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SPARKS OF SYMMETRIC MATRICES AND THEIR GRAPHS∗
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Abstract. The spark of a matrix is the smallest number of nonzero coordinates of any nonzero null vector. For real

symmetric matrices, the sparsity of null vectors is shown to be associated with the structure of the graph obtained from the

off-diagonal pattern of zero and nonzero entries. The smallest possible spark of a matrix corresponding to a graph is defined as

the spark of the graph. Connections are established between graph spark and well-known concepts including minimum rank,

forts, orthogonal representations, Parter and Fiedler vertices, and vertex connectivity.
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1. Introduction. Denote the set of all real symmetric n × n matrices by Sn(R), and suppose A =

[aij ] ∈ Sn(R). We say G(A) is the graph of A if G(A) has the vertex set V = {v1, v2, . . . , vn} and edge set

E = {vivj | aij 6= 0, i 6= j}. Note that G(A) is independent of the values of the diagonal entries of A. On

the other hand, if G is a graph of order n (i.e., |G| = |V (G)| = n) with vertex set {v1, v2, . . . , vn}, then

the set of real symmetric matrices described by the graph G is given by S(G) = {A ∈ Sn(R) | G(A) ∼= G}.
Here and in what follows, we consider only simple, undirected graphs G = (V (G), E(G)). One of the

most captivating and unresolved problems associated with the class S(G) is the so-called inverse eigenvalue

problem for graphs, abbreviated as IEP-G (see [1, 2, 4, 5, 8, 22, 28]). This fundamental problem asks for a

complete description of the possible spectra realized by the set S(G) for a given graph G. The IEP-G has

garnered significant attention over the past 30 years with many fascinating advances and applications (see,

e.g., the books [22, 28] and the references therein). However, a complete general resolution is still very much

elusive. Notwithstanding this, researchers have developed a wealth of results, implications, and applications

tied to the IEP-G (see [6] for a recent example). In particular, a number of related concepts and parameters

have been explored and have shed light on different aspects of the IEP-G. The minimum rank of a graph G

is defined to be mr(G) = min{rank(A) | A ∈ S(G)}. The maximum nullity (or maximum corank) of a graph

G is defined to be M(G) = max{nul(A) | A ∈ S(G)} = n−mr(G), where nul(A) denotes the nullity of A or

the dimension of the null space of A, written as N(A). The minimum semidefinite rank mr+(G) is defined

analogously as the minimum rank over all positive semidefinite matrices in S(G). (We refer the reader to

the works [7, 9, 17, 26, 27, 36].) The column space of A is denoted col(A).
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While the primary focus on the IEP-G has been on the potential list of eigenvalues of matrices in

S(G), there is also justified interest in studying the associated eigenvectors or zero/nonzero patterns of the

associated eigenvectors. One of the earliest results along these lines is by Fiedler [19] where the eigenvectors

of matrices associated with connected acyclic graphs (or trees) were studied. One by-product of this work

was the realization that investigating the zero coordinates of an eigenvector leads to certain implications

about a graph (or in the case of [19] a tree). Since Fiedler’s pioneering work in 1975, research into the

possible patterns of eigenvectors for matrices associated with a graph has been developed along a number of

lines, including nodal domains, Laplacian eigenvectors (e.g., Fiedler vectors), and more recently zero forcing

on graphs (see also [16, 34, 35, 36]). We note here that it is sufficient to study the zero/nonzero patterns of

null vectors of A ∈ S(G), since any eigenvector x corresponding to the eigenvalue λ of A can be considered

as a null vector of the matrix A− λI ∈ S(G).

As our work relies heavily on the theory of graphs, we list some useful notation and provide some relevant

terminology here before we discuss zero forcing and spark for graphs. A subgraph H = (V (H), E(H)) of

G = (V (G), E(G)) is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G); H is an induced subgraph of G if

E(H) = {vw ∈ E(G) | v, w ∈ V (H)}. The complement of G = (V,E) is the graph G = (V,E), where E

consists of all pairs of vertices in V that are not contained in E. We say two vertices v, w are adjacent,

or are neighbors, if vw ∈ E, and we may write this as v ∼ w. Let NG(v) = {w ∈ V | w ∼ v} be the

open neighborhood of v and denote its cardinality by deg(v) = |NG(v)|. The closed neighborhood of v is

NG[v] = NG(v) ∪ {v}. The minimum degree of the graph is δ = δ(G) = min{deg(v) | v ∈ V (G)}.

A path is a graph, denoted Pn, with V = {v1, . . . , vn}, where v1, . . . , vn are distinct, and E = {vivi+1 |
i = 1, . . . , n − 1}. A cycle Cn on n vertices V = {v1, . . . , vn} has E = {vivi+1 | i = 1, . . . , n − 1} ∪ {vnv1}.
A graph is connected if for every pair of distinct vertices v and u there is a path from v to u (and thus

also from u to v). A tree is a connected graph with no cycles. A complete graph Kn on n vertices has

E = {vivj | i 6= j}. A complete bipartite graph Km,n has vertex set V = V1 ∪ V2, where |V1| = m and

|V2| = n, and edge set E = {vivj | vi ∈ V1, vj ∈ V2}. If G = (V (G), E(G)) and H = (V (H), E(H)) are two

graphs, then the Cartesian product of G and H, denoted by G�H, is the graph with vertex set V (G)×V (H)

and two vertices (u, v) and (w, z) are adjacent in G�H if and only if u = w and vz ∈ E(H) or uw ∈ E(G)

and v = z.

Zero forcing is a coloring process involving the vertices of a graph. At the beginning of the process, each

vertex is either blue or white, and each type of zero forcing follows a specific color change rule which can

change the color of a white vertex to blue. The process stops when no more vertices can be colored blue.

The standard zero forcing color change rule is to change the color of a white vertex w to blue if w is the

unique white neighbor of a blue vertex v. If an initial subset of blue vertices can, after repeated application

of the color change rule, change all vertices to blue, then this subset is referred to as a zero forcing set. Zero

forcing was introduced to provide a combinatorial upper bound for M(G) and, in particular, detects subsets

of coordinates of a null vector x of any A ∈ S(G) that, if designated as zero, imply x must in fact be the

zero vector. As such, it seems natural to study the zero coordinates in null vectors (see [2, 3, 4, 22] for more

details).

