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SPARKS OF SYMMETRIC MATRICES AND THEIR GRAPHS*
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Abstract. The spark of a matrix is the smallest number of nonzero coordinates of any nonzero null vector. For real
symmetric matrices, the sparsity of null vectors is shown to be associated with the structure of the graph obtained from the
off-diagonal pattern of zero and nonzero entries. The smallest possible spark of a matrix corresponding to a graph is defined as
the spark of the graph. Connections are established between graph spark and well-known concepts including minimum rank,
forts, orthogonal representations, Parter and Fiedler vertices, and vertex connectivity.
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1. Introduction. Denote the set of all real symmetric n x n matrices by S, (R), and suppose A =
[a;j] € Sp(R). We say G(A) is the graph of A if G(A) has the vertex set V' = {v1,v2,...,v,} and edge set
E = {vv; | a;; #0, i # j}. Note that G(A) is independent of the values of the diagonal entries of A. On
the other hand, if G is a graph of order n (i.e., |G| = |V(G)| = n) with vertex set {v1,va,...,v,}, then
the set of real symmetric matrices described by the graph G is given by S(G) = {4 € S,(R) | G(A) = G}.
Here and in what follows, we consider only simple, undirected graphs G = (V(G), E(G)). One of the
most captivating and unresolved problems associated with the class S(G) is the so-called inverse eigenvalue
problem for graphs, abbreviated as IEP-G (see [1, 2, 4, 5, 8, 22, 28]). This fundamental problem asks for a
complete description of the possible spectra realized by the set S(G) for a given graph G. The IEP-G has
garnered significant attention over the past 30 years with many fascinating advances and applications (see,
e.g., the books [22, 28] and the references therein). However, a complete general resolution is still very much

elusive. Notwithstanding this, researchers have developed a wealth of results, implications, and applications
tied to the IEP-G (see [6] for a recent example). In particular, a number of related concepts and parameters
have been explored and have shed light on different aspects of the IEP-G. The minimum rank of a graph G
is defined to be mr(G) = min{rank(A) | A € S(G)}. The mazimum nullity (or mazimum corank) of a graph
G is defined to be M(G) = max{nul(A) | A € S(G)} =n — mr(G), where nul(A) denotes the nullity of A or
the dimension of the null space of A, written as N(A). The minimum semidefinite rank mr, (G) is defined
analogously as the minimum rank over all positive semidefinite matrices in S(G). (We refer the reader to
the works [7, 9, 17, 26, 27, 36].) The column space of A is denoted col(A).
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While the primary focus on the IEP-G has been on the potential list of eigenvalues of matrices in
S(G), there is also justified interest in studying the associated eigenvectors or zero/nonzero patterns of the
associated eigenvectors. One of the earliest results along these lines is by Fiedler [19] where the eigenvectors
of matrices associated with connected acyclic graphs (or trees) were studied. One by-product of this work
was the realization that investigating the zero coordinates of an eigenvector leads to certain implications
about a graph (or in the case of [19] a tree). Since Fiedler’s pioneering work in 1975, research into the
possible patterns of eigenvectors for matrices associated with a graph has been developed along a number of
lines, including nodal domains, Laplacian eigenvectors (e.g., Fiedler vectors), and more recently zero forcing
on graphs (see also [16, 34, 35, 36]). We note here that it is sufficient to study the zero/nonzero patterns of
null vectors of A € S(G), since any eigenvector x corresponding to the eigenvalue A of A can be considered
as a null vector of the matrix A — A\ € S(G).

As our work relies heavily on the theory of graphs, we list some useful notation and provide some relevant
terminology here before we discuss zero forcing and spark for graphs. A subgraph H = (V(H),E(H)) of
G = (V(G),E(G)) is a graph with V(H) C V(G) and E(H) C E(G); H is an induced subgraph of G if
E(H) = {vw € E(G) | v,w € V(H)}. The complement of G = (V, E) is the graph G = (V, E), where E
consists of all pairs of vertices in V that are not contained in E. We say two vertices v, w are adjacent,
or are neighbors, if vw € E, and we may write this as v ~ w. Let Ng(v) = {w € V | w ~ v} be the
open neighborhood of v and denote its cardinality by deg(v) = |Ng(v)|. The closed neighborhood of v is
Ng[v] = Ng(v) U {v}. The minimum degree of the graph is § = §(G) = min{deg(v) | v € V(G)}.

A path is a graph, denoted P,, with V' = {v1,...,v,}, where v1,...,v, are distinct, and E = {v;v;41 |
i=1,....,n—1}. A cycle C,, on n vertices V = {vy,...,v,} has E = {vu;41 | i =1,...,n — 1} U{v,v1}.
A graph is connected if for every pair of distinct vertices v and u there is a path from v to u (and thus
also from u to v). A tree is a connected graph with no cycles. A complete graph K, on n vertices has
E = {vv; | i # j}. A complete bipartite graph K, has vertex set V = V; U Vs, where |Vi| = m and
[Va| = n, and edge set E = {vv; | v; € Vi, vj € Vo}. If G = (V(G),E(G)) and H = (V(H), E(H)) are two
graphs, then the Cartesian product of G and H, denoted by GU H, is the graph with vertex set V(G) x V(H)
and two vertices (u,v) and (w, z) are adjacent in GO H if and only if u = w and vz € E(H) or uw € E(G)
and v = z.

