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Abstract— This letter studies an autoencoder (AE) model
for a multi-user space optical communications (SOC) system.
In particular, a novel layered framework is proposed with batch
normalization in the encoder and layer normalization in the
decoders. This enhances the performance of the standard AE
since the error cost function can be effectively minimized using
gradient descent. Furthermore, to emulate a practical SOC
channel model, a system tool kit simulator is used. The numerical
results reveal that the proposed AE outperforms state-of-the-art
learning frameworks by a 2 dB gain in multiple access channel
and a 1.7 dB gain in interference channel, with a 20% complexity
reduction.

Index Terms— Space optical communications, autoencoder,
multiple access channel, interference channel.

I. INTRODUCTION

N RECENT years, radio frequency (RF) systems have

grown rapidly and will continue to play a significant
role in the future. However, due to increased demand for
data-intensive wireless communications, the RF spectrum is
becoming limited and expensive. Optical wireless communi-
cation (OWC) and space optical communication (SOC) are
alternative methods of RF that provide various advantages,
including high data speed, low implementation cost, and the
utilization of license-free spectrum. These factors make OWC
and SOC viable alternatives to RF communication [1].

SOC and OWC are similar in that both employ lasers as
optical transmitters. The conventional photo-detector (PD) is
not compatible with SOC due to the absence of a receiving
telescope in its design [1]. After the laser beam travels
a distance, it is collected by the receiving telescope and
concentrated towards the detector [1]. In SOC, high-power
laser transmitters are required due to large distances up to
36000 km range. The laser transmitter needs to have a high
photon efficiency and peak power capability for the downlink
from geostationary (GEO) to the ground station [1]. Moreover,
a narrow bandwidth, and low modulation rates are necessary
for the downlink lasers in SOC.

Researchers are increasingly exploring the use of deep
learning (DL) techniques in physical layer communication
networks. This integration has led to significant progress
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in coding and decoding, modulation classification, channel
estimation, and equalization [2], [3], [4], [5]. Auto-encoders
(AEs) have demonstrated strong performance as an end-to-
end (E2E) approach in OWC, particularly in point-to-point
space optical communication (SOC). A study on AE-based
OWC systems [4] showed that AEs can outperform hamming
codes for bit error rate (BER), even in the presence of
imperfect channel state information (CSI). In [5], AEs were
shown to optimize both transmitter and receiver components,
achieving satisfactory BER performance across interference
channel (IC). In [3], the feasibility of utilizing AEs for multiple
access (MAC) channel in OWC systems was explored and
compared to uncoded time sharing. Additionally, sparse AE is
designed using sparsity regularization techniques to improve
the BER performance in the MAC channel while reducing the
computational complexity [6].

In [3], only an AWGN channel without fading is considered
and the system is not generalized to IC. Also authors in [3]
and [4] utilize similar structure as the standard AE presented
in [5]. In [6], while the system has low complexity structure
due to the use of sparsity, the BER performance needs to be
improved compared with model-based schemes. Although the
AEs described in [3] for the multiple access (MAC) channel
and [5] for the IC have demonstrated promising performance
in the multi-user settings, they still have certain limitations
pertaining to achieving a low BER and managing higher
computational complexity. On the other hand, the sparse AE
approach proposed in [6] focuses primarily on reducing the
computational complexity in the MAC channel. However,
it does not sufficiently address the BER improvement. In [3],
[4], [5], and [6], the incorporation of normalization layers
in both the encoder and decoder designs was not addressed.
However, the normalization layers can play a crucial role
in optimizing the error cost function. Improving BER per-
formance in symbol detection for multi-user channels using
AEs in SOC is challenging and requires modifications to the
standard AE structure. Existing learning frameworks have not
achieved significant improvements in BER performance com-
pared to uncoded modulations and/or state-of-the-art coded
systems. Our study proposes modifications to the standard
MAC-AE structure to enhance symbol detection performance
while maintaining low-complexity capabilities. The proposed
AE structure has also been utilized in the IC showing a
significant BER improvement compared with existing designs.
The main contributions can be stated as follows:

e Our proposed AE is built on a new layered framework
that employs batch normalization (BN) in the encoder and
layer normalization (LN) in the decoders. This approach
delivers satisfactory BER performance when compared to
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Proposed AE architecture in a two-user MAC channel.

