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Abstract—This letter studies an autoencoder (AE) model
for point-to-point space optical communications (SOC) in the
presence of an intensity modulation and direct detection setting
wherein the optical link is modeled by a Poisson channel model.
While the Poisson channel is a realistic channel model in SOC, its
non-differentiable nature poses challenges when applied to deep
learning. In this letter, a novel non-gradient-based optimization
framework has been applied to estimating the channel gradient,
addressing the non-differentiability of Poisson channels. Further-
more, our AE incorporates normalization layers in both encoders
and decoders for input data standardization and efficient training
convergence. The incorporation of the hyper-tuning optimization
algorithm alongside the AE enhances the performance of the
standard AE. This improvement stems from the effective min-
imization of the error cost function through gradient descent.
The numerical results demonstrate that the proposed AE out-
performs both state-of-the-art learning frameworks and model-
based schemes in bit error rate (BER) performance within the
Poisson channel.

Index Terms—Free space optics, end-to-end learning, Poisson
channel, non-differentiable channels.

I. INTRODUCTION
A. Background:

Optical wireless communication (OWC), in comparison to
traditional RF technology, offers several advantages, such as
higher data rates, enhanced cost-effectiveness, and increased
frequency availability [1]. OWC can be integrated into space
optical communications (SOC), enabling efficient communi-
cation between satellites and ground stations [2]. In SOC, the
laser beam undergoes collection by the receiving telescope and
is subsequently directed towards the detector after covering a
specific distance [2]. Unlike OWC, the laser transmitter has
high photon capability to facilitate effective downlink and
uplink communication in SOC. Furthermore, laser transmitters
in SOC necessitate specific characteristics, including a narrow
bandwidth and low modulation rates [2].

B. Related state-of-the-art

Investigations by researchers are ongoing to integrate ma-
chine learning frameworks into SOC. This integration has
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brought about notable advancements in areas such as channel
equalization, modulation classification, coding, and decoding
[3]-[5]. Auto-encoders (AEs) have emerged as highly effec-
tive end-to-end (E2E) solutions, particularly in point-to-point
SOC scenarios with differentiable channels. The study in [3]
showcased the ability of AEs to optimize both transmitter
and receiver components, achieving satisfactory bit error rate
(BER) performance in point-to-point channels. The authors in
[5] designed an AE model for MAC channel communication
links between two GEO satellites and a common receiver
in a ground station. Furthermore, in [6], [7], an AE model
employing multi-decoder structure is designed for point-to-
point communications in weak turbulence fading channels in
SOC. In the study conducted by [4], the authors implement the
standard AE within a Log-normal fading channel to address
weak turbulence in Optical Wireless Communication (OWC).

When training AEs, both the channel model and all the
layers of the AE must be differentiable. This poses a challenge,
as some channel models are non-differentiable. In SOC, the
received optical signal is often very weak, leading to the
consideration of photon counting statistics. The Poisson dis-
tribution accurately represents the probability distribution of
the number of photon detections in a given time period. One
downside of this accuracy is that it cannot be implemented
as an AE channel on its own due to its non-differentiability,
as the Poisson channel distribution is a probability mass
function and hence discrete. In [8], instead of using the
Poisson distribution directly, the authors approximate it with
a differentiable Gaussian distribution. However, this approach
is limited to high optical power situations and lacks generality
across different power ranges.

C. Challenge and Contribution

The Poisson model demonstrates proficiency in SOC set-
tings by aptly characterizing the statistical patterns of discrete
photon arrival, providing valuable insights into the likelihood
of observing a particular photon count within a specified time
frame. In contrast, conventional continuous models may fail
to accurately capture the photon counting process which is
by nature, discrete. However, a significant portion of deep
learning (DL) literature tends to avoid considering the Poisson
channel [4]-[6] due to its non-differentiable nature, making
it impractical for calculating gradients during the backprop-
agation (BP) process. Hence, the challenge in this problem
lies in utilizing the Poisson channel within SOC without
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Fig. 1: System model for point-to-point SOC over the discrete-
time memoryless Poisson channel.

approximating to Gaussian models, as well as addressing
the BP problem. Our primary contributions address these
challenges in the following manner:

1) We presented an autoencoder (AE) model that avoids
approximation of the discrete Poisson channel during
forward propagation. We employ a covariance matrix
adaptation evolution strategy (CMA-ES) integrated with
the proposed AE to estimate the gradients of the Poisson
channel in an efficient manner.