More precisely, given a real vector x, the support of x is the collection of indices i for which xi 6= 0. We

denote the support of x by supp(x). Suppose A ∈ S(G) and Ax = 0. A basic consequence of the zero forcing

process outlined above is that if supp(x) is disjoint from a zero forcing set for G, then x = 0.
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Suppose B ⊆ V is initially colored blue, and that B′ is the set of all blue vertices obtained from B by

repeatedly applying the color change rule. We call B′ the closure of B. If nonempty, the subset V \ B′
(the remaining white vertices) is known as a fort in G. In fact, a fort in a graph is a nonempty subset F of

vertices such that no vertex outside of F is adjacent to exactly one vertex of F (see [11]).

Forts are naturally connected to the support of null vectors. As we are interested in sparse null vectors,

we seek to determine forts of minimum size in a given graph. Finally, it is a simple observation in basic

linear algebra that if x is in N(A), for any matrix A, then the columns of A that correspond to supp(x)

must form a linearly dependent set. This leads us to the notion of the spark of a matrix, which we present

in the next section.

This paper is organized into sections combining various topics with the spark of a graph. In Section 2,

we define the spark of a graph and explore a connection with forts in the graph. In Section 3, we discuss

relationships between the concepts of spark and rank. Then in Section 4, we investigate an association

between spark and the vertex connectivity of a graph, and we generalize a theorem concerning orthogonal

representations of graphs. In Section 5, we pay particular attention to graphs with small spark, and we close

our work with some further connections in Section 6.

2. Spark and forts of graphs. As our main focus is studying the support of null vectors, and, in

particular, to exhibit null vectors that have small support, we begin with the notion of the spark of a matrix.

Namely, the spark of a matrix A is the smallest integer s such that there exists a set of s columns in A

which are linearly dependent, i.e., spark(A) is the minimum size of the support of a nonzero null vector

of A. If A ∈ Sn(R) is nonsingular, spark(A) is defined to be n + 1. Sparse solutions to underdetermined

linear systems, and thereby the concept of spark, have gained significant attention in compressed sensing

(see [12, 13, 14]). Computing the spark of a matrix is known to be NP-hard [20, Problem A6.MP5]. We

define the spark of a graph G to be

spark(G) = min
A∈S(G)

spark(A).

Note that, for every graph G, the Laplacian matrix of G gives a singular matrix in S(G), showing that

spark(G) ≤ n. In addition, it is not hard to see that spark(G) = 1 if and only if G contains an isolated

vertex. Furthermore, if G is disconnected, then spark(G) is obtained by simply minimizing the spark across

all of the connected components of G. Thus, we assume from this point on that all graphs considered are

connected and hence contain no isolated vertices.

We illustrate the above notions with the following example.

Example 2.1. Let G be a graph on 5 vertices consisting of a 5-cycle on vertices {1, 2, 3, 4, 5} with two

additional edges 13 and 25. Suppose A ∈ S(G) is given by

A =


1 1 1 0 1

1 1 1 0 1

1 1 3 1 0

0 0 1 3 1

1 1 0 1 3

 and x =


1

−1

0

0

0

 .

Observe that Ax = 0, and hence, spark(A) ≤ 2. Since G is connected (or more precisely has no isolated

vertices), it is clear that spark(G) > 1. Thus, spark(A) = spark(G) = 2. Finally, we note that the pair

{1, 2} forms a fort in G.
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The connection between the support of a null vector x for some A ∈ S(G) and a fort in G in the

previous example is a known result (appearing recently in [21]); we provide a proof here for completeness, as

our primary aim is studying the support of null vectors. Recall that the columns of A ∈ S(G) are indexed

by the vertices of G, and we use the column indices and the graph vertices interchangeably.

Theorem 2.2. For any matrix A ∈ S(G), the support of any nonzero null vector of A is a fort of G.

Conversely, for any fort F of G and any vector x whose support is F , there is a matrix A ∈ S(G) that has

x as a null vector. That is, spark(G) is the cardinality of a minimum fort of G.

Proof. Given a matrix A ∈ S(G) and a vector x 6= 0 such that Ax = 0, let W = {j ∈ V (G) | j ∈
supp(x)}. Suppose there exists i ∈ V (G) \W with exactly one neighbor j in W . Then,

0 = [Ax]i = aijxj ,

where aij 6= 0. Thus, xj = 0, contradicting j ∈ supp(x). So W is a fort of G.

Conversely, assume F is a fort of G such that F = {i ∈ V (G) | i ∈ supp(x)} for some nonzero vector x.

We construct A by performing the following steps:

1. First let A be the adjacency matrix of G. In the next two steps, we modify certain nonzero entries

of A.

2. Let S = {i | xi = 0} = V (G) \ F . For i ∈ S, let Bi = NG(i) \ S = NG(i)∩ F . Note that |Bi| 6= 1 by

the definition of a fort. For j ∈ Bi and j 6= maxBi, set A[i, j] = A[j, i] = 1/xj ; if j = maxBi, then

set A[i, j] = A[j, i] = (1− |Bi|)/xj .
3. For k ∈ supp(x), assign A[k, k] = − [Ax]k

xk
= −

∑
j 6=k akjxj

xk
.

For i ∈ F ,

[Ax]i = aiixi +
∑
j 6=i

aijxj = −
∑
j 6=i aijxj

xi
xi +

∑
j 6=i

aijxj = 0.

For i ∈ V (G) \ F ,

[Ax]i =
∑
j�i

aijxj + aiixi +
∑
j∼i

aijxj =
∑
j∼i

aijxj

=
∑

j∈NG(i)∩S

aijxj +
∑

j∈NG(i)\S

aijxj =
∑
j∈Bi

aijxj

=
∑
j∈Bi

j 6=maxBi

1

xj
xj +

1− |Bi|
xmaxBi

xmaxBi
= 0.