Zero forcing is a coloring process involving the vertices of a graph. At the beginning of the process, each
vertex is either blue or white, and each type of zero forcing follows a specific color change rule which can
change the color of a white vertex to blue. The process stops when no more vertices can be colored blue.
The standard zero forcing color change rule is to change the color of a white vertex w to blue if w is the
unique white neighbor of a blue vertex v. If an initial subset of blue vertices can, after repeated application
of the color change rule, change all vertices to blue, then this subset is referred to as a zero forcing set. Zero
forcing was introduced to provide a combinatorial upper bound for M (G) and, in particular, detects subsets
of coordinates of a null vector x of any A € S(G) that, if designated as zero, imply = must in fact be the
zero vector. As such, it seems natural to study the zero coordinates in null vectors (see [2, 3, 4, 22] for more
details).

More precisely, given a real vector x, the support of x is the collection of indices i for which x; # 0. We
denote the support of by supp(z). Suppose A € S(G) and Az = 0. A basic consequence of the zero forcing
process outlined above is that if supp(x) is disjoint from a zero forcing set for G, then z = 0.
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Suppose B C V is initially colored blue, and that B’ is the set of all blue vertices obtained from B by
repeatedly applying the color change rule. We call B’ the closure of B. If nonempty, the subset V \ B’
(the remaining white vertices) is known as a fort in G. In fact, a fort in a graph is a nonempty subset F' of
vertices such that no vertex outside of F' is adjacent to exactly one vertex of F' (see [11]).

Forts are naturally connected to the support of null vectors. As we are interested in sparse null vectors,
we seek to determine forts of minimum size in a given graph. Finally, it is a simple observation in basic
linear algebra that if x is in N(A), for any matrix A, then the columns of A that correspond to supp(x)
must form a linearly dependent set. This leads us to the notion of the spark of a matrix, which we present
in the next section.

This paper is organized into sections combining various topics with the spark of a graph. In Section 2,
we define the spark of a graph and explore a connection with forts in the graph. In Section 3, we discuss
relationships between the concepts of spark and rank. Then in Section 4, we investigate an association
between spark and the vertex connectivity of a graph, and we generalize a theorem concerning orthogonal
representations of graphs. In Section 5, we pay particular attention to graphs with small spark, and we close
our work with some further connections in Section 6.

2. Spark and forts of graphs. As our main focus is studying the support of null vectors, and, in
particular, to exhibit null vectors that have small support, we begin with the notion of the spark of a matrix.
Namely, the spark of a matrix A is the smallest integer s such that there exists a set of s columns in A
which are linearly dependent, i.e., spark(A) is the minimum size of the support of a nonzero null vector
of A. If A € 5,(R) is nonsingular, spark(A4) is defined to be n + 1. Sparse solutions to underdetermined
linear systems, and thereby the concept of spark, have gained significant attention in compressed sensing
(see [12, 13, 14]). Computing the spark of a matrix is known to be NP-hard [20, Problem A6.MP5]. We
define the spark of a graph G to be

spark(G) = Agg(nG) spark(A).
Note that, for every graph G, the Laplacian matrix of G gives a singular matrix in S(G), showing that
spark(G) < n. In addition, it is not hard to see that spark(G) = 1 if and only if G contains an isolated
vertex. Furthermore, if G is disconnected, then spark(G) is obtained by simply minimizing the spark across
all of the connected components of G. Thus, we assume from this point on that all graphs considered are
connected and hence contain no isolated vertices.

We illustrate the above notions with the following example.

EXAMPLE 2.1. Let G be a graph on 5 vertices consisting of a 5-cycle on vertices {1,2,3,4,5} with two
additional edges 13 and 25. Suppose A € S(G) is given by

0 1
-1

and = =

b
Il
— O = = =

1
1
1
0
1

O = W = =
W = O = =

0
1 0
3 0
1 0
Observe that Ax = 0, and hence, spark(A) < 2. Since G is connected (or more precisely has no isolated

vertices), it is clear that spark(G) > 1. Thus, spark(A) = spark(G) = 2. Finally, we note that the pair
{1,2} forms a fort in G.
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The connection between the support of a null vector z for some A € S(G) and a fort in G in the
previous example is a known result (appearing recently in [21]); we provide a proof here for completeness, as
our primary aim is studying the support of null vectors. Recall that the columns of A € S(G) are indexed
by the vertices of G, and we use the column indices and the graph vertices interchangeably.

THEOREM 2.2. For any matriz A € S(G), the support of any nonzero null vector of A is a fort of G.
Conversely, for any fort F' of G and any vector x whose support is F, there is a matriz A € S(G) that has
x as a null vector. That is, spark(G) is the cardinality of a minimum fort of G.

Proof. Given a matrix A € S(G) and a vector © # 0 such that Az = 0,let W = {j € V(G) | j €
supp(x)}. Suppose there exists i € V(G) \ W with exactly one neighbor j in W. Then,

0 = [Az]; = agz;,
where a;; # 0. Thus, z; = 0, contradicting j € supp(z). So W is a fort of G.