2) The AE is based on batch normalization (BN) layers
in the encoder, and layer normalization (LN) in the
decoder. Normalization layers act as a form of regu-
larization and ensures that the network has a consistent
distribution of data during training.

3) The proposed AE outperformed the standard AE when
the CMA-ES algorithm was applied alone in terms of
BER. Additionally, the performance surpassed that of the
standard AE with a non-gradient descent approach based
on particle swarm optimization (PSO). The AE model
also showed significant BER improvement compared
to the convolutional codes and uncoded modulation
schemes.

II. SYSTEM MODEL

We model a geostationary satellite with a laser transmitter,
and the detector is located at the ground station as shown
in Fig. 1. The received optical power at the photodetector
is weak within the SOC and individual photons gain promi-
nence. Accordingly, the SOC channel is represented using the
discrete Poisson channel, which accurately depicts discrete
photon arrival, showing the likelihood of observing a certain
photon count in a timeframe. On the other hand, continuous
models do not capture this discrete nature. The emitted light
intensity follows the positivity, and peak power constraint
0 < 29 < A, fori € [1,n]. The average optical power
constraint E [z] < £. The discrete-time memoryless optical
wireless channel employing intensity modulation and direct
detection (IM-DD) is modeled by a Poisson distribution as
follows [1]:
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where y() € N is the channel output, « is a scalar value that
represents the channel gain, and A > 0 is the dark current rate
of the photodetector. We note that the first random variable
(rv) is Poisson-distributed with probability law p(a (")), and
the second rv is also Poisson-distributed with probability law
p(A). Since these two rvs are independent, then the output
is also another rv whose probability law is p(az(® + \).
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While the Poisson channel is an accurate model in SOC, it
faces a challenge related to non-differentiability, which can
complicate its implementation in DL modes. In the following
section, we elaborate on how to address the non-differentiable
issue in DL models.

III. PROPOSED AE MODEL OVER THE POISSON CHANNEL

In this section, we describe the structure of the proposed
AE, including the normalization layers. Then, we discuss how
we utilize a CMA-ES in conjunction with the proposed AE to
effectively estimate the gradients of the Poisson channel.

1. The proposed AE: First, the AE can be described as
an unsupervised neural network (NN) that auto-learns how
to compress the data efficiently via an encoding process. In
addition to compressing data, the AE learns how to recreate
the original data from the compressed form. The AE system
can be expressed by the pair (k,n), where k and n are the
number of message bits and the codeword length, respectively.
The channel code rate is described as R = k/n. As shown
in Fig. 2, the proposed AE consists of both a transmitter
and a receiver NN, which are jointly optimized to streamline
the learning process. AE can learn to perform both encoding
and decoding operations in an end-to-end manner. This joint
optimization allows the AE to develop representations (or
encoded symbols) that are most suitable for transmission over
the channel, leading to potentially better performance than
traditional schemes. A message ¢; is taken from {1,..., M},
where M = 2*. The vector 1. used as input is the one-hot
encoding of c. We perform one-hot encoding on the input
message to ensure that the model is not biased toward any
specific value. The input vector is then passed through the
transmitter NN and encoded into the vector " of length
n, which is used as input to the channel. After =™ passes
through the channel, it is distorted into the noisy signal y"
as described by (2) and reaches the ground station. There, the
receiver NN outputs its reconstruction of the original one-hot
encoded vector, denoted as ic. Unlike the standard AE model,
we introduce normalization layers in between fully connected
(FC) layers to reduce the effect of poor gradient exploding and
increase the speed of convergence during training. The encoder
utilizes BN layers, which is applied across each batch. We
utilize LN at the decoder, treating each sample independently.
At the last layer on the decoder NN, we apply a softmax
activation function to the decoder output vector d € RM to
determine the most likely value of the original message.

2. Non-differentiable Poisson channel: The Poisson chan-
nel model described in (2) is not differentiable, so using
the BP algorithm along with gradient descent to tune the
AE parameters becomes unfeasible. Within the proposed AE,
the CMA-ES algorithm is employed in the BP algorithm to
estimate the local gradient of the Poisson channel. To fix
the non-differentiability of the Poisson channel, we set the
gradient of the channel to a constant, denoted as J, during the
BP. This constant J can be considered as a hyper-parameter
and thus can be tuned using hyper-tuning optimization algo-
rithms. CMA-ES excels over other ES methods, particularly
in non-separable problems with larger search spaces or those
requiring numerous function evaluations [9].
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Fig. 2: The proposed AE structure.