Although spark(G) is defined in reference to the matrices in S(G), Theorem 2.2 shows that in fact this

parameter can be defined entirely in graph-theoretic terms. That is, the spark of a graph does not have to

be defined in terms of the spark of any matrices.

The next two propositions explore possible sizes of forts of graphs in more detail.

Proposition 2.3. Let G be a graph with minimum degree δ. Then, every subset W ⊆ V (G) with

|W | = n−m+ 1 is a fort of G if and only if m ≤ δ.

Proof. Assume m ≤ δ, and consider W ⊆ V (G) with |W | = n − m + 1 ≥ n − δ + 1. For any vertex

v /∈W , there are at most δ − 2 vertices not in W ∪ {v}.
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Conversely, suppose m > δ and v0 ∈ V (G) such that NG(v0) = {v1, v2, . . . , vδ}. By definition, any fort

must contain at least 2 vertices, so we may assume m ≤ n− 1. Then δ ≤ n− 2, and we can label

V (G) = {v0, v1, . . . , vδ, sδ+2, . . . , sn}.

Since m+ 1 ≥ δ + 2, the set W = {v1, sm+1, . . . , sn} satisfies |W | = n−m+ 1 but is not a fort.

Proposition 2.4. If every k-subset of V (G) is a fort of G, then every (k + 1)-subset of V (G) is a fort

of G.

Proof. Let every k-subset of V (G) be a fort of G, and let W ⊆ V (G) such that |W | = k+1. In particular,

|W | ≥ 2. Assume W is not a fort, so there exists x ∈ V (G) \W such that NG(x) ∩W = {w1}, where

W = {w1, w2, . . . , wk+1}.

Then, W ′ = W \ {w2} is not a fort since x ∈ V (G) \W ′ and NG(x) ∩W ′ = {w1}. But |W ′| = k, giving us

a contradiction.

In light of Proposition 2.4, it is interesting to note that simply adding vertices to a fort does not guarantee

that the resulting set is a fort. We present examples of graphs that skip fort sizes after Theorem 3.3.

Related to the concept of a fort is the notion of a failed zero forcing set [18, Definition 1.4]. This is

simply a subset of vertices that is not a zero forcing set; however, it is interesting to ask for the largest size

of such a set. This is known as the failed zero forcing number F(G) of the graph G [18]. The complement

of a failed zero forcing set has also been called a zero blocking set, with the smallest size of such a set called

the zero blocking number, and denoted by Block(G) [10]. As noted in [10], a set is a failed zero forcing set

of maximum size if and only if its complement is a fort of minimum size. Using Theorem 2.2, it follows that

Block(G) and spark(G) are the same. In summary, we have the following observation.

Observation 2.5. Let G be a graph on n vertices. Then Block(G) = spark(G) and F(G) = n−spark(G).

Hence, the problem of determining the failed zero forcing number of a graph and the problem of deter-

mining its zero blocking number are both equivalent to determining the spark of the graph. In fact, this

problem, like that of computing the spark of a matrix, is NP-hard [39].

3. Spark and rank of matrices associated with a graph. The spark and rank of a matrix A ∈ S(G)

are clearly related, as the definitions give directly that spark(A) ≤ rank(A)+1. In this section, we investigate

when this inequality becomes an equality. We say a matrix has full spark if spark(A) = rank(A) + 1.

Analogously to mr(G) and mr+(G), we define the minimum full spark rank of a graph G as mfsr(G) =

min{rank(A) | A ∈ S(G), rank(A) = spark(A)− 1} and mfsr+(G) as the corresponding minimum full spark

rank for positive semidefinite matrices.

The next result is a core result in linear algebra and lays the groundwork for establishing a relationship

between spark and rank.

Theorem 3.1. Let A be a symmetric n × n real matrix with rank(A) = k. If k = n, then each k × k
principal submatrix of A is nonsingular and A has full spark.

If k < n and X is an n× (n−k) real matrix with rank(X) = n−k such that AX = 0, then the following

are equivalent:
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1. Each k × k principal submatrix of A is nonsingular.

2. Each (n− k)× (n− k) submatrix of X is nonsingular.

3. spark(A) = k + 1.

Proof. If k = n the result is clear, so assume k < n.

(1)⇔ (2): Without loss of generality, we can write A =

[
B CT

C M

]
and X =

[
Y

Z

]
, where B is k × k and

Z is (n− k)× (n− k), and argue that B is singular if and only if Z is singular.

If Z is singular, then there exists a nonzero vector v with Zv = 0. Since rank(X) = n − k, Y v must

be nonzero, and so Xv is a nonzero vector in the null space of A. Then, Y v is a nonzero vector in the null

space of B, so B is singular.

If B is singular, then there exists a nonzero vector v with vTB = 0. If vTCT 6= 0, then vTCTZ = 0

implies we are done. So assume vTCT = 0. Then,

[
B

C

]
v = 0, so that

[
v

0

]
is a nonzero vector in the null

space of A. Since rank(X) = n− k, the columns of X are a basis for the null space of A. Thus, the vector[
v

0

]
is a nontrivial linear combination of the columns of X, and so Z is singular.

(1) ⇒ (3): If each k × k principal submatrix of A is nonsingular, then each set of k columns of A is

linearly independent and spark(A) ≥ k + 1; that is, A has full spark.

(3) ⇒ (1): Assume spark(A) = k + 1, and suppose that there exists a k × k principal submatrix B of

A that is singular. Without loss of generality, write A =

[
B CT

C M

]
in block form. Let X =

[
Y

Z

]
in similar

block form be a matrix whose columns form a basis for the null space of A, so that AX = 0. By the proof

of (1) ⇔ (2), the (n − k) × (n − k) matrix Z must also be singular, and there exists a nonzero vector w

with Zw = 0. But then

[
Y

Z

]
w =

[
Y w

0

]
is a nonzero vector (if Y w = 0, then the columns of X are linearly

dependent) in the null space of A, so that BY w = CY w = 0. But then

[
B

C

]
Y w = 0 implies that the

columns of

[
B

C

]
are linearly dependent, which contradicts spark(A) = k + 1.

We next consider a bordering-type result concerning the spark of a symmetric matrix.