Conversely, assume F is a fort of G such that F' = {i € V(G) | i € supp(x)} for some nonzero vector z.
We construct A by performing the following steps:

1. First let A be the adjacency matrix of G. In the next two steps, we modify certain nonzero entries
of A.

2. Let S={i|z; =0} =V(G)\ F. For i € S, let B; = Ng(i) \ S = Ng(i) N F. Note that |B;| # 1 by
the definition of a fort. For j € B; and j # max B;, set A[i, j] = A[j,i] = 1/x;; if j = max B;, then
set Al j] = Al i) = (1 — |Bil) /.

3. For k € supp(z), assign A[k, k] = — Ay _ _ X Wi

Tk Tk

Forie I,
S agT;
[Az]; = agz; + Zaijxj = —733&; s+ Zaijxj =0.
J#i ‘ J#i

Forie V(G)\ F,

[AJ?L = Zaijxj “+ a;;x; + Z AijT5 = Zaijxj

i jri j~i
= Y agmt Y agmp= ) agzy
jENG(i)ﬁS jENc;(i)\S JEB;
1 1 —|B;]
= g —Zj + ————Tmax B, = 0. O
ZTj x B;
jeB; 7 max B
j#max B;

Although spark(G) is defined in reference to the matrices in S(G), Theorem 2.2 shows that in fact this
parameter can be defined entirely in graph-theoretic terms. That is, the spark of a graph does not have to
be defined in terms of the spark of any matrices.

The next two propositions explore possible sizes of forts of graphs in more detail.

PROPOSITION 2.3. Let G be a graph with minimum degree 6. Then, every subset W C V(G) with
[W|=n—m+1is a fort of G if and only if m <.

Proof. Assume m < §, and consider W C V(G) with [W| =n—-m+1>n—3§+ 1. For any vertex
v ¢ W, there are at most § — 2 vertices not in W U {v}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 39, pp. 591-606, November 2023.

595 Sparks of Symmetric Matrices and their Graphs

Conversely, suppose m > ¢ and vy € V(G) such that Ng(vo) = {v1,v2,...,vs}. By definition, any fort
must contain at least 2 vertices, so we may assume m < n — 1. Then § < n — 2, and we can label

V(G) ={vo,v1,...,05,8542,--,5n}

Since m + 1 > 6 + 2, the set W = {v1, Sm+1, - - ., Sn} satisfies [W| =mn —m + 1 but is not a fort. |

PROPOSITION 2.4. If every k-subset of V(G) is a fort of G, then every (k + 1)-subset of V(G) is a fort
of G.

Proof. Let every k-subset of V(G) be a fort of G, and let W C V(G) such that |W| = k+1. In particular,
|[W| > 2. Assume W is not a fort, so there exists € V(G) \ W such that Ng(z) "W = {w; }, where

W = {wl,wg,...,wk_,_l}.

Then, W/ = W \ {w2} is not a fort since z € V(G) \ W’ and Ng(z) N W’ = {w;}. But |W'| =k, giving us
a contradiction. O

In light of Proposition 2.4, it is interesting to note that simply adding vertices to a fort does not guarantee
that the resulting set is a fort. We present examples of graphs that skip fort sizes after Theorem 3.3.

Related to the concept of a fort is the notion of a failed zero forcing set [18, Definition 1.4]. This is
simply a subset of vertices that is not a zero forcing set; however, it is interesting to ask for the largest size
of such a set. This is known as the failed zero forcing number F(G) of the graph G [18]. The complement
of a failed zero forcing set has also been called a zero blocking set, with the smallest size of such a set called
the zero blocking number, and denoted by Block(G) [10]. As noted in [10], a set is a failed zero forcing set
of maximum size if and only if its complement is a fort of minimum size. Using Theorem 2.2, it follows that
Block(G) and spark(G) are the same. In summary, we have the following observation.

OBSERVATION 2.5. Let G be a graph onn vertices. Then Block(G) = spark(G) and F(G) = n—spark(G).

Hence, the problem of determining the failed zero forcing number of a graph and the problem of deter-
mining its zero blocking number are both equivalent to determining the spark of the graph. In fact, this
problem, like that of computing the spark of a matrix, is NP-hard [39].

3. Spark and rank of matrices associated with a graph. The spark and rank of a matrix A € S(G)
are clearly related, as the definitions give directly that spark(A4) < rank(A)-+1. In this section, we investigate
when this inequality becomes an equality. We say a matrix has full spark if spark(A) = rank(A4) + 1.
Analogously to mr(G) and mry(G), we define the minimum full spark rank of a graph G as mfsr(G) =
min{rank(A) | A € §(G), rank(A) = spark(A) — 1} and mfsr (G) as the corresponding minimum full spark
rank for positive semidefinite matrices.

The next result is a core result in linear algebra and lays the groundwork for establishing a relationship
between spark and rank.

THEOREM 3.1. Let A be a symmetric n X n real matriz with rank(A) = k. If k = n, then each k x k
principal submatriz of A is nonsingular and A has full spark.

If k <n and X is an n x (n—k) real matriz with rank(X) = n—k such that AX = 0, then the following
are equivalent:
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1. Fach k x k principal submatriz of A is nonsingular.
2. Fach (n — k) x (n — k) submatriz of X is nonsingular.
3. spark(A) =k + 1.