3. CMA-ES process: In CMA-ES, candidate solutions
(often denoted as w) are produced in a stochastic manner
in each iteration, based on the existing candidate solutions
from the previous iteration. Subsequently, a selection process
is conducted to determine which candidate solutions will
serve as parents in the ensuing iteration, with the selection
criteria being their value of the objective function, denoted as
f(w). As this process continues across successive iterations,
the generated candidate solutions progressively improve the
objective function [10].

3.1 Candidate solutions: The normal probability distri-
bution responsible for generating new candidate solutions,
given the distribution parameters such as mean, variances, and
covariances, represents the maximum entropy probability dis-
tribution over RP, where p denotes the number of parameters
in the candidate solutions. In other words, this distribution
reflects the sample distribution with the least amount of prior
information embedded into it. During the kth iteration, the pro-
cess initiates by sampling 5 > 1 candidate solutions w; € RP,
where i = [1,..., 3], from a multivariate normal distribution
N(my, U,%Ek), where m,, € RP is the distribution mean and
current solution to the optimization problem, o, > 0 is the
step-size, and X, € RP*? is a symmetric and positive-definite
covariance matrix. The candidate solutions w; are evaluated
using the objective function f : RP — R and are subsequently
sorted as follows [10]:

{wfj |f(’lUf1)§"'Sf(’wf“)Sf(wf#_'_l)g"'}, ()

where j = 1...3, and p < (/2 is the number of best
candidate solutions selected at each iteration.

3.2 Parameters update: Now, we discuss how the mean,
step size, and covariance matrix, respectively, are calculated at
each iteration. These are the three main distribution parameters
that will be updated in each iteration. First, the mean is updated
as follows:

o
Mip1 = Y Orwy,. 3)
r=1
In this context, the positive recombination weights 6; > 63 >
- > 6, > 0 are selected such that their sum equals one.
Conventionally, these weights are determined to satisfy the
condition 1/ Y %_, 62 ~ (/4 [9]. Next, The step-size oy, is
updated using cumulative step-size adaptation, sometimes also
denoted as path length control [9], i.e.,

Co 1P, ||
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where ¢, ! ~ p/3 is the backward time horizon for the evolu-
tion path p, and larger than one, d,, is the damping parameter,
and E denotes the expectation. Finally, the covariance matrix
is updated as follows [10]:
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mass, and ¢; = (1 — 10,157 (Hpg||)2> c1¢c (2 —¢.). The
backward time horizon for the evolution path p. is indicated
as ¢, ! ~ n/4, ¢; ~ 2/n? represents the learning rate for the
rank-one update of the covariance matrix, and ¢, & p,/n?
is the learning rate for the rank-p update of the covariance
matrix, ensuring it does not exceed 1 — c;. The indicator
function 10,15 /7] (|P,|l), yields a value of one if and only
if [p,| < 1.5,/p. Algorithm 1 summarizes the CMA-ES
algorithm utilized for the hyper-tuning optimization problem.

4. Channel gradient estimation: In the proposed AE,
the training process is repeated multiple times. At each time,
candidate solutions for the channel gradient J are generated at
the training stage of the AE. Next, each candidate solution is
evaluated based on the value of the objective function f. The
candidate solutions are sorted, and the best candidate solutions
are chosen. Since f no longer needs to be differentiable, we
use the BER produced by the model as an objective function.
Then, the distribution parameters are updated for an adequate
number of iterations or until convergence. At the last iteration,
the optimal channel gradient value is set as the final mean of
the multivariate normal distribution.