Lemma 3.2. Suppose A is an n × n real symmetric matrix. Consider the bordered (n + 1) × (n + 1)

symmetric matrix given by B =

[
xTAx xTA

Ax A

]
for some vector x. Then

1. rank(B) = rank(A);

2. if |supp(x)| = k, then spark(B) ≤ k + 1.

Proof. Statement (1) is trivial. For (2), observe that the vector

[
−1

x

]
is a null vector for B, and the

result follows.

A simple consequence of the above lemma can be deduced if we assume in addition that A is invertible.

Then, rank(B) = n, and thus, it follows that spark(B) = |supp(x)|+ 1, since the dimension of the null space

of B is one.
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Given a graph G with order n, we are interested in finding all possible ordered pairs of integers (k, s),

1 ≤ k ≤ n and 2 ≤ s ≤ k+1, such that there exists A ∈ S(G) with rank(A) = k and spark(A) = s. Note that

k = n if and only if s = n+ 1. After finding a matrix with some fixed spark s and minimum corresponding

rank k ≥ s − 1, the next result shows that all higher ranks are achievable with the same spark. Before we

state this result, we recall the following observation: for any symmetric matrix A, the jth standard basis

vector ej ∈ col(A) if and only if j 6∈ supp(x) for all x ∈ N(A), which follows easily from the fact that the

null space of a symmetric matrix A is the orthogonal complement of the column space of A.

Theorem 3.3. If A ∈ S(G) such that rank(A) = k < n−1 and spark(A) = s, then there exists a matrix

B ∈ S(G) such that rank(B) = k + 1 and spark(B) = s.

Proof. Assume A ∈ S(G) such that rank(A) = k < n − 1 and spark(A) = s. Let us choose a basis for

the null space of A

N(A) = span{η1, η2, η3, . . . , ηn−k},

such that |supp(η1)| = s.

Let ηi = (yi1, yi2, . . . , yin)T for 1 ≤ i ≤ n− k. We claim there is a matrix B = A+D ∈ S(G) where D

is a diagonal matrix, such that η1 ∈ N(B), η2 6∈ N(B) and N(B) ⊂ N(A). Since |supp(η1)| = s, we know

supp(η1) 6= supp(η2), otherwise there would be a null vector whose support size is smaller than s.

So we can choose j ∈ supp(η2) \ supp(η1). Choose a new basis for N(A) such that

N(A) = span{η1, η2, η′3, . . . , η′n−k},

with η′i =
yij
y2j
η2 − ηi for 3 ≤ i ≤ n− k. Then, j 6∈ supp(η′i) for 3 ≤ i ≤ n− k and j 6∈ supp(η1).

Let ej represent the jth standard basis vector in Rn and consider eje
T
j = Ejj . We see that

(A+ Ejj)η = Aη + Ejjη = Ejjη = eje
T
j η,

for η ∈ N(A). Notice that ej 6∈ col(A) since eTj η2 = y2j 6= 0 and col(A) = N(A)⊥. By [33], this implies

rank(A+ Ejj) = rank(A) + rank(Ejj) = k + 1.

Now η2 6∈ N(A+ Ejj) but

{η1, η′3, . . . , η′n−k} ⊂ N(A+ Ejj),

since each vector in the set is orthogonal to ej . This gives us

N(A+ Ejj) = span{η1, η′3, . . . , η′n−k},

since this is a set of n−k−1 linearly independent vectors in N(A+Ejj) where dim(N(A+Ejj)) = n−k−1.

Since N(A+ Ejj) ⊂ N(A), |supp(η1)| = s, and η1 ∈ N(A+ Ejj), we have that spark(A+ Ejj) = s.

We note here that given A ∈ S(G) we cannot necessarily find another matrix B ∈ S(G) such that

spark(B) = spark(A) + 1 and rank(B) = rank(A). This follows, in part, due to the fact that if G has a fort

of size s this may not guarantee that G has a fort of size s + 1 or s − 1. Define the fort sequence of G to

be the sequence of the form (s2, s3, . . . , sn) where G has n vertices and si is the number of forts in G with i

vertices. Note that we are beginning the fort sequence at s2; since we only consider graphs without isolated

vertices, all graphs we consider have s1 = 0. There are many examples of graphs that skip fort sizes.

For example, consider a spider graph (also known as a generalized star), which is a tree with one vertex

having degree greater than 2, the central vertex, and all other vertices having degree at most 2. The paths
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radiating out from the central vertex are called the legs and do not contain the central vertex. We denote

such a graph as sp(n1, n2, . . . , nl) where l is the degree of the largest-degree vertex (i.e., the number of legs)

and nj is the number of vertices in each leg. So the order of sp(n1, n2, . . . , nl) is 1 +
∑
nj .

Now consider a special class of spider graphs of the form sp(m, 1, 1), where m > 3, depicted in Fig. 1.

a

c

b

v1 v2 vm−1 vm

Figure 1. Spider graph sp(m, 1, 1)

The smallest fort size is 2 corresponding to the unique minimum fort {a, b}. Any fort F ⊆ V with

|F | ≥ 3 must contain the vertex vm, otherwise vi+1 where i = max{j < m | vj ∈ F} (here considering c as

v0) would be adjacent to only one vertex in F . The next smallest fort is a minimum fort for Pm+2, which

arises as the induced subgraph of G on either {a, c, v1, . . . , vm} or {b, c, v1, . . . , vm}. The path Pm+2 has a

minimum fort of size dm+3
2 e; note that the minimum fort does not contain c for either parity of m. So the

fort sequence for sp(m, 1, 1) is of the form (1, 0, . . . , 0, sdm+3
2 e

, . . . , sm+3) with si 6= 0 for dm+3
2 e ≤ i ≤ m+ 3.

Moreover, if sp(m, 1, . . . , 1) has 3 ≤ l < m legs, then the fort sequence is of the form

(s2, . . . , sl−1, 0 . . . , 0, sdm+3
2 e

, . . . , sm+l),

where si 6= 0 for 2 ≤ i ≤ l−1 or dm+3
2 e ≤ i ≤ m+ l. Hence, there is no bound on the size of the gap between

two nonzero fort sizes in a graph or constraints on where in the sequence a gap can occur.