Fig. 1.

the latest, state-of-the-art learning frameworks, uncoded
and Low-Density Parity-Check (LDPC) time sharing for
MAC channels in SOC.

In addition, we assess the BER performance of our model
in a two-user IC and demonstrate the AE sustainability
not only in MAC, but also in a more challenging channel
such as IC. Our model prioritizes computational complex-
ity while achieving superior BER performance compared
to state-of-the-art frameworks. Numerical results compare
our model’s complexity with existing learning frame-
works.

II. SOC CHANNEL MODEL

A MAC channel is established between K GEO satellites
that transmit signals to a shared receiver located on the ground
station. The use of system tool kit (STK) simulator enables
accurate modeling of the SOC channels [7]. In the system,
the ground station holds the receiver antenna gimbal and
avalanche photo-detector. Unlike RF coherent communication,
the modulated signal in intensity-modulation and direct-
detection (IM/DD) is real and non-negative. Additionally, the
signal is peak-constrained in SOC for operation and safety
regulations [8]. The Log-normal distribution is commonly used
to describe weak atmospheric turbulence, recommended by
STK for the GEO to ground SOC channel [2]. In our model,
we take into consideration both additive white Gaussian noise
(AWGN) and slow fading channels in the multi-user SOC
channel. In this particular configuration, we assumed the
Gaussian channel; however, when operating at low power
levels, a better channel model would be a Poisson channel [8].

IIT. MULTI-USER SOC CHANNEL
BASED ON AUTOENCODERS

The notation (k,L) is used to denote the proposed AE
model, where k represents the number of message bits and
L represents the codeword length. The proposed AE(k, L) in
the SOC system with rate R = k/L. The system consists of
three distinct modules: the transmitter, receiver, and channel

layers. There are K independent transmitters and one shared
receiver in this MAC channel. Each transmitter is located in
a GEO satellite, while the common receiver is the ground
station. Over a SOC channel, transmitter ¢ € {1,2,..., K}
send the message b; to the common receiver in the ground
station, where b; € M = {1,..., M}, and M = 2.

Transmitter: The transmitter starts by selecting b;, which
is one of M possible messages and then converts it into a
one-hot vector 1,, of size M, which has a 1 in the message
index position and 0’s elsewhere. Utilizing a one-hot encoded
vector ensures equal significance for all messages since they
are all in binary rather than ordinal format. Then, using the
mapping function u : M — R¥, each transmitter converts
the input one-hot vector 1, into the encoded vector zF.
Obviously, each encoder applies both modulation and channel
coding simultaneously. The codebook consists of all possible
codewords generated by the encoder of the AE, i.e., the set
{zL}, with cardinality 2*. When the transmitter normalization
stage outputs the symbol vector =1, it meets the non-negativity
and peak conditions for SOC. To meet the constraints 0 <
xF(l) < A with [ = 1,...,L, each transmitter applies
a normalization layer to the transmitted symbols using the
weighted sigmoid function. We examine a two-user MAC
channel depicted in Fig. 1, without loss of generality.Fully
connected (FC) layers provide the basis of the transmitter
model, with a subsequent BN layer added directly after each
FC layer. The BN normalizes the layer’s inputs for each mini-
batch, which both shortens the training time and keeps the
learning process stable. The gradient explosion issues are also
lessened by the BN, according to [9]. Until the weighted sig-
moid normalization step in the encoder, it is clear that no input
scaling takes place. Since the input scaling does not change
between training and the testing, BN parameters learned during
training will lead to the same superior performance throughout
testing.

SOC channel model: The normalized vector X for both
transmitters are fed into the SOC channel. The SOC channel
is composed of two components: an AWGN channel, and
a Log-normal fading model with a standard deviation of o.
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The channel parameters are provided by the STK simulator
discussed in Section II. The input to the neural networks on
the receiver’s side is represented as y”.