Proof. If k = n the result is clear, so assume k < n.

B CT
cC M
Zis (n — k) x (n — k), and argue that B is singular if and only if Z is singular.

(1) & (2): Without loss of generality, we can write A = [ } and X = P;], where B is k x k and

If Z is singular, then there exists a nonzero vector v with Zv = 0. Since rank(X) = n — k, Yv must
be nonzero, and so Xwv is a nonzero vector in the null space of A. Then, Yv is a nonzero vector in the null
space of B, so B is singular.

If B is singular, then there exists a nonzero vector v with v’ B = 0. If v"C7T # 0, then vTCTZ = 0

B
implies we are done. So assume v7C7T = 0. Then, [C} v = 0, so that B} is a nonzero vector in the null
space of A. Since rank(X) = n — k, the columns of X are a basis for the null space of A. Thus, the vector

[8} is a nontrivial linear combination of the columns of X, and so Z is singular.

(1) = (3): If each k x k principal submatrix of A is nonsingular, then each set of k columns of A is
linearly independent and spark(A) > k + 1; that is, A has full spark.

(3) = (1): Assume spark(A4) = k + 1, and suppose that there exists a k x k principal submatrix B of
B
C
block form be a matrix whose columns form a basis for the null space of A, so that AX = 0. By the proof
of (1) & (2), the (n — k) x (n — k) matrix Z must also be singular, and there exists a nonzero vector w

T
A that is singular. Without loss of generality, write A = [ 34] in block form. Let X = PZ/} in similar

with Zw = 0. But then P;} w = {Yw

0 } is a nonzero vector (if Yw = 0, then the columns of X are linearly

dependent) in the null space of A, so that BYw = CYw = 0. But then {g} Yw = 0 implies that the

columns of [g} are linearly dependent, which contradicts spark(A4) =k + 1. ]

We next consider a bordering-type result concerning the spark of a symmetric matrix.

LEMMA 3.2. Suppose A is an n X n real symmetric matriz. Consider the bordered (n + 1) x (n + 1)
2T Ar 2T A

Ax A

symmetric matrix given by B = [ } for some vector x. Then

1. rank(B) = rank(A);
2. if |supp(z)| = k, then spark(B) < k + 1.
Proof. Statement (1) is trivial. For (2), observe that the vector {;1} is a null vector for B, and the
result follows. ]
A simple consequence of the above lemma can be deduced if we assume in addition that A is invertible.

Then, rank(B) = n, and thus, it follows that spark(B) = |supp(z)| + 1, since the dimension of the null space
of B is one.
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Given a graph G with order n, we are interested in finding all possible ordered pairs of integers (k, s),
1<k <nand?2<s<k+1, such that there exists A € S(G) with rank(A) = k and spark(A) = s. Note that
k =n if and only if s =n 4+ 1. After finding a matrix with some fixed spark s and minimum corresponding
rank £ > s — 1, the next result shows that all higher ranks are achievable with the same spark. Before we
state this result, we recall the following observation: for any symmetric matrix A, the jth standard basis
vector e; € col(A) if and only if j & supp(x) for all € N(A), which follows easily from the fact that the
null space of a symmetric matrix A is the orthogonal complement of the column space of A.

THEOREM 3.3. If A € §(G) such that rank(A) = k < n—1 and spark(A) = s, then there exists a matriz
B € S8(G) such that rank(B) = k + 1 and spark(B) = s.

Proof. Assume A € S(G) such that rank(A) = k < n — 1 and spark(A) = s. Let us choose a basis for
the null space of A
N(A) = span{n1,n2,73, -, -1},
such that |supp(m)| = s.
Let n; = (yi1, Yizs - - -, Yin) T for 1 <i < n — k. We claim there is a matrix B = A + D € S(G) where D

is a diagonal matrix, such that ny € N(B), n2 ¢ N(B) and N(B) C N(A). Since |supp(n)| = s, we know
supp(n1) # supp(n2), otherwise there would be a null vector whose support size is smaller than s.

So we can choose j € supp(n2) \ supp(n1). Choose a new basis for N(A) such that

N(A) = span{n,n2, 05, - -, Mo_i}»

with n} = z; ng —n; for 3 <i<mn —k. Then, j & supp(n;) for 3 <i <n—k and j & supp(n).

Let e; represent the jth standard basis vector in R" and consider ejejT = F;;. We see that
(A+ Ejj)n = An+ Ejjn = Ejjn = eje; n,

for n € N(A). Notice that e; & col(A) since eJTnQ = yo; # 0 and col(4) = N(A)L. By [33], this implies
rank(A + E;;) = rank(A) + rank(E;;) =k + 1.

Now 2 € N(A + Ejj) but
{771777{’)7 T 7"77/’7,7](7} - N(A+Ejj)>

since each vector in the set is orthogonal to e;. This gives us

N(A + Ejj) = Span{nlvnév ey 77;7,716})

since this is a set of n—k —1 linearly independent vectors in N(A+ E;;) where dim(N(A+E;;)) =n—k—1.
Since N(A+ Ej;) C N(A), |supp(m)| = s, and m1 € N(A+ Ej;), we have that spark(A + E;;) = s. |

We note here that given A € S(G) we cannot necessarily find another matrix B € S(G) such that
spark(B) = spark(A) + 1 and rank(B) = rank(A). This follows, in part, due to the fact that if G has a fort
of size s this may not guarantee that G has a fort of size s +1 or s — 1. Define the fort sequence of G to
be the sequence of the form (sa, s3,...,s,) where G has n vertices and s; is the number of forts in G with i
vertices. Note that we are beginning the fort sequence at so; since we only consider graphs without isolated
vertices, all graphs we consider have s; = 0. There are many examples of graphs that skip fort sizes.

