnl .(fa t) Wn2 .(f7 t) Wnn.(fv t)

The PWC between x;(t) and x,(t) controlled for all other time
series is then defined as

R 12
PWCj i (f, t) = (%)

where Sjk(ﬁ t) is the (j,k) element of the inverse spectral matrix
=Y £, t) and (\jk) means all elements except the jth and the kth.
PWCiji(fs t) captures the frequency-specific and time-localized
relationships between time series j and k, by excluding the effects of
all other signals.

We analyzed 197 published time series at the different geograph-
ical scales and all the local climate time series that were associated
with these datasets in the published articles (table S1). We also con-
sidered global climate series on the basis of (i) demonstrated effects
of a given driver of interannual variability (e.g., ENSO) for regional
climate and for documented teleconnections with the infectious
disease patterns in the literature and (ii) the plausibility of such
an effect given geographical proximity (table S1). For example,
the dipole mode index (DMI) was used only for South-East Asian
data, the Caribbean Index only for Puerto Rico, and the different
global climate indices of the Atlantic for South American datasets.

The number of possible combinations we could present with the
assembled dataset is clearly too large (the overall dataset includes
197 disease time series, 724 time series for local climate variables,
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and 13 time series for global climate drivers; table S1). Thus, al-
though we sought to demonstrate the generality and robustness of
the results by analyzing a diversity of “local climate variable—global
climate variable” pairs, we had to restrict the number of analyses
and results reported. We also had to decide whether to illustrate
results for the same or for different covariate pairs when analyzing
one region at different spatial resolutions. We relied on the WC
results to reduce the number of pairs for the calculation of PWC
by considering both redundant and weak effects. Specifically,
because the WC results were always close for the different ENSO
indices [SOI, ONI, multivariate ENSO index (MEI), and other
Nino indices], we presented results for one of these only with no
systematic approach to this choice. There can be some particular
differences across the spectra with the different global drivers
related to the degree of smoothness of the given index, but the
overall result on the separation of time scales of action remains un-
changed. Thus, the presentation of PWC results for one index was
therefore largely representative of those for others. Moreover, in
other cases, the effects of a given global driver as seen with WC,
for example, those of DMI, were weak, which led us to exclude
the specific covariate from consideration. For the plots themselves,
we opted for showing first a diversity of local climate variable—
global climate variable pairs in initial figures, for the same
country or the same continent. We also illustrated the outcome of
the analysis for disease data at different spatial resolutions for the
region of Thailand and presented results, keeping the chosen pair
constant, while also reporting comparisons across figures to
another pair.

Supplementary Materials
This PDF file includes:

Tables S1 to S3

Figs. S1to S13
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