K
y" =) hal +w", (1)
i=1

where w ~ N(0, 1,,) and the Log-normal fading coefficient,
represented by h; for the transmitter i.

Common Receiver: Lastly, the receiver-based ground station
processes the corrupted vector y” and generates the esti-
mated one-hot vector 1; . The common receiver includes K
decoders, each is composed of multiple FC layers followed
by Layer Normalization (LN). Since the received symbols y”
will be scaled with different A values than the one used in
training, using BN in the decoder can not aid to standardize
the data, since the testing input scale differs from the training
due to varying A values. BN’s learned parameters can not
work well in testing unless A matches the trained value.

To prevent this issue, the receiver could wait and collect
a certain amount of samples in order to produce the desired
results. This implies that the BN will continue to work in
the same manner during both training and testing. However,
this assumption is impractical in wireless communications.
Accordingly, we need to design the system for deployment
to deal with received codewords independently without the
need for a significant number of samples before the processing
begins. Therefore, LN is introduced in the decoders, which
operates sample by sample, in order to maintain efficient
standardization across the entire AE system. The process of
LN involves re-centering and re-scaling its input. Since LN
works in the same manner in both training and testing phases,
the effect of scaling the input to the decoder is mitigated, and
trained decoder weights are effective in testing. Additionally,
the corrupted vector y” undergoes a single LN unit before
being inputted to the decoders. This guarantees consistent
scaling and enhances system performance during testing across
various SNR values. The cross-entropy (CE) loss function for
each AE is defined as

M
Cj == 1,,(r)logp,(r), )
r=1

where 1,,(r) € {0,1},i = j is the r'Pvalue in the input
one-hot vector 1,,. The softmax is applied at the last layer of
the j* decoder producing the probability value p;(v) and it
can be expressed as follows

er(v)
e
where g; is the 4*0 decoder final layer output. By employ-

ing the min-max algorithm, it is possible to decrease
the error probability max ( Prqb; # bl},Pr{bg #*

Bg}, ..., Pr {bK #* Z;K}> The use of the min-max algorithm
can lead to a decrease in error probability by selecting a
decision rule that aims to minimize the maximum possible
loss [3]. In light of this, in a given step, only the weights
corresponding to the maximum loss are updated, while all

p;(v) (3)
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Fig. 2. The proposed AE architecture in a two-user IC setting.

other weights are left intact. Overall, the system’s loss function
is given by

C:maX(Cl,027...,OK). (4)

Algorithm 1 summarizes the learning strategy for the novel
AE design in the MAC channel.

Interference channel: The idea of MAC AE can be easily
expanded to incorporate multiple transmitters and receivers
that utilize a shared channel. Both transmitter-receiver pairs
are implemented as NNs and the difference with respect to the
MAC AE is that the encoded vectors =%, Vi € {1,2,..., K}
now interfere at the receivers, resulting in the noisy observa-
tions

K
yi =Y hiwl +wh Vi€ {l,2,....K} (5
=1

The Log-normal fading coefficient, represented by h;;, refers
to the coefficient that connects the i*" transmitter with the
j*" receiver, where i and j € {1,2,..., K}. The target for
receiver j now is to estimate the message b; transmitted by
the ¢*!' transmitter, while ignoring any other messages that
may interfere with it. Furthermore, since the decoders are
located at different ground stations, each decoder will have
a separate LN unit at its input to negate the effect of scaling
yF with different SNR values during testing. Without loss
of generality, we consider here the two-user IC as shown in
Fig. 2. Transmitter 1 wants to communicate message b; €
M to receiver 1 while transmitter 2 wants to communicate
message by € M to receiver 2.