For example, consider a spider graph (also known as a generalized star), which is a tree with one vertex
having degree greater than 2, the central vertez, and all other vertices having degree at most 2. The paths
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radiating out from the central vertex are called the legs and do not contain the central vertex. We denote
such a graph as sp(ny,na,...,n;) where [ is the degree of the largest-degree vertex (i.e., the number of legs)
and n; is the number of vertices in each leg. So the order of sp(nq,ng,...,ny) is 1+ n;.

Now consider a special class of spider graphs of the form sp(m,1,1), where m > 3, depicted in Fig. 1.

a

FIGURE 1. Spider graph sp(m,1,1)

The smallest fort size is 2 corresponding to the unique minimum fort {a,b}. Any fort F C V with
|F| > 3 must contain the vertex v,,, otherwise v;41 where ¢ = max{j < m | v; € F'} (here considering c as
vg) would be adjacent to only one vertex in F'. The next smallest fort is a minimum fort for P42, which
arises as the induced subgraph of G on either {a,c,v1,...,v,,} or {b,c,v1,...,vmn}. The path P42 has a
minimum fort of size [“42]; note that the minimum fort does not contain c for either parity of m. So the
fort sequence for sp(m,1,1) is of the form (1,0,...,0, S[masys. .., Sm+3) With s; # 0 for [3] < <m+3.

Moreover, if sp(m,1,...,1) has 3 <1 < m legs, then the fort sequence is of the form
(82,...,817170...,O,S[mT%-‘7...,Sm+l),

where s; 0 for 2 <i<l—1or (mTJF?’W < ¢ < m+I. Hence, there is no bound on the size of the gap between
two nonzero fort sizes in a graph or constraints on where in the sequence a gap can occur.

An example of a graph that is not a tree and skips a fort size is the friendship graph F3 as shown in
Fig. 2. This graph has forts of size 2 and 4 but no forts of size 3. Indeed, any pair of adjacent non-central
vertices forms a fort, but any set S of three vertices in V' = V(F3) must leave at least one vertex in V' \ S
adjacent to only one vertex in S; any pair of adjacent pairs of non-central vertices forms a fort of size 4. In
fact, F3 has fort sequence (3,0,11,12,7,1).

FIGURE 2. Friendship graph F3

4. Spark and connectivity of graphs. The vertex connectivity of a graph G, denoted by (G), is
defined as the minimum size of a set of vertices whose deletion disconnects the graph. Such a set of vertices
is known as a cut set. Further, we say a graph is k-connected if k(G) > k.
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For a graph G, a (faithful) orthogonal representation of G of dimension k is a set of vectors in RF,
one corresponding to each vertex, with the property that two vertices are nonadjacent if and only if their
corresponding vectors are orthogonal. An orthogonal representation of G in R* is in general position if
every subset of k vectors is linearly independent. Note that this is equivalent to the existence of a positive
semidefinite matrix A € S(G) with k£ = rank(A) = spark(A) — 1; A is called the Gram matriz of the
orthogonal representation [24].

THEOREM 4.1 ([31, 32]). For a graph G with n vertices, the following are equivalent:

1. G is (n — k)-connected.

2. G has a general position orthogonal representation in RF.

3. G has an orthogonal representation in R¥ consisting of unit vectors such that for each vertex v the
vectors representing the vertices not adjacent to v are linearly independent.

A consequence of Theorem 4.1 is that the minimum semidefinite full spark rank is dictated by the
connectivity of the graph, with mfsr; (G) = n — x(G) for every graph G. Indeed, if the rank of a positive
semidefinite matrix drops below this threshold, then the spark may be forced to drop even further (recall
that, in general, 6(G) > k(G)):

COROLLARY 4.2. If A is a positive semidefinite matriz for a graph G with vertex connectivity k(G) and
rank(A4) < n — k(Q), then spark(A) <n —§(G) — 1.

Proof. If spark(A) > n — 6(G) — 1, then every set of n — §(G) — 1 vertices is linearly independent. Since
every vertex has at most that many non-neighbors, every set of non-neighbors is linearly independent, which
implies G is (n — rank(A))-connected by Theorem 4.1. |

The minimum semidefinite full spark rank of a graph may be strictly larger than the minimum semidef-
inite rank, as demonstrated by the following example. Let G = C4 O P; be the Cartesian product of the
cycle C4 and the path P, on ¢t > 2 vertices. The minimum semidefinite rank of G is 4t — 4 [38], but
d(G) = 3 = k(G), so any positive semidefinite matrix in S(G) with rank 4¢ — 4 cannot have full spark,
and the smallest possible rank of a full spark positive semidefinite matrix in S(G) is 4t — 3. That is,
4t — 3 = mfsr; (G) > mry (G) = 4t — 4.