An example of a graph that is not a tree and skips a fort size is the friendship graph F3 as shown in

Fig. 2. This graph has forts of size 2 and 4 but no forts of size 3. Indeed, any pair of adjacent non-central

vertices forms a fort, but any set S of three vertices in V = V (F3) must leave at least one vertex in V \ S
adjacent to only one vertex in S; any pair of adjacent pairs of non-central vertices forms a fort of size 4. In

fact, F3 has fort sequence (3, 0, 11, 12, 7, 1).

Figure 2. Friendship graph F3

4. Spark and connectivity of graphs. The vertex connectivity of a graph G, denoted by κ(G), is

defined as the minimum size of a set of vertices whose deletion disconnects the graph. Such a set of vertices

is known as a cut set. Further, we say a graph is k-connected if κ(G) ≥ k.
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For a graph G, a (faithful) orthogonal representation of G of dimension k is a set of vectors in Rk,

one corresponding to each vertex, with the property that two vertices are nonadjacent if and only if their

corresponding vectors are orthogonal. An orthogonal representation of G in Rk is in general position if

every subset of k vectors is linearly independent. Note that this is equivalent to the existence of a positive

semidefinite matrix A ∈ S(G) with k = rank(A) = spark(A) − 1; A is called the Gram matrix of the

orthogonal representation [24].

Theorem 4.1 ([31, 32]). For a graph G with n vertices, the following are equivalent:

1. G is (n− k)-connected.

2. G has a general position orthogonal representation in Rk.

3. G has an orthogonal representation in Rk consisting of unit vectors such that for each vertex v the

vectors representing the vertices not adjacent to v are linearly independent.

A consequence of Theorem 4.1 is that the minimum semidefinite full spark rank is dictated by the

connectivity of the graph, with mfsr+(G) = n − κ(G) for every graph G. Indeed, if the rank of a positive

semidefinite matrix drops below this threshold, then the spark may be forced to drop even further (recall

that, in general, δ(G) ≥ κ(G)):

Corollary 4.2. If A is a positive semidefinite matrix for a graph G with vertex connectivity κ(G) and

rank(A) < n− κ(G), then spark(A) ≤ n− δ(G)− 1.

Proof. If spark(A) > n− δ(G)− 1, then every set of n− δ(G)− 1 vertices is linearly independent. Since

every vertex has at most that many non-neighbors, every set of non-neighbors is linearly independent, which

implies G is (n− rank(A))-connected by Theorem 4.1.

The minimum semidefinite full spark rank of a graph may be strictly larger than the minimum semidef-

inite rank, as demonstrated by the following example. Let G = C4 � Pt be the Cartesian product of the

cycle C4 and the path Pt on t ≥ 2 vertices. The minimum semidefinite rank of G is 4t − 4 [38], but

δ(G) = 3 = κ(G), so any positive semidefinite matrix in S(G) with rank 4t − 4 cannot have full spark,

and the smallest possible rank of a full spark positive semidefinite matrix in S(G) is 4t − 3. That is,

4t− 3 = mfsr+(G) > mr+(G) = 4t− 4.

The minimum rank and minimum semidefinite rank of G = C4 � Pt coincide, with mr(G) = 4t− 4 [2],

so we can ask if there exists a full spark symmetric matrix for G that has minimum rank but is not positive

semidefinite. Perhaps surprisingly, we show in our next result that it is not possible to achieve a lower full

spark rank with arbitrary symmetric matrices. That is, mfsr(G) = mfsr+(G) = n− κ(G) for every graph G.

Theorem 4.3. A graph G is (n− k)-connected if and only if there exists A ∈ S(G) with k = rank(A) =

spark(A)− 1.

Proof. One direction follows from Theorem 4.1. For the other direction, let A ∈ S(G) with k =

rank(A) = spark(A) − 1 and suppose that G is not (n − k)-connected. Then, there exists a cut set α

of n− k− 1 vertices that leaves at least two connected components and we can write the matrix A(α) where

the rows and columns corresponding to α are removed in block form as

A(α) =

[
B 0

0 C

]
.
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Since A has rank k, A(α) has rank at most k but size (k + 1) × (k + 1), so that A(α) must be singular.

Without loss of generality, that means that B must also be singular. Since B is at most a k × k matrix,

A(α), and thus A, contains a singular k × k principal submatrix (any k × k submatrix of A(α) that has B

as a submatrix is singular because of the block structure). But this contradicts Theorem 3.1.

In light of Theorem 4.3, it is natural to ask if all of Theorem 4.1 could extend to arbitrary symmetric

matrices. While Theorem 3.1 tells us A ∈ S(G) with k = rank(A) = spark(A)− 1 has each k× k submatrix

invertible, smaller submatrices need not be invertible. For example,
0 0 3 1 4

0 2 4 4 4

3 4 −4 0 0

1 4 0 4 0

4 4 0 0 8

 ,

is a rank-three matrix in S(K2,3) (for the bipartite graph K2,3, note that κ(K2,3) = 2) with every 3 × 3

principal submatrix nonsingular but with singular principal submatrices of sizes two and one. In particular,

the 1×1 principal submatrix corresponding to vertex 1, the non-neighbor of one of the degree-three vertices,

is singular. Thus, we cannot extend Theorem 4.1 by focusing on principal submatrices; however, we do find

a full generalization by looking instead (in the spirit of spark) at linearly independent columns.

Theorem 4.4. For a graph G with n vertices, the following are equivalent:

1. G is (n− k)-connected.

2. There exists A ∈ S(G) with k = rank(A) = spark(A)− 1.

3. There exists A ∈ S(G) with k = rank(A) and such that for any vertex v of G the columns of A

corresponding to v and its non-neighbors are linearly independent.

4. There exists A ∈ S(G) with k = rank(A) and such that for any vertex v of G the columns of A

corresponding to the non-neighbors of v are linearly independent.