IV. SIMULATION RESULTS

In this section, we present the symbol detection performance
evaluated for the proposed AE for code rate R = 1/3 in
two different scenarios: MAC and IC with two users. Also,
the proposed AE architecture follows the layout given in
Figs. 1 and 2. The learnable parameters are tuned using the
stochastic gradient descent (SGD) algorithm with the Adam
optimizer and a learning rate of 0.0001. The model is trained
using 5,000,000 randomly generated samples for 20 epochs
with the objective of minimizing the training loss. Finally, the
system BER performance is evaluated over 1,000, 000 testing
samples. The computational complexity of the system can be
optimized by assigning the appropriate number of learnable
parameters for each layer. We make our source code publicly
available at https://github.com/abdo-ui. Our dataset is gen-
erated using Python as random binary data and the fading
coefficients are obtained from the STK simulator. To ensure

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 05,2024 at 22:53:45 UTC from IEEE Xplore. Restrictions apply.



ELFIKKY et al.: LEARNING-BASED AE FOR MULTIPLE ACCESS AND INTERFERENCE CHANNELS

Algorithm 1 AE Training Algorithm in a K-User MAC

channel

Require: M messages (1,2,...,M) € M, transmitter peak
intensity A, batch size m, learning rate 7.

Ensure: argmax(qE-t)) = bgt) vt e {1,2,...,m},i,j €
{1,2,...,K}

1: 61,...,0k < initialize encoder units parameters.

2: ¢1,...,¢K < initialize decoder units parameters.

3: v « initialize LN layer parameters.

4:

5

repeat
Draw m minibatch samples for
(@B, b8, 8 p)).
6: fort—1tomdo
7: for z — 1 to K do
8
9

each user

Lo — one_hot_vector(bgt)) {L,w € {0,1}M}

2 — By (1,0, 4) (2" e [0, 4]")

10 end for

1 y® — K 200 4 w® {y® e RLY
12: y® — y(t)/ﬁ(t)

13: for z — 1to K do

14 ) — Dy (LN, (y ™)) (g e RM)
15: pgt) — Softmax(qgt)) {pgt) € [0,1]M}
16: end for

17:  end for
18: forz<—1toKdoM
m t
19 Coe =Y M 1,0 () log(pY) (1))
20:  end for

21:  C =max(Cy,Cy,...,Ck)
22: for 7—01,...,0K,01,...,0K,v do
23: V.C %
24 T—1-—nV.C
25:  end for
26: until convergence
TABLE 1
LAYERS DESIGN OF THE AE(k, L) USED IN FIG. 1
Module Layer Input | Output Number of
shape | shape parameters
5 Fully connected M 100 100(M + 1)
E=1 Batch normalization 100 100 400
g Fully connected 100 L 101L
§ Batch normalization L L 4L
= Weighted sigmoid L L 0
Normalizer | Layer normalization L L 2L
5 Fully connected L 100 100(L + 1)
3 Layer normalization 100 100 200
3 Fully connected 100 M 101M
A Layer normalization M M 2M

a fair comparison, all benchmark models were trained with
equal numbers of epochs and training samples. This ensures
that any advantages observed in the proposed model can be
attributed solely to its design. Also, note that the training is
often done off-line and only once so that only the complexity
during testing really matters. In addition, Tables I provides a
breakdown of the relevant parameters for each layer of the
proposed AE(k, L) model.

The proposed AE(7,21) is compared with the uncoded
IM/DD, LDPC with time sharing, the standard AE(7,21)
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TABLE I
COMPUTATIONAL COMPLEXITY FOR EACH LEARNING-BASED MODEL

Model Number of learnable parameters
Sparse AE(7,21) [6] 60,298
Standard AE(7,21) [3], [5] 77,098
Proposed AE(7,21) 62,220