The minimum rank and minimum semidefinite rank of G = C4, O P; coincide, with mr(G) = 4t — 4 [2],
so we can ask if there exists a full spark symmetric matrix for G that has minimum rank but is not positive
semidefinite. Perhaps surprisingly, we show in our next result that it is not possible to achieve a lower full
spark rank with arbitrary symmetric matrices. That is, mfsr(G) = mfsr; (G) = n — k(G) for every graph G.

THEOREM 4.3. A graph G is (n — k)-connected if and only if there exists A € S(G) with k = rank(A) =
spark(A) — 1.

Proof. One direction follows from Theorem 4.1. For the other direction, let A € S(G) with k =
rank(A) = spark(A) — 1 and suppose that G is not (n — k)-connected. Then, there exists a cut set «
of n — k — 1 vertices that leaves at least two connected components and we can write the matrix A(«) where
the rows and columns corresponding to « are removed in block form as

Ala) = [zg g} .
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Since A has rank k, A(a) has rank at most k& but size (kK + 1) x (k + 1), so that A(«a) must be singular.
Without loss of generality, that means that B must also be singular. Since B is at most a k& X k matrix,
A(a), and thus A, contains a singular k x k principal submatrix (any k x k submatrix of A(«) that has B
as a submatrix is singular because of the block structure). But this contradicts Theorem 3.1. d

In light of Theorem 4.3, it is natural to ask if all of Theorem 4.1 could extend to arbitrary symmetric
matrices. While Theorem 3.1 tells us A € S(G) with k& = rank(A) = spark(A) — 1 has each k X k submatrix
invertible, smaller submatrices need not be invertible. For example,

0 0 3 1 4
0 2 4 4 4
34 -4 0 0],
1 4 0 4 0
4 4 0 0 8

is a rank-three matrix in S(Ks3) (for the bipartite graph K 3, note that (K5 3) = 2) with every 3 x 3
principal submatrix nonsingular but with singular principal submatrices of sizes two and one. In particular,
the 1 x 1 principal submatrix corresponding to vertex 1, the non-neighbor of one of the degree-three vertices,
is singular. Thus, we cannot extend Theorem 4.1 by focusing on principal submatrices; however, we do find
a full generalization by looking instead (in the spirit of spark) at linearly independent columuns.

THEOREM 4.4. For a graph G with n vertices, the following are equivalent:

1. G is (n — k)-connected.

2. There exists A € S(G) with k = rank(A) = spark(A) — 1.

3. There exists A € S(G) with k = rank(A) and such that for any vertex v of G the columns of A
corresponding to v and its non-neighbors are linearly independent.

4. There exists A € S(G) with k = rank(A) and such that for any vertex v of G the columns of A
corresponding to the non-neighbors of v are linearly independent.

Proof. The equivalence of (1) and (2) is the content of Theorem 4.3, and we use it to show (2) implies
(3). If (2) is true, then the matrix A also satisfies (3): by (1) and using n — k < k(G) < §(G), each vertex v
has at most
n—0G) —1<n—k(G)—1<n—-(n—-k)—1=k—-1,
non-neighbors; since spark(A4) = k+ 1, the at-most-k columns of A corresponding to v and its non-neighbors

must be linearly independent.

Since (3) is stronger than (4), the main work is to prove that (4) implies (1). Suppose A € S(G) with
rank(A) = k is such that for any vertex v the columns corresponding to the non-neighbors of v are linearly
independent but G is not n— k connected. Then, we can find a cut set C' with n—k —1 vertices and can write

M, O NlT
A=10 My, NI,
Ny Ny Ms

where M3 corresponds to the vertices of C. Let each M; have size d; x d; (so d3 = n — k — 1) and rank
r;. Finally, let n; = d; — r; for each i € {1,2}. We wish to show that rank(A) > d; + ds in order to get a
contradiction. If dy = r; and dy = ro, we are done. So assume without loss of generality that n; > 0 and
ny > ny. By our assumption of (4), the column rank of
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M,
0

is dy and the column rank of

N, |

is dy. However, unlike the positive semidefinite case, all we can say is that the column rank of

M, 0
0 M,
N1 N

is at least dy + 2. And yet, by symmetry, the row rank of
My 0 N

is dy, and thus so is its column rank. Because ni > 0, M is singular, so there exists a set of 1 columns of
M; and ny columns of Ni that is linearly independent.

Let S be the set consisting of the first d; columns of A, and let T be the n; columns among the last ds3
columns of A corresponding to the selected columns of N{. Since S is a linearly independent set and the
selected 1 columns of N{ are not in col(M;), SUT is a linearly independent set. Find a basis of ry vectors for
col(Ms), and let U denote the corresponding columns of A. A linear dependence relation among the vectors in
SUUUT would imply a linear dependence relation among the vectors in U UT since the entries in rows dy + 1
through dy + dy are zeros in each vector in S. Moreover, the entries in rows 1 through d; are zeros in each
vector of U, implying a linear dependence relation among the vectors in T'. Each of the sets S, U, and T is
linearly independent, so working backwards, all three linear dependence relations must be trivial, and SUUUT
is linearly independent. Thus A has at least dy+ro+n1 > di+ro+ns = di+ds linearly independent columns.O

5. Graphs with small spark. Recall from Section 2 that spark(G) > 2 for any graph G with no
isolated vertices and that spark(G) is the size of the smallest possible fort in G. The following lemma
characterizes graphs G with spark(G) = 2.