Proof. The equivalence of (1) and (2) is the content of Theorem 4.3, and we use it to show (2) implies

(3). If (2) is true, then the matrix A also satisfies (3): by (1) and using n− k ≤ κ(G) ≤ δ(G), each vertex v

has at most

n− δ(G)− 1 ≤ n− κ(G)− 1 ≤ n− (n− k)− 1 = k − 1,

non-neighbors; since spark(A) = k+1, the at-most-k columns of A corresponding to v and its non-neighbors

must be linearly independent.

Since (3) is stronger than (4), the main work is to prove that (4) implies (1). Suppose A ∈ S(G) with

rank(A) = k is such that for any vertex v the columns corresponding to the non-neighbors of v are linearly

independent but G is not n−k connected. Then, we can find a cut set C with n−k−1 vertices and can write

A =

M1 0 NT
1

0 M2 NT
2

N1 N2 M3

 ,
where M3 corresponds to the vertices of C. Let each Mi have size di × di (so d3 = n − k − 1) and rank

ri. Finally, let ni = di − ri for each i ∈ {1, 2}. We wish to show that rank(A) ≥ d1 + d2 in order to get a

contradiction. If d1 = r1 and d2 = r2, we are done. So assume without loss of generality that n1 > 0 and

n1 ≥ n2. By our assumption of (4), the column rank of
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M1

0

N1


is d1 and the column rank of  0

M2

N2


is d2. However, unlike the positive semidefinite case, all we can say is that the column rank ofM1 0

0 M2

N1 N2


is at least d1 + r2. And yet, by symmetry, the row rank of[

M1 0 NT
1

]
is d1, and thus so is its column rank. Because n1 > 0, M1 is singular, so there exists a set of r1 columns of

M1 and n1 columns of NT
1 that is linearly independent.

Let S be the set consisting of the first d1 columns of A, and let T be the n1 columns among the last d3
columns of A corresponding to the selected columns of NT

1 . Since S is a linearly independent set and the

selected n1 columns of NT
1 are not in col(M1), S∪T is a linearly independent set. Find a basis of r2 vectors for

col(M2), and let U denote the corresponding columns of A. A linear dependence relation among the vectors in

S∪U ∪T would imply a linear dependence relation among the vectors in U ∪T since the entries in rows d1+1

through d1 + d2 are zeros in each vector in S. Moreover, the entries in rows 1 through d1 are zeros in each

vector of U , implying a linear dependence relation among the vectors in T . Each of the sets S, U , and T is

linearly independent, so working backwards, all three linear dependence relations must be trivial, and S∪U∪T
is linearly independent. Thus A has at least d1+r2+n1 ≥ d1+r2+n2 = d1+d2 linearly independent columns.

5. Graphs with small spark. Recall from Section 2 that spark(G) ≥ 2 for any graph G with no

isolated vertices and that spark(G) is the size of the smallest possible fort in G. The following lemma

characterizes graphs G with spark(G) = 2.

Lemma 5.1. Let G be a graph. Then spark(G) = 2 if and only if there exists u, v ∈ V (G) such that (1)

uv ∈ E(G) and NG[u] = NG[v] or (2) uv /∈ E(G) and NG(u) = NG(v).

Proof. Assume spark(G) = 2. By Theorem 2.2, G has a minimum fort of size 2, say F = {u, v}. By the

definition of a fort, every vertex in V (G) \ F is adjacent to neither or both of the vertices in F , implying

either condition (1) or (2). Conversely, if condition (1) or (2) hold, then F = {u, v} is a fort in G; having

size 2, F must be a minimum fort.

If u, v ∈ V (G) satisfy either condition (1) or condition (2) of Lemma 5.1, then we refer to them as

duplicate vertices.

Lemma 5.2. Let G be a graph of order n ≥ 3. Then, G must have duplicate vertices if either of the

following conditions hold:
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1. mr(G) ≤ 2,

2. κ(G) ≥ n− 2.

Proof. Note that by Theorem 4.1, mr+(G) ≤ n−κ(G), so condition (2) implies condition (1). Therefore,

it suffices to prove that (1) implies the existence of duplicate vertices.

Assume mr(G) ≤ 2. By Theorem 9 of [9], G can be expressed as the union of at most two complete

graphs and of bipartite graphs. Suppose G consists of only complete graphs, in which case it must consist

of the union of exactly two complete graphs since G is connected. Then G is a complete bipartite graph of

order n ≥ 3 and therefore has two duplicate vertices. On the other hand, suppose G has a complete bipartite

graph as a component. This component must contain at least three vertices, and we can let u and v be

vertices in the same partite set; then NG(u) = NG(v), so NG[u] = NG[v], and u and v are duplicate vertices

in G.

Proposition 5.3. If G is a graph with spark(G) ≥ 3, then mr(G) ≥ 3 and κ(G) ≤ n− 3. In particular,

if spark(G) = 3 and A ∈ S(G) with spark(A) = 3, then A is not full spark.

Proof. Since spark(G) ≥ 3, G has no duplicate vertices by Lemma 5.1. The result then follows by

Lemma 5.2.

Proposition 5.4. If spark(G) = 2, then either G is a path on three vertices or mr(G) < n− 1.

Proof. If spark(G) = 2, then G has a pair of duplicate vertices by Lemma 5.1. If mr(G) = n− 1 then G

is a path Pn on n vertices [15], which can contain duplicate vertices only if n = 3.

Naturally, we can ask if an analogous result holds for graphs with larger spark. Unfortunately, increasing

the spark by 1 does not necessarily decrease the minimum rank’s bound by 1, as is illustrated by the following

example.

Example 5.5. Let G = Cn be a cycle on n vertices and let H be obtained from G by adding the edges

v1v4 and v1vn−2. Then, for n ≥ 5, it follows that H has no duplicate vertices, so spark(H) ≥ 3. On the

other hand, {v1, v3, vn−1} forms a fort in H. Hence spark(H) = 3. Finally, it is not difficult to deduce that

mr(H) = n− 2.