presented in [3], and the sparse AE(7,21) presented in [6]
based on the BER performance metric. The comparison
is made under two channel conditions: AWGN MAC and
Log-normal fading MAC. Figures 3a and 3b present the MAC
channel results. The LDPC scheme, which utilizes IM/DD
modulation with time sharing settings, is characterized by
a block length of b, = 100. The design of this LDPC
configuration of code rate 1/3 follows the guidelines in [10].
In AWGN MAC channel illustrated in Fig. 3a, our proposed
model outperforms the standard AE by 2.1 dB at BER 106
and is ahead of both the sparse AE and uncoded IM/DD
by 4 and 5.7 dB, respectively. As shown in Fig. 3b, the
proposed AE(7,21) is better than the standard AE by 1.5 dB
at a BER of 1075, In addition, the proposed AE(7,21) with
time sharing settings outperforms the LDPC with time sharing
at low SNR regime and has 1.3 dB gain at BER 10~%. Also,
the proposed AE with time sharing has the same performance
as the LDPC at BER 107°. In the Log-normal MAC and
IC channel, the standard deviation o is set to 0.2 [4]. The
discrepancy in BER performance between the standard AE,
sparse AE, and the proposed AE highlights the positive impact
of integrating normalization layers and the min-max algorithm
in the proposed model. In addition, we compare our system
against the uncoded IM/DD, LDPC IM/DD, the sparse AE,
and the AE system presented in [5] in the presence of two-
user IC for Log-normal fading channel.

Figure 3c illustrates the evaluation of the proposed AE in
an IC channel-based AWGN setting. The results indicate that
the proposed AE outperforms the sparse AE and the uncoded
IM/DD by 3 dB and 5.5 dB, respectively. In addition, Fig. 3
shows a comparison of all models in a Log-normal two-user
IC channel with ¢ = 0.2. The results demonstrate that the
proposed AE achieves better performance than the standard
AE proposed in [5], with an improvement of 1.8 dB at a BER
of 1075, In addition, the proposed AE with time sharing is just
inferior with 0.3 compared to the LDPC with time sharing at
BER 10~5. However, the proposed AE with time sharing is
better by 1.2 and 0.8 dB compared to the LDPC with time
sharing at BER 1072 and 10~%, respectively.

Furthermore, Table II reveals that the proposed AE is
more computationally efficient than the latest learning-based
models. In the AWGN MAC channel, the standard AE(7,21)
requires more 2.1 dB more in terms of SNR than the proposed
AE(7,21) to achieve a BER of 10~°, even though it has 23%
more learnable parameters. Moreover, the sparse AE(7,21)
requires a 4 dB higher SNR value than the proposed AE(7,21)
to achieve 10~% BER, despite having only 3% fewer learnable
parameters. Figure 4 visualizes the learned representations x
of all messages as real constellation points for the proposed
AE(7,21) in MAC channel. The histogram in Fig. 4 is a
visualization of the learned constellations at the transmitter
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Fig. 4. The constellation points against the relative frequency generated by
the proposed AE(7,21) considering a peak intensity of A = 4.

for all possible messages trained and tested for A = 4 over a
two-user AWGN and log-normal fading channels. Obviously,
the results in Fig. 4 are applied in the testing stage after
achieving the best weights for minimizing the loss according
to the min-max problem. The results in Fig. 4 are in symbol
representations as the transmitter in the AE applies both chan-
nel coding and symbol mapping simultaneously considering
both the peak and positivity constraints. The distribution of
the encoded symbols is generated after the training stage.
While Fig. 4 looks like an on-off-keying modulation and
similar constellation points as represented in [3] and [4], the
scattering of the points is still different and not all points
are exactly located in 0 and A. In particular Fig. 4, verifies
that the AE output follows both positivity and peak intensity
intensity constraints € [0, A]. It is interesting to observe that
the learned constellation points for the AE(7,21) are scattered
in the interval [0, A] with different relative frequencies. These
findings indicate that the AE effectively acquired efficient
coding, modulation techniques in a MAC scenario.

V. CONCLUSION

In this letter, we develop a DL AE model using a novel
layered framework that incorporates BN in the encoder and
LN in the decoders in SOC specifically tailored for multi-
user environments. A realistic SOC channel model for fad-
ing channels is created using the STK simulator. Our model

focuses not only on enhancing the BER performance but
also on optimizing computational complexity making it a
promising solution for improving communication reliability
and efficiency in SOC systems. The proposed AE enables
scalability for any number of users in a multi-user envi-
ronment. The numerical results indicate that the proposed
AE exhibits superior performance in terms of BER and
computational complexity compared to the existing learning
frameworks in both MAC and IC channels. The proposed AE
results yields better results that all E2E learning frameworks
currently considered in the state-of-the-art, to the best of our
knowledge.
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