I'V. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
AE with normalization layers and gradient fix against several
channel coding schemes for code rate R = % across the
Poisson channel. The proposed AE presented in Fig. 2 is
trained over 25 epochs with 8 million training samples. In
the proposed AE, the CMA-ES algorithm is utilized in the
BP process to estimate the local gradient of the Poisson
channel. The CMA-ES algorithm is employed not only for
optimizing the channel gradient of the Poisson channel but
also for optimizing the learning rate, peak intensity, and batch
size. Without gradient problem resolution, the default action
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is compared to the uncoded IM/DD and convolutional codes
examined at A = 1. These results show that the proposed
AE achieves better performance than model-based approaches
across the Poisson channel. In Fig. 3a, at BER 1072, the
proposed AE has an improvement of about 1.5 dB over
convolutional codes. We note that the AE’s BER performance
is 1.2 dB greater than that of the convolution codes. In Fig.
3b, the proposed AE is compared to the standard AE(7,
14) in [4], [8] with and without gradient problem resolution
examined at A = 1. Both references utilize the standard AE
structure initiated by [3]. In Fig. 3b, at BER 107>, the
proposed AE is better by about 1.5 dB over the standard
AE in [4] with the CMA-ES algorithm using A = 1. Also,
at BER 1076, the proposed AE is better than standard AE
without BP algorithm by 2.3 dB. Avoiding the BP algorithm
is employed using PSO. Obviously, the standard AE without
channel gradient problem resolution of the Poisson channel has
the worst BER performance as the encoder module weights
are not optimized. The hyper-tuning parameters, optimized by
the CMA-ES algorithm for A = 1, are as follows: A = 7.3,
learning rate = (0.00045, batch size = 32, and Poisson channel
gradient = 1.23.

In Fig. 4a, the proposed AE is compared to the uncoded
IM/DD and convolutional codes examined at A = 2. The
proposed AE is better by at least 1 dB over all other encoding
schemes tested at A = 2. At BER 107°, the proposed AE
outperforms the uncoded modulations by 5.3 dB. In Fig. 4b
the proposed AE is compared to the standard AE(7, 14) with
and without gradient problem resolution examined at A = 2.
The proposed AE has an improvement of approximately 1.3
dB over the standard AE with CMA-ES algorithm at BER
1075, In addition, the standard AE has worse performance
by 16 dB compared with the proposed AE. For A = 2, the
optimized hyper-tuning parameters are A = 7.8, learning rate
= 0.00012, batch size = 32, and Poisson channel gradient
= 1.8. To evaluate training loss, we utilize the cross entropy
loss and for updating the weights we utilize Adam optimizer.

Through these baselines, the proposed AE is shown to be
more effective across the Poisson channel than both the model
and learning-based frameworks. The better performance of the
proposed AE over the standard AE proves that introducing
normalization layers into the AE model greatly improves the
BER performance, with the advantage of providing consistent
distribution to the AE model. Moreover, the proposed AE
incorporates the CMA-ES algorithm. demonstrates enhance-
ments over the standard AE, when compared with the standard
AE based on PSO. CMA-ES dynamically adjusts its step sizes
and covariance matrix throughout the optimization process,
enabling it to improve the objective function. This adaptive
capability allows CMA-ES to efficiently explore complex
search spaces without needing lots of parameter tuning. In
contrast, PSO often demands precise parameter tuning to attain
satisfactory performance across diverse problem sets [9], [10].
The testing time of the Proposed AE and the standard AE is
17766s,18789s.

As shown in Fig. 5a, upon calculating the channel gradient
for the Poisson channel, the histogram illustrates that the mod-
ulation utilized by the proposed AE resembles on-off keying

modulation at its peak intensity A = 8. Conversely, when
employing the AE without estimating the channel gradient
as illustrated in Fig. 5b, the histogram displays a randomly
distributed pattern of the modulated signal from the AE.
This randomness substantiates the notable degradation in BER
performance of the AE when the gradient of the Poisson
channel is not estimated. The incorporation of normalization
in the proposed AE layers speeds up training and allows
for a reduction in the number of neurons per layer in the
conventional AE. The testing time for both the Proposed AE
and the standard AE is 17,766s and 18,789s, respectively. This
indicates a decrease in testing time of around 5.45% between
the Proposed AE and the standard AE.

V. CONCLUSION

This letter explores the utilization of an AE model within
a point-to-point SOC scenario, considering the impact of a
practical channel model referred to as the Poisson channel.
While the Poisson channel model effectively characterizes the
SOC, its non-differentiable attributes pose challenges for DL
models. A novel non-gradient-based optimization framework
has been employed to estimate the channel gradient, effectively
tackling the non-differentiable nature of Poisson channels.
Moreover, our AE integrates normalization layers in both
the encoding and decoding modules. The numerical results
demonstrate that the proposed AE outperforms both state-of-
the-art learning frameworks and model-based schemes in BER
performance within the Poisson channel. Our model presents
a promising solution to encourage researchers to incorporate
the Poisson channel into their deep learning models without
relying on approximations or transformations.
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