We saw in Theorem 4.3 that considering matrices in S(G) does not provide an advantage over positive

semidefinite matrices in achieving minimum rank and full spark. We may also consider matrices of minimum

rank and minimum spark. This is not necessarily achievable with a positive semidefinite matrix, as the next

example demonstrates. The hypercube graph Q3 = C4 � P2 has minimum rank 4. The matrix H3 given in

[2, p. 1636] for the graph Q3 has rank 4 and spark 3. Since Q3 has no duplicate vertices, spark(G) > 2 by

Lemma 5.1, so H3 achieves minimum rank and minimum spark for Q3.

Proposition 5.6. If A ∈ S(Q3) is positive semidefinite and rank(A) = 4, then spark(A) = 4.

Proof. We have κ(Q3) = δ(Q3) = 3. Thus, spark(A) ≤ 4 by Corollary 4.2. Since Q3 has no duplicate

vertices, spark(A) > 2 by Lemma 5.1. Suppose that spark(A) = 3. Then, in the orthogonal representation

corresponding to A, we can find three vectors that are linearly dependent. That is, the dimension of their

span must be at most two. Consider the subgraph corresponding to these three vectors. It cannot be

complete as K3 is not a subgraph of Q3. If it has no edges, then all three vectors are orthogonal and cannot

be linearly dependent. If there is just one edge, then two of the vectors must be orthogonal to the third,

which would ensure they are linearly dependent (in a one-dimensional subspace), contradicting spark(A) > 2.

If there are two edges, then two of the vectors must be orthogonal to each other, say ~v1 and ~v2, and the
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third must then be a linear combination of both: α~v1 + β~v2 with αβ 6= 0. But then the vector representing

the third neighbor (in Q3) of the vertex represented by α~v1 + β~v2 would have nonzero dot product with at

least one of ~v1 and ~v2, a contradiction.

6. Further connections. Let A ∈ S(G) and v ∈ V (G). Denote by A(v) the principal submatrix of

A obtained by deleting v. The vertex v ∈ V (G) is a Parter vertex (P-vertex) for A ∈ S(G) if nul(A(v)) =

nul(A) + 1 (⇔ rank(A) = rank(A(v)) + 2) (see the original works [37, 40] and [30, 29] for more recent

related work on these topics). A Fiedler vertex (F-vertex) v ∈ V (G) for A ∈ S(G) is a vertex that satisfies

nul(A(v)) ≥ nul(A). Both Parter and Fiedler vertices are interconnected with zero coordinates in null

vectors:

Lemma 6.1 ([29, Theorem 2.1]). Let A ∈ S(G) and v ∈ V (G). Then, nul(A(v)) ≥ nul(A) if and only

if every null vector of A has a 0 in the v-th coordinate.

According to Kim and Shader [30], if we partition a singular symmetric matrix A as A =

[
a xT

x B

]
, then

vertex 1 is an F-vertex if and only if

[
a

x

]
is not in the column span of

[
xT

B

]
, and vertex 1 is a P-vertex

if and only if x is not in the column span of B. Since a positive semidefinite matrix automatically has

the row/column inclusion property [25], a positive semidefinite matrix cannot have a P-vertex. And if A

is positive semidefinite, then a ≥ yTBy where x = By, so vertex 1 is a F-vertex if and only if a > yTBy.

In that case, we can decrease the rank of A by exactly one if we replace a with yTBy. Thus a positive

semidefinite matrix in S(G) of minimum (semidefinite) rank cannot have an F-vertex.

Instead of just considering the support of a particular null vector, there is also interest in considering

the support of the null space. That is, for a matrix A in Sn(R), we define the support of the null space of

A as

suppN(A) = {i | xi 6= 0 for some x ∈ N(A)}.

An important well-known fact for matrices in S(T ), where T is a tree, is the following:

Proposition 6.2 ([35, 19]). Suppose T is a tree and A ∈ S(T ). If suppN(A) = V (T ), then

dimN(A) = 1.

The minimum semidefinite rank of a tree T on n vertices is n − 1. Hence, the converse of Proposition

6.2 states that a matrix A realizing this minimum must have full null support. The following theorem shows

that this in fact holds not just for trees but for all graphs.

Theorem 6.3. If a positive semidefinite matrix A ∈ S(G) has rank(A) = mr+(G), then suppN(A) =

V (G).

Proof. A positive semidefinite matrix of minimum (semidefinite) rank cannot have an F-vertex, so no

vertex has a zero component in every null vector.

For trees, full null space support turns out to be equivalent to full spark for singular matrices.

Theorem 6.4. Let T be a tree and A ∈ S(T ) be singular. Then, the following statements are equivalent:
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1. A has full spark: spark(A) = rank(A) + 1.

2. A has full null space support, that is, suppN(A) = V (T ).

3. A does not have a Parter vertex.

Proof. (1)⇔ (2): Suppose k = rank(A) = spark(A)− 1. By Theorem 4.3, T must be (n− k)-connected,

which implies k = n − 1 since T is a tree and A is singular. Since dimN(A) = 1 and A has full spark,

Theorem 3.1 implies suppN(A) = V (T ).

Conversely, suppose suppN(A) = V (T ). By Proposition 6.2, dimN(A) = 1. This implies that every

nontrivial null vector of A has only nonzero entries. By Theorem 3.1, A must have full spark.

(2)⇔ (3) follows from Lemma 6.1.

We note here for completeness that if mr(G) < mr+(G), then a minimum rank matrix need not have an

F-vertex. Suppose G = K2,3. Then mr(G) = 2 and mr+(G) = 3. The adjacency matrix of G is a minimum

rank (indefinite) matrix that does not have an F-vertex.

In [23] Hogben and Shader, define a real matrix X to be generic if every square submatrix of X is

nonsingular. Then the generic nullity of a nonzero A ∈ Rn×n is

GN(A) = max{k | X ∈ Rn×k, AX = 0, X is generic},

and the maximum generic nullity of a graph is

GM(G) = max{GN(A) | A ∈ S(G)}.

For any graph G, note that GM(G) ≥ 1 since the all-ones vector belongs to the null space of the graph’s

Laplacian matrix. We end with an interesting relation between rank, spark, and maximum generic nullity

of a graph.

Theorem 6.5. If there exists A ∈ S(G) such that rank(A) = k and spark(A) = k + 1, then GM(G) ≥
n− k.