LEMMA 5.1. Let G be a graph. Then spark(G) = 2 if and only if there exists u,v € V(G) such that (1)
wv € E(G) and Nglu] = Ng[v] or (2) uv ¢ E(G) and Ng(u) = Ng(v).

Proof. Assume spark(G) = 2. By Theorem 2.2, G has a minimum fort of size 2, say F' = {u,v}. By the
definition of a fort, every vertex in V(G) \ F is adjacent to neither or both of the vertices in F, implying
either condition (1) or (2). Conversely, if condition (1) or (2) hold, then F' = {u,v} is a fort in G; having
size 2, F' must be a minimum fort. 0

If u,v € V(G) satisfy either condition (1) or condition (2) of Lemma 5.1, then we refer to them as
duplicate vertices.

LEMMA 5.2. Let G be a graph of order n > 3. Then, G must have duplicate vertices if either of the
following conditions hold:
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1. mr(G) <2,
2. k(G)>n-—2.

Proof. Note that by Theorem 4.1, mr (G) < n—k(G), so condition (2) implies condition (1). Therefore,
it suffices to prove that (1) implies the existence of duplicate vertices.

Assume mr(G) < 2. By Theorem 9 of [9], G can be expressed as the union of at most two complete
graphs and of bipartite graphs. Suppose G consists of only complete graphs, in which case it must consist
of the union of exactly two complete graphs since G is connected. Then G is a complete bipartite graph of
order n > 3 and therefore has two duplicate vertices. On the other hand, suppose G has a complete bipartite
graph as a component. This component must contain at least three vertices, and we can let v and v be
vertices in the same partite set; then Ng(u) = Ng(v), so Ng[u] = N¢[v], and u and v are duplicate vertices
in G. ]

PROPOSITION 5.3. If G is a graph with spark(G) > 3, then mr(G) > 3 and k(G) < n—3. In particular,
if spark(G) = 3 and A € S(G) with spark(A) = 3, then A is not full spark.

Proof. Since spark(G) > 3, G has no duplicate vertices by Lemma 5.1. The result then follows by
Lemma 5.2. 0

PROPOSITION 5.4. If spark(G) = 2, then either G is a path on three vertices or mr(G) < n — 1.

Proof. 1If spark(G) = 2, then G has a pair of duplicate vertices by Lemma 5.1. If mr(G) = n — 1 then G
is a path P, on n vertices [15], which can contain duplicate vertices only if n = 3. |

Naturally, we can ask if an analogous result holds for graphs with larger spark. Unfortunately, increasing
the spark by 1 does not necessarily decrease the minimum rank’s bound by 1, as is illustrated by the following
example.

EXAMPLE 5.5. Let G = C), be a cycle on n vertices and let H be obtained from G by adding the edges
v and v1vp—2. Then, for n > 5, it follows that H has no duplicate vertices, so spark(H) > 3. On the
other hand, {v1,v3,vn—1} forms a fort in H. Hence spark(H) = 3. Finally, it is not difficult to deduce that
mr(H) =n—2.

We saw in Theorem 4.3 that considering matrices in S(G) does not provide an advantage over positive
semidefinite matrices in achieving minimum rank and full spark. We may also consider matrices of minimum
rank and minimum spark. This is not necessarily achievable with a positive semidefinite matrix, as the next
example demonstrates. The hypercube graph Q3 = C; O P, has minimum rank 4. The matrix H3 given in
[2, p. 1636] for the graph @3 has rank 4 and spark 3. Since @3 has no duplicate vertices, spark(G) > 2 by
Lemma 5.1, so Hs achieves minimum rank and minimum spark for @s.

PROPOSITION 5.6. If A € §(Q3) is positive semidefinite and rank(A) = 4, then spark(A4) = 4.

Proof. We have k(Q3) = 6(Q3) = 3. Thus, spark(A) < 4 by Corollary 4.2. Since Q3 has no duplicate
vertices, spark(A) > 2 by Lemma 5.1. Suppose that spark(A) = 3. Then, in the orthogonal representation
corresponding to A, we can find three vectors that are linearly dependent. That is, the dimension of their
span must be at most two. Consider the subgraph corresponding to these three vectors. It cannot be
complete as K3 is not a subgraph of Q3. If it has no edges, then all three vectors are orthogonal and cannot
be linearly dependent. If there is just one edge, then two of the vectors must be orthogonal to the third,
which would ensure they are linearly dependent (in a one-dimensional subspace), contradicting spark(A4) > 2.
If there are two edges, then two of the vectors must be orthogonal to each other, say ¢; and ¥, and the
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third must then be a linear combination of both: a#; + v with af # 0. But then the vector representing
the third neighbor (in Q3) of the vertex represented by at; + SU2 would have nonzero dot product with at
least one of #; and 75, a contradiction. 0

6. Further connections. Let A € S(G) and v € V(G). Denote by A(v) the principal submatrix of
A obtained by deleting v. The vertex v € V(G) is a Parter vertex (P-vertex) for A € S(G) if nul(A(v)) =
nul(4) + 1 (& rank(A) = rank(A(v)) + 2) (see the original works [37, 40] and [30, 29] for more recent
related work on these topics). A Fiedler vertex (F-vertex) v € V(G) for A € S(G) is a vertex that satisfies
nul(A(v)) > nul(A). Both Parter and Fiedler vertices are interconnected with zero coordinates in null
vectors:

LEMMA 6.1 ([29, Theorem 2.1]). Let A € S(G) and v € V(G). Then, nul(A(v)) > nul(A) if and only

if every null vector of A has a 0 in the v-th coordinate.

T
According to Kim and Shader [30], if we partition a singular symmetric matrix A as A = [a 2] , then
T

T

vertex 1 is an F-vertex if and only if {a] is not in the column span of r ], and vertex 1 is a P-vertex
T

B
if and only if = is not in the column span of B. Since a positive semidefinite matrix automatically has
the row/column inclusion property [25], a positive semidefinite matrix cannot have a P-vertex. And if A
is positive semidefinite, then a > y” By where x = By, so vertex 1 is a F-vertex if and only if a > y” By.
In that case, we can decrease the rank of A by exactly one if we replace a with y7 By. Thus a positive
semidefinite matrix in S(G) of minimum (semidefinite) rank cannot have an F-vertex.

Instead of just considering the support of a particular null vector, there is also interest in considering
the support of the null space. That is, for a matrix A in S, (R), we define the support of the null space of
A as

supp N(A) = {i | #; # 0 for some z € N(A)}.

An important well-known fact for matrices in S(T°), where T is a tree, is the following:

PROPOSITION 6.2 ([35, 19]).  Suppose T is a tree and A € S(T). If suppN(A) = V(T), then
dim N(A) = 1.

The minimum semidefinite rank of a tree T" on n vertices is n — 1. Hence, the converse of Proposition
6.2 states that a matrix A realizing this minimum must have full null support. The following theorem shows
that this in fact holds not just for trees but for all graphs.

THEOREM 6.3. If a positive semidefinite matriv A € S(G) has rank(A) = mr; (G), then supp N(A) =
V(G).

Proof. A positive semidefinite matrix of minimum (semidefinite) rank cannot have an F-vertex, so no
vertex has a zero component in every null vector. ]
For trees, full null space support turns out to be equivalent to full spark for singular matrices.

THEOREM 6.4. Let T be a tree and A € S(T') be singular. Then, the following statements are equivalent:
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1. A has full spark: spark(A) = rank(A) + 1.
2. A has full null space support, that is, supp N(A) = V(T).
3. A does not have a Parter vertex.
Proof. (1) & (2): Suppose k = rank(A) = spark(A) — 1. By Theorem 4.3, T' must be (n — k)-connected,
which implies k = n — 1 since T is a tree and A is singular. Since dim N(A) = 1 and A has full spark,
Theorem 3.1 implies supp N(A) = V(T).

Conversely, suppose supp N(A) = V(T'). By Proposition 6.2, dim N(A) = 1. This implies that every
nontrivial null vector of A has only nonzero entries. By Theorem 3.1, A must have full spark.

(2) < (3) follows from Lemma 6.1. |

We note here for completeness that if mr(G) < mro (G), then a minimum rank matrix need not have an
F-vertex. Suppose G = K5 3. Then mr(G) = 2 and mr (G) = 3. The adjacency matrix of G is a minimum
rank (indefinite) matrix that does not have an F-vertex.

In [23] Hogben and Shader, define a real matrix X to be generic if every square submatrix of X is
nonsingular. Then the generic nullity of a nonzero A € R"*" is

GN(A) = max{k | X € R™** AX =0, X is generic},
and the mazimum generic nullity of a graph is

GM(G) = max{GN(A) | A € S(Q)}.

For any graph G, note that GM(G) > 1 since the all-ones vector belongs to the null space of the graph’s
Laplacian matrix. We end with an interesting relation between rank, spark, and maximum generic nullity
of a graph.

THEOREM 6.5. If there exists A € S(G) such that rank(A) = k and spark(A) = k + 1, then GM(G) >
n—=k.
Proof. By Theorem 3.1, each k x k principal submatrix of A is nonsingular. If k = n, the result is clear,

so assume k < n. Let X be a n x (n — k) matrix whose columns form a basis for the null space of A, so that
AX = 0. By Theorem 3.1, X is generic. Thus, GN(A) =n —k and GM(G) > n — k. d

Theorem 4.3 also has an implication for generic nullity. An immediate consequence, by Theorem 6.5, is
that GM(G) > k(G) for any graph G (Corollary 4.2 of [23]). If the inequality is strict, we can say more:

COROLLARY 6.6. If GM(G) > k(G), then any matriv A € S(G) with GN(A) = GM(G) satisfies
GN(A) < nul(A).
Proof. Suppose GM(G) = k where k > k(G), and let A € S(G) with GN(A) = k. Then there exists a

generic matrix X € R™** such that AX = 0, implying nul(A) > k. Suppose nul(A) = k. Then rank(A4) =
n —k and A is full spark by Theorem 3.1. But this contradicts mfsr(G) = n — &(G). 0
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