Proof. By Theorem 3.1, each k× k principal submatrix of A is nonsingular. If k = n, the result is clear,

so assume k < n. Let X be a n× (n− k) matrix whose columns form a basis for the null space of A, so that

AX = 0. By Theorem 3.1, X is generic. Thus, GN(A) = n− k and GM(G) ≥ n− k.

Theorem 4.3 also has an implication for generic nullity. An immediate consequence, by Theorem 6.5, is

that GM(G) ≥ κ(G) for any graph G (Corollary 4.2 of [23]). If the inequality is strict, we can say more:

Corollary 6.6. If GM(G) > κ(G), then any matrix A ∈ S(G) with GN(A) = GM(G) satisfies

GN(A) < nul(A).

Proof. Suppose GM(G) = k where k > κ(G), and let A ∈ S(G) with GN(A) = k. Then there exists a

generic matrix X ∈ Rn×k such that AX = 0, implying nul(A) ≥ k. Suppose nul(A) = k. Then rank(A) =

n− k and A is full spark by Theorem 3.1. But this contradicts mfsr(G) = n− κ(G).
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rectangular, cylindrical, and Möbius grids. Discrete Appl. Math., 282:35–47, 2020.

[11] B. Brimkov, C.C. Fast, and I.V. Hicks. Computational approaches for zero forcing and related problems. European J.

Oper. Res., 273(3):889–903, 2019.

[12] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[13] D.L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization.

Proc. Natl. Acad. Sci. USA, 100(5):2197–2202, 2003.

[14] Y.C. Eldar and G. Kutyniok, editors. Compressed Sensing: Theory and Applications. Cambridge University Press,

Cambridge, 2012.

[15] S.M. Fallat and L. Hogben. The minimum rank of symmetric matrices described by a graph: a survey. Linear Algebra

Appl., 426(2–3):558–582, 2007.

[16] S.M. Fallat and S. Nasserasr. On the null space structure associated with trees and cycles. J. Combin. Math. Combin.

Comput., 85:253–272, 2013.

[17] R. Fernandes. The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose

graph is a tree. Spec. Matrices, 3:1–17, 2015.

[18] K. Fetcie, B. Jacob, and D. Saavedra. The failed zero forcing number of a graph. Involve, 8(1):99–117, 2015.

[19] M. Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Math. J., 25(100)(4):607–618, 1975.

[20] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of

Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979.

[21] I.V. Hicks, B. Brimkov, L. Deaett, R. Haas, D. Mikesell, D. Roberson, and L. Smith. Computational and theoretical

challenges for computing the minimum rank of a graph. INFORMS J. Comput., 34(6):2868–2872, 2022.

[22] L. Hogben, J.C.-H. Lin, and B.L. Shader. Inverse Problems and Zero Forcing for Graphs. Mathematical Surveys and

Monographs. American Mathematical Society, 2022.

[23] L. Hogben and B. Shader. Maximum generic nullity of a graph. Linear Algebra Appl., 432(4):857–866, 2010.

[24] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 2 edition, 2012.

[25] C.R. Johnson. Olga, matrix theory and the Taussky unification problem. With the assistance of Shaun Fallat. Special

issue in memory of Olga Taussky Todd. Linear Algebra Appl., 280(1):39–49, 1998.

[26] C.R. Johnson, C. Jordan-Squire, and D.A. Sher. Eigenvalue assignments and the two largest multiplicities in a Hermitian

matrix whose graph is a tree. Discrete Appl. Math., 158(6):681–691, 2010.

[27] C.R. Johnson and A.L. Duarte. On the possible multiplicities of the eigenvalues of a Hermitian matrix whose graph is a

tree. Linear Algebra Appl., 348:7–21, 2002.

[28] C.R. Johnson and C.M. Saiago. Eigenvalues, multiplicities and graphs, volume 211 of Cambridge Tracts in Mathematics.

Cambridge University Press, Cambridge, 2018.

[29] C.R. Johnson and B.D. Sutton. Hermitian matrices, eigenvalue multiplicities, and eigenvector components. SIAM J.

Matrix Anal. Appl., 26(2):390–399, 2004/05.

[30] I.-J. Kim and B.L. Shader. On Fiedler- and Parter-vertices of acyclic matrices. Linear Algebra Appl., 428(11):2601–2613,

2008.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 591-606, November 2023.

L. Deaett et al. 606

[31] L. Lovász, M. Saks, and A. Schrijver. Orthogonal representations and connectivity of graphs. Linear Algebra Appl.,

114/115:439–454, 1989.

[32] L. Lovász, M. Saks, and A. Schrijver. A correction: Orthogonal representations and connectivity of graphs. Linear Algebra

Appl., 313(1):101–105, 2000.

[33] G. Marsaglia and G.P.H. Styan. When does rank (A + B) = rank(A) + rank(B)? Canad. Math. Bull., 15:451–452, 1972.

[34] K.H. Monfared and B.L. Shader. Construction of matrices with a given graph and prescribed interlaced spectral data.

Linear Algebra Appl., 438(11):4348–4358, 2013.

[35] P. Nylen. Null space structure of tree-patterned matrices. Linear Algebra Appl., 279(1):153–161, 1998.

[36] P.M. Nylen. Minimum-rank matrices with prescribed graph. Linear Algebra Appl., 248:303–316, 1996.

[37] S.V. Parter. On the eigenvalues and eigenvectors of a class of matrices. J. Soc. Indust. Appl. Math., 8:376–388, 1960.

[38] T. Peters. Positive semindefinite maximum nullity and zero forcing number. Electronic J. Linear Algebra, 23:815–830,

2012.

[39] Y. Shitov. On the complexity of failed zero forcing. Theor. Comp. Science, 660:102–104, 2017.

[40] G. Wiener. Spectral multiplicity and splitting results for a class of qualitative matrices. Linear Algebra Appl., 61:15–29,

1984.


	Introduction
	Spark and forts of graphs
	Spark and rank of matrices associated with a graph
	Spark and connectivity of graphs
	Graphs with small spark
	Further connections